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Abstract. We prove that the geodesics associated with any metric generated from Liouville
quantum gravity (LQG) which satisfies certain natural hypotheses are necessarily singular with
respect to the law of any type of SLEκ. These hypotheses are satisfied by the LQG metric for
γ =

√
8/3 constructed by the first author and Sheffield, and subsequent work by Gwynne and

the first author has shown that there is a unique metric which satisfies these hypotheses for each
γ ∈ (0, 2). As a consequence of our analysis, we also establish certain regularity properties of LQG
geodesics which imply, among other things, that they are conformally removable.

1. Introduction

Suppose that D ⊆ C is a domain and h is an instance of the Gaussian free field (GFF) h on D.
Fix γ ∈ (0, 2]. The γ-Liouville quantum gravity (LQG) surface described by h is the random
Riemannian manifold with metric tensor

(1.1) eγh(z)(dx2 + dy2)

where dx2 + dy2 denotes the Euclidean metric tensor. This expression is ill-defined as h is a
distribution and not a function, hence does not take values at points. The volume form associated
with (1.1) was constructed by Duplantier-Sheffield in [13] (though measures of this type were
constructed earlier by Kahane [25] under the name Gaussian multiplicative chaos; see also [22]). The
construction in the case γ ∈ (0, 2) proceeds by letting for each z ∈ D and ε > 0 with B(z, ε) ⊆ D,
hε(z) be the average of h on ∂B(z, ε) and then taking

(1.2) µγh = lim
ε→0

εγ
2/2eγhε(z)dz

where dz denotes Lebesgue measure on D. The construction in the case γ = 2 is similar but with

the normalization factor taken to be
√

log ε−1ε2 [11, 12]. The limiting procedure (1.2) implies that
the measures µγh satisfy a certain change of coordinates formula. In particular, suppose that h is a

GFF on D, ϕ : D̃ → D is a conformal transformation, and

(1.3) h̃ = h ◦ ϕ+Q log |ϕ′| where Q =
2

γ
+
γ

2
.

If µγ
h̃

is the γ-LQG measure associated with h̃, then we have that µγh(ϕ(A)) = µγ
h̃
(A) for all Borel

sets A ⊆ D̃. The relation (1.3) is referred to as the coordinate change formula in LQG. Two

domain/field pairs (D,h), (D̃, h̃) are said to be equivalent as quantum surfaces if h, h̃ are related as
in (1.3). A quantum surface is an equivalence class with respect to this equivalence relation and a
representative is referred to as an embedding of a quantum surface.

The purpose of the present work is to study the properties of geodesics for γ-LQG surfaces and
their relationship with the Schramm-Loewner evolution (SLE) [35]. Since the GFF is conformally
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invariant and satisfies the spatial Markov property, one is led to wonder whether the geodesics in
γ-LQG should satisfy Schramm’s conformal Markov characterization of SLE (see Section 2.2 for a
review) and hence be given by SLE-type curves (see [3, Problem 3, Section 5] as well as Sections 2
and 4 from the open problems from [1]). As pointed out by Duplantier [1, Section 4], evidence in
support of the relationship between SLE and LQG geodesics is given by the fact that the exponent
for having k geodesics connect a pair of points in a random planar map [5] matches the exponent for
having k disjoint self-avoiding walks on a random planar map connect a pair of points [9, 8] (and
self-avoiding walks on random quadrangulations were proven to converge to SLE8/3 [14]). Since a
geodesic is necessarily a simple curve, it can possibly be an SLEκ curve only for κ ∈ (0, 4], as SLEκ
curves with κ > 4 are self-intersecting [34]. The main result of the present work is to show that the
geodesics in γ-LQG are in fact singular with respect the law of any type of SLEκ.

Prior to this work, the metric space structure for LQG had only been constructed for γ =
√

8/3 in
[31, 32, 33, 30]. In this case, the resulting metric measure space is equivalent to that of a Brownian
surface, the Gromov-Hausdorff scaling limit of uniformly random planar maps. The first result of
this type was proved by Le Gall [27] and Miermont [29] for uniformly random quadrangulations
of the sphere. The works [27, 29] have since been extended to the case of uniformly random
quadrangulations of the whole-plane [6], the disk [4, 18], and the half-plane [2, 15]. The type of

Brownian surface that one obtains from the
√

8/3-LQG metric depends on the type of GFF h.
Following this work, the metric for γ-LQG was constructed for γ ∈ (0, 2) in [19, 17], building on
[20, 16, 7] and some ideas from the present work. The results of this article in particular apply to
the LQG metric for all γ ∈ (0, 2) but we emphasize that this work is independent of [31, 32, 33, 30]
and precedes [19, 17].

We will first look at a metric dh in C associated with a whole-plane GFF instance h which satisfies
the following assumption. We let Bh(z, r) denote the open metric ball under dh centered at z with
radius r > 0.

Assumption 1.1. We assume that dh is an h-measurable metric which is homeomorphic to the
Euclidean metric on C and which satisfies:

(i) Locality: for all z ∈ C and r > 0, Bh(z, r) is a local set for h.
(ii) Scaling: there exists a constant β > 0 such that for each C ∈ R we have that dh+C(x, y) =

eβCdh(x, y).
(iii) Compatibility with affine maps: if ϕ : C → C is an affine map (combination of scaling and

translation) and h̃ = h ◦ ϕ+Q log |ϕ′| then d
h̃
(z, w) = dh(ϕ(z), ϕ(w)) for all z, w ∈ C.

(We will review the definition of GFF local sets in Section 2.1.) Since the whole-plane GFF is
only defined modulo an additive constant, to be concrete we will often fix the additive constant
by taking the average of the field on ∂D to be equal to 0. Recall that a metric space (X, d) is
said to be geodesic if for every x, y ∈ X there exists a path in X connecting x to y with length
equal to d(x, y). The metric space (C, dh) is geodesic, due to the Hopf-Rinow theorem and the fact
that it is complete and locally compact being homeomorphic to the Euclidean whole-plane. We
emphasize that the geodesics of dh are the same as those of dh+C by part (ii) of Assumption 1.1, so
the particular manner in which we have fixed the additive constant is not important for the purpose
of analyzing the properties of geodesics.

Note that Assumption 1.1 was shown to hold in the case γ =
√

8/3 in [31, 32, 33]. After the
present article, it was established in [19, 17] that there exists a unique metric satisfying (an equivalent
form of) Assumption 1.1 for each γ ∈ (0, 2). We also expect there exists a unique metric satisfying
Assumption 1.1 for the case γ = 2, though this is not proved in [19, 17].
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Given a metric space (C, dh) satisfying Assumption 1.1, for any general domain D ⊆ C, we
can define a metric space (D, dh,D) where dh,D is the internal metric on D induced by dh, i.e.,
for any x, y ∈ D, dh,D(x, y) := infη `(η) where the infimum is taken over all dh-rectifiable curves
η connecting x and y that are contained in D and `(η) is the dh-length of η. Recall that (X, d)
is said to be a length space if for every ε > 0 and x, y ∈ X there exists a path η connecting x
and y with length at most d(x, y) + ε. By definition, (D, dh,D) is a length space. Note that the

metric dh,D is entirely determined by Bh(z, r) for all z ∈ D and r ∈ (0, dh(z, ∂D)), hence part (i) of
Assumption 1.1 implies that dh,D is measurable with respect to the restriction of h on D, denoted

by h|D. Finally, we can also consider a GFF h̃ on D with more general boundary conditions, for
example piecewise constant or free. For any domain U ⊆ D with positive distance to ∂D, the law of

h̃|U is equal to h|U plus a (possibly random) continuous function in U , hence one can define (D, d
h̃
)

from (D, dh,D) by part (ii) of Assumption 1.1.
In the present article, we will work with D = C and a whole-plane GFF h. However, the a.s.

properties that we will establish for geodesics in this work for the whole-plane GFF transfer to
the setting of the GFF on a general domain D ⊆ C (or to the other types of quantum surfaces

considered in [10]) by absolute continuity. To explain this point further, suppose that D ⊆ C and h̃
is a GFF on D. Suppose that U ⊆ D is open, bounded and has positive distance from ∂D. We fix
the additive constant for h so that its average on a circle which is disjoint from U is equal to 0. (As
we mentioned above, the particular manner in which we fix the additive constant is for technical
convenience and does not change the a.s. properties of the geodesics.) With the additive constant

for h fixed in this way, the law of h̃|U is mutually absolutely continuous with respect to the law of
h|U . Consequently, if x, y ∈ U then on the event that d

h̃
(x, y) is less than the d

h̃
-distance from x to

∂U we have (Theorem 1.2) that there is a.s. a unique d
h̃
-geodesic connecting x and y whose law

is absolutely continuous with respect to the law of the a.s. unique dh geodesic connecting x and
y. As all of our other theorems are a.s. results, they thus apply to this geodesic on this event. On
the event that d

h̃
(x, y) is larger than the d

h̃
-distance of x to ∂U , it is possible that a d

h̃
-geodesic

from x to y can hit ∂U . However, the proofs of our main results in fact apply to all geodesics
simultaneously for the whole-plane case and so similar absolute continuity type arguments allow us
to make statements about d

h̃
-geodesics whenever they are away from the domain boundary.

Our first main result is the a.s. uniqueness of geodesics connecting generic points in our domain.

Theorem 1.2. Suppose that h is a whole-plane GFF with the additive constant fixed as above and
that x, y ∈ C are distinct. There is a.s. a unique dh-geodesic η connecting x and y.

We note that Theorem 1.2 was shown to hold for γ =
√

8/3 in [31, 32, 33] when x, y are taken
to be quantum typical (i.e., “sampled” from µh). Taking x, y to be quantum typical corresponds to
adding −γ log | · | singularities at deterministic points x, y (see, e.g., [13]). The proof of Theorem 1.2

given in the present work applies to this setting for γ =
√

8/3, but is also applicable in greater
generality. Theorem 1.2 will be important because it allows us to refer to the geodesic connecting
generic points x, y. We emphasize that Theorem 1.2 does not rule out the existence of exceptional
points between which there are multiple geodesics, which are known to exist in the case γ =

√
8/3.

