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LINEAR CONVERGENCE OF DISTRIBUTED DYKSTRA’S

ALGORITHM FOR SETS UNDER AN INTERSECTION

PROPERTY

C.H. JEFFREY PANG

Abstract. We show the linear convergence of a distributed Dykstra’s algo-
rithm for sets intersecting in a manner slightly stronger than the usual con-
straint qualifications.
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1. Introduction

Let G = (V, E) be an undirected graph. For all i ∈ V , let Ci ⊂ R
m be closed

convex sets, and x̄i ∈ R
m. For a closed convex set C, let δC(·) be its indicator

function. Consider the distributed optimization problem

min
x∈Rm

∑

i∈V

[
δCi

(x) + 1
2 ‖x − x̄i‖2

]
, (1.1)

where communications between two vertices in V occur only along edges in E. In
Remark 2.3, we explain that we can assume that all x̄i are equal to some x̄ without
losing any generality. The problem is therefore equivalent to projecting x̄ onto
∩i∈V Ci in a distributed manner.

1.1. A review of the distributed Dykstra’s splitting. In our earlier paper
[Pan18a], we considered the more general problem than (1.1) where δCi

(·) can be
general closed convex functions instead. We proposed a deterministic distributed
asynchronous decentralized algorithm based on dual ascent for (1.1) that converges
to the primal minimizer, and call it the distributed Dykstra’s algorithm. Our ap-
proach was motivated by work on Dykstra’s algorithm in [Dyk83, BD85, GM89,
HD97]. See also [Han88]. We also remark that the dual ascent idea had been dis-
cussed in [CDV11, CDV10, ACP+17]. We refer to the introduction in [Pan18a] for
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more historical summary of these methods. Part of the contribution in [Pan18a]
was to point out that the dual ascent idea leads to a desirable distributed opti-
mization algorithm. We give more details of the distributed Dykstra’s algorithm in
Section 2.

1.2. Linear convergence of Dykstra’s algorithm. A well known algorithm for
solving (1.1) is Dykstra’s algorithm. The primal problem and its corresponding
(Fenchel) dual are typically written as

min
x∈Rm

1
2 ‖x − x̄‖2 +

∑

i∈V

δCi
(x) and max

zi∈Rm,i∈V

1
2 ‖x̄‖2 − 1

2

∥
∥
∥
∥
x̄ − ∑

i∈V

zi

∥
∥
∥
∥

2

− ∑

i∈V

δ∗
Ci

(zi)

respectively, and solved by block coordinate maximization on the dual problem.
(See [BD85, Han88, GM89]). (Note that this dual is different from (2.4).) In
the case when Ci are halfspaces, linear convergence of Dykstra’s algorithm was
established in [lP90], with refined rates given in [DH94]. We extended the linear
rates to polyhedra in [Pan17].

A linear convergence rate of Dykstra’s algorithm assures that a high accuracy
solution can be obtained in a reasonable amount of time. This would then allow the
algorithm to be used as a subroutine of other optimization algorithms. For exam-
ple, the distributed optimization algorithms [AH16, TSDS18] (and perhaps many
others) make use of the averaged consensus algorithm as a subroutine. (The linear
convergence rate of averaged consensus is used in the convergence proof of the main
distributed optimization algorithm.) Since averaged consensus is a particular case
of the distributed Dykstra’s algorithm with all Ci being R

m, it is plausible to make
use of the distributed Dykstra’s algorithm to help solve constrained distributed
problems.

1.3. Contributions of this paper. Even though we have observed linear con-
vergence rates of the distributed Dykstra’s algorithm in [Pan18b] in our numerical
experiments for the case when some of the terms are indicator functions of closed
convex sets, it seems that there is no theoretical justification yet of linear con-
vergence for both Dykstra’s original algorithm and for the distributed Dykstra’s
algorithm beyond the polyhedral case. As is well-known, the intersection ∩i∈V Ci

can be sensitive to the perturbation of the sets Ci [Kru06], so additional constraint
qualifications are needed for the linear convergence of the method of alternating
projections (see for example [BB96]).

In this paper, we prove the asymptotic linear convergence of the distributed
Dykstra’s algorithm when the functions are indicator functions of sets that are not
necessarily polyhedral. We assume that the sets satisfy a property on systems of
intersections of sets stronger than what is typically studied in the method of alter-
nating projections. We also make assumptions that are closely related to conditions
used to prove linear convergence in proximal algorithms.

1.4. Notation. Variables in bold, like x and zi, typically lie in the space [Rm]|V |,
while variables not in bold, like x and y, typically lie in R

m. All norms shall be
the 2-norm. We often use “ˆ” to represent the unit vector in a given direction. For

example, x̂0
i =

x0
i

‖x0
i
‖ .
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2. Preliminaries

In this section, we lay down the preliminaries of the paper.
For each i ∈ V , let fi : [Rm]|V | → R ∪ {∞} be defined by

fi(x) = δCi
([x]i). (2.1)

For each (i, j) ∈ E, define the halfspaces H(i,j) to be

H(i,j) := {x ∈ [Rm]|V | : xi = xj}.

Since the graph is connected, the intersection of all these halfspaces is the diagonal
set defined by

D := ∩e∈EHe = {x ∈ [Rm]|V | : x1 = x2 = · · · = x|V |}. (2.2)

For each e ∈ E, define fe : [Rm]|V | → R by fe(x) = δHe
(x). The setting for the

distributed Dykstra’s algorithm that is easily seen to be equivalent to (1.1) is

min
x∈[Rm]|V |

1
2 ‖x − x̄‖2 +

∑

i∈V

fi(x) +
∑

e∈E

δHe
(x), (2.3)

where x̄ ∈ [Rm]|V | is such that each component of [x̄]i, where i ∈ V , is equal to x̄.
Let the dual variables be z = {zα}α∈V ∪E , where each zα ∈ [Rm]|V |. The (Fenchel)
dual of (2.3) can be calculated to be

max
zα∈[Rm]|V |,α∈V ∪E

1
2 ‖x̄‖2 − 1

2

∥
∥
∥
∥
x̄ − ∑

α∈V ∪E

zα

∥
∥
∥
∥

2

− ∑

i∈V

δ∗
Ci

(zi) − ∑

e∈E

δ∗
He

(ze). (2.4)

Proposition 2.1. (Sparsity) If the value in (2.4) is finite, then

(1) If i ∈ V , then zi ∈ [Rm]|V | is such that [zi]j = 0 for all j ∈ V \{i}.

(2) If (i, j) ∈ E, then z(i,j) ∈ [Rm]|V | is such that [z(i,j)]k = 0 for all k ∈
V \{i, j}, and [z(i,j)]i + [z(i,j)]j = 0.

