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Abstract

In this paper we consider generalized Leontief model. We show that under

certain condition the generalized Leontief model is solvable by iterative descent

method based on infeasible interior point algorithm. We prove the convergence

of the method from strictly positive starting point. A numerical example is

presented to demonstrate the performance of the algorithm.
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1 Introduction

The purpose of Leontief model [9] is to find the interrelationship among goods and
services for different sectors of the economy. Leontief model considers production of
items within some industries where number of industries and number of products are
equal. In other words the model indicates a balance between demand and supply.
The model is very useful to analyze the national economy of any sector as each of the
industries uses input from itself and other industries to produce a particular product.

Leontief model is classified as open model and closed model (see [2]). Open model
deals with finding the production level based on external demand whereas the closed
model deals only with internal demand. The input-output model has wide appli-
cations in the area of regional economics [14], international trade [1], multi facility
inventory systems [13]. The Leontief model describes a facilitated view of an eco-
nomical situation. The target of this model is to state the exact level of production
for each of various types of services or goods. Suppose bj denotes the units available
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or required at industry j, and ajk be the technical coefficients representing units of
output of sector j required per unit output of sector k. The net output bj is normally
called the final demand of the jth good. Suppose the basic input-output equations
are given as

xj =

n
∑

k=1

ajkxk + bj (1.1)

then we can find xj which is the output from industry j.
There is an assumption that each industry or sector produces only one output.

In case if an industry produces more than one output, then the analysis is done by
aggregation. Several variants of the input-output model are available in the literature
[11]. Leontief model considers single technology. Ebiefung et al. [6] introduced
generalized Leontief model by considering multiple technologies. In this paper we
consider an infeasible interior point method in line with Kojima et al. [7] and show
that generalized Leontief model can be solved using this method by controlling step
lengths.

The paper is organized as follows. Section 2 presents notations and some basic
results related to the Leontief model and generalized Leontief model. In section 3,
we propose an infeasible interior point method in line with Kojima et al. [7] to solve
generalized Leontief model. We prove the convergence of the algorithm. A numerical
example is given in section 4 to illustrate the performance of the proposed algorithm.

2 Preliminaries

We consider matrices and vectors with real entries. Any vector z ∈ Rn is a column
vector, zT denotes the transpose of z. zk denotes the kth component of the vector z.
e denotes the vector of all 1. ‖z‖ denotes the euclidean norm of the vector z. For any
matrix A ∈ Rn×n, AT denotes its transpose. Rn denotes real n-dimensional space.
Rn

+ and Rn
++ donote the nonnegative and positive orthant in Rn respectively.

2.1 Leontief Model

Suppose there are n industries and let bj be the demand for output j where j =
1, 2, · · · , n. bj ≥ 0 implies the requirement at the end of the period and bj ≤ 0
represents the number of units available at the beginning of the period. Generalizing
the Leontief model (1.1), the requirement that each output at industry j can be
written as,

xj ≥ bj +

n
∑

k=1

ajkxk. (2.1)

Again Equation 2.1 can be rewritten as

x ≥ 0 (2.2)

− b+ (I − A)x ≥ 0 (2.3)
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xT [−b+ (I − A)x] = 0 (2.4)

where A = (ajk) and I is the identity matrix of order n. Hence Equation 2.2, Equation
2.3 and Equation 2.4 can be written as LCP(q,M) by taking q = −b and M =
(I − A). The complementary condition implies either xj > 0, then (−b + Mx)j = 0
i.e. production of output j at industry j meets demand exactly or xj = 0 then from
Equation 2.1, we get −bj >

∑n

k=1 ajkxk i.e. no production is necessary at industry j.
Now we consider the following result on Leontief model which will be used in the

subsequent section.

Theorem 2.1. [2] In an open Leontief model with input matrix T and let A = I−T.
Then the following statements are equivalent:

1. The model is feasible.

2. The model is profitable.

3. A is non singular M matrix.

Proof. If the model is feasible then by choosing demand vector d > 0, it follows that
there exists a x ≥ 0 with Ax = d > 0. This condition characterizes the property
of non singular M matrices. Conversely, suppose A is non singular M matrix, then
A−1 ≥ 0. Thus Ax = d has a nonnegative solution x = A−1d for each d ≥ 0. The
equivalence of the model is profitable and A is nonsingular M matrix follows from the
fact that A is non singular M matrix if and only if AT is non singular M matrix.

