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Abstract. In this paper we investigate the representation of a class of non Gaussian processes,
namely generalized grey Brownian motion, in terms of a weighted integral of a stochastic process
which is a solution of a certain stochastic differential equation. In particular the underlying
process can be seen as a non Gaussian extension of the Ornstein-Uhlenbeck process, hence
generalizing the representation results of Muravlev, Russian Math. Surveys, 66(2), 2011 as well
as Harms and Stefanovits, Stochastic Process. Appl., 129, 2019 to the non Gaussian case.
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1. Introduction

In recent years, as an extension of Brownian motion (Bm), fractional Brownian motion (fBm)
has become an object of intensive study [BHØZ07], [Mis08], due to its specific properties, such
as short/long range dependence and self-similarity, with natural applications in different fields
(e.g. mathematical finance, telecommunications engineering, etc.). In order to cast fBm into
the classical Bm framework, there are various representations of fBm, starting with the famous
definition by Mandelbrot and van Ness [MvN68]. This idea is also the starting point for a
characterization of fBm using an infinite superposition of Ornstein-Uhlenbeck processes w.r.t. the
standard Wiener process; compare the works of Carmona, Coutin, Montseny, and Muravlev
[CC93, CCM00, Mur11] or also the monograph of [Mis08]. Recently, further applications of
this representation have for instance been investigated in [HS19] with a focus on finance and in
[BD18] in the context of optimal portfolios.

One key tool box for the rigorous analysis of fBm is the Gaussian analysis or white noise anal-
ysis. White noise analysis has evolved into an infinite dimensional distribution theory, with rapid
developments in mathematical structure and applications in multiple domains, see e.g. the mono-
graphs [HKPS93, Oba94, Kuo96, HS17]. Various characterization theorems [PS91, KLP+96,
GKS97] are proven to build up a strong analytical foundation. Almost at the same time, first
attempts were made to introduce a non-Gaussian infinite dimensional analysis, by transferring
properties of the Gaussian measure to the Poisson measure [Ito88], which could be generalized
with the help of a biorthogonal generalized Appell systems [Dal91, ADKS96, KSWY98]. Mittag-
Leffler Analysis is established in [GJRS15] and [GJ16]. In fact, it generalizes methods from
white noise calculus to the case, where in the characteristic function of the Gaussian measure
the exponential function is replaced by a Mittag-Leffler function. The corresponding stochastic
process is referred to as generalized grey Brownian motion (ggBm) and is in general neither a
martingale nor a Markov process. Moreover, it is not possible - as in the Gaussian case - to find
a proper orthonormal system of polynomials for the test and generalized functions. Here it is
necessary to make use of an Appell system of biorthogonal polynomials. The grey noise measure
[Sch90, Sch92, MM09] is included as a special case in the class of Mittag-Leffler measures, which
offers the possibility to apply the Mittag-Leffler analysis to fractional differential equations, in
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particular to fractional diffusion equations, which carry numerous applications in science, like
relaxation type differential equations or viscoelasticity. In [GJ16] also a relation between the
heat kernel in this setting and the associated processes grey Brownian motion could be proven.
In [BdS17] Wick-type stochastic differential equations and Ornstein-Uhlenbeck processes were
solved within the framework of Mittag-Leffler analysis. Indeed the underlying fractional differ-
ential equations are of interest in applications like human mobility in disease spread [SMG+12].

The aim of this paper is to establish a link between ggBm and generalized grey Ornstein-
Uhlenbeck processes as an extension of the results in [BdS17] and to extend the representation
results of [Mur11] and [HS19] to the non-gaussian case of ggBm. To this end, we make use of a
representation of ggBm as a product of a positive and time-independent random variable and a
fBm [MMP10]. Our work also shares common features with [DVS+18].

The manuscript is organized as follows: In Section 2 we give preliminaries about generalized
grey Brownian motion, defined on an abstract probability space. In Section 3 we develop a
representation of ggBm using an infinite dimensional superposition of generalized grey Ornstein-
Uhlenbeck processes. We thus enhance the results in [CC93, CCM00, Mur11, HS19] to the setting
of ggBm. The Appendix contains auxiliary results needed in the two main proofs.