Proof. The proof is elementary and exactly the same as that in [Pan18a]. (Part (1)
makes use of the fact that fi(·) depends on only the i-th coordinate of the input,
while part (2) makes use of the fact that δ∗

H(i,j)
(·) = δH⊥

(i,j)
(·), and δH⊥

(i,j)
(z(i,j)) < ∞

if and only if the conditions in (2) hold.) �

In view of Proposition 2.1, the vector zi for all i ∈ V are such that [zi]j = 0 if

j 6= i. Letting zi := [zi]i, we let the dual function F : [[Rm]|V |]|V ∪E| → R be

F (z) :=
∑

i∈V

δ∗
Ci

(zi) +
∑

e∈E

δ∗
He

(ze) +
1

2

∥
∥
∥
∥

x̄ −
∑

α∈V ∪E

zα

︸ ︷︷ ︸

=:x

∥
∥
∥
∥

2

. (2.5)

It is clear to see that F (z) differs from (2.4) by a sign and a constant. It is known
that strong duality between (2.3) and (2.4) holds (even though a dual minimizer
may not exist). Minimizing F (·) allows one to find the optimal value to (2.4), and
also the optimal solution to (2.3). It turns out that the only variables that need
to be tracked are zi ∈ R

m for all i ∈ V and x ∈ [Rm]|V | as marked above. We
shall prove that x converges linearly to the optimal primal solution under some
additional assumptions. We refer to the i-th coordinate of x as xi. Also, if x∗, the
projection of x̄ onto ∩i∈V Ci, were to be zero, then F (z) takes the minimum of zero
when x is the primal optimal solution and {zi}i∈V are optimal multipliers.



DYKSTRA LINEAR CONVERGENCE: SETS CASE 4

Here are the first set of assumptions we need to prove our linear convergence
result.

Assumption 2.2. Suppose that the following assumptions hold:

(1) Let x∗ ∈ R
m be the optimal solution to (1.1). We assume that x∗ = 0.

(2) The x̄i are all equal for all i ∈ V .
(3) (Existence of dual minimizers) There exists {zi}i∈V such that zi ∈ NCi

(x∗)
and

∑

i∈V zi = |V |x̄.
(4) (Regularity of the sets Ci) The sets satisfy a nondegeneracy constraint qual-

ification: There is a neighborhood U of x∗ and parameters Mmax > 1 and
Mmin > 0 such that if the multipliers {zi}i∈V and points {xi}i∈V are such
that xi ∈ U and zi ∈ NCi

(xi) for all i ∈ V and [x̄ −∑α∈V ∪E zα]j ∈ U for
all j ∈ V , then

Mmin ≤ ‖zi‖ ≤ Mmax for all i ∈ V. (2.6)

Let Hi be the hyperplane {x : zT
i (x − xi) = 0} for all i ∈ V . Assume that

for all x ∈ R
m, there is some constant κ1 > 0 such that d(x, ∩i∈V Hi) ≤

κ1 maxi∈V d(x, Hi).
(5) (Graph connectedness) The (undirected) graph G = (V, E) is connected.
(6) (Semismoothness) The sets satisfy the semismoothness property of order 2

at x∗: For a point xi ∈ ∂Ci near x∗, let a supporting hyperplane to xi at Ci

with normal zi ∈ NCi
(xi) be Hi. Then we have d(x∗, Hi) = O(‖x − x∗‖2).

[We know that all convex sets satisfy the property if O(‖x − x∗‖2) were
replaced by o(‖x − x∗‖).] Suppose zi ∈ NCi

(xi). Since d(x∗, Hi) = ẑT
i xi,

there is a κ2 > 0 such that

δ∗
Ci

(zi) = 〈zi, xi〉 = ‖zi‖〈 zi

‖zi‖ , xi〉 ≤ κ2‖zi‖‖xi‖2. (2.7)

(7) (First order property on normals) There is a neighborhood U of x∗ and
κ3 > 0 such that for all i ∈ V , if x ∈ U ∩ Ci, and z ∈ NCi

(x)\{0}, then
there is a zr ∈ NCi

(x∗)\{0} such that
∥
∥
∥

z
‖z‖ − zr

‖zr‖

∥
∥
∥ ≤ κ3‖x − x∗‖. (2.8)

(8) (A linear regularity property on the normal cones) Define the set M ⊂
[Rm]|V | of optimal multipliers to be M := M1 ∩ M2, where

M1 := NC1(x∗) × · · · × NC|V |
(x∗) (2.9a)

and M2 :=
{

z ∈ [Rm]|V | :
∑

i∈V

zi = |V |x̄
}

. (2.9b)

Assume there is a κ4 > 0 such that

d(z, M1 ∩ M2) ≤ κ4d(z, M2) for all z ∈ M1. (2.10)

We remark about Assumption 2.2(8). The linear regularity property is usually
stated as d(z, M1 ∩ M2) ≤ κ4 max{d(z, M1), d(z, M2)} for all z, but we state a
weaker version of it in Assumption 2.2(8) because that is what our proof needs.
The stronger linear regularity is satisfied whenever the normal cones NCi

(x∗) are
polyhedral (see for example [BB96, Corollary 5.26]), so this assumption is quite
reasonable.

Assumption 2.2(4) is stronger than the usual transversality condition typically
studied in the method of alternating projections. Now that we are working with
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an optimization problem (1.1) rather than a feasibility problem, it may be more
appropriate to compare to the Robinson constraint qualification. We seek to study
this assumption further in future work.

We make the following remark.

Remark 2.3. (On Assumption 2.2(2)) We now show that Assumption 2.2(2) does
not lose any generality. Suppose that the x̄i are not all necessarily the same. Note
that

∑

i∈V
1
2 ‖x−x̄i‖2 =

∑

i∈V (1
2 ‖x−a‖2+ 1

2 ‖x̄i‖2− 1
2 ‖a‖2), where a = 1

|V |
∑

i∈V x̄i.

Thus all the x̄i can be replaced by a. Note that this does not mean that the primal
iterate x needs to be such that all its coordinates are a at the start.

We now state Algorithm 2.4, which minimizes F (·) by block coordinate mini-
mization.

Algorithm 2.4. (Distributed Dykstra’s algorithm) Our distributed Dykstra’s algo-
rithm is as follows:
01 Let

• z
1,0
i ∈ [Rm]|V | be a starting dual vector for fi(·) for each i ∈ V so that

[z1,0
i ]j = 0 for all j ∈ V \{i}.

• z
1,0
(i,j) ∈ [Rm]|V | be a starting dual vector for each edge (i, j) so that [z(i,j)]i +

[z(i,j)]j = 0 and [z(i,j)]i′ = 0 for all i′ ∈ V \{i, j}.

02 For n = 1, 2, . . .
03 For w = 1, 2, . . . , w̄
04 Choose a set Sn,w ⊂ E ∪ V such that Sn,w 6= ∅.
05 Define {zn,w

α }α∈Sn,w
by

{zn,w
α }α∈Sn,w

= arg min
zα,α∈Sn,w

1

2

∥
∥
∥
∥
∥
∥

x̄ −
∑

α/∈Sn,w

zn,w−1
α −

∑

α∈Sn,w

zα

∥
∥
∥
∥
∥
∥

2

+
∑

α∈Sn,w

f∗
α(zα).

(2.11)
06 Set zn,w

α := zn,w−1
α for all α /∈ Sn,w.

07 End For
08 Let zn+1,0

α = zn,w̄
α for all α ∈ V ∪ E.

09 End For

To provide some intuition to Algorithm 2.4, we mention that minimizing only one
zi at a time for some i ∈ V (i.e., Sn,k = {i}) reduces (2.11) to a standard proximal
problem. Minimizing only one z(i,j) for some (i, j) ∈ E (i.e., Sn,k = {(i, j)}) has
the natural interpretation of averaging the i-th and j-th components of x.