There are several solution procedure of Leontief model developed in the recent
times. Dantzig [4] presented a method to solve this model using substitution tech-
nique.

2.2 Vertical Linear Complementarity Problem

Consider a rectangular matrix N of order m×k with m ≥ k. Suppose N is partitioned
row-wise into k blocks in the form

N =











N1

N2

...
Nk











where each N j = (nj
rs) ∈ Rmj×k with

∑k

j=1mj = m. Then N is called vertical block
matrix of type (m1, m2, · · · , mk). If mj = 1, ∀j = 1, 2, · · · , k, then N is a square
matrix. The concept of vertical block was introduced by Cottle and Dantzig [3]
in connection with the generalization of linear complementarity problem. Cottle-
Dantzig’s generalization involves a system w − Nz = q, w ≥ 0, z ≥ 0, where
N ∈ Rm×k, m ≥ k and the variable w1, w2, · · · , wm are partitioned into k nonempty
sets Sj , j = 1, 2, · · · , k. Let Tj = Sj ∪ {zj}, j = 1, 2, · · · , k. This problem is to find a
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solution pair (w, z), w ∈ Rm, z ∈ Rk of the system such that atleast one member of
each set Tj is non basic. The formal statement of this problem is as follows:

Given an m × k vertical block matrix A of type (m1, m2, · · · , mk) and a given
vector q ∈ Rm where m =

∑k

j=1mj , find w ∈ Rm and z ∈ Rk such that

w −Az = q, w ≥ 0, z ≥ 0
zj
∏mj

i=1w
j
i = 0, for j = 1, 2, · · · , k.

This generalization is known as vertical linear complementarity problem and this
problem is denoted as VLCP(q, A). In recent years, a number of applications of
the vertical linear complementarity problem have been reported in the literature.
Cottle-Dantzig algorithm [3] is well known for solving vertical linear complementarity
problem. For pivotal algorithms see [5].

2.2.1 Results in VLCP Theory

We give some definitions and results which will be required in the next section.

Definition 2.1. Let A be a vertical block matrix of type (m1, m2, · · · , mk). A sub-
matrix of size k of A is called representative submatrix if its jth row is drawn from
jth block Aj of A.

Remark 2.1. A vertical block matrix A of type (m1, m2, · · · , mk) has atmost
∏k

j=1mj

distinct representative submatrices.

Definition 2.2. A vertical block matrix A of type (m1, m2, · · · , mk) is called vertical
block P (P0) matrix, if all its representative submatrices are P (P0) matrices.

Mohan et al. [10] consider a vertical block matrix A of type (m1, m2, · · · , mk)
where mj is the size of the jth block. Construct a matrix M by copying A.j i.e. jth
column of A, mj times for j = 1, 2, · · · , k. This leads to a square matrix M of order
m × m from A. M is said to be equivalent square matrix of A. Now we state the
following theorem which will be required for our proposed algorithm.

Theorem 2.2. [10] Given the VLCP(q, A), let M be the equivalent square matrix of
A. Then VLCP(q, A) has a solution if and only if LCP(q,M) has a solution.

2.3 Generalized Leontief Model

Ebiefung and Kostreva [6] extended Leontief model considering multiple technology.
Further they formulated the generalized Leontief model as vertical linear complemen-
tarity problem. The formulation is given below.

Consider there are total mj ≥ 1 number of different technologies and correspond-
ing output with atleast one mj > 1 for j = 1, 2, · · · , n. The generalized Leontief
model can be written as

xj ≥ bji +

n
∑

k=1

ajikxk, i = 1, 2, · · ·mj . (2.5)
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For j = 1, 2, · · · , n, bji denotes the demand for output i at industry j. If bji ≥ 0 then
bji represents quantity of goods i to be produced by industry j and if bji ≤ 0 then
bji represents the number of units already available at the beginning of the period to
satisfy demand.