2. Generalized grey Brownian motion in arbitrary dimensions

2.1. Prerequisites. We define the operator Mα/2
− on the Schwartz test function space S(R) by

M
α/2
− ϕ :=


Kα/2D

−(α−1)/2
− ϕ, α ∈ (0, 1),

ϕ, α = 1,

Kα/2I
(α−1)/2
− ϕ, α ∈ (1, 2),

with the normalization constant Kα/2 :=
√
α sin(απ/2)Γ(α) . Dr

−, Ir− denote the left-side frac-
tional derivative and fractional integral of order r in the sense of Riemann-Liouville, respectively:

(Dr
−f)(x) =

1

Γ(1− r)
d

dx

∫ x

−∞
f(t)(x− t)−rdt,

(Ir−f)(x) =
1

Γ(r)

∫ ∞
x

f(t)(t− x)r−1dt, x ∈ R.

We refer to [SKM93] or [KST06] for the details on these operators. It is possible to obtain a
larger domain of the operator M

α/2
− in order to include the indicator function 11[0,t) such that

M
α/2
− 11[0,t) ∈ L2, for the details we refer to Appendix A in [GJ16]. We have the following

Proposition 1 (Corollary 3.5 in [GJ16]). For all t, s ≥ 0 and all 0 < α < 2 it holds that(
M

α/2
− 11[0,t),M

α/2
− 11[0,s)

)
L2(R)

=
1

2

(
tα + sα − |t− s|α

)
. (2.1)

The Mittag-Leffler function was introduced by G. Mittag-Leffler in a series of papers [ML03,
ML04, ML05].

Definition 2 (Mittag-Leffler function). (a) For β > 0 the Mittag-Leffler function Eβ (MLf
for short) is defined as an entire function by the following series representation

Eβ(z) :=
∞∑
n=0

zn

Γ(βn+ 1)
, z ∈ C, (2.2)

where Γ denotes the gamma function.
(b) For any ρ ∈ C the generalized Mittag-Leffler function (gMLf for short) is an entire function

defined by its power series

Eβ,ρ(z) :=

∞∑
n=0

zn

Γ(βn+ ρ)
, z ∈ C. (2.3)

Note the relation Eβ,1(z) = Eβ(z) and E1(z) = ez for any z ∈ C.
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The Wright function is defined by the following series representation which is convergent in
the whole z-complex plane

Wλ,µ(z) :=

∞∑
n=0

zn

n!Γ(λn+ µ)
, λ > −1, µ ∈ C.

An important particular case of the Wright function is the so called M -Wright function Mβ ,
0 < β ≤ 1 (in one variable) defined by

Mβ(z) := W−β,1−β(−z) =
∞∑
n=0

(−z)n

n!Γ(−βn+ 1− β)
. (2.4)

For the choice β = 1/2 the corresponding M -Wright function reduces to the Gaussian density

M1/2(z) =
1√
π

exp

(
−z

2

4

)
. (2.5)

The MLf Eβ and the M -Wright are related through the Laplace transform∫ ∞
0

e−sτMβ(τ) dτ = Eβ(−s). (2.6)

The M-Wright function with two variables M1
β of order β (1-dimension in space) is defined by

M1
β(x, t) := Mβ(x, t) :=

1

2
t−βMβ(|x|t−β), 0 < β < 1, x ∈ R, t ∈ R+ (2.7)

which defines a spatial probability density in x evolving in time t with self-similarity exponent
β. The following integral representation for the M-Wright is valid, see [MPG03].

Mβ/2(x, t) = 2

∫ ∞
0

e−x
2/4τ

√
4πτ

t−βMβ(τt−β) dτ, 0 < β ≤ 1, x ∈ R. (2.8)

This representation is valid in more general form, see [MPG03, eq. (6.3)], but for our purpose
it is sufficient in view of its generalization for x ∈ Rd. In fact, eq. (2.8) may be extended to a
general spatial dimension d by the extension of the Gaussian function, namely

Md
β/2(x, t) := 2

∫ ∞
0

e−|x|
2/4τ

(4πτ)d/2
t−βMβ(τt−β) dτ, x ∈ Rd, t ≥ 0, 0 < β ≤ 1. (2.9)

The function Md
β/2 is nothing but the density of the fundamental solution of a time-fractional

diffusion equation, see [MP15].