Let the function fe : [Rm]|V | → R ∪ {∞} to be defined to be fe(·) = δHe
(·). Let

x∗ be the optimal solution of (2.3). Before we prove the result, we note that using
a technique in [GM89], the duality gap between the primal and dual pair (2.3) and
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(2.4) satisfies

1
2 ‖x∗ − x̄‖2 +

∑

α∈V ∪E

fα(x∗) − 1
2 ‖x̄‖2 + 1

2

∥
∥
∥
∥

x̄ − ∑

α∈V ∪E

zα

∥
∥
∥
∥

2

+
∑

α∈V ∪E

f∗
α(zα)

= 1
2 ‖x∗ − x̄‖2 +

∑

α∈E∪V

[fα(x∗) + f∗
α(zα)] −

〈

x̄,
∑

α∈E∪V

zα

〉

+ 1
2

∥
∥
∥
∥

∑

α∈E∪V

zα

∥
∥
∥
∥

2

Fenchel duality

≥ 1
2 ‖x∗ − x̄‖2 +

〈

x∗,
∑

α∈E∪V

zα

〉

−
〈

x̄,
∑

α∈E∪V

zα

〉

+ 1
2

∥
∥
∥
∥

∑

α∈E∪V

zα

∥
∥
∥
∥

2

= 1
2

∥
∥
∥
∥
x∗ − x̄ +

∑

α∈E∪V

zα

∥
∥
∥
∥

2
(2.5)
= 1

2 ‖x∗ − x‖2. (2.12)

The strategy behind our linear convergence proof is to show that the duality gap in
the first line of (2.12) converges linearly to zero, which will force the last formula
of (2.12) to converge linearly to zero, which in turn shows the linear convergence
of x to x∗. Note that since x∗ = 0, f∗

e (ze) = 0 throughout, and fα(x∗) = 0 for all
α ∈ V ∪ E, the first line of (2.12) can be simplified to be the F (z) in (2.5).

We make another set of assumptions on Algorithm 2.4 that will allow us to prove
our linear convergence result.

Assumption 2.5. For Algorithm 2.4, we assume that:

(1) For all α ∈ V ∪ E and n ≥ 1, there is a wn,α such that α ∈ Sn,wn,α
.

(2) Sn,1 = V .

Out plan is to prove the main result in Section 3 with Assumption 2.5(2) first,
then remove it in Section 4.

3. Main result

In this section, we state and prove the main theorem on linear convergence of
the distributed Dykstra’s algorithm. Our proof is split into three cases. For the
first two cases, the proof in this section does not rely on Assumption 2.5(2). For
the third case, we first prove our result by first assuming Assumption 2.5(2). We
then show how to lift this assumption in Section 4.

Theorem 3.1. (Linear convergence of dual value) Suppose Assumptions 2.2 and
2.5 hold. For Algorithm 2.4, there is a constant r ∈ (0, 1) such that F (zn+1,0) ≤
rF (zn−1,0). Together with (2.12), this implies that the distance {‖xn,0

i − x∗‖}n≥1

converges linearly to zero for all i ∈ V .

We need positive parameters ǭ, θD and θZ to be small enough so that they satisfy
ǭ|V |(2κ2Mmax+1) ≤ 1

4 , c2(θZ , θD, 0) > 0 and (3.29), where c(·) and c2(·) are defined
in (3.26) and (3.56), and the other constants are described in Assumption 2.2 and
in the course of the proof. It is easy to see that the parameters ǭ, θD and θZ can
be chosen to satisfy these conditions.

The first two cases of the proof of Theorem 3.1 are easier than the third case. To
simplify notation, we let zn,w

α to be written simply as zw
α for all w ∈ {0, 1, . . . , w̄}

and α ∈ V ∪ E, and the dropping of “n” appears in all other variables as well. Let
xw

i be the i-th coordinate of xw , and let zw
i be [zw

i ]i, the i-th coordinate of zw
i . If

Sn,k = {i} for some i ∈ V , then xk
i and zk

i are the solutions to the primal dual pair
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of subproblems

min
x

1
2 ‖(xk−1

i + zk−1
i ) − x‖2 + δCi

(x) (3.1a)

and max
z

1
2 ‖xk−1

i + zk−1
i ‖2 − 1

2 ‖(xk−1
i + zk−1

i ) − z‖2 − δ∗
Ci

(z). (3.1b)

By adjusting (3.1b), we can easily check that zk
i is the minimizer of

min
z

1
2 ‖(xk−1

i + zk−1
i ) − z‖2 + δ∗

Ci
(z). (3.2)

Proof of cases 1 and 2 of Theorem 3.1. The proof is split into 3 cases:
Case 1: ‖x0‖2 ≤ ǭ

∑

i∈V δ∗
Ci

(z0
i )

Let i∗ be arg maxi∈V {δ∗
Ci

(z0
i )}. We have

ǭ|V |δ∗
Ci∗

(z0
i∗) ≥ ǭ

∑

i∈V

δ∗
Ci

(z0
i )

Case 1
≥ ‖x0‖2. (3.3)

Also,

−
(

1+
ǭ

2

)

δ∗
Ci∗

(z0
i∗)

Case 1,(3.3)

≤ − 1

|V |
(1

2
‖x0‖2 +

∑

i∈V

δ∗
Ci

(z0
i )
)

(2.5)
= − 1

|V |F (z0). (3.4)

We can assume that at index k, we have Sn,k = {i∗} and i∗ /∈ Sn,k′ for all k′ < k.
We have 2 cases.

Case 1a: ‖xk
i∗‖2 ≤ 1

2κ2Mmax+1 δ∗
Ci∗

(z0
i∗),

In this case,

δ∗
Ci∗

(zk
i∗) + 1

2 ‖xk
i∗‖2

(2.7),zk
i∗ ∈NCi

(xk
i∗ )

≤
(
κ2‖zk

i∗‖ + 1
2

)
‖xk

i∗‖2

(2.6)

≤
(
κ2Mmax + 1

2

)
‖xk

i∗ ‖2
Case 1a

≤ 1
2 δ∗

Ci∗
(z0

i∗) ≤ 1
2 δ∗

Ci∗
(z0

i∗) + 1
2 ‖xk−1

i∗ ‖2.(3.5)

Recall that z0
i∗ = zk−1

i∗ . Since Sn,k = {i∗}, we also have zk
i = zk−1

i for all i 6= i∗

and xk
i = xk−1

i for all i 6= i∗. We have

F (zk)
(2.5)
=

∑

i∈V

(
δ∗

Ci
(zk

i ) + 1
2 ‖xk

i ‖2
)

(3.6)

≤
∑

i6=i∗

(
δ∗

Ci
(zk

i ) + 1
2 ‖xk

i ‖2
)

+ 1
2 δ∗

Ci∗
(z0

i∗ ) + 1
2 ‖xk−1

i∗ ‖2

(2.5),(3.5)

≤ F (zk−1) − 1
2 δ∗

Ci∗
(z0

i∗)
(3.4),F (z

k−1)≤F (z
0)

≤
(

1 − 1
|V |(2+ǭ)

)

F (z0).

Case 1b: ‖xk
i∗‖2 ≥ 1

2κ2Mmax+1 δ∗
Ci∗

(z0
i∗ )

Note that 1
2 ‖xk

i∗ −x0
i∗‖2 is an estimate of the decrease of the dual objective value.

We choose ǭ > 0 so that ǭ|V |(2κ2Mmax + 1) ≤ 1
4 . We have

‖x0
i∗ ‖2

(3.3)

≤ ǭ|V |δ∗
Ci∗

(z0
i∗)

Case 1b
≤ ǭ|V |(2κ2Mmax + 1)‖xk

i∗‖2 ≤ 1
4 ‖xk

i∗‖2. (3.7)
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We then have

‖xk
i∗ − x0

i∗ ‖2 ≥ (‖xk
i∗ ‖ − ‖x0

i∗‖)2
(3.7)

≥ 1
4 ‖xk

i∗‖2
Case 1b

≥ 1
4(2κ2Mmax+1) δ∗

Ci∗
(z0

i∗ ).