Our next main result answers the question mentioned above about the relationship between LQG
geodesics and SLE. Recall that whole-plane SLE is the variant which describes a random curve
connecting two points in the Riemann sphere, so it is the natural one to compare to LQG geodesics.

Theorem 1.3. Suppose that h is a whole-plane GFF with the additive constant fixed as above and
that x, y ∈ C are distinct. Let η be the a.s. unique geodesic from x to y. The law of η is singular
with respect to the law of a whole-plane SLEκ curve from x to y for any value of κ > 0.
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Figure 1.1. Left: A metric ball constructed using a discretization of
√

8/3-LQG
together with all of the geodesics from the outer boundary of the ball to its center.
The different colors indicate the distance of the points to the center. Right: Only
the geodesics from the outer boundary of the ball to its center are shown.

As mentioned above, the proof of Theorem 1.3 applies in other settings as well. For example, the
same technique applies to show in the case where D ⊆ C is a simply connected domain that the
law of a geodesic between distinct boundary points (resp. a boundary point to an interior point) is
singular with respect to chordal (resp. radial) SLE.

We will prove Theorem 1.3 by analyzing the fine geometric properties of geodesics in LQG. In
particular, we will show that geodesics in LQG are in a certain sense much more regular than SLE
curves. As a consequence of our analysis, we will obtain the following theorem which serves to
quantify this regularity (in a reparameterization invariant manner).

Theorem 1.4. Suppose that h is a whole-plane GFF with the additive constant fixed as above.
Almost surely, the following is true. For any dh-geodesic η (between any two points in C) and
for any parameterization of η with time interval [0, T ], for each δ ∈ (0, 1) there exists a constant
C(δ, η) > 0 so that

(1.4) diam(η([s, t])) ≤ C(δ, η)|η(t)− η(s)|1−δ for all s, t ∈ [0, T ].

Let us point out that the regularity condition in the theorem above a.s. holds for all dh-geodesics
simultaneously, even though the statement in Theorem 1.3 holds a.s. only for fixed x, y ∈ C (since
in the latter setting, one has to choose a geodesic, before comparing its law with SLE).

An important concept in the theory of LQG is conformal removability. Recall that a compact set
K ⊆ C is said to be conformally removable if the following is true. Suppose that U ⊇ K is an open
set and ϕ : U → V is a homeomorphism which is conformal on U \K. Then ϕ is conformal on U .

Theorem 1.5. Suppose that h is a whole-plane GFF with the additive constant fixed as above. Then
almost surely, any dh-geodesic is conformally removable.
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The conformal removability of a path in LQG is important because it implies that a conformal
welding in which the path arises as the gluing interface is uniquely determined (see, e.g., [39, 10, 28]).

In the case γ =
√

8/3, the conformal removability of geodesics is especially important as it is shown
in [30] that metric balls in the Brownian map can be decomposed into independent slices obtained
by cutting the metric ball along the geodesics from its outer boundary to its center (see Figure 1.1).

Theorem 1.5 implies in the context of
√

8/3-LQG that the conformal structure associated with a
metric ball is uniquely determined by these slices. We also note that the conformal removability of
geodesics in the case γ =

√
8/3 was posed as [32, Problem 9.3] and Theorem 1.5 solves this problem.

We will prove Theorem 1.5 by checking that a sufficient condition for conformal removability due to
Jones-Smirnov [24] is necessarily satisfied for the geodesics in LQG using Theorem 1.4 and an a.s.
upper bound on the upper Minkowski dimension for the geodesics in LQG (see Proposition 4.8)
which is strictly smaller than 2.

We finish by mentioning that there are many other sets of interest that one can generate using
a metric from LQG. Examples include the boundaries of metric balls (see Figure 1.1) and the
boundaries of the cells formed in a Poisson-Voronoi tessellation (see [21]). We expect that the
techniques developed in this paper could be used to show that these sets are both not given by any
form of SLE curve and also are conformally removable. This leaves one to wonder whether there is
any natural set that one can generate from a metric for LQG which is an SLE.

Outline. The remainder of this article is structured as follows. We begin in Section 2 by reviewing
a few of the basic facts about the GFF and SLE which will be important for this work. Next, in
Section 3, we will prove the uniqueness of the dh-geodesics (Theorem 1.2). Then, in Section 4, we
will analyze the regularity of the dh-geodesics, thus establish Theorems 1.3 and 1.4. Finally, in
Section 5, we will prove the removability of the dh-geodesics (Theorem 1.5). In Appendix A, we will
estimate the annulus-crossing probabilities for SLE curves.

Theorem 1.3 (as well as Theorem 1.4) will be established by showing that the geodesics in LQG
are in a certain sense much more regular than SLE curves. In particular, we will show that the
probability that a geodesic has four (or more) crossings across an annulus B(z, ε) \ B(z, εα) for
α > 1 and ε > 0 decays significantly more quickly as ε→ 0 than for SLEκ for any value of κ > 0.

Acknowledgements. JM was supported by ERC Starting Grant 804166 (SPRS). WQ acknowledges
the support by EPSRC grant EP/L018896/1 and a JRF of Churchill college. We thank an anonymous
referee for helpful feedback on an earlier version of the article.

2. Preliminaries

2.1. The Gaussian free field. We will now give a brief review of the properties of the Gaussian
free field (GFF) which will be important for the present work. See [38] for a more in-depth review.

We will first remind the reader how the GFF on a bounded domain is defined before reviewing
the definition of the whole-plane GFF. Suppose that D ⊆ C is a bounded domain. We let C∞0 (D)
be the space of infinitely differentiable functions with compact support contained in D. We define
the Dirichlet inner product by

(2.1) (f, g)∇ =
1

2π

∫
∇f(x) · ∇g(x)dx for f, g ∈ C∞0 (D).

We let ‖ · ‖∇ be the corresponding norm. The space H1
0 (D) is the Hilbert space completion of

C∞0 (D) with respect to (·, ·)∇. Suppose that (φn) is an orthonormal basis of H1
0 (D) and that (αn)
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is an i.i.d. sequence of N(0, 1) variables. Then the Gaussian free field (GFF) h on D is defined by

(2.2) h =
∞∑
n=1

αnφn.

Since the partial sums for h a.s. diverge in H1
0 (D), one needs to take the limit in a different space

(e.g., the space of distributions).
In this work, we will be mainly focused on the whole-plane GFF (see [39, Section 3.2] for a review).

To define it, we replace H1
0 (D) with the closure with respect to (·, ·)∇ of the functions in C∞0 (C)

whose gradients are in L2(C), viewed modulo additive constant. The whole-plane GFF is then
defined using a series expansion as in (2.2) except the limit is taken in the space of distributions
modulo additive constant. This means that if h is a whole-plane GFF and φ ∈ C∞0 (C) has mean-zero
(i.e.,

∫
φ(z)dz = 0) then (h, φ) is defined. There are various ways of fixing the additive constant for

a whole-plane GFF so that one can view it as a genuine distribution. For example, if φ ∈ C∞0 (C)
with

∫
φ(z)dz = 1 then we can set (h, φ) = 0. If ψ ∈ C∞0 (C) with

∫
ψ(z)dz = 1, then we set

(h, ψ) := (h, ψ − φ) + (h, φ) = (h, ψ − φ).

Note that (h, ψ − φ) is well-defined as ψ − φ has mean zero. This definition extends by linearity
to any choice of ψ ∈ C∞0 (C). It can also be convenient to fix the additive constant by requiring
setting the average of h on some set, for example a circle (see more below), to be equal to 0.

Circle averages. The GFF is a sufficiently regular distribution that one can make sense of its
averages on circles. We refer the reader to [13, Section 3] for the rigorous construction and basic
properties of GFF circle averages. For z ∈ D and ε > 0 so that B(z, ε) ⊆ D we let hε(z) be the
average of h on ∂B(z, ε).

Markov property. Suppose that U ⊆ D is open. Then we can write h = h1 + h2 where h1 (resp.
h2) is a GFF (resp. a harmonic function) in U and h1, h2 are independent. This can be seen by
noting that H1

0 (D) can be written as an orthogonal sum consisting of H1
0 (U) and those functions in

H1
0 (D) which are harmonic on U . The same is also true for the whole-plane GFF except h2 is only

defined modulo additive constant.
We emphasize that h2 is measurable with respect to the values of h on D \U . To make this more

precise, suppose that K is a closed set and δ > 0. We then let FδK be the σ-algebra generated by (h, φ)

for φ ∈ C∞0 (D) with support contained in the δ-neighborhood of K and then take FK = ∩δ>0FδK .
Then h2 is FK-measurable and h1 is independent of FK with K = D \ U .

Local sets. The notion of a local set of the GFF serves to generalize the Markov property to the
setting in which K = D \ U can be random, in the same way that stopping times generalize the
Markov property for Brownian motion to times which can be random (see [36] for a review). More
precisely, we say that a (possibly random) closed set K coupled with h is local for h if it has the
property that we can write h = h1 + h2 where, given FK , h1 is a GFF on D \K and h2 is harmonic
on D \K. Moreover, h2 is FK-measurable.

Conformal invariance. Suppose that ϕ : D̃ → D is a conformal transformation. It is straight-
forward to check that the Dirichlet inner product (2.1) is conformally invariant in the sense that
(f ◦ ϕ, g ◦ ϕ)∇ = (f, g)∇ for all f, g ∈ C∞0 (D). As a consequence, the GFF is conformally invariant

in the sense that if h is a GFF on D then h ◦ ϕ is a GFF on D̃.
Perturbations by a function. Suppose that f ∈ H1

0 (D). Then the law of h+ f is the same as the
law of h weighted by the Radon-Nikodym derivative exp((h, f)∇−‖f‖2∇/2). Consequently, the laws
of h+ f and h are mutually absolutely continuous. This can be seen by writing f =

∑∞
n=1 βnφn

where (φn) is an orthonormal basis of H1
0 (D), noting that the Radon-Nikodym derivative can be
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written as
∏∞
n=1 exp(αnβn − β2n/2) and weighting the law of αn by exp(αnβn − β2n/2) is equivalent

to shifting its mean by βn.