2.2. Generalized grey Brownian motion.

Definition 3 (see [MM09] for d = 1). Let 0 < β < 1 and 0 < α < 2 be given. A d-dimensional
continuous stochastic process Bβ,α = {Bβ,α(t), t ≥ 0} defined on a complete probability space
(Ω,F , P ) is a generalized grey Brownian motion (ggBm) if:

(a) P (Bβ,α(0) = 0) = 0, that is ggBm starts at zero almost surely.
(b) Any collection

{
Bβ,α(t1), . . . , Bβ,α(tn)

}
with 0 ≤ t1 < t2 < . . . < tn < ∞ has character-

istic function given, for any θ = (θ1, . . . , θn) ∈ (Rd)n, by

E

(
exp

(
i

n∑
k=1

(θk, B
β,α(tk))

))
= Eβ

(
−1

2

n∑
k=1

(θk,Σαθk)

)
, (2.10)

where
Σα =

(
tαk + tαj − |tk − tj |α

)d
k,j=1

.

(c) The joint probability density function of (Bβ,α(t1), . . . , Bβ,α(tn)) is equal to

fβ(θ,Σα) =
(2π)−

nd
2

√
det Σα

∫ ∞
0

τ−
nd
2 e−

1
2τ

∑n
k=1(θk,Σ

−1
α θk)Mβ(τ) dτ. (2.11)
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Remark 4. The family {Bβ,α(t), t ≥ 0, β ∈ (0, 1], α ∈ (0, 2)} forms a class of α/2-self-similar
processes with stationary increments which includes:

(a) for β = α = 1, the process {B1,1(t), t ≥ 0}, standard d-dimensional Bm.
(b) for β = 1 and 0 < α < 2, {B1,α(t), t ≥ 0}, d-dimensional fBm with Hurst parameter

α/2.
(c) for α = 1, {Bβ,1(t), t ≥ 0} a 1/2-self-similar non Gaussian process with

E
(
ei(k,B

β,1(t))
)

= Eβ

(
−|k|

2

2
t

)
, k ∈ Rd. (2.12)

(d) for 0 < α = β < 1, the process {Bβ(t) := Bβ,β(t), t ≥ 0}, β/2-self-similar and called d-
dimensional grey Brownian motion (gBm for short). The characteristic function of Bβ(t)
is given by

E
(
ei(k,B

β(t))
)

= Eβ

(
−|k|

2

2
tβ
)
, k ∈ Rd. (2.13)

For d = 1, gBm was introduced by W. Schneider in [Sch90, Sch92].
(e) For other choices of the parameters β and α we obtain non Gaussian processes.

It was shown in [MP08] (for d = 1) that the ggBm Bβ,α admits the following representation{
Bβ,α(t), t ≥ 0

} d
=
{√

YβB
α/2(t), t ≥ 0

}
, (2.14)

where d
= denotes the equality of the finite dimensional distribution and Bα/2 is a standard fBm

with Hurst parameter H = α/2. Yβ is an independent non-negative random variable with
probability density function Mβ(τ), τ ≥ 0. The proof of (2.14) for an arbitrary dimension d is a
straightforward adaptation of this result.

3. Integral Representation of Generalized Grey Brownian Motion

In this section we put together the representation (2.14) of ggBm and the representation of
fBm as a stochastic integral from Mandelbrot-van Ness [MvN68], see also [Mis08], in order to
obtain an integral representation for ggBm. The idea to express the fractional integral in the
Madelbrot-van Ness representation goes back to [CC93, CCM00, Mur11] and has been used to
obtain an affine representation of fractional processes in [HS19].