(3.8)
Then

k∑

k′=1

‖xk′

i∗ − xk′−1
i∗ ‖2 ≥ 1

k

(
k∑

k′=1

‖xk′

i∗ − xk′−1
i∗ ‖

)2

≥ 1
w̄ ‖x0

i∗ − xk
i∗‖2. (3.9)

We then have

F (zk)
(2.5)
=

∑

i∈V

δ∗
Ci

(zk
i ) + 1

2 ‖xk‖2

(2.11)

≤ ∑

i∈V

δ∗
Ci

(z0
i ) + 1

2 ‖x0‖2 −
k∑

k′=1

1
2 ‖xk′

i∗ − xk′−1
i∗ ‖2

(2.5),(3.8),(3.9)

≤ F (z0) − 1
8w̄(2κ2Mmax+1) δ∗

Ci∗
(z0

i∗)

(3.4)

≤
(

1 − 1
4w̄(2κ2Mmax+1)(2+ǭ)|V |

)

F (z0). (3.10)

Case 2: ‖x0‖2 ≥ ǭ
∑

i∈V δ∗
Ci

(z0
i ), and ‖PD⊥x0‖2 ≥ θD‖x0‖2.

In this case, note that d(x0, D) = ‖PD⊥ x0‖
Case 2

≥ √
θD‖x0‖. Since D

(2.2)
=

∩e∈EHe and He are hyperplanes, there is some κD > 0 such that maxe∈E d(x0, He) ≥
1

κD
d(x0, D). Let e∗ be such that d(x0, He∗) = maxe∈E d(x0, He), and let k be such

that xk ∈ He∗ , which exists by Assumption 2.5(1). We then have

‖x0 − xk‖
x

k∈He∗

≥ d(x0, He∗) ≥ 1
κD

d(x0, D)
Case 2

≥ 1
κD

√
θD‖x0‖. (3.11)

Now,

(
1
2 + 1

ǭ

)
‖x0‖2

Case 2
≥ 1

2 ‖x0‖2 +
∑

i∈V

δ∗
Ci

(z0
i )

(2.5)
= F (z0). (3.12)

We have 1
2

∑k
i=1 ‖xi − xi−1‖2 ≥ 1

2w

(
∑k

i=1 ‖xi − xi−1‖
)2

≥ 1
2w ‖x0 − xk‖2, so

F (zk)
(2.11)

≤ F (z0) − 1
2

k∑

i=1

‖xi − xi−1‖2 ≤ F (z0) − 1
2w ‖x0 − xk‖2 (3.13)

(3.11)

≤ F (z0) − 1
2wκ2

D

θD‖x0‖2
(3.12)

≤
(

1 − 1
wκ2

D

θD
ǭ

ǭ+2

)

F (z0).

Hence we are done. �

This leaves us with Case 3, i.e.,
Case 3: ‖x0‖2 ≥ ǭ

∑

i∈V δ∗
Ci

(z0
i ), and ‖PD⊥x0‖2 ≤ θD‖x0‖2.
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By the definition of D in (2.2), all |V | components of PDx0 are equal to some
value, which we call a. Then we have the inequalities

‖PDx0‖2 = ‖x0‖2 − ‖PD⊥x0‖2
Case 3

≥ (1 − θD)‖x0‖2, (3.14)

∑

i∈V

‖x0
i − a‖2 = ‖PD⊥x0‖2

Case 3
≤ θD‖x0‖2

(3.14)

≤ θD

1−θD
‖PDx0‖2 = θD |V |

1−θD
‖a‖2,

(3.15)

|V |‖a‖2 = ‖PDx0‖2 ≤ ‖x0‖. (3.16)

We have

‖x0
i ‖ ≤ ‖a‖ + ‖x0

i − a‖
(3.15)

≤
(

1 +
√

θD

1−θD
|V |
)

‖a‖. (3.17a)

and ‖x0
i ‖ ≥

∣
∣‖a‖ − ‖x0

i − a‖
∣
∣

(3.15)

≥
(

1 −
√

θD

1−θD
|V |
)

‖a‖. (3.17b)

and

‖a − x0
i ‖

(3.15)

≤
√

θD

1−θD
|V |‖a‖

(3.17b)

≤
(

1 −
√

θD

1−θD
|V |
)−1√

θD

1−θD
|V |‖x0

i ‖. (3.18)

We now show that there is a constant κ̃3 > 0 such that ‖ẑ0
i − ẑr

i ‖ ≤ κ̃3‖x0
i ‖.

We have ‖ẑ0
i − ẑr

i ‖
(2.8)

≤ κ3‖x̃i‖, where x̃i := x
n−1,p(n−1,i)
i , and p(n − 1, i) is the

index such that i /∈ Sn−1,k for all k such that p(n − 1, i) < k ≤ w̄. If we have
‖ẑ0

i − ẑr
i ‖ > κ̃3‖x0

i ‖, then

F (zn−1,p(n−1.i)) ≥ 1
2 ‖x̃i‖2

(2.8)

≥ 1
2κ2

3
‖ẑ0

i − ẑr
i ‖2 ≥ κ̃2

3

2κ2
3
‖x0

i ‖2

(3.17b)

≥ κ̃2
3

2κ2
3

(

1 −
√

θD|V |
1−θD

)2

‖a‖2

(3.15)

≥ κ̃2
3

2κ2
3

(

1 −
√

θD|V |
1−θD

)2
1−θD

|V | ‖x0‖2
(3.12)

≥ κ̃2
3

κ2
3

(

1 −
√

θD|V |
1−θD

)2
1−θD

|V |
ǭ

2+ǭ
F (z0).

This would then give us F (zn−1,0) ≥ κ̃2
3

κ2
3

(

1 −
√

θD|V |
1−θD

)2
1−θD

|V |
ǭ

2+ǭ F (zn+1,0). The

parameter κ̃3 can be chosen large enough so that the coefficient of F (zn+1,0) is
greater than 1, which once again leads to the conclusion in Theorem 3.1. Therefore,
we shall assume

‖ẑ0
i − ẑr

i ‖ ≤ κ̃3‖x0
i ‖ (3.19)

throughout. We now assume Assumption 2.5(2), and let x+
i and z+

i be x1
i and z1

i

respectively.

Proof of case 3 of Theorem 3.1. We consider {z0
i }i∈V and {zr

i }i∈V , where zr
i =

PNCi
(x∗)(z

0
i ). Recall M ⊂ [Rm]|V | defined as the set of optimal multipliers defined

in Assumption 2.2(8). Let (zp
1 , . . . , zp

|V |) ∈ [Rm]|V | be

(zp
1 , . . . , zp

|V |) = PM

(
(zr

1 , . . . , zr
|V |)
)
, (3.20)

where (zr
1 , . . . , zr

|V |) ∈ [Rm]|V |. Let Z be span({zp
i }i∈V ). Let d be the direction

PZ⊥a. There are two subcases to consider.
Case 3a: ‖PZa‖2 ≤ θZ‖a‖2
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Since d = PZ⊥ a ∈ Z⊥, we have

d ⊥ ẑp
i for all i ∈ V. (3.21)

We would be projecting x0
i + z0

i onto Ci for all i ∈ V . Let an outer approximate of
Ci be

Pi := {x : (ẑ0
i )T x ≤ ǫi, (zp

i )T x ≤ 0}, where ǫi := δ∗
Ci

(ẑ0
i ). (3.22)