Consider a matrix E of order m× k as follows:

E =











e1 0 · · · 0
0 e2 · · · 0
...

...
0 0 · · · ek











where ej be a column vector of dimension mj × 1 with each component 1. Now by
setting m =

∑n

j=1mj , we obtain E of dimension m× n with m ≥ n. Consider

bj = (bji )
mj

i=1,
Aj = (ajik)

mj ,n

i,k=1.

We write

b =











b1

b2

...
bn











, A =











A1

A2

...
An











.

Note that A is a matrix of order m × n. We write N = E − A. Here N is a vertical
matrix of order m × n and of type (m1, m2, · · · , mn). Then from the generalized
Leontief model 2.5, we write

x ≥ 0
Nx ≥ b

and xj

∏mj

i=1(N
jx− bj)i = 0, for j = 1, 2, · · · , n.

Note that complementary condition states minimum cost requirement. Ebiefung [6]
extended the Chandrasekharan algorithm to gave an approach for solving generalized
Leontief model.

3 Results

In this section we propose an iterative descent method based on infeasible interior
point algorithm to solve a generalized Leontief model. We define the feasible region
of the LCP(q,M) as FEA(q,M)

FEA(q,M) = {(z, w) ∈ Rn : z ≥ 0, w ≥ 0, w = q +Mz}

and interior of the set FEA(q,M) as

FEA+(q,M) = {(z, w) ∈ Rn : z > 0, w > 0}.
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The algorithm moves from the current iterate (zk, wk) to the solution of the LCP(q,M)
by introducing (zk+1, wk+1) defined as

zk+1 = zk + αkd
k
z

wk+1 = wk + αkd
k
w

where αk is the suitable step length of the algorithm. The generated sequence
{(zk, wk)} is required to satisfy zk > 0, wk > 0. Now we define central trajectory as
the set of solutions (z, w) > 0 to the system of equations

w = q +Mz,
ZWe = µe,

for every µ > 0. Here the neighborhood N of the central trajectory be defined as

N = {(z, w) > 0 : ziwi ≥ γ
zTw

n
(i = 1, 2, · · · , n), zTw ≥ γ

′

‖w−Mz−q‖ or ‖w−Mz−q‖ ≤ ǫ}

where ǫ > 0, γ
′

> 0 and γ ∈ (0, 1). Starting from a strictly positive point (z0, w0)
the algorithm iteratively generates a sequence {(zk, wk)}. We define a non-linear sys-
tem with non-negative constraints

F (z, w) =

[

−Mz + w − q
ZWe− µe

]

= 0 (3.1)

where Z = diag(zi), W = diag(wi) and e is the vector of all 1’s. We obtain

F
′

(z, w) =

[

−M I
W Z

]

.

We apply Newton method to find the search direction (dkz , dkw) for the algorithm.
Now we solve

[

−M I
W k Zk

] [

dkz
dkw

]

=

[

Mzk − wk + q
−ZkW ke + µke

]

where σ ∈ [0, 1) and µk = σ zk
T
wk

n
. Hence

−Mdkz + dkw = Mzk − wk + q
W kdkz + Zkdkw = −ZkW ke+ µke.

Therefore we get

dkz = −(ZkM +W k)−1(Zkq + ZkMzk − µke) (3.2)

dkw = M(zk + dkz)− wk + q. (3.3)

Select the step length αk suitably such that the algorithm generates strictly positive
points (zk, wk > 0) in every step.

We consider the merit function as given in [12].

‖φ(z, w)‖ =
√

‖w −Mz − q‖2 + ‖ZWe‖2.

We show that value of the merit function at each step reduces and algorithm stops
when ‖φ(z, w)‖ ≤ δ for some pre-determined δ > 0. Now we state our propose
algorithm for solving generalized Leontief model given in (2.5).
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3.1 Algorithm

Step I: Let M be an equivalent square matrix of the vertical matrix A using the
Theorem 2.2 of [10].