We recall from [Mis08] the following result:

Corollary 5 (cf. [Mis08, Cor. 1.3.3]). For any H ∈ (0, 1) the process

BH(t) =

∫
R

(MH
− 11(0,t))(s) dW (s) =

CH

Γ(H + 1
2)

∫
R

(
(t− s)H−

1
2

+ − (−s)H−
1
2

+

)
dW (s),

is a normalized fBm. Here W = {W (t), t ∈ R} is a two-sided Wiener process, i.e. the Gaussian
process with independent increments satisfying E(W (t)) = 0 and E(W (t)W (s)) = t ∧ s for any
s, t ∈ R.

Together with (2.14), this gives the following representation of ggBm. We first put emphasis
on the rough case 0 < α < 1.

Theorem 6 (Representation of ggBm via Ornstein-Uhlenbeck processes for 0 < α < 1). Suppose
that

∫∞
0

(
1 ∧ x−

1
2

)
dx

xH+1
2
< ∞. Then, for 0 < α < 1 and 0 < β < 1 generalized grey Brownian

motion can be represented in finite dimensional distributions as

Bβ,α(t)
d
=

cos(α2π)

π

∫ ∞
0

√
YβXx(t)

dx

x
1+α
2

,

where Xx(t) is an Ornstein-Uhlenbeck process w.r.t. a Brownian motion W , i.e. Xx obeys the
stochastic differential equation:

dXx(t) = −xXx(t)dt+ dW (t). (3.1)
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Proof. Note that again we use α = 2H. Due to P. Lévy [Lév53] fBm admits the moving average
of W :

BH(t) =
1

Γ(H + 1
2)

∫ t

0
(t− s)H−

1
2 dW (s).

For 0 < H < 1
2 we use the fact that

(t− s)H−
1
2 =

1

Γ(1
2 −H)

∫ ∞
0

e−x(t−s)

xH+ 1
2

dx .

Thus, we arrive at

BH(t) =
1

Γ(H + 1
2) Γ(1

2 −H)

∫ t

0

(∫ ∞
0

e−x(t−s) dx

xH+ 1
2

)
dW (s).

By the stochastic Fubini Theorem 12 we then obtain

BH(t) =
1

Γ(H + 1
2) Γ(1

2 −H)

∫ ∞
0

(∫ t

0
e−x(t−s)dW (s)

)
dx

xH+ 1
2

,

where we have chosen µ(dx) := dx

xH+1
2
. Condition (A.2) of Theorem 12 is thereby satisfied, since∫ ∞

0

√∫ t

0
e−2x(t−s) ds µ(dx) =

∫ ∞
0

√
1− e−2xt

2x
µ(dx) ≤

∫ ∞
0

√
1− e−2xt

x
µ(dx) <∞ ,

where we have used (B.3) of Lemma 13 and
∫∞

0

(
1 ∧ x−

1
2

)
µ(dx) =

∫∞
0

(
1 ∧ x−

1
2

)
dx

xH+1
2
<∞.

Finally, by the Euler reflection formula
1

Γ(H + 1
2)Γ(1

2 −H)
=

cos(πH)

π

we may write BH(t), t ≥ 0 as

BH(t) =
cos(πH)

π

∫ ∞
0

(∫ t

0
e−x(t−s) dW (s)

)
dx

xH+ 1
2

=:
cos(πH)

π

∫ ∞
0

Xx(t)
dx

xH+ 1
2

,

where Xx(t) is a Ornstein-Uhlenbeck process. Hence, using the representation (2.14) we obtain
the representation in finite dimensional distribution for ggBm as

Bβ,α(t) =
cos(α2π)

π

∫ ∞
0

√
YβXx(t)

dx

x
1+α
2

.

�

Corollary 7 (Representation via ggOU processes). Suppose that
∫∞

0

(
1 ∧ x−

1
2

)
dx

xH+1
2
< ∞.

Then, for 0 < α < 1 and 0 < β < 1 generalized grey Brownian motion can be represented in
finite dimensional distributions as

Bβ,α(t)
d
=

cos(πα2 )

π

∫ ∞
0

Zβx (t)
dx

x
1+α
2

,

where Zβx (t) :=
√
YβXx(t), t ≥ 0 satisfies the following stochastic differential equation

dZβx (t) = −xZβx (t) dt+ dBβ,1(t).