Since Ci ⊂ Pi, we have δPi
(·) ≤ δCi

(·), and so δ∗
Pi

(·) ≥ δ∗
Ci

(·). By the design of Pi,

we have δ∗
Pi

(z0
i ) = δ∗

Ci
(z0

i ). Since d ∈ Z⊥ and x̄ ∈ Z, we have dT x̄ = 0. Proposition

2.1(2) implies that
∑

i∈V

∑

α∈E [z0
α]i = 0. So we have

d̂T
∑

i∈V

(x0
i + z0

i )
Prop 2.1(2)

= d̂T
∑

i∈V

(x0
i + [z0

i ]i +
∑

α∈E

[z0
α]i)

(2.5)
= d̂T

∑

i∈V

x̄ = 0. (3.23)

Hence there is some i such that

d̂T (x0
i + z0

i )
(3.23)

≤ 0. (3.24)

Then we move ahead with this i (without labeling it as i∗ to save notation).
Since d = PZ⊥ a, we have dT a = aT PZ⊥ a = aT PZ⊥ PZ⊥ a = ‖PZ⊥ a‖2. Note that

‖d‖2 = ‖PZ⊥ a‖2 = ‖a‖2 − ‖PZa‖2
Case 3a

≥ (1 − θZ)‖a‖2 (3.25a)

and ‖d − a‖2 = ‖PZa‖2
Case 3a

≤ θZ‖a‖2, (3.25b)

so

dT x0
i = dT a + dT (x0

i − a) ≥ ‖PZ⊥ a‖2 − ‖d‖‖x0
i − a‖ (3.26)

(3.25a),(3.15)

≥ ‖d‖




√

1 − θZ −
√

θD|V |
1 − θD



 ‖a‖.

(3.17a)

≥ ‖d‖
(
√

1 − θZ −
√

θD

1 − θD
|V |
)(

1 +

√

θD

1 − θD
|V |
)−1

︸ ︷︷ ︸

c(θZ,θD)

‖x0
i ‖.

Let c(θZ , θD) be the formula marked above. Let d̂ = d/‖d‖. We have

d̂T ẑ0
i = 1

‖z0
i

‖

(

d̂T (x0
i + z0

i ) − d̂T x0
i

) (2.6),(3.24),(3.26)

≤ −c(θZ,θD)
Mmax

‖x0
i ‖. (3.27)

We then project x0
i + z0

i onto Pi. Suppose ẑ0
i is close enough to ẑp

i so that
‖ẑp

i − ẑ0
i ‖ ≤ 1

2 . Then

(ẑp
i )T z0

i = (ẑ0
i )T z0

i + (ẑp
i − ẑ0

i )T z0
i ≥ ‖z0

i ‖(1 − ‖ẑp
i − ẑ0

i ‖)
(2.6)

≥ 1
2 Mmin. (3.28)

If we assume that x0
i is close enough to x∗ so that ‖x0

i ‖ ≤ 1
3 Mmin, then (ẑp

i )T x0
i ≥

−‖ẑp
i ‖‖x0

i ‖ = −‖x0
i ‖ ≥ − 1

3 Mmin, and so

(ẑp
i )T (x0

i + z0
i )

(3.28)

≥ − 1
3 Mmin + 1

2 Mmin = 1
6 Mmin > 0.
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This means that x0
i + z0

i does not satisfy the second inequality in the definition of
Pi in (3.22), so at least one of the inequalities there must be active at PPi

(x0
i + z0

i ).
We let the point PPi

(x0
i + z0

i ) be x̃+
i .

Claim. Recall that lim(θZ ,θD)→(0,0) c(θZ , θD)
(3.26)

= 1. Let κ5 be 3κ4|V |(Mmaxκ̃3+1)
Mmin

+
κ̃3, which is checked to be greater than 1. Suppose θZ , θD > 0 are chosen small
enough so that the following conditions hold:

2κ4|V |(Mmaxκ̃3+1)
Mmin

1+

√
θD

1−θD
|V |

1−
√

θD
1−θD

|V |
+ κ̃3 ≤ κ5, (3.29a)

(

1 −
√

θD|V |
1−θD

)−1(√
θD|V |
1−θD

+ θZ

)

−
(

1 +
√

θD |V |
1−θD

)−1 √
1−θZc(θZ,θD)

Mmaxκ5
≤ −1

2Mmaxκ5
,

(3.29b)

c(θZ , θD) ≥ 1
2Mmaxκ5

. (3.29c)

Then ‖x0
i − x̃+

i ‖ ≥ 1
2Mmaxκ5

‖x0
i ‖.

We now prove the claim. For x̃+
i = PPi

(x0
i + z0

i ), there are three different cases.
Case 3a-1: Only the constraint (ẑp

i )T x ≤ 0 in (3.22) is active at x̃+
i .

If that active constraint is (ẑp
i )T x ≤ 0, then by the KKT conditions, x̃+

i would
be of the form x̃+

i = x0
i + z0

i − λẑp
i , and hence

dT x̃+
i = dT (x0

i + z0
i ) − λdT ẑp

i

(3.21),(3.24)

≤ 0. (3.30)

Then

‖x0
i − x̃+

i ‖ ≥ d̂T (x0
i − x̃+

i )
(3.26),(3.30)

≥ c(θZ , θD)‖x0
i ‖

(3.29c)

≥ 1
2Mmaxκ5

‖x0
i ‖.

Case 3a-2: Both constraints in (3.22) are active at x̃+
i .

Step 1: Bounding ‖ẑ0
i − ẑp

i ‖.
For all i ∈ V , we have

‖zp
i − zr

i ‖ ≤ ‖(zp
1 , . . . , zp

|V |) − (zr
1 , . . . , zr

|V |)‖ (3.31)

(3.20)
= d

(
(zr

1 , . . . , zr
|V |), M

) Assu 2.2(8)

≤ κ4d
(
(zr

1 , . . . , zr
|V |), M2

)
.

The projection of (zr
1 , . . . , zr

|V |) onto M2 is (zr
1 − δ, zr

2 − δ, . . . , zr
|V | − δ), where M2

is as defined in (2.9b) and δ = 1
|V | (

∑

i∈V zr
i − |V |x̄). This means that

d
(
(zr

1 , . . . , zr
|V |), M2

)
=
√

|V |‖δ‖ = 1√
|V |

∥
∥
∥
∥

∑

i∈V

zr
i − |V |x̄

∥
∥
∥
∥

. (3.32)

For the parameters (zr
1 , . . . , zr

|V |), we note from Proposition 2.1 that z0
i = [z0

i ]i,

[z0
i ]j = 0 for all j 6= i and

∑

j∈V [
∑

α∈E z0
α]j = 0, which gives

∑

i∈V

zr
i − |V |x̄ Prop 2.1

=
∑

i∈V

(zr
i − z0

i ) +
∑

j∈V

[
∑

α∈E

z0
α +

∑

i∈V

z0
i − x̄

]

j

=
∑

i∈V

(zr
i − z0

i ) − ∑

i∈V

x0
i . (3.33)
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Recall that zr
i = PNCi

(x∗)(z
0
i ), and Assumption 2.2(7). This gives ‖ẑr

i − ẑ0
i ‖

(3.19)

≤
κ̃3‖x0

i ‖ and

‖zr
i −z0

i ‖ = d(z0
i , NCi

(x∗)) ≤
∥
∥z0

i −ẑr
i ‖z0

i ‖
∥
∥ = ‖z0

i ‖‖ẑr
i −ẑ0

i ‖
(2.6),(3.19)

≤ Mmaxκ̃3‖x0
i ‖.