Step II: Let k = 0. Let (z0, w0) > 0, δ > 0, β ∈ (0, 1/2], γ ∈ (0, 1), σ = 0.5.
Compute the value of merit function φ(zk, wk).

Step III: If φ(zk, wk) ≤ δ, STOP and (zk, wk) is an approximate solution to the
LCP(q,M). Otherwise go to Step IV.

Step IV: Let µk = σ zk
T
wk

n
and find (dkz , d

k
w) from Equation (3.2) and (3.3).

Step V: Compute αk so that

(zk+1, wk+1) = (zk, wk) + αk(d
k
z , d

k
w) ∈ N ,

φ(zk+1, wk+1)− φ(zk, wk) ≤ αkβ∇φ(zk, wk)T (dkz , d
k
w).

Step VI: Set k = k + 1 and go to the Step I.

To process generalized Leontief model, we assume the matrix MZ + W is non-
singular at each step of the algorithm for any diagonal matrices Z and W with strictly
positive elements.

Remark 3.2. Note that we assume the non-singularity of the matrix MZ + W to
find the solution of generalized Leontief model. However in case of solving Leontief
model, similar assumption is not required.

Now we prove the following theorem.

Theorem 3.1. In a Leontief model, det(MZ + W ) 6= 0 for any positive diagonal
matrices Z and W .

Proof. It is known that to for any two strictly positive Z and W the following is true:

(MZ +W ) is non-singular =⇒

[

−M I
W Z

]

is non-singular. Now in LCP formulation of Leontief model, M is a P -matrix by the

Theorem 2.1. Again by Lemma (4.1) by Kojima et al. [8],

[

−M I
W Z

]

is non-singular

if and only if M ∈ P0. Hence det(MZ +W ) 6= 0.
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3.2 Convergence Analysis

In this section we show that the algorithm presented in the previous section converges
to the solution of generalized Leontief model. We define

N ∗ = {(z, w) ∈ N : zTw ≥ ǭ, ‖(z, w)‖ ≤ ω∗} (3.4)

where ǭ = min{ǫ, γ′ǫ} and ω∗ > 0. Firstly the newton direction (dkz , d
k
w) determined

by the system of equations is a continuous function such that (zk, wk) ∈ N ∗. As the
matrix

[

−M I
W k Zk

]

is non-singular for any (zk, wk) ∈ N ∗. Hence the Newton direction (dkz , d
k
w) is uni-

formly bounded for all (zk, wk) over the set N ∗. Hence we can find positive constants
η1, η2 such that (dkz , d

k
w) computed at every iterations satisfies

|dkzid
k
wi

− γdkz
T
dkw/n| ≤ η1 (3.5)

|dkz
T
dkw| ≤ η2. (3.6)

Firstly we show that the generated sequence from the algorithm {zk, wk} satisfies the
following condition.

Lemma 3.1. The generated sequence {zk, wk} by the algorithm satisfies

(i) −Mzk+1 + wk+1 − q = (1− αk)(−Mzk + wk − q)

(ii) zk
T
dkw + wkTdkz = −(1 − σ)zk

T
wk.

Proof. (i) From the Newton equation we get
[

−M I
W k Zk

] [

dkz
dkw

]

=

[

Mzk − wk + q
−ZkW ke + µke

]

where σ ∈ [0, 1) and µk = σ zk
T
wk

n
. Hence,

−Mdkz + dkw = q +Mzk − wk

−Mdkz −Mzk + dkw + wk = q
−Mαkd

k
z −Mαkz

k + αkd
k
w + αkw

k = αkq
−M(zk+1 − zk)−Mαkz

k + (wk+1 − wk) + αkw
k = αkq

−Mzk+1 + wk+1 − q = −Mzk +Mαkz
k + wk − αkw

k − q + αkq
−Mzk+1 + wk+1 − q = (−Mzk + wk − q)− αk(−Mzk + wk − q)

−Mzk+1 + wk+1 − q = (1− αk)(−Mzk + wk − q).