The process Zβx is a generalization of the Ornstein-Uhlenbeck process defined in [BdS17].
There the authors considered the case α = β. The generalization however is obvious. Indeed
one can compute the characteristic function of Zβx and hence by inverse Fourier transform its
probability density function.
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Proposition 8. The process solving

dZβx (t) = −xZβx (t) dt+ dBβ,1(t).

has the characteristic function

E
(
ei(k,Z

β
x (t))

)
= Eβ

(
−|k|

2

2
|fx(t, ·)|2

)
,

where fx(t, s) = 11[0,t)(s)e
−x(t−s). Moreover its density function is given by

ρx(y, t) := ρ
Zβx (t)

(y) =
1

2
(4π)

d/2Md
β/2

(√
2y, (

1

2x
(1− e−2xt))

1/β

)
, y ∈ Rd.

Proof. The characteristic function of Zβx (t), t ≥ 0, x ≥ 0 for any k ∈ Rd yields

E
(
ei(k,Z

β
x (t))

)
=

∫ ∞
0

E
(
ei
√
τ(k,Xx(t))

)
Mβ(τ) dτ

=

∫ ∞
0

e−
|k|2τ

2
|fx(t,·)|2Mβ(τ) dτ

= Eβ

(
−|k|

2

2
|fx(t, ·)|2

)
,

where fx(t, s) = 11[0,t)(s)e
−x(t−s).

The density ρx(y, t) := ρ
Zβx (t)

(y), y ∈ Rd of the process Zβx (t) may be computed by an inverse
Fourier transform. More precisely, for any y ∈ Rd

ρx(y, t) =
1

(2π)d/2

∫
Rd
e−i(k,y)Eβ

(
−|k|

2

2
|fx(t, ·)|2

)
dk

=
1

(2π)d/2

∫ ∞
0

Mβ(τ)

∫
Rd
e−i(k,y)− |k|

2

2
τ |fx(t,·)|2dk.

Solving the Gaussian integral yields

ρx(y, t) =
1

τ d/2 |fx(t, ·)|d

∫ ∞
0

Mβ(τ)e
− |y|2

2τ |fx(t,·)|2 dτ

making the change of variable τ̃ = τ |fx(t, ·)|2 and rearranging, we obtain

ρx(y, t) =
1

τ d/2

∫ ∞
0

e−
|
√
2y|2
4τ |fx(t, ·)|−2Mβ

(
τ |fx(t, ·)|−2

)
dτ

= (4π)
d/2

∫ ∞
0

e−
|
√
2y|2
4τ

(4πτ)d/2
Mβ

(
τ, |fx(t, ·)|2/β

)
dτ

=
1

2
(4π)

d/2Md
β/2

(√
2y, |fx(t, ·)|2/β

)
=

1

2
(4π)

d/2Md
β/2

(√
2y, (

1

2x
(1− e−2xt))

1/β

)
.

�

Consider now the case 1 < α < 2, which corresponds to the fractional case with smoother
paths.

Theorem 9 (Representation of ggBm via Ornstein-Uhlenbeck processes for 1 < α < 2). Suppose
that

∫∞
0

(
1 ∧ x−

3
2

)
dx

xH−
1
2
< ∞. Then, for 1 < α < 2 and 0 < β < 1 generalized grey Brownian
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motion can be represented in finite dimensional distributions as

Bβ,α d
=

1

Γ(H + 1
2)Γ(3

2 −H)

∫ ∞
0

√
YβQx(t)

dx

x
α−1
2

,

with Qx(t) obeying the equation

dQx(t) = (−xQx(t) +Xx(t))dt,

where Xx(t) is an Ornstein-Uhlenbeck process w.r.t. a Brownian motion.

Proof. Note that again we use α = 2H and the moving average representation.

BH(t) =
1

Γ(H + 1
2)

∫ t

0
(t− s)H−

1
2 dW (s).