2.2. The Schramm-Loewner evolution. The Schramm-Loewner evolution SLE was introduced
by Schramm in [35] as a candidate to describe the scaling limit of discrete models from statistical
mechanics. There are several different variants of SLE: chordal (connects two boundary points),
radial (connects a boundary point to an interior point), and whole-plane (connects two interior
points). We will begin by briefly discussing the case of chordal SLE since it is the most common
variant and the one for which it is easiest to perform computations. As the different types of SLE’s
are locally absolutely continuous (see [37]), any distinguishing statistic that we identify for one type
of SLE will also work for other types of SLEs.

Suppose that η is a simple curve in H from 0 to ∞. For each t ≥ 0, we can let Ht = H \ η([0, t])
and gt be the unique conformal transformation Ht → H with gt(z)− z → 0 as z →∞. Then the
family of conformal maps (gt) satisfy the chordal Loewner equation (provided η is parameterized
appropriately):

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z.

Here, U : [0,∞)→ R is a continuous function which is given by the image of the tip of η at time t.
That is, Ut = gt(η(t)).

SLEκ for κ ≥ 0 is the random fractal curve which arises by taking Ut =
√
κBt where B is a

standard Brownian motion. (It is not immediate from the definition of SLE that it is in fact a curve,
but this was proved in [34].) It is characterized by the conformal Markov property, which states the
following. Let Ft = σ(Us : s ≤ t) = σ(η(s) : s ≤ t) and ft = gt − Ut. Then:

• Given Ft, we have that s 7→ ft(η(s+ t)) is equal in distribution to η.
• The law of η is scale-invariant: for each α > 0, t 7→ α−1η(α2t) is equal in distribution to η.

We recall that the SLE curves are simple for κ ∈ (0, 4], self-intersecting but not space-filling for
κ ∈ (4, 8), and space-filling for κ ≥ 8 [34].

Since this work is focused on geodesics which connect two interior points, the type of SLE that
we will make a comparison with is the whole-plane SLE. Whole-plane SLE is typically defined in
terms of the setting in which 0 is connected to ∞ and then for other pairs of points by applying a
Möbius transformation to the Riemann sphere. Suppose that Ut =

√
κBt where B is a two-sided

(i.e., defined on R) standard Brownian motion and we let (gt) be the family of conformal maps
which solve

(2.3) ∂tgt(z) = gt(z)
eiUt + gt(z)

eiUt − gt(z)
, g0(z) = z.

The whole-plane SLEκ in C from 0 to ∞ encoded by U is the random fractal curve η with the
property that for each t ∈ R, gt is the unique conformal transformation from the unbounded
component of C \ η((−∞, t]) to C \D which fixes and has positive derivative at ∞.

We will prove in Appendix A the following proposition, which is the precise property that will
allow us to deduce the singularity between SLE and dh-geodesics.

Proposition 2.1. Fix κ > 0. Suppose that η is a whole-plane SLEκ in C from 0 to ∞. For each
n ∈ N there exists α > 1 such that the following is true. There a.s. exists ε0 > 0 so that for all
ε ∈ (0, ε0) there exists z ∈ B(0, 2) \D such that η makes at least n crossings across the annulus

B(z, ε) \B(z, εα).

We will in fact deduce Proposition 2.1 in Appendix A from the analogous fact for chordal SLE,
by local absolute continuity between the different forms of SLE.
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Proposition 2.2. Fix κ > 0. Suppose that η is a chordal SLEκ in H from 0 to ∞. For each
n ∈ N there exists α > 1 such that the following is true. There a.s. exists ε0 > 0 so that for all
ε ∈ (0, ε0) there exists z ∈ [−1, 1]× [0, 1] such that η makes at least n crossings across the annulus

B(z, ε) \B(z, εα).

2.3. Distortion estimates for conformal maps. Here, we recall some of the standard distortion
and growth estimates for conformal maps which we will use a number of times in this article.

Lemma 2.3 (Koebe-1/4 theorem). Suppose that D ⊆ C is a simply connected domain and
f : D→ D is a conformal transformation. Then D contains B(f(0), |f ′(0)|/4).

The following is a corollary of Koebe-1/4 theorem, for example see [26, Corollary 3.18].

Lemma 2.4. Suppose that D, D̃ ⊆ C are domains and f : D → D̃ is a conformal transformation.
Fix z ∈ D and let z̃ = f(z). Then

dist(z̃, ∂D̃)

4dist(z, ∂D)
≤ |f ′(z)| ≤ 4dist(z̃, ∂D̃)

dist(z, ∂D)
.

The following is a consequence of Koebe-1/4 theorem and the growth theorem, for example see
[26, Corollary 3.23].

Lemma 2.5. Suppose that D, D̃ ⊆ C are domains and f : D → D̃ is a conformal transformation.
Fix z ∈ D and let z̃ = f(z). Then for all r ∈ (0, 1) and all |w − z| ≤ rdist(z, ∂D),

|f(w)− z̃| ≤ 4|w − z|
1− r2

dist(z̃, ∂D̃)

dist(z, ∂D)
≤ 4r

1− r2
dist(z̃, ∂D̃).

2.4. Binomial concentration. We will make frequent use of the following basic concentration
inequality for binomial random variables.

Lemma 2.6. Fix p ∈ (0, 1) and n ∈ N and let X be a binomial random variable with parameters p
and n. For each r ∈ (p, 1) we have that

(2.4) P[X ≥ rn] ≤
(

1− p
1− r

)n(1−r) (p
r

)nr
= exp(−cp,rn).

Similarly, for each r ∈ (0, p) we have that

(2.5) P[X ≤ rn] ≤
(

1− p
1− r

)n(1−r) (p
r

)nr
= exp(−cp,rn).

We emphasize that for fixed r, cp,r →∞ as p→ 0 and also as p→ 1.

Proof. We will prove (2.4). The proof of (2.5) follows by replacing X with n−X, p with 1− p, and
r with 1− r. For each λ > 0, we have that

P[X ≥ rn] ≤ e−λrnE[eλX ] = (1− p+ peλ)ne−λrn.

Optimizing over λ > 0 implies (2.4). �
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Bh(x, r) Bh(y, u)

xi

xj

ε
2
ξ
δ

x y

2ξ

ε
2
ξ
δ 2ξ

Figure 3.1. Illustration of the proof of Theorem 1.2. The quantum balls Bh(x, r)
and Bh(y, u) are drawn in grey. We cover ∂Bh(x, r) by balls of radius ε/2. We
investigate the probability that there are two geodesics from x to y that respectively
intersect B(xi, ε/2) and B(xj , ε/2) such that B(xi, 2ξ) ∩B(xj , 2ξ) = ∅.

3. Uniqueness: Proof of Theorem 1.2

See Figure 3.1 for an illustration. Fix x, y ∈ C distinct. For any r > 0, let Bh(x, r) be the dh
metric ball centered at x of radius r and let s := inf{t > 0 : Bh(x, r) ∩Bh(y, t) 6= ∅}. Note that if
r < dh(x, y), then s = dh(x, y)− r. To prove the theorem, it suffices to show that for any r > 0, on
the event {r < dh(x, y)}, ∂Bh(x, r)∩∂Bh(y, s) a.s. contains a unique point. Indeed, if η is a geodesic
from x to y, then we can continuously parameterize η by t ∈ [0, dh(x, y)] so that dh(η(t), x) = t,
since dh is homeomorphic to the Euclidean metric. In particular, for all r ∈ [0, dh(x, y)], we have
η(r) ∈ ∂Bh(x, r) ∩ ∂Bh(y, s). If for every r > 0, on the event {r < dh(x, y)}, ∂Bh(x, r) ∩ ∂Bh(y, s)
a.s. contains a unique point, then for any two geodesics η and η̃ from x to y, we a.s. have that
η(r) = η̃(r) for all rational r ∈ [0, dh(x, y)] simultaneously. This can only be the case if we a.s. have
that η = η̃.

From now on, fix r, ξ > 0. We will argue that on the event {r < dh(x, y)}, ∂Bh(x, r) ∩ ∂Bh(y, s)
a.s. does not contain points which have distance more than 8ξ from each other. This will imply the
desired result as we have taken r, ξ > 0 to be arbitrary. For R, ε, δ > 0, we define E(R, ε, δ) to be
the event that

(i) Bh(x, dh(x, y)) ∪Bh(y, dh(x, y)) ⊆ B(0, R);
(ii) for all z ∈ B(0, R), the dh-diameter of B(z, ε) is at most equal to the infimum of dh(a, b) over

all a, b ∈ B(0, R) with |a− b| ≥ δ/2;
(iii) for all a, b ∈ B(0, R) with |a − b| ≤ 2δ, any geodesic from a to b has Euclidean diameter at

most ξ.

Since we have assumed that dh induces the Euclidean topology, it follows that the probability of (i)
tends to 1 as R→∞. For the same reason, for fixed R and ξ, as δ → 0, the probability of (iii) tends
to 1. Moreover, for fixed R and δ, as ε→ 0, the probability of (ii) tends to 1. Therefore, we can
choose R, ε, δ in a way such that ε < δ < ξ and the probability of E(R, ε, δ) is arbitrarily close to 1.