(ii) 2nd part follows form the Newton equation by restricting µk = σzk
T
wk. We

have

W kdkz + Zkdkw = −ZkW ke + µke

zk
T
dkw + wkTdkz = −zk

T
wk + σzk

T
wk

zk
T
dkw + wkTdkz = −(1 − σ)zk

T
wk.
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To specify the selection of suitable step length αk, we define real valued functions
gI(α) and gII(α) as follows:

gIi (α) = zk+1
i wk+1

i − γ zk+1Twk+1

n

gII(α) = zk+1Twk+1 − γ‖wk −Mzk − q‖

where γ ∈ (0, 1). The next lemma will be required for the choice of αk. The proof of
the following two lemmas are in line with the idea given in [8].

Lemma 3.2. If gIi (α) = zk+1
i wk+1

i − γ zk+1Twk+1

n
, then gIi (α) ≥ σ(1− γ)(ǭ/n)α − η1α

2

∀ i.

Proof.

gIi (α) = zk+1
i wk+1

i − γ zk+1Twk+1

n

= zki w
k
i + α(zki d

k
wi

+ wk
i d

k
zi
) + α2dkzid

k
wi

− γ zk
T
wk+α(zk

T
dkw+wkT

dkz )+α2dkz
T
dkw

n

= zki w
k
i − α(zki w

k
i − σzk

T
wk/n) + α2dkzid

k
wi

− γ zk
T
wk−α(1−σ)zk

T
wk+α2dkz

T
dkw

n

= (1− α)zki w
k
i + ασzk

T
wk/n+ α2dkzid

k
wi

− γ (1−α)zk
T
wk+ασzk

T
wk+α2dkz

T
dkw

n

= (1− α)(zki w
k
i − γzk

T
wk/n) + σ(1− γ)αzk

T
wk/n+ α2(dkzid

k
wi

− γdkz
T
dkw/n)

≥ σ(1− γ)(ǭ/n)α− η1α
2(by (3.4), (3.5)).

Lemma 3.3. If gII(α) = zk+1Twk+1−γ‖wk+1−Mzk+1−q‖, then gII(α) ≥ µkα−α2η2.

Proof.

gII(α) = zk+1Twk+1 − γ‖wk+1 −Mzk+1 − q‖
= (zk + αdkz)

T (wk + αdkw)− γ(1− α)‖wk −Mzk − q‖

= zk
T
wk + α[−(1 − σ/n)]zk

T
wk − γ(1− α)‖wk −Mzk − q‖+ α2dkz

T
dkw

= (1− α)(zk
T
wk − γ‖wk −Mzk − q‖) + µkα + α2dkz

T
dkw

≥ µkα− α2‖dkz
T
dkw‖

≥ µkα− α2η2(by (3.6)).

To find step length we have to find αk to be the largest number ∈ (0, 1] for
which gIi (α) ≥ 0 and gII(α) ≥ 0. From Lemma (3.2) and Lemma (3.3) we have
gIi (α) ≥ 0, gII(α) ≥ 0. Hence we can easily compute the lower bound of αk by
solving them for α. Hence letting αk = min{1, σǭ(1− γ)/nη1, µk/η2}, we obtain

gIi (α) ≥ 0
gII(α) ≥ 0

9



hold for every α ∈ [0, αk] and ∀i.
In [12], Simantiraki and Shanno state the idea to show the descent directions of

the proposed algorithm. We prove the following theorem to show that the directions
(dkz , d

k
w) generated by the algorithm is descent direction.

Theorem 3.2. The directions (dkz , d
k
w) generated at the kth iteration by the algorithm

is a descent direction for the merit function φ(zk, wk).

Proof. Consider pk = (zk, wk), then

dkp = F′(pk)[−F (pk) + µkē]
∇φ(pk) = 1

‖F (pk)‖
F′(pk)TF (pk),

where ē is the vector (0, e)T . Hence

∇φ(pk)dkp = 1

‖F(pk)‖
F(pk)TF′(pk)F′(pk)−1[−F (pk) + µkē]

= 1

‖F(pk)‖
(−‖F(pk)‖2 + µkz

kTwk)

= −(‖F(pk)‖ − µk
zk

T
wk

‖F(pk)‖
)

= −(φ(pk)− µk
zk

T
wk

φ(pk)
)

Again we have µk = σ zk
T
wk

n

µkz
kTwk = σ (zk

T
wk)2

n

≤ σ‖ZkW ke‖2

≤ σφ(pk)2

Hence
∇φ(pk)Tdkp ≤ −φ(pk)(1− σ)

≤ 0.