Now however for 1
2 < H < 1

(t− s)H−
1
2

can not we written as a Laplace transform anymore and we use:

(t− s)H−
1
2 =

(t− s)
Γ(3

2 −H)

∫ ∞
0

(t− s)e
−x(t−s)

xH−
1
2

dx.

Thus, we now arrive at

BH(t) =
1

Γ(H + 1
2) Γ(3

2 −H)

∫ t

0

(∫ ∞
0

(t− s) e−x(t−s) dx

xH−
1
2

)
dW (s).

By the stochastic Fubini Theorem 12 we then obtain

BH(t) =
1

Γ(H + 1
2) Γ(3

2 −H)

∫ ∞
0

(∫ t

0
(t− s) e−x(t−s)dW (s)

)
dx

xH−
1
2

,

where we have chosen ν(dx) := dx

xH−
1
2
. Condition (A.2) of Theorem 12 is thereby satisfied, since

∫ ∞
0

√∫ t

0
(t− s)2 e−2x(t−s) ds ν(dx) =

∫ ∞
0

√
1− e−2xt(1 + 2tx+ 2t2x2)

4x3
ν(dx)

≤
∫ ∞

0

√
1− e−2xt(1 + 2tx+ 2t2x2)

x3
ν(dx) <∞ ,

where we have used integration by parts and (B.4) of Lemma 13 as well as the fact that∫∞
0

(
1 ∧ x−

3
2

)
ν(dx) =

∫∞
0

(
1 ∧ x−

3
2

)
dx

xH−
1
2
<∞. Now we can write

Qx(t) =

∫ t

0
(t− s)e−x(t−s) dW (s) , (3.2)

implying
dQx(t) = (−xQx(t) +Xx(t))dt,

where Xx(t) is again the Ornstein-Uhlenbeck process (3.1). Hence, using the representation
(2.14) we obtain the representation in finite dimensional distribution for ggBm as

Bβ,α(t) =
1

Γ(H + 1
2)Γ(3

2 −H)

∫ ∞
0

√
YβQx(t)

dx

x
α−1
2

.

�
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It is surely worthwhile to take a closer look at the process Qx in order to obtain a similar
result as in Prop. 8. For this purpose we have to rewrite the process Qx at first in terms of a
Wiener integral. It follows from (3.2) that Qx(t) can be written as:

Qx(t) =

∫
R

11[0,t)(s)(t− s)e−x(t−s) dW (s).

This consideration enables us to work out the density function in the case 1 < α < 2 as in
Prop. 8. In particular we obtain:

Proposition 10. The process
W β
x (t) =

√
YβQx(t),

where
dQx(t) = (−xQx(t) +Xx(t))dt,

w.r.t. Xx(t), i.e. the Ornstein-Uhlenbeck process defined in (3.1) has the characteristic function

E
(
ei(k,W

β
x (t))

)
= Eβ

(
−|k|

2

2
|gx(t, ·)|2

)
,

where gx(t, s) = 11[0,t)(s)(t− s)e−x(t−s).
Moreover its density function for t ≥ 0 is given by

ρx(y, t) := ρ
Wβ
x (t)

(y) =
1

2
(4π)

d/2Md
β/2

(√
2y, |gx(t, ·)|

2
β

)
, y ∈ Rd.

Proof. The proof is completely analogue to the computations in Prop. 8, substituting the density
function fx by gx. �

Remark 11 (Simulation of ggBm). We wish to point out that the representation from the The-
orems 6 and 9 are ill-suited for a fast simulation of ggBm paths. The simulation of a path of
fractional Brownian motion using the representation is strongly related to the simulation of the
direct Mandelbrot-van Ness formula, which is known as method only to be used for academic
purposes, see e.g. the survey [Coe00]. The reason for that lies in the fat-tail behavior in the
Laplace parameter. Hence a fast simulation can be performed using the well-known Wood and
Chan method [CW98] for the fBm part and directly simulate

√
Yβ using the Taylor expansion

of the pdf. In addition, an effective method to simulate ggBm has been recently published in
[SCS+18].