Let x1, . . . , xn be a collection of points on ∂Bh(x, r) so that ∂Bh(x, r) ⊆ ∪nj=1B(xj , ε/2). We aim

to prove that, conditionally on {r < dh(x, y)} ∩ E(R, ε, δ), there a.s. do not exist two geodesics η
and η̃ from x to y such that η intersects B(xi, ε/2) and η̃ intersects B(xj , ε/2), where i, j ∈ [1, n]
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are such that B(xi, 2ξ) ∩B(xj , 2ξ) = ∅. This implies that any two intersection points of ∂Bh(x, r)
and ∂B(y, s) must have distance at most 8ξ from each other. Since the probability of E(R, ε, δ) can
be made arbitrarily close to 1, this will complete the proof.

From now on, we further fix R, ε, δ and work on the event E := {r < dh(x, y)} ∩ E(R, ε, δ). We
also assume that the additive constant for h is fixed so that its average on ∂B(R+ 2, 1) is equal to 0
(recall that the dh-geodesics do not depend on the choice of additive constant; the choice here is
made so that the circle is disjoint from B(0, R) but is otherwise arbitrary). Fix i, j ∈ [1, n] such that
B(xi, 2ξ)∩B(xj , 2ξ) = ∅. Let u := inf{t > 0 : Bh(y, t)∩B(xi, ε/2) 6= ∅ and Bh(y, t)∩B(xj , ε/2) 6= ∅}.
If u ≥ s, then obviously there do not exist two geodesics η and η̃ from x to y such that η intersects
B(xi, ε/2) and η̃ intersects B(xj , ε/2).

On E ∩{u < s}, for any ` ∈ {i, j}, due to (ii), the dh-shortest path from ∂Bh(y, u) to ∂Bh(x, r)∩
B(x`, ε/2) must have one endpoint in ∂Bh(y, u)∩B(x`, δ) (and the other endpoint is in ∂Bh(x, r)∩
B(x`, ε/2)). For ` ∈ {i, j}, we let X` be the infimum of dh-lengths of paths which connect a point on
∂Bh(x, r) ∩B(x`, δ) to a point on ∂Bh(y, u) ∩B(x`, δ). We are going to prove that on E ∩ {u < s},
we have Xi 6= Xj a.s. This will imply that, on the event E, there a.s. do not exist two geodesics η
and η̃ from x to y such that η intersects B(xi, ε/2) and η̃ intersects B(xj , ε/2), which will complete
the proof.

Let us now work on E ∩ {u < s}. We will further condition on the sets Bh(x, r) and Bh(y, u)
(which are local for h by Assumption 1.1). It suffices to show that under such conditioning,
Xi 6= Xj a.s. On E(R, ε, δ), due to (iii), for ` ∈ {i, j}, any geodesic which connects a point on
∂Bh(x, r) ∩B(x`, δ) to a point on ∂Bh(y, u) ∩B(x`, δ) is contained in B(x`, ξ). By the locality of
dh, X` is determined by Bh(x, r), Bh(y, u), and the values of h in B(x`, ξ). Let φ be a non-negative
C∞0 (C) function with support contained in Ui = B(xi, 2ξ) \ (Bh(x, r) ∪Bh(y, u)) with the property
that every path from ∂Bh(x, r) ∩B(xi, δ) to ∂Bh(y, u) ∩B(xi, δ) contained in B(xi, ξ) must pass
through φ−1({1}). We emphasize that we can choose φ as a deterministic function of Bh(x, r),
Bh(y, u) and xi, xj , ξ. For α ∈ R, we let Xα

i be the infimum of dh+αφ-lengths of paths which connect
a point on ∂Bh(x, r)∩B(xi, δ) to a point on ∂Bh(y, u)∩B(xi, δ) and which are contained in B(xi, ξ).
We note that X0

i = Xi. Observe that Xα
i is strictly increasing and continuous in α by part (ii) of

Assumption 1.1. Thus if we take A to be uniform in [0, 1] then the probability that XA
i = Xj is

equal to 0. Since the conditional law of h+Aφ in Ui given the values of h outside of Ui is mutually
absolutely continuous with respect to the conditional law of h in Ui given its values outside of Ui, it
follows that the joint law of (XA

i , Xj) is mutually absolutely continuous with respect to the joint
law of (Xi, Xj). In particular, the probability that Xi = Xj is also equal to 0. �

4. Regularity

In this section, we will give the proofs of Theorems 1.3 and 1.4. The first step is carried out in
Section 4.1, which is to show that (with high probability) the whole-plane GFF at an arbitrarily
high fraction of geometric scales exhibits behavior (modulo additive constant) which is comparable
to the GFF with zero boundary conditions. We will then use this fact in Section 4.2 to show that
(with high probability):

• At an arbitrarily high fraction of geometric scales (depending on a choice of parameters),
the shortest path which goes around an annulus is at most a constant times the length of
the shortest path which crosses an annulus (Proposition 4.6) and that
• There exists a geometric scale at which the former is strictly shorter than the latter

(consequence of Lemma 4.7).



THE GEODESICS IN LQG ARE NOT SLES 11

The first statement is the main ingredient in the proofs of Theorems 1.3 and 1.4 since it serves to
rule out a geodesic making multiple crossings across annuli. The second statement will be used to
prove an upper bound for the dimension of the geodesics (Proposition 4.8) which will be used in the
proof of Theorem 1.5 in Section 5.

Throughout, we let h be a whole-plane GFF. For any z ∈ C and r > 0, let Fz,r be the σ-algebra
generated by the values of h outside of B(z, r). By the Markov property for the GFF, we can

write h as a sum of a GFF h̃z,r on B(z, r) with zero boundary conditions and a distribution hz,r
which is harmonic on B(z, r) and agrees with h outside of B(z, r). Note that hz,r is measurable

w.r.t. Fz,r and h̃z,r is independent of Fz,r. Let hr(z) be the average of h on ∂B(z, r). Note that

hz,r(z) = hr(z) since hz,r is harmonic in B(z, r). Let ĥz,r := h− hr(z).

4.1. Good scales. In this subsection, we will first define the M -good scales and show in Lemma 4.1
that they are important because on such scales the law of a whole-plane GFF and the law of a
GFF with zero boundary conditions are mutually absolutely continuous with well-controlled Radon-
Nikodym derivatives. Then we will prove the main result of this subsection, which is Proposition 4.3,
which says that an arbitrarily large fraction of scales are M -good with arbitrarily large probability
provided we choose M large enough.

Fix a constant M > 0. Fix z ∈ C and r > 0. We say that B(z, r) is M -good for h if:

sup
w∈B(z,15r/16)

|hz,r(w)− hz,r(z)| ≤M.

Let EMz,r be the event that B(z, r) is M -good and note that EMz,r is Fz,r-measurable.

Lemma 4.1. Fix z ∈ C and r > 0. The conditional law given Fz,r of ĥz,r restricted to B(z, 7r/8)
is mutually absolutely continuous w.r.t. the law of a zero-boundary GFF on B(z, r) restricted to
B(z, 7r/8).

Let Zz,r(·) (resp. Wz,r(·)) be the Radon-Nikodym derivative of the former w.r.t. the latter (resp.
latter w.r.t. the former). (Note that Zz,r (resp. Wz,r) is itself measurable w.r.t. Fz,r and takes as

argument h̃z,r|B(z,7/8) (resp. ĥz,r|B(z,7/8)).) On EMz,r, for all p ∈ R, there exists a constant c(p,M)
depending only on p and M such that

E[Zz,r(h̃z,r|B(z,7/8))
p | Fz,r] ≤ c(p,M) and E[(Wz,r(ĥz,r|B(z,7/8)))

p | Fz,r] ≤ c(p,M) a.s.

Note that E[Zz,r(h̃z,r|B(z,7r/8))
p | Fz,r] and E[(Wz,r(ĥz,r|B(z,7r/8)))

p | Fz,r] are both measurable
w.r.t. Fz,r.

Proof of Lemma 4.1. Note that when restricted to B(z, r), ĥz,r admits the Markovian decomposition

ĥz,r = h̃z,r + ĥz,r where ĥz,r = hz,r − hr(z) is harmonic in B(z, r). Fix φ ∈ C∞0 (B(z, 29r/32)) with

φ|B(z,7r/8) ≡ 1 and let g = ĥz,rφ. Then h̃z,r+g is equal to ĥz,r in B(z, 7r/8). Moreover, if we take the

law of h̃z,r and then weight it by the Radon-Nikodym derivative Z0
z,r(h̃z,r) = exp((h̃z,r, g)∇−‖g‖2∇/2),

then the resulting field has the same law as h̃z,r + g. Therefore Zz,r is given by integrating Z0
z,r over

the randomness of h̃z,r in B(z, r) \B(z, 7r/8) given Fz,r. Conversely, if we take the law of h̃z,r + g
and weight it by the Radon-Nikodym derivative

exp((h̃z,r + g,−g)∇ + ‖g‖2∇/2) = exp((h̃z,r,−g)∇ − ‖g‖2∇/2) = exp((ĥz,r,−g)∇ − ‖g‖2∇/2),(4.1)

then the resulting field has the same law as h̃z,r.

Note that the second equality in (4.1) holds because h̃z,r differs from ĥz,r by a function which

is harmonic in B(z, r) and g is supported in B(z, r). Since h̃z,r + g and ĥz,r agree on B(z, 7r/8),
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we get that if we take the law of ĥz,r and weight it by W0
z,r = exp((ĥz,r,−g)∇ − ‖g‖2∇/2), then the

restriction of the resulting field to B(z, 7r/8) has the same law as the corresponding restriction of

h̃z,r. Therefore Wz,r is given by integrating W0
z,r over the randomness of ĥz,r in B(z, r) \B(z, 7r/8)

given Fz,r. This proves the mutual absolute continuity.

Now suppose that we are working on the event EMz,r. Then |ĥz,r| ≤M in B(z, 15r/16). Recall the
following basic derivative estimate for harmonic functions. There exists a constant c > 0 so that if
R > 0 and u is harmonic in B(z,R) then for w ∈ B(z,R) we have that

(4.2) |∇u(w)| ≤ c(dist(w, ∂B(z,R))−1 sup
v∈B(z,R)

|u(v)− u(z)|.