(3.34)
So

∥
∥
∥
∥

∑

i∈V

zr
i − |V |x̄

∥
∥
∥
∥

(3.33)

≤ ∑

i∈V

‖zr
i − z0

i ‖ +
∑

i∈V

‖x0
i ‖ (3.35)

(3.34)

≤ ∑

i∈V

(Mmaxκ̃3 + 1)‖x0
i ‖ ≤ |V |(Mmaxκ̃3 + 1)‖x0‖.

Hence, for all i ∈ V , we have

‖zp
i − zr

i ‖
(3.31),(3.32),(3.35)

≤ κ4

√

|V |(Mmaxκ̃3 + 1)‖x0‖. (3.36)

Also,

‖ẑp
i − ẑr

i ‖ ≤
∥
∥
∥

zp

i

‖zp

i
‖ − zr

i

‖zp

i
‖

∥
∥
∥+

∥
∥
∥

zr
i

‖zp

i
‖ − zr

i

‖zr
i

‖

∥
∥
∥ (3.37)

= 1
‖zp

i
‖ ‖zp

i − zr
i ‖ + ‖zr

i ‖ |‖zp

i
‖−‖zr

i ‖|
‖zp

i
‖‖zr

i
‖

≤ 1
‖zp

i
‖ ‖zp

i − zr
i ‖ + 1

‖zp

i
‖ ‖zp

i − zr
i ‖

(3.36),(2.6)

≤ 2κ4

√
|V |(Mmaxκ̃3+1)

Mmin
‖x0‖.

Since zr
i = PNCi

(x∗)(z
0
i ), Assumption 2.2(7) shows us that ‖ẑ0

i − ẑr
i ‖ ≤ κ3‖x0

i ‖.
Note that for any i ∈ V ,

‖x0
i ‖2 ≤ ‖x0‖2

(3.17a)

≤ |V |
(

1 +
√

θD|V |
1−θD

)2

‖a‖2
(3.17b)

≤ |V |




1+

√
θD |V |

1−θD

1−
√

θD |V |

1−θD





2

‖x0
i ‖2.

(3.38)
We thus have

‖ẑ0
i − ẑp

i ‖ ≤ ‖ẑ0
i − ẑr

i ‖ + ‖ẑr
i − ẑp

i ‖
(3.19),(3.37),(3.38),(3.29a)

≤ κ5‖x0
i ‖. (3.39)

Step 2: Showing ‖x0
i − x̃+

i ‖ is large enough.
Since both constraints in Pi (see (3.22)) are tight at x̃+

i , the projection of x0
i +z0

i

onto Pi is equivalent to the projection of P(ẑp

i
)⊥(x0

i +z0
i ) onto {x : (P(ẑp

i
)⊥ (ẑ0

i ))T x =

ǫi}. We have

‖P(ẑp

i
)⊥(ẑ0

i )‖ = ‖P(ẑp

i
)⊥(ẑ0

i − ẑp
i )‖ ≤ ‖ẑ0

i − ẑp
i ‖

(3.39)

≤ κ5‖x0
i − x∗‖. (3.40)

Note that by the KKT conditions, P(ẑp

i
)⊥(ẑ0

i ) = ẑ0
i − λẑp

i for some λ ∈ R. So

d̂T (P(ẑp

i
)⊥(ẑ0

i )) = d̂T (ẑ0
i − λẑp

i )
(3.21)

= d̂T ẑ0
i

(3.27)

≤ −c(θZ,θD)
Mmax

‖x0
i − x∗‖ < 0. (3.41)

Then we have
dT (P

(ẑ
p

i
)⊥ (ẑ0

i ))

‖d‖‖P
(ẑ

p

i
)⊥ (ẑ0

i
)‖

(3.40),(3.41), terms<0

≤ −c(θZ,θD)
Mmaxκ5

. (3.42)
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Also,

(x0
i )T P

(ẑ
p

i
)⊥ (ẑ0

i )

‖x0
i
‖‖P

(ẑ
p

i
)⊥ (ẑ0

i
)‖ =

(x0
i −d)T P

(ẑ
p

i
)⊥ (ẑ0

i )

‖x0
i
‖‖P

(ẑ
p

i
)⊥ (ẑ0

i
)‖ +

dT P
(ẑ

p

i
)⊥ (ẑ0

i )

‖x0
i
‖‖P

(ẑ
p

i
)⊥ (ẑ0

i
)‖ (3.43)

=
((x0

i −a)+(a−d))T P
(ẑ

p

i
)⊥ (ẑ0

i )

‖x0
i
‖‖P

(ẑ
p

i
)⊥ (ẑ0

i
)‖ + ‖d‖

‖x0
i
‖

dT P
(ẑ

p

i
)⊥ (ẑ0

i )

‖d‖‖P
(ẑ

p

i
)⊥ (ẑ0

i
)‖

(3.42)

≤ ‖x0
i −a‖

‖x0
i
‖ + ‖a−d‖

‖x0
i
‖ − c(θZ,θD)

Mmaxκ5

‖d‖
‖a‖

‖a‖
‖x0

i
‖

(3.18),(3.25)

≤
(

1 −
√

θD|V |
1−θD

)−1(√
θD |V |
1−θD

)

+ θZ
‖a‖

‖x0
i

‖ − c(θZ,θD)
Mmaxκ5

√
1−θZ‖a‖

‖x0
i
‖ .

(3.17),(3.29b)

≤ − 1
2Mmaxκ5

.

Note that x̃+
i is the deflection of x0

i along the normal P(ẑp

i
)⊥ (ẑ0

i ), i.e., x̃+
i = x0

i +

λP(ẑp

i
)⊥(ẑ0

i ) for some λ ≥ 0. Moreover, we have

(
P

(ẑ
p

i
)⊥ (ẑ0

i )

‖P
(ẑ

p

i
)⊥ (ẑ0

i
)‖

)T

x̃+
i = ǫi

‖P
(ẑ

p

i
)⊥ (ẑ0

i
)‖

since the two constraints in the definition of Pi in (3.22) are tight. The distance of
x̃+

i must be at least

‖x̃+
i − x0

i ‖ ≥
(

P
(ẑ

p

i
)⊥ (ẑ0

i )

‖P
(ẑ

p

i
)⊥ (ẑ0

i
)‖

)T

(x̃+
i − x0

i )

(3.43)

≥ ǫi

‖P
(ẑ

p

i
)⊥ (ẑ0

i
)‖ −

(

− 1
2Mmaxκ5

)

‖x0
i ‖ ≥ 1

2Mmaxκ5
‖x0

i ‖,

which concludes the proof for this case.
Case 3a-3: Only the constraint (ẑ0

i )T x ≤ ǫi in (3.22) is active at x̃+
i .

We now show that this case is impossible by showing that (ẑ0
i )T x̃+

i = ǫi > 0 and

(ẑp
i )T x̃+

i ≤ 0 cannot hold at the same time. We have ‖x0
i − a‖

(3.15)

≤
√

θD |V |
1−θD

‖a‖.