Hence (dkz , d
k
w) is the decent direction for the algorithm.

Now we prove the convergence result of the proposed algorithm.

Theorem 3.3. Let the sequence pk = {zk, wk} be generated by the algorithm. Then
for any { nµk

zk
T
wk

} ⊂ (0, 1) bounded away from zero, φ(pk) converges to zero.

Proof. We have
φ(pk+1) = αkβ∇φ(pk)Tdkp

≤ φ(pk)− αkβ(1− σ)φ(pk)
≤ [1− αkβ(1− σ)]φ(pk).

Hence,

φ(pk+1)
φ(pk)

≤ 1− αkβ(1− σ).

Now α′
ks are bounded away from zero. Hence corresponding subsequences converges

to zero. So letting k → ∞, we get

φ(pk+1)
φ(pk)

< 1.

Hence {φ(pk)} converges to zero.
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4 Numerical illustration

We consider the example given by Ebiefung et al. [6] where they consider an economy
with three sectors. The outputs of the sectors are pair of shoes, food and light bulbs.
The technology matrix and demands for the economy are

A =





0.6 0.1 0.3
0.3 0.6 0.1
0.1 0.3 0.6



 , hI =





150
−500
−20



 .

Here the columns and rows are given in the order of shoes, food and light bulbs in
that order. Consider a new technology for each of these sectors has been introduced
in the market. The new technology matrix B and demand vector hII are

A =





0.5 0.2 0.3
0.4 0.2 0.4
0.1 0.6 0.3



 , hII =





150
−500
−20



 .

Now formulating this problem under as generalized Leontief input-output model, we
can get a vertical block matrix N of type (2, 2, 2) and the demand vector b,

A =

















0.4 −0.1 −0.3
0.5 −0.2 −0.3

−0.3 0.4 −0.1
−0.4 0.8 −0.4
−0.1 −0.3 0.4
−0.1 −0.6 0.7

















, b =

















150
150

−500
−500
−20
−20

















.

11



Iteration (k) zk wk dkz dkw µ ‖φ(zk, wk)‖

1

















35.925
30.340
−2.034
12.449
24.486
15.5888

































23.746
29.331
61.705
47.222
35.184
44.083

































54.151
3.108

−292.765
−160.400
−50.386
−131.707

































−57.151
−6.108

−289.765
157.400
47.386
128.707

















810 2316.635

2

















59.865
41.275
2.604

−4.277
24.253
14.622

































6.260
16.541
132.708
110.261
33.010
45.175

































116.275
53.114
22.527

−81.240
−1.132
−4.690

































−84.930
−62.119
344.853
306.176
−10.560

5.306

















563.12 1870.186

3

















154.003
37.663
0.874
1.495
27.613
15.783

































−3.676
15.253
222.613
191.375
22.087
34.395

































269.986
−10.359
−4.959
16.557
9.636
3.329

































−28.497
−3.694
257.846
232.633
−31.328
−30.917

















358.90 1509.764

4

















283.651
−3.8924

0.765
1.126
32.314
15.883

































1.258
29.044
271.001
229.323
13.735
27.627

































371.827
−119.182
−0.313
−1.0591
13.4831
0.2845

































14.152
39.553
138.775
108.831
−23.951
−19.409

















246.31 1242.866

5

















410.891
9.991
0.606
0.651
46.250
13.582

































0.277
42.240
368.255
308.720
1.467
19.039

































127.239
13.883
−0.158
−0.474
13.935
−2.301

































−0.980
13.195
97.253
79.397

−12.268
−8.587

















238.837 827.699

...
...

...
...

...
...

...