Applying this with u = ĥz,r, R = 15r/16, and w ∈ B(z, 29r/32) we see that ‖ĥz,r‖2∇ (with the norm
computed on B(z, 29r/32)) is bounded by a constant which depends only on M . Therefore the
same is true for ‖g‖2∇. The second part of the lemma follows because for all p ∈ R,

E
[
(Z0

z,r(h̃z,r))
p | Fz,r

]
= E[(W0

z,r(ĥz,r))
p | Fz,r] = exp((p2 − p)‖g‖2∇/2).(4.3)

In particular, on EMz,r, the above quantities are bounded by a constant which depends only on p
and M . The same is therefore true for Zz,r and Wz,r by Jensen’s inequality, which completes the
proof. �

Now let us mention a few consequences of this lemma and its proof that we will use later on.

Remark 4.2. Fix p > 1 and let q > 1 be such that p−1 + q−1 = 1. For any GFF h0 defined
on B(z, 7r/8), let E(h0) be an event which is determined by h0. Then Lemma 4.1 combined with
Hölder’s inequality implies that there exist constants c1(p,M), c2(p,M) depending only on p,M so
that on EMz,r we have

P[E(ĥz,r|B(z,7r/8)) | Fz,r] = P
[
Zz,r(h̃z,r|B(z,7r/8))1E(h̃z,r|B(z,7r/8))

| Fz,r
](4.4)

≤ E
[(
Zz,r(h̃z,r|B(z,7r/8))

)p
| Fz,r

]1/p
P[E(h̃z,r|B(z,7r/8))]

1/q ≤ c1(p,M)P[E(h̃z,r|B(z,7r/8))]
1/q,

P[E(h̃z,r|B(z,7r/8))] = E
[
Wz,r(ĥz,r|B(z,7r/8))1E(ĥz,r|B(z,7r/8))

| Fz,r
](4.5)

≤ E
[
Wz,r(ĥz,r|B(z,7r/8))

p | Fz,r
]1/p

P
[
E(ĥz,r|B(z,7r/8)) | Fz,r

]1/q
≤ c2(p,M)P

[
E(ĥz,r|B(z,7r/8)) | Fz,r

]1/q
.

Now let us show the main result of this subsection.

Proposition 4.3. Fix z ∈ C and r > 0. For each k ∈ N, we let rk = 2−kr. Fix K ∈ N and
let N = N(K,M) be the number of 1 ≤ k ≤ K so that B(z, rk) is M-good. For every a > 0 and
b ∈ (0, 1) there exists M0 = M(a, b) and c0(a, b), so that for all M ≥M0 we have

P[N(K,M) ≤ bK] ≤ c0(a, b)e−aK .

One main input into the proof of Proposition 4.3 is the following bound for the probability that a
given ball is not M -good.

Lemma 4.4. There exist constants c1, c2 > 0 such that for any z ∈ C, r > 0, and M > 0, we have

P
[
(EMz,r)

c
]
≤ c1e−c2M

2
.
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Proof. By the scale and translation invariance of the whole-plane GFF, the quantity P
[
(EMz,r)

c
]

is
independent of z and r, hence we will choose z = 0 and r = 1. We are going to bound the supremum
of |h0,1(w)− h0,1(0)| when w ∈ B(0, 15/16) and show that it has a Gaussian tail.

Let p be the Poisson kernel on B(0, 31/32). Then there exists an absolute constant C > 0 so that
p(w, y) ≤ C for all w ∈ B(0, 15/16) and y ∈ ∂B(0, 31/32). Letting dy denote the uniform measure
on ∂B(0, 31/32), we have that for all w ∈ B(0, 15/16)

|h0,1(w)− h0,1(0)| =

∣∣∣∣∣
∫
∂B(0,31/32)

(h0,1(y)− h0,1(0))p(w, y)dy

∣∣∣∣∣
≤
∫
∂B(0,31/32)

|h0,1(y)− h0,1(0)|p(w, y)dy

≤ C
∫
∂B(0,31/32)

|h0,1(y)− h0,1(0)|dy.

Therefore by Jensen’s inequality, we have that

exp

(
a sup
w∈B(0,15/16)

|h0,1(w)− h0,1(0)|2
)
≤
∫
∂B(0,31/32)

eaC
2|h0,1(y)−h0,1(0)|2dy.

We note that h0,1(y)− h0,1(0) is a Gaussian random variable with bounded mean and variance. It
thus follows that by choosing a > 0 sufficiently small we have

E

[
exp

(
a sup
w∈B(0,15/16)

|h0,1(w)− h0,1(0)|2
)]

<∞.

The result therefore follows by Markov’s inequality. �

Remark 4.5. The same reasoning applies to the zero-boundary GFF. Let h̃ be a zero-boundary

GFF in B(0, 1). For all r ∈ (0, 1), let h̃0,r be the field which is harmonic in B(0, r) and agrees with

h̃ in B(0, 1) \B(0, r). We can similarly deduce that there exist c1, c2 > 0 such that for all r ∈ (0, 1)
and M > 0 we have

P

[
sup

w∈B(0,15r/16)
|h̃0,r(w)− h̃0,r(0)| > M

]
≤ c1e−c2M

2
.(4.6)

Proof of Proposition 4.3. By the translation and scale-invariance of the whole-plane GFF, the
statement is again independent of z and r, hence we will choose z = 0 and r = 1 so that rk = 2−k.
Our strategy is to explore h in a Markovian way from outside in and to control (using Lemma 4.4)
the number of scales we need to go in each time in order to find the next M -good scale.

We start by looking for the first k0 ∈ N for which B(0, rk0) is an M -good scale. Let

R = sup
w∈B(0,15/16)

|h0,1(w)− h0,1(0)|.

Lemma 4.4 implies that there is a positive probability pM that R ≤M . In this case, we have k0 = 0.
With probability 1 − pM , one has R > M . In this case, conditionally on F0,1 and on {R > M}
(which is measurable w.r.t. F0,1), we continue to look for the first k0 ≥ 1 for which B(0, rk0) is an
M -good scale. For some C > 0 that we will adjust later, we aim to find ` ∈ N such that

sup
w∈B(0,r`)

|h0,1(w)− h0,1(0)| ≤ C,(4.7)
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and then to estimate the goodness of the scale B(0, r`). By applying the derivative estimate (4.2)
to the harmonic function h0,1 we see that there exists c > 0 such that if we choose ` = cdlog2(R)e,
then (4.7) is satisfied. Lemma 4.4 implies that P[R > t] ≤ c1e

−c2t2 for constants c1, c2 > 0.
Consequently,

P[` ≥ q] ≤ P[log2(R) ≥ q/c− 1] ≤ P[R ≥ 2q/c] ≤ c1 exp(−c222q/c).

Now let us estimate the following quantity, which represents how good B(0, r`) is:

R̂ = sup
w∈B(0,15r`/16)

|h0,r`(w)− h0,r`(0)|.

Note that h0,r`(w) = h0,1(w) + h̃0,r`(w), where h̃0,r` is harmonic in B(0, r`) and agrees with a
zero-boundary GFF in B(0, 1) outside of B(0, r`). Therefore, combining with (4.7), we have that

R̂ ≤ sup
w∈B(0,15r`/16)

|h̃0,r`(w)− h̃0,r`(0)|+ C.(4.8)

Note that h̃0,r` is independent of F0,1. Applying (4.6)–(4.8), we know that there exist ĉ1, ĉ2 > 0

(depending only on C) such that P[R̂ > t | F0,1]1R>M ≤ ĉ1e−ĉ2t
2
. In particular, it implies that the

conditional probability of R̂ ≤ M is at least some pM,C > 0. We emphasize that pM,C depends
only on M and C and can be made arbitrarily close to 1 if we fix C > 0 and choose M > 0
sufficiently large. From now on, we will fix C and reassign the values of c1, c2, pM , ĉ1, ĉ2, pM,C so
that ĉ1 = c1, ĉ2 = c2, pM,C = pM .

If B(0, r`) is M -good, then k0 = `. Otherwise we continue our exploration, conditionally on F0,r`

and on the event {R > M} ∩ {R̂ > M} (which is measurable w.r.t. F0,r`). Similarly to (4.7), we

define ̂̀= cdlog2(R̂)e so that

sup
w∈B(0,r`+̂̀)

|h0,r`(w)− h0,r`(0)| ≤ C.

Therefore, the goodness of B(0, r
`+̂̀) has the same tail bound as R̂. Hence we know that the

probability that B(0, r
`+̂̀) is M -good (i.e., k0 = `+ ̂̀) is also at least pM,C and that otherwise we

can look at the next scale B
(

0, r
`+2̂̀

)
. We can thus iterate.

The above procedure implies that

k0 ≤
G∑
i=1

Ai,

where the Ai’s are i.i.d. random variables with P[Ai ≥ t] ≤ c1e−c2t
2

and G is a geometric random
variable with success probability pM . Moreover, the Ai’s and G are all independent. It thus follows
that k0 has an exponential tail. Indeed,

E
[
eλk0

]
≤
∞∑
n=1

E
[
eλ

∑n
i=1 Ai

]
P[G = n] =

∞∑
n=1

E
[
eλA1

]n
(1− pM )n−1pM .

Since A1 has a Gaussian tail, E
[
eλA1

]
is finite for any λ > 0. We also know that pM can be made

arbitrarily close to 1 as M →∞. Therefore, for each λ > 0 we can choose M big enough so that

E
[
eλk0

]
< 1.(4.9)
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Once we find the first good scale k0, we can repeat the above procedure to find the next good

scale k0 + k1. As a first step, instead of going cdlog2Re or cdlog2 R̂e further (for R, R̂ > M), we
just need to go cdlog2Me further (and then repeat the same procedure). We therefore get that k1
is stochastically dominated by k0. Moreover, k1 is independent of k0. Therefore, for any b ∈ (0, 1)
and λ > 0, we have

P[N(K,M) ≤ bK] ≤ P

[
bK∑
i=1

ki ≥ K

]
,(4.10)

where the ki’s are i.i.d. and distributed like k0. For any a > 0, by Markov’s inequality, the right
hand-side of (4.10) is less than or equal to

e−aKE[exp(ak0)]
bK .