4. Conclusions

The representation of ggBm by infinitely many generalized grey Ornstein Uhlenbeck processes
holds in terms of finite dimensional distributions. This is due to the fact that the product of√
Yβ with an fBm yields a ggBm only in finite dimensional distributions. The charme of this

representation lies hence in the representation of fBm by infinitely many Ornstein-Uhlenbeck
processes w.r.t. Brownian motion.

This paves the way to apply these analytic methods for the study of grey stochastic differential
equations and the further development of a tractable stochastic analysis for ggBm.
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Appendix A. The Stochastic Fubini Theorem

For the interchanging of stochastic and Lebesgue integrals in the proofs of Theorem 6 and
Theorem 9 we refer to a suitable version of the stochastic Fubini Theorem as it is given in
[Ver12] and as it has also been used in [HS19]: Let µ be a σ-finite measure on (0,∞). For
fixed T ≥ 0 denote by A the σ-algebra on [0, T ] × Ω generated by all progressively measurable
processes.

Theorem 12. Let G : (0,∞)× [0, T ]×Ω→ R be measurable with respect to the product σ-algebra
B(0,∞)⊗A. Moreover, define processes ξ1,2 : (0,∞)× [0, T ]×Ω→ R and η : [0, T ]×Ω→ R by

ξ1(x, t, ω) =

∫ t

0
G(x, s, ω)ds , ξ2(x, t, ω) =

(∫ t

0
G(x, s, ·)dW (s)

)
(ω) , η(t, ω) =

∫ ∞
0
G(x, t, ω)µ(dx).

(a) Assume G satisfies for almost all ω ∈ Ω∫ ∞
0

(∫ T

0
|G(x, s, ω)|ds

)
µ(dx) <∞ . (A.1)

Then, for almost all ω ∈ Ω and for all t ∈ [0, T ] we have ξ1(·, t, ω) ∈ L1(µ) and∫ ∞
0

ξ1(x, t, ω)µ(dx) =

∫ t

0
η(s, ω)ds .

(b) Assume G satisfies for almost all ω ∈ Ω∫ ∞
0

√∫ T

0
G(x, s, ω)2ds

µ(dx) <∞ . (A.2)

Then, for almost all ω ∈ Ω and for all t ∈ [0, T ] we have ξ2(·, t, ω) ∈ L1(µ) and∫ ∞
0

ξ2(x, t, ω)µ(dx) =

(∫ t

0
η(s, ·)dW (s)

)
(ω) .

Appendix B. Integrability of Basic Expressions

We moreover provide the following auxiliary result for the integrability of elementary expres-
sions which is closely related to and in the spirit of Lemma 6.7 in [HS19].

Lemma 13. Suppose that µ and ν are sigma-finite measures on (0,∞) such that∫ ∞
0

(
1 ∧ x−

1
2

)
µ(dx) <∞ , (B.1)∫ ∞

0

(
1 ∧ x−

3
2

)
ν(dx) <∞ , (B.2)

and let τ, α > 0. Then we have that∫ ∞
0

√
1− e−2τx

x
µ(dx) <∞ , (B.3)∫ ∞

0

√
1− e−2τx(1 + 2τx+ 2τ2x2)

x3
ν(dx) <∞ . (B.4)

Proof. Using the elementary inequality (for the proof compare Lemma 6.6 in [HS19])

1− e−τx

x
≤ (1 ∨ τ)(1 ∧ x−1)

we obtain (B.3) with the help of (B.1) as follows:∫ ∞
0

√
1− e−2τx

x
µ(dx) ≤

(
1 ∨ (2τ)

1
2

)∫ ∞
0

(
1 ∧ x−

1
2

)
µ(dx) <∞ .
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In the same spirit, using the elementary inequality (compare again Lemma 6.6 in [HS19])

1− e−τx(1 + τx+ 1
2τ

2x2)

x3
≤
(
1 ∨ τ3

) (
1 ∧ x−3

)
we obtain (B.4) using (B.2) as follows:∫ ∞

0

√
1− e−2τx(1 + 2τx+ 2τ2x2)

x3
ν(dx) ≤

(
1 ∨ (2τ)

3
2

)∫ ∞
0

(
1 ∧ x−

3
2

)
ν(dx) <∞ .

�
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