49

















415.45
0.0504
0.0056
0.0067
53.8
0.129

































0.00504
41.5

369.95
312.21
0.0388
16.22

































−0.0074
−0.0055
−0.00062
−0.00074
−0.00083
−0.0142

































−0.00056
−0.00172
0.00488
0.01016

−0.00432
−0.00843

















1.8853 5.1311
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Iteration (k) zk wk dkz dkw µ ‖φ(zk, wk)‖

50

















415.44
0.0453
0.00509
0.00603
53.85
0.116

































0.00453
41.55
369.96
312.22
0.0350
16.222

































−0.0067
−0.0050
−0.0005
−0.00067
−0.0007
−0.0128

































−0.0005
−0.00155
0.00439
0.00915

−0.00388
−0.00759

















1.8853 5.1311

...
...

...
...

...
...

...

99

















415.38
0.000001
0.000000
0.000000

53.84
0.000003

































0.000000
41.53
370

312.3
0.000001

16.15

































−0.000000
−0.000000
−0.000000
−0.000000
−0.000000
−0.000000

































−0.000000
−0.000000
0.000000
0.000000

−0.000000
−0.000000

















0.000055 0.000151

Table 1: Summary of computation for the proposed algorithm

The algorithm runs on a HP PC with intel Core i5 processor 3.10 GHz 4 GB of
RAM. The proposed algorithm converges to the solution [415, 0, 54]T after 99 itera-
tions and time taken to reach the optimal solution is 1.12× 10−1s.
Acknowledgment: The author R. Jana is thankful to the Department of Science
and Technology, Govt. of India, INSPIRE Fellowship Scheme for financial support.

References

[1] Terence S Barker. Foreign trade in multisectoral models. University of Cam-
bridge, Department of Applied Economics, 1973.

[2] Abraham Berman and Robert J Plemmons. Nonnegative matrices in the math-
ematical sciences, volume 9. Siam, 1994.

[3] Richard W Cottle and George B Dantzig. A generalization of the linear comple-
mentarity problem. Journal of Combinatorial Theory, 8(1):79–90, 1970.

[4] George B Dantzig. Optimal solution of a dynamic leontief model with substitu-
tion. Econometrica: Journal of the Econometric Society, pages 295–302, 1955.

[5] AK Das, R Jana, et al. Finiteness of criss-cross method in complementarity
problem. In International Conference on Mathematics and Computing, pages
170–180. Springer, 2017.

[6] Aniekan A Ebiefung and Michael M Kostreva. The generalized leontief input-
output model and its application to the choice of new technology. Annals of
Operations Research, 44(2):161–172, 1993.

[7] Masakazu Kojima, Nimrod Megiddo, and Shinji Mizuno. A primaldual infeasible-
interior-point algorithm for linear programming. Mathematical programming,
61(1-3):263–280, 1993.

13



[8] Masakazu Kojima, Nimrod Megiddo, Toshihito Noma, and Akiko Yoshise. A uni-
fied approach to interior point algorithms for linear complementarity problems:
A summary. Operations Research Letters, 10(5):247–254, 1991.

[9] Wassily Leontief. Input-output economics. Oxford University Press, 1986.

[10] SR Mohan, SK Neogy, and R Sridhar. The generalized linear complementarity
problem revisited. Mathematical Programming, 74(2):197, 1996.

[11] Jan Oosterhaven. On the plausibility of the supply-driven input-output model.
Journal of Regional Science, 28(2):203–217, 1988.

[12] Evangelia M Simantiraki and David F Shanno. An infeasible-interior-point
method for linear complementarity problems. SIAM Journal on Optimization,
7(3):620–640, 1997.

[13] Arthur F Veinott Jr. Minimum concave-cost solution of leontief substitution
models of multi-facility inventory systems. Operations Research, 17(2):262–291,
1969.

[14] Thomas Wiedmann. A review of recent multi-region input–output models used
for consumption-based emission and resource accounting. Ecological Economics,
69(2):211–222, 2009.

14


	1 Introduction
	2 Preliminaries
	2.1 Leontief Model
	2.2 Vertical Linear Complementarity Problem
	2.2.1 Results in VLCP Theory

	2.3 Generalized Leontief Model

	3 Results
	3.1 Algorithm
	3.2 Convergence Analysis

	4 Numerical illustration