Then it completes the proof due to (4.9). �

4.2. Annulus estimates. We now proceed to establish the main estimate which will be used to
prove Theorems 1.3 and 1.4.

Proposition 4.6. Fix z ∈ C and r > 0. For each k, we let rk = 2−kr. We also let L1,k be the
infimum of dh-lengths of paths contained in B(z, 7rk/8) \B(z, rk/2) which separate z from ∞ and
let L2,k be the dh-distance from ∂B(z, 7rk/8) to ∂B(z, rk/2). Fix K ∈ N, c > 0, and let N(K, c) be
the number of k ∈ {1, . . . ,K} with the property that L1,k ≤ cL2,k. For each a1 > 0 and b1 ∈ (0, 1),
there exist c1(a1, b1), c2(a1, b1) > 0 such that for all c ≥ c1(a1, b1), we have

P[N(K, c) ≤ b1K] ≤ c2(a1, b1)e−a1K .

The following lemma is the main input into the proof of Proposition 4.6.

Lemma 4.7. Fix z ∈ C and r > 0. Let L1 be the infimum of dh-lengths of paths contained within
the annulus B(z, 7r/8) \ B(z, r/2) and which separate z from ∞. Let L2 be the dh distance from
∂B(z, 7r/8) to ∂B(z, r/2). On EMz,r, for all q > 0, there exists c0 > 0 depending only on M such
that for all c > c0 and all z ∈ C and r > 0, we have

(4.11) P[L1 ≥ cL2 | Fz,r] ≤ q a.s.

Let S1 be the infimum of dh-lengths of paths contained in B(0, 7r/8)\B(0, 3r/4) and which separate 0
from ∞. We also let S2 be the dh distance from ∂B(0, 5r/8) to ∂B(0, r/2). There exists p ∈ (0, 1)
depending only on M so that on EMz,r, for all z ∈ C and r > 0, we have

(4.12) P[S1 < S2 | Fz,r] ≥ p a.s.

Proof. By part (iii) of Assumption 1.1, if we apply the LQG coordinate change formula (1.3) using
the transformation w 7→ r−1(w− z) which takes B(z, r) to B(0, 1), then the lengths of the geodesics
are preserved. Therefore, we can take z = 0 and r = 1. Note that the events {L1 ≥ cL2} and

{S1 < S2} depend only on the restriction of ĥ0,1 to B(0, 7/8), hence we can apply Remark 4.2 and

deduce that on EM0,1, it suffices to prove the following statement: Let h̃ be an instance of the GFF

on B(0, 1) with zero boundary conditions.

(I) Let L̃1 be the infimum of d
h̃
-lengths of paths contained in B(0, 7/8)\B(0, 1/2) which separate 0

from ∞ and let L̃2 be the d
h̃

distance from ∂B(0, 7/8) to ∂B(0, 1/2). Then

P[L̃1 ≥ cL̃2]→ 0 as c→∞.(4.13)
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(II) Let S̃1 be the infimum of d
h̃
-lengths of paths contained in B(0, 7/8)\B(0, 3/4) which separate 0

from ∞ and let S̃2 be the d
h̃

distance from ∂B(0, 5/8) to ∂B(0, 1/2). Then there exists
p ∈ (0, 1) such that

P[S̃1 < S̃2] ≥ p.(4.14)

Note that (4.13) together with (4.4) implies (4.11) and (4.14) together with (4.5) implies (4.12).
Since we have assumed that the d

h̃
metric is a.s. homeomorphic to the Euclidean metric, it follows

that L̃1 and L̃2 are both a.s. positive and finite random variables. It therefore follows that (4.13)
holds.

Let us now prove (4.14). Let φ be a non-negative, radially symmetric C∞0 function supported

in B(0, 3/4) and which is equal to 1 in B(0, 5/8). Then adding cφ to h̃ does not affect S̃1 but it

multiplies S̃2 by eβc where β is as in part (ii) of Assumption 1.1. Since S̃1, S̃2 are a.s. positive

and finite, it follows that by replacing h̃ by h̃+ cφ and taking c > 0 sufficiently large we will have

that S̃1 < S̃2 with positive probability. This completes the proof as h̃+ cφ is mutually absolutely

continuous w.r.t. h̃. �

Proof of Proposition 4.6. Fix z ∈ C and r > 0. Let E(K, b) denote the event that the fraction of
k ∈ {1, . . . ,K} for which B(z, rk) is M -good is at least b. Proposition 4.3 implies that for any
b ∈ (0, 1) and a > 0, there exists M > 0 sufficiently large so that

P[E(K, b)] = 1−O(e−aK).(4.15)

We thereafter fix a, b and M so that (4.15) holds.
Let L1,k, L2,k be as in Lemma 4.7 for B(z, rk). Lemma 4.7 implies that for each q > 0 there

exists c > 0 so that at each M -good scale B(z, rk), we have P[L1,k ≥ cL2,k | Fz,rk ] ≤ q a.s. Note
that both L1,k and L2,k are measurable w.r.t. Fz,rk+1

, hence we can explore h according to the
filtration (Fz,rk)k≥0. More precisely, if we explore h from outside in, then each time we encounter
a new good scale, conditionally on the past, the probability of achieving {L1,k < cL2,k} for that
scale is uniformly bounded from below by 1− q. For each k, let gk be the index of the kth good

scale. It thus follows that the number Ñ(K, c) of k ∈ {1, . . . , bK} that we achieve {L1,gk < cL2,gk}
is at least equal to a binomial random variable with success probability 1 − q and bK trials. By
Lemma 2.6, this proves that for any b1 ∈ (0, b) and ã > 0, if we make q > 0 sufficiently small and a
sufficiently large, then we have

(4.16) P[Ñ(K, c) ≤ b1K] ≤ c2(ã, b1)e−ãK .
Therefore

P[N(K, c) ≤ b1K] = P[N(K, c) ≤ b1K,E(K, b)] +O(e−aK) (by (4.15))

≤ P[Ñ(K, c) ≤ b1K] +O(e−aK)

= O(e−a1K) (by (4.16))

where a1 = ã ∧ a. Since we can choose ã and a to be arbitrarily large, a1 can also be arbitrarily
large. Also note that we can choose b arbitrarily close to 1 and b1 arbitrarily close to b. �

Finally, let us deduce the following upper bound for the Minkowski dimension of a geodesic
using (4.12).

Proposition 4.8. There exists d ∈ [1, 2) so that almost surely the upper Minkowski dimension of
any dh-geodesic is at most d.
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We will make use of Proposition 4.8 in the proof of Theorem 1.5 where it will be used to control
the number of elements in a Whitney cube decomposition of a given size in the complement of a
geodesic.

Proof of Proposition 4.8. Fix z ∈ C and r > 0 and also consider the event E(K, b). Fix a, b and M so
that (4.15) holds. Let S1,k be the infimum of dh-lengths of paths contained in B(z, 7rk/8)\B(z, 3rk/4)
which separate 0 from ∞. We also let S2,k be the dh distance from ∂B(z, 5rk/8) to ∂B(z, rk/2). Let
gk and E(K, b) be as in the proof of Proposition 4.6. Let F (K, b) be the event that S1,gk ≥ S2,gk for
every k ∈ {1, . . . , bK} and let F (K) be the event that S1,k ≥ S2,k for every k ∈ {1, . . . ,K}. Then
we have that

P[F (K)] = P[F (K), E(K, b)] +O(e−aK) (by (4.15))

≤ P[F (K, b)] +O(e−aK)

≤ (1− p)bK +O(e−aK) (by (4.12)).

Fix ε > 0 small and K = dlog2 ε
−1e. Then we have shown that P[F (K)] = O(εδ) where δ =

min(a log2 e,−b log2(1− p)) > 0.
Fix d ∈ [1, 2). We will set its precise value later in the proof. For each pair of disjoint compact

sets H1, H2 ⊆ C and compact set A ⊆ C containing H1, H2, we let G(H1, H2;A) be the set of
all dh-geodesics with one endpoint in H1 and the other endpoint in H2 and which are contained
in A. We aim to prove that almost surely, every dh-geodesic in G(H1, H2;A) has upper Minkowski
dimension at most d. As we can take H1, H2, A to be squares centered at rational points with
rational side lengths, the union of the sets G(H1, H2;A) covers the set of all dh-geodesics. This
will imply that the event that the upper Minkowski dimension of every dh-geodesic is at most d
has probability 1, since we can write it as a countable intersection of events which all occur with
probability 1.