By the nonexpansiveness of the projection operation, we have

‖P(ẑp

i
)⊥(x0

i ) − d‖
(3.21)

≤ ‖x0
i − d‖ ≤ ‖x0

i − a‖ + ‖d − a‖
(3.15),(3.25b)

≤
(√

θD|V |
1−θD

+
√

θZ

)

‖a‖
(3.25a)

≤ 1√
1−θZ

(√
θD|V |
1−θD

+
√

θZ

)

‖d‖.(3.44)

Define x′
i to be the point such that x′

i = x0
i + λẑ0

i and (ẑp
i )T x′

i = 0. Note that
P(ẑp

i
)⊥(x0

i ) is of the form x0
i + λẑp

i with (ẑp
i )T P(ẑp

i
)⊥(x0

i ) = 0. Further arithmetic
gives us

x′
i = x0

i − (ẑp

i
)T x0

i

(ẑ0
i

)T ẑp

i

ẑ0
i and P(ẑp

i
)⊥(x0

i ) = x0
i − [(ẑp

i )T x0
i ]ẑp

i . (3.45)

Now

(ẑp
i )T x0

i = (ẑp
i )T (x0

i − d) + (ẑp
i )T d ≤ ‖x0

i − d‖
(3.44)

≤ 1√
1−θZ

(√
θD|V |
1−θD

+
√

θZ

)

‖d‖.

(3.46)

Also,
∥
∥
∥

1
(ẑ0

i
)T ẑp

i

ẑ0
i − ẑp

i

∥
∥
∥ ≤ ‖ẑ0

i − ẑp
i ‖ +

(
1−(ẑ0

i )T ẑp

i

(ẑ0
i

)T ẑp

i

)

. Since ‖ẑ0
i − ẑp

i ‖ can be made ar-

bitrarily small by (3.19) and
(

1−(ẑ0
i )T ẑp

i

(ẑ0
i

)T ẑp

i

)

=
(

1
2 ‖ẑ0

i −ẑp

i
‖2

1
4 (‖ẑ0

i
+ẑp

i
‖2−‖ẑ0

i
−ẑp

i
‖2)

)

, we can assume
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that there is an γ1 such that
∥
∥
∥

1
(ẑ0

i
)T ẑp

i

ẑ0
i − ẑp

i

∥
∥
∥ ≤ γ1 throughout. So

‖x′
i − P(ẑp

i
)⊥ (x0

i )‖ (3.45)
= [(ẑp

i )T x0
i ]
∥
∥
∥

1
(ẑ0

i
)T ẑp

i

ẑ0
i − ẑp

i

∥
∥
∥

(3.46)

≤ 1√
1−θZ

(√
θD |V |
1−θD

+
√

θZ

)

γ1‖d‖.

(3.47)
By the KKT conditions, the point x̃+

i has the form x̃+
i = x0

i + λz0
i for some

λ ≥ 0. We show that points of the form x0
i + λz0

i , where λ ∈ R, cannot satisfy both
(ẑ0

i )T (x0
i + λz0

i ) ≥ 0 and (ẑp
i )T (x0

i + λz0
i ) ≤ 0 at the same time. Since x0

i − x′
i is a

multiple of z0
i , we can prove our results for points of the form x′

i + λz0
i . Now,

(ẑ0
i )T (x′

i) = (PR(ẑp

i
)ẑ

0
i + P(ẑp

i
)⊥ ẑ0

i )T x′
i

= (PR(ẑp

i
)ẑ

0
i )T x′

i + (P(ẑp

i
)⊥ ẑ0

i )T (x′
i − d) + (P(ẑp

i
)⊥ ẑ0

i )T (d)

(3.42)

≤ 0 + ‖P(ẑp

i
)⊥ ẑ0

i ‖‖x′
i − d‖ − c(θZ,θD)

Mmaxκ5
‖P(ẑp

i
)⊥ ẑ0

i ‖‖d‖.

In view of ‖x′
i − d‖ ≤ ‖x′

i − P(ẑp

i
)⊥(x0

i )‖ + ‖P(ẑp

i
)⊥(x0

i ) − d‖, (3.44) and (3.47),

and the fact that lim(θZ ,θD)→(0,0) c(θZ , θD) = 1, we can choose θZ , θD > 0 small

enough so that (ẑ0
i )T (x′

i) ≤ 0. So if (ẑ0
i )T (x′

i + λz0
i ) ≥ 0, then λ ≥ 0, which implies

that (ẑp
i )T (x′

i + λz0
i ) = λ(ẑp

i )T z0
i > 0. This completes the proof of the claim. △

Let the minimizer of 1
2 ‖(x0

i + z0
i ) − ·‖2 + δ∗

Pi
(·) be z̃+

i . It is standard to obtain

x̃+
i + z̃+

i = x0
i + z0

i . We have

1
2 ‖(x0

i + z0
i ) − z0

i ‖2 + δ∗
Ci

(z0
i )

(3.22)
= 1

2 ‖(x0
i + z0

i ) − z0
i ‖2 + δ∗

Pi
(z0

i )

z̃+
i

minimizer

≥ 1
2 ‖(x0

i + z0
i ) − z̃+

i ‖2 + δ∗
Pi

(z̃+
i ) + 1

2 ‖z0
i − z̃+

i ‖2

δ∗
Pi

(·)≥δ∗
Ci

(·)
≥ 1

2 ‖(x0
i + z0

i ) − z̃+
i ‖2 + δ∗

Ci
(z̃+

i ) + 1
2 ‖x0

i − x̃+
i ‖2

z+
i

minimizer

≥ 1
2 ‖(x0

i + z0
i ) − z+

i ‖2 + δ∗
Ci

(z+
i ) + 1

2 ‖x0
i − x̃+

i ‖2. (3.48)

Note that ‖x0
i ‖

(3.17b)

≥
(

1 −
√

θD|V |
1−θD

)

‖a‖
(3.15)

≥
(

1 −
√

θD|V |
1−θD

)√
1−θD

|V | ‖x0‖. Also,

ǭ+2
2ǭ ‖x0‖2

(3.12)

≥ F (z0). Therefore

F (z1)
(2.5)
=

∑

i∈V

(
δ∗

Ci
(z+

i ) + 1
2 ‖x+

i ‖2
)

(3.49)

(3.48)

≤ ∑

i∈V

(
δ∗

Ci
(z0

i ) + 1
2 ‖x0

i ‖2
)

− 1
2 ‖x0

i − x̃+
i ‖2 (2.5)

= F (z0) − 1
2 ‖x0

i − x̃+
i ‖2

Claim
≤ F (z0) − 1

4(Mmaxκ5)2

(

1 −
√

θD

1−θD
|V |
)2

1−θD

|V |
ǭ

2+ǭF (z0).

This once again leads to linear convergence.
Case 3b: ‖PZa‖2 ≥ θZ‖a‖2.
For each i ∈ V , define the hyperplanes Hi, Hi,0 and Hp

i,0 by

Hi := {x : (ẑ+
i )T x = δ∗

Ci
(ẑ+

i )}, Hi,0 := {x : (ẑ+
i )T x = 0} and Hp

i,0 := {x : (ẑp
i )T x = 0}.