Fix a ∈ (0, 1) and ε, r > 0 and assume that r < dist(H1, H2)/2. Then we can cover H1 and H2

by balls of radius r centered at points in rZ2. For every x, y ∈ rZ2 with B(x, r) ∩ H1 6= ∅ and
B(y, r) ∩H2 6= ∅, let G(x, y, r;A) be the set of all dh-geodesics from B(x, r) to B(y, r) which are
contained in A and let U(x, y, r;A) be the union of all dh-geodesics in G(x, y, r;A). Fix z ∈ A
and r > 0 such that B(z, r) ∩ (B(x, r) ∪ B(y, r)) = ∅. In the notation of the first paragraph of
the proof, if S1,k < S2,k for some k ∈ {1, . . . ,K}, then it is impossible for any dh-geodesic with

endpoints outside of B(z, r) to hit B(z, 2−Kr), hence also B(z, εr/2); see the left side of Figure 4.1.
It then follows that for any r > 0 the number of balls of radius εr/2 that one needs to cover
U(x, y, r;A) \ (B(x, 2r)∪B(y, 2r)) is dominated from above by the number N of z ∈ ((εr/2)Z2)∩A
for which F (K) holds. We emphasize that this upper bound does not depend on x or y. Now fix

ζ > 0 and take r = ζa, ε = ζ1−a. Then E[N ] = O(ζδ(1−a)−2). On the other hand, the number of
balls of radius ζ/2 that one needs to cover U(x, y, ζa;A)∩ (B(x, 2ζa)∪B(y, 2ζa)) is at most C0ζ

a−2

where C0 > 0 is a constant which does not depend on x, y or ζ. Let d = max(2− δ(1− a), 2− a).
We have proved that the number of balls of radius ζ/2 that one needs to cover U(x, y, ζa;A) is at
most N + C0ζ

−d. Since this upper bound does not depend on x, y, it follows that every geodesic in
G(H1, H2;A) can be covered by at most N + C0ζ

−d balls of radius ζ/2. Since this is true for all

small ζ > 0 and E[N ] = O(ζδ(1−a)−2) = O(ζ−d), it follows that every geodesic in G(H1, H2;A) has
upper Minkowski dimension at most d. This completes the proof. �

4.3. Proof of Theorems 1.3 and 1.4.
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rrkrk+1

rK

r

rkrk+1

rK

L1,k

L2

S1,k

S2,k

Figure 4.1. We draw the successive scales. Left: We show in red (resp. blue) the
path which realizes the minimal length S1,k (resp. S2,k). If for some k ∈ {1, . . . ,K},
one has S1,k < S2,k, then any geodesic with both endpoints outside of B(z, r) cannot
enter B(z, rk+1). Right: We show in red (resp. blue) the path which realizes the
minimum length L1,k (resp. L2). If L1,k < L2, then any geodesic cannot make more

than four crossings across the annulus B(z, r) \ B(z, rk+1). In both pictures, the
dashed curves represent configurations of geodesics which are impossible, since the
red curves are shortcuts.

Proof of Theorem 1.3. Fix z ∈ C, ε > 0, ζ > 1. Let L2 be the dh-distance from ∂B(z, εζ) to ∂B(z, ε).
Fix K = blog2 ε

1−ζc. For k ∈ [1,K], let L1,k and L2,k be as in Proposition 4.6 for rk = 2−kε. See
Figure 4.1 (right). Note that

L2 ≥
K∑
k=1

L2,k.

Consequently, the fraction ρ of k ∈ {1, . . . ,K} for which

(4.17) L2,k ≤
c1
K
L2

is at least 1− 1/c1. We will chose c1 = 100 so that ρ ≥ 99/100.
By Proposition 4.6, for any a > 0, we can choose a value of c2 > 0 large so that the fraction of

k ∈ [1,K] with

(4.18) L1,k ≤ c2L2,k

is at least 99/100 with probability 1−O(e−aK) = 1−O(εa(ζ−1) log2 e). On this event, there must
exist k0 for which both (4.17) and (4.18) occur. We then have that

L1,k0 ≤ c2L2,k0 ≤
c1c2
K

L2.

We emphasize that the values of c1, c2 do not depend on ε. Therefore by choosing ε > 0 sufficiently
small (hence K is big), we have that L1,k0 < L2. This implies that it is not possible for a geodesic

to have more than four crossings across the annulus B(z, ε) \B(z, εζ) because in this case we have
exhibited a shortcut. See the right side of Figure 4.1. Therefore, the probability for a geodesic
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to have more than four crossings across the annulus B(z, ε) \ B(z, εζ) is at most O(εa(ζ−1) log2 e),
where the exponent a(ζ − 1) log2 e can be made arbitrarily large, since a can be made arbitrarily
big. In particular, it implies that if η is a geodesic from 0 to any point outside of B(0, 2), then by
the Borel-Cantelli lemma there a.s. exists ε0 > 0 so that for all ε ∈ (0, ε0) and all z ∈ B(0, 2) \D, η

does not make more than four crossings across the annulus B(z, ε) \B(z, εζ). However, this same
event has probability zero for any whole-plane SLEκ curve (provided we choose ζ > 1 sufficiently
close to 1 depending on κ), by Proposition 2.1. Therefore, the law of the geodesic η is singular w.r.t.
the law of a whole-plane SLE curve. We have thus completed the proof. �

Proof of Theorem 1.4. Fix δ ∈ (0, 1) and R > 0. Let η be any geodesic contained in B(0, R). Since
R can be arbitrarily large, it suffices to prove the result for η. Let Nk = (2−kZ)2 ∩B(0, R). The
proof of Theorem 1.3 implies that there a.s. exists k0 ∈ N so that k ≥ k0 implies that the following

is true. The geodesic η cannot make four crossings across the annulus B(z, 2(1−δ)(1−k)) \B(z, 21−k)
for z ∈ Nk.

Fix times 0 < s < t. If |η(s) − η(t)| ≥ 2−k0 , then we can choose C(δ, η) = diam(η) 2k0(1−δ)

in (1.4). Otherwise, we can find k ≥ k0 so that 2−k−1 ≤ |η(s) − η(t)| < 2−k. Then we have that

η(s), η(t) ∈ B(z, 21−k) for some z ∈ Nk. If η([s, t]) were not contained in B(z, 2−(1−δ)k), then η

would make four crossings from ∂B(z, 21−k) to ∂B(z, 2(1−δ)(1−k)). Therefore η([s, t]) is contained in

B(z, 2−(1−δ)k), which completes the proof. �

5. Conformal removability

In this section, we aim to prove Theorem 1.5, i.e., almost surely any geodesic η is conformally
removable. We will rely on a sufficient condition by Jones and Smirnov [24] to prove the removability
of η, which we will now describe. Let W be a Whitney cube decomposition of C \ η. Among other
properties, W is a collection of closed squares whose union is C \ η and whose interiors are pairwise
disjoint. Moreover, if Q ∈ W then dist(Q, η) is within a factor 8 of the side-length |Q| of Q. Let
ϕ : D→ C \ η be the unique conformal transformation with ϕ(0) =∞ and limz→0 zϕ(z) > 0. We
define the shadow s(Q) as follows (see Figure 5.1). Let I(Q) be the radial projection of ϕ−1(Q)
onto ∂D. That is, I(Q) consists of those points eiθ for θ ∈ [0, 2π) such that the line reiθ, r ∈ [0, 1],
has non-empty intersection with ϕ−1(Q). We then take s(Q) = ϕ(I(Q)).

It is shown by Jones and Smirnov in [24] that to prove that η is conformally removable, it suffices
to check that

(5.1)
∑
Q∈W

diam(s(Q))2 <∞.

This is the condition that we will check in order to prove Theorem 1.5.

Lemma 5.1. For each δ ∈ (0, 1) there a.s. exists a constant C(δ, η) > 0 so that the following is
true. For each Q ∈ W with |Q| = 2−n we have that

diam(s(Q)) ≤ C(δ, η)2−n(1−δ).

Proof. Fix Q ∈ W with |Q| = 2−n. By the definition of the Whitney cube decomposition, we have
that dist(Q, η) ∈ [2−n−3, 2−n+3]. Let w be the center of Q. See Figure 5.1 for illustration.

By Lemma 2.5, for all r ∈ (0, 1) and all z such that |z − w| ≤ rdist(w, η), we have

|ϕ−1(z)− ϕ−1(w)| ≤ 4r

1− r2
dist(ϕ−1(w), ∂D).
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ϕ

w

L

ϕ−1(L)

s(Q)

I(Q)

η(t0)

η(t2)
x

y

∞

η(t1)

Figure 5.1. We depict the conformal map ϕ from D onto C \ η, where η is a
geodesic from x to y shown on the right. On the right, we show one Whitney cube
Q centered at w and its shadow s(Q) in red. The blue arc L is used in the proof of
Lemma 5.1. The pre-images of Q, s(Q) and L under ϕ are shown on the left.

This implies that ϕ−1(Q) is contained in a ball centered at ϕ−1(w) with radius at most a constant
times dist(ϕ−1(w), ∂D). This implies that there exists c0 > 0 such that

diam(I(Q)) ≤ c0dist(ϕ−1(w), ∂D).(5.2)

Let us parameterize η continuously by t ∈ [0, 1] so that η(0) = x and η(1) = y. Let t1 be the first
time t that t 7→ dist(η(t), Q) achieves its infimum. We then let t0 (resp. t2) be the first (resp. last)

time t before (resp. after) t1 that dist(η(t), w) = 2−n(1−δ). Let I = η([t0, t2]). By (1.4), there exists

C̃(δ, η) > 0 such that

diam(I) ≤ C̃(δ, η)2−n(1−δ)
2 ≤ C̃(δ, η)2−n(1−2δ).

To complete the proof, it suffices to show that s(Q) ⊆ I.

Let L be the connected component of ∂B(w, 2−n(1−δ)) \ η which together with η separates w from
∞. The Beurling estimate implies that the probability that a Brownian motion starting from w
exits C \ (η ∪ L) in L is O(2−nδ/2). By the conformal invariance of Brownian motion, we therefore
have that the probability that a Brownian motion starting from ϕ−1(w) hits ϕ−1(L) before hitting

∂D is O(2−nδ/2). If ϕ−1(L) had an endpoint in I(Q), then due to (5.2), this probability would be
bounded from below. Therefore this cannot be the case, so ϕ−1(I) must contain I(Q). That is, I
contains s(Q). �

Proof of Theorem 1.5. As we have mentioned above, it suffices to show that the sum (5.1) is a.s.
finite.

Proposition 4.8 implies that there exists d ∈ [1, 2) and n0 > 0 such that for all n ≥ n0, one
can cover η with a collection of O(2nd) balls of radius 2−n. We denote by Cn the collection of the
centers of these balls. For any Q ∈ W with |Q| = 2−n, since dist(Q, η) ∈ [2−n−3, 2−n+3], Q must be
contained in B(z, 2−n+4) for some z ∈ Cn. Since all the cubes in W are disjoint, a ball B(z, 2−n+4)
can contain at most 210 cubes in W of side length 2−n. This implies that the number of cubes in W
of side length 2−n is O(2nd).