Recall that by Assumption 2.2(4), z0
i are big enough so that x0

i + z0
i is always

outside Ci, so that PCi
(x0

i + z0
i ) is onto the boundary of Ci (and not in the interior

of Ci). Recall that the dual vectors after the projection are {z+
i }i∈V . The term
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δ∗
Ci

(ẑ0
i ) in the definition of Hi implies that Hi is a supporting hyperplane of Ci at

x+
i with normal vector ẑ+

i . Due to the fact that the dual function is decreasing, we
have δ∗

Ci′
(z+

i′ ) + 1
2 ‖x+

i′ ‖2 ≤ δ∗
Ci′

(z0
i′) + 1

2 ‖x0
i′‖2 for all i′ ∈ V , so

‖x+
i′ ‖2 ≤ 2δ∗

Ci′
(z+

i′ ) + ‖x+
i′ ‖2 ≤ 2

∑

j∈V

δ∗
Cj

(z0
j ) + ‖x0‖2

Case 3
≤ (1 + 2

ǭ )‖x0‖2. (3.50)

If a point x+
i′ is on Ci′ , then the distance of the supporting hyperplane of Ci′ at

x+
i′ to the origin is o(‖x+

i′ ‖)
(3.50)

= o(‖x0‖) by Assumption 2.2(3). (We actually
have O(‖x0‖2), but o(‖x0‖) is enough for this part of the proof.) So we have

d(0, Hi) = o(‖x0
i ‖). Since ‖x0

i ‖
(3.17)

∈ Θ(‖a‖), the term δ∗
Ci

(ẑ+
i ) is o(‖a‖), for any

ǫ̃1 > 0, we have ǫ̃1‖a‖ ≥ d(0, Hi) for all i ∈ V if x0 is close enough to x∗, which
gives

d(a, Hi) ≥ d(a, Hi,0) − ǫ̃1‖a‖ for all i ∈ V. (3.51)

We have

d(a, ∩i∈V Hp
i,0) = d(a, Z⊥) = ‖PZa‖

Case 3b
≥ √

θZ‖a‖. (3.52)

We have |(ẑp
i )T a| ≤ |(ẑ+

i )T a| + ‖ẑp
i − ẑ+

i ‖‖a‖. Also, d(a, Hi,0) = |(ẑ+
i )T a| and

|(ẑp
i )T a| = d(a, Hp

i,0), which leads us to d(a, Hi,0) ≥ d(a, Hp
i,0) − ‖ẑp

i − ẑ+
i ‖‖a‖.

Recall ‖ẑp
i − ẑ0

i ‖ can be arbitrarily small by (3.39). Note also that ‖z0
i − z+

i ‖ =
‖x0

i − x+
i ‖, and the latter can be arbitrarily small. Also, by Assumption 2.2(4),

‖z0
i ‖, ‖z+

i ‖ ≥ Mmin so ‖ẑ0
i − ẑ+

i ‖ can be arbitrarily small. Thus we can make
‖ẑp

i − ẑ+
i ‖ ≤ ǫ̃1. So

d(a, Hi,0) = |(ẑ+
i )T a| ≥ |(ẑp

i )T a| − ‖ẑp
i − ẑ+

i ‖‖a‖ ≥ d(a, Hp
i,0) − ǫ̃1‖a‖. (3.53)

Next, by Assumption 2.2(1), we have

|(ẑp
i )T a| = d(a, Hp

i,0)
Assu 2.2(1)

≥ 1
κ1

d(a, ∩j∈V Hp
j,0)

(3.52)

≥
√

θZ

κ1
‖a‖. (3.54)

We have

d(a, Hi)
(3.51),(3.53)

≥ d(a, Hp
i,0) − 2ǫ̃1‖a‖

(3.54)

≥
(√

θZ

κ1
− 2ǫ̃1

)

‖a‖. (3.55)

We have

‖x0
i − x+

i ‖
x+

i
∈Hi

≥ d(x0
i , Hi) ≥ d(a, Hi) − ‖x0

i − a‖ (3.56)

(3.15),(3.55)

≥





√
θZ

κ1
− 2ǫ̃1 −

√

θD|V |
1 − θD



 ‖a‖

(3.15)

≥





√
θZ

κ1
− 2ǫ̃1 −

√

θD|V |
1 − θD





√

1 − θD

|V |
︸ ︷︷ ︸

c2(θZ,θD,ǫ̃1)

‖x0‖.

Since θZ , θD, ǫ̃1 > 0 are chosen so that c2(θZ , θD, ǫ̃1) > 0, we have

‖x0
i − x+

i ‖2
(3.56)

≥ c2(θZ , θD, ǫ̃1)2‖x0‖2
(3.12)

≥ (1
2 + ǭ)−1c2(θZ , θD, ǫ̃1)2F (z0).

This leads to linear convergence like in the last three lines of (3.49). �
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4. Lifting Assumption 2.5(2)

In this section, we show how to adjust the proof of the main result in Section 3
so that Assumption 2.5(2) can be lifted. We let z+

i and x+
i be what they were in

the proof of Theorem 3.1 in Section 3. We shall treat case 3a first, and then explain
the similarities in case 3b.

We can assume that there is an index k such that i /∈ Sn,k′ for all k′ ∈ {1, . . . , k−
1} (which implies z0

i = zk−1
i ) and Sn,k = {i}. Let the operator T : Rn → R

n be
T (x′) = arg minx

1
2 ‖x′ − x‖2 + δPi

(x). Define x̃k
i as

x̃k
i := T (xk−1

i + zk−1
i ) = T (xk−1

i + z0
i ).

Note also that x̃+
i = T (x0

i +z0
i ). Since ∂δPi

(·) is a monotone operator, the operator
T (·) is nonexpansive (see for example the textbook [BC11]), which gives ‖x̃k

i −x̃+
i ‖ ≤

‖xk−1
i − x0

i ‖. We have

‖x0
i − x̃+

i ‖ ≤ ‖x0
i −xk−1

i ‖+‖xk−1
i − x̃k

i ‖+‖x̃k
i − x̃+

i ‖ ≤ 2‖x0
i −xk−1

i ‖+‖xk−1
i − x̃k

i ‖.
(4.1)

Then

k−1∑

k′=1

‖xk′ − xk′−1‖2 + ‖xk−1
i − x̃k

i ‖2 ≥
k−1∑

k′=1

‖xk′

i − xk′−1
i ‖2 + ‖xk−1

i − x̃k
i ‖2

≥ 1
k−1

(
k−1∑

k′=1

‖xk′

i − xk′−1
i ‖

)2

+ ‖xk−1
i − x̃k

i ‖2 (4.2)

≥ 1
w̄−1 (‖xk−1

i − x0
i ‖2 + ‖xk−1

i − x̃k
i ‖2)

≥ 1
2w̄ (‖xk−1

i − x0
i ‖ + ‖xk−1

i − x̃k
i ‖)2

(4.1)

≥ 1
8w̄ ‖x0

i − x̃+
i ‖2.

The same steps as (3.48) leads us to

1
2 ‖(xk−1

i + zk−1
i ) − zk−1

i ‖2 + δ∗
Ci

(zk−1
i ) (4.3)

≥ 1
2 ‖(xk−1

i + zk−1
i ) − zk

i ‖2 + δ∗
Ci

(zk
i ) + 1

2 ‖xk−1
i − x̃k

i ‖2.

Once again, the steps similar to (3.49) gives

F (zk)
(4.3)

≤ F (zk−1) − 1
2 ‖xk−1

i − x̃k
i ‖2

(2.11)

≤ F (z0) −
k−1∑

k′=1

1
2 ‖xk′ − xk′−1‖2 − 1

2 ‖xk−1
i − x̃k

i ‖2

(4.2)

≤ F (z0) − 1
16w̄ ‖x0

i − x̃+
i ‖2

Claim
≤

(

1 − 1
32w̄(Mmaxκ5)2

(

1 −
√

θD

1−θD
|V |
)2

1−θD

|V |
ǭ

2+ǭ

)

F (z0).

The adjustments for case 3b is similar, except that the set Pi is set to be Ci, and
x̃+

i and x̃k
i can be replaced by x+

i and xk
i respectively.
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