On the other hand, Lemma 5.1 implies that the diameter of a shadow of a cube in W with side
length 2−n is O(2−n(1−δ)). Therefore the total contribution to (5.1) coming from cubes of side
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length 2−n is O(2−2n(1−δ) × 2dn). We can take δ ∈ (0, 1) small enough so that d− 2(1− δ) < 0 so
that the sum over n is finite. This completes the proof. �

Appendix A. SLE almost surely crosses mesoscopic annuli

The purpose of this appendix is to prove Propositions 2.1 and 2.2. We will begin by proving a
lower bound for the probability that chordal SLEκ makes k crossings across an annulus (Lemma A.1)
and then use this lower bound to complete the proof of Propositions 2.1 and 2.2. Throughout, we
will assume that we have fixed κ > 0 and that η is an SLEκ in H from 0 to ∞.

Lemma A.1. There exist constants c2, c3 > 0 depending only on κ so that the following is true. For
each z ∈ D with Im(z) ≥ 1/50 and ε ∈ (0, 1/200), the probability that η makes at least k crossings

from ∂B(z, ε) to ∂B(z, 1/100) before exiting B(0, 2) is at least c2ε
c3k2.

We believe that the exact exponent in the statement of Lemma A.1 should be equal to the interior
arm exponent for SLE. This was computed in [40] but in a setup which we cannot use to prove
Propositions 2.1 and 2.2. We will give an elementary and direct proof of Lemma A.1.

Before we give the proof of Lemma A.1, we will first recall the form of the SDE which describes
the evolution in t of π times the harmonic measure of the left side of the outer boundary of η([0, t])
and R− as seen from a fixed point in H. Let U =

√
κB be the Loewner driving function for η, fix

z ∈ H, and let
Zt(z) = Xt + iYt = gt(z)− Ut and Θt = argZt.

Then Θt gives π times the harmonic measure of the left side of the outer boundary of η([0, t]) and

R− as seen from z. Let Θ̂ be given by Θ reparameterized according to log conformal radius as seen

from z. Then Θ̂t satisfies the SDE

(A.1) dΘ̂t =

(
1− 4

κ

)
cot Θ̂tdt+ dB̂t

where B̂ is a standard Brownian motion (see, for example, [23, Section 6]).

Proof of Lemma A.1. Let ϕ be the unique conformal transformation from H to the half-infinite
cylinder C = R+ × [0, 2π] (with the top and bottom identified) which takes z to ∞ and 0 to 0. See
Figure A.1. Since z ∈ D and Im(z) ≥ 1/50, we note that the distance between 0 and ϕ(∞) in C
is bounded from below. We will consider η̃ = ϕ(η) in place of η and we will define an event for η̃
which implies that η makes at least k crossings from ∂B(z, ε) to ∂B(z, 1/100) before exiting B(0, 2).
We can choose a universal constant c0 > 0 large enough such that the following holds simultaneously
for all z ∈ D with Im(z) ≥ 1/50:

(A.2) [log ε−1 + c0,∞)× [0, 2π] ⊆ ϕ(B(z, ε)) and [0, 1
c0

]× [0, 2π] ⊆ ϕ(H \B(z, 1
100)).

We then define a deterministic path Γ as follows. For 0 ≤ j ≤ k, let

x4j =
1

c0
· 1j≥1 + i

2j

k
, x4j+1 = log ε−1 + c0 + i

2j

k
,

x4j+2 = log ε−1 + c0 + i
2j + 1

k
, x4j+3 =

1

c0
+ i

2j + 1

k
.

Let Γ be the path which visits the points x0, . . . , x4k in order by:

• traveling from x4j to x4j+1 linearly to the right,
• from x4j+1 to x4j+2 counterclockwise along an arc connecting x4j+1 and x4j+2,
• from x4j+2 to x4j+3 linearly to the left, and
• from x4j+3 to x4j+4 clockwise along an arc connecting x4j+3 and x4j+4.
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We parameterize Γ at unit speed and we choose the arcs in the definition of Γ so that it is a C2

curve. In particular, we can arrange so that the second derivative of Γ is O(k). The rest of the

1/c0 log ε−1 + c0

ϕ(∞)

2π

0

Figure A.1. The cylinder C = R+× [0, 2π] and the path Γ (in red). We will show

that η̃ stays in the c
−3/2
1 (2k)−1-neighborhood of Γ (in grey) with probability at least

c2ε
c3k2 for some c2, c3 > 0.

proof will be dedicated to proving that the following event holds with probability at least c2ε
c3k2 for

some c2, c3 > 0:

η̃ reaches distance (2c0k)−1 of x4k before leaving the (2c0k)−1-neighborhood of Γ.(A.3)

Note that this will complete the proof, since the event (A.3) implies that η makes at least k crossings
from ∂B(z, ε) to ∂B(z, 1/100) before exiting B(0, 2).

Recall that we have parameterized Γ at unit speed. Let [0, T ] be the time interval on which it is
defined and note that T � k log ε−1. Let 0 = t0 < t1 < · · · < tn = T be equally spaced times with
n = bc1k2 log ε−1c where c1 > 0 is a large constant we will adjust later. For each 1 ≤ j ≤ n, we let
yj = Γ(tj). Note that the spacing between the yj is of order c−11 k−1. Let Dj be the sector formed by

the two infinite lines with slopes c
−19/64
1 and −c−19/641 relative to the tangent of Γ at Γ((tj−1 + tj)/2)

(see Figure A.2). Let τj = inf{t ≥ τj−1 : η̃(t) ∈ ∂Dj}. Let Θ
j
t be the harmonic measure of the left

side of the outer boundary of η̃([0, t]) and ϕ(R−) as seen from yj . We inductively define events Ej
as follows. Let E0 be the whole sample space. Given that E0, . . . , Ej have been defined, we let Ej+1

be the event that Ej occurs, τj+1 <∞, and

• Θ
j+1
t |[τj ,τj+1] differs from 1

2 by at most c
−17/64
1 and

• Θ
j+1
τj+1

differs from 1
2 by at most c

−19/64
1 .

Let us first prove by induction that the following statement is true for all 1 ≤ j ≤ n:

(Ij) On the event Ej , η̃([0, τj ]) is contained in the c
−3/2
1 (2k)−1-neighborhood of Γ.

Note that (I0) is obviously true. Suppose that (Ij) holds, let us prove that (Ij+1) also holds. It

suffices to prove that η̃([τj , τj+1]) is contained in the c
−3/2
1 (2k)−1-neighborhood of Γ. Suppose that

it is not the case, so there exists t ∈ (τj , τj+1] such that the distance between η(t) and Γ is equal to

c
−3/2
1 (2k)−1. Then the harmonic measure of the left side of η̃([0, t]) and ϕ(R−) as viewed from yj+1

would differ from 1
2 by at least a constant times c

−1/4
1 (which comes from (c

−3/2
1 k−1/(c−11 k−1))1/2),

which is impossible since we are on Ej+1. This completes the induction step, hence (Ij) is true for
all 1 ≤ j ≤ n.
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yj yj+1

τj

τj+1

Dj+1

yj−1
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Aa
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a

k−1c
−19/16
1

(2k)−1c
−77/64
1

k−1c
−3/2
1

Figure A.2. Illustration of the definitions of the points yj = Γ(tj), the sectors Dj ,
the stopping times τj and the sets Aa, Ab, and Aa,b.

As a consequence, it suffices to show that P[En] ≥ c2εc3k
2

for some constants c2, c3 > 0, in order
to complete the proof of the lemma.

Let us first prove the following fact for all 1 ≤ j ≤ n− 1:

(A.4) On the event Ej , Θ
j+1
τj differs from

1

2
by at most c

−9/32+o(1)
1 .

Let B1 (resp. B2) be a Brownian motion started at yj (resp. yj+1) and stopped upon hitting
η̃([0, τj ]). Let T 1 (resp. T 2) be the first time that B1 (resp. B2) hits ∂Dj . We will work on the

event that B1 (resp. B2) stops in Dj ∩ B(yj , k
−1c
−19/64
1 ) (resp. Dj ∩ B(yj+1, k

−1c
−19/64
1 )) which

happens with probability 1−O(c
−45/128
1 ) by the Beurling estimate (since c

−45/128
1 < c

−9/32
1 , we can

restrict ourselves on this event provided we have chosen c1 > 0 large enough). On this event, we
can think as if η̃([0, τj ]) is contained in Dj . Indeed, η̃([τj−1, τj ]) is by definition contained in Dj and

Dj∩B(yj , k
−1c
−19/64
1 ) contains the tube of width (2k)−1c

−3/2
1 around Γ([0, τj−1])∩B(yj , k

−1c
−19/64
1 )

provided we choose c1 > 0 large enough (recall that Γ is a C2 curve with O(k) second derivative, so
it differs at distance x from the linear approximation corresponding to the tangent line by O(kx2)

and this error term is at most a constant times c
−19/64
1 x for x ≤ k−1c

−19/64
1 provided we choose

c1 > 0 large enough). Let a and b be points respectively on the upper and lower boundary of Dj

such that the distances between a, b to Γ((tj−1 + tj)/2) are k−1c
−19/16
1 . The points a, b divide ∂Dj

into 3 parts: one finite part that we denote by Aa,b and two infinite half-lines with endpoints a and
b that we denote by Aa and Ab. See Figure A.2.

Let f1 (resp. f2) be the conformal map from C \Dj onto H which sends ∞ to ∞, the tip of Dj

(i.e., Γ((tj−1 + tj)/2)) to 0, and such that Im(yj) = 1 (resp. Im(yj+1) = 1). For ` = 1, 2, f` is a
map of the form w 7→ a`(w − b`)q where q > 1/2 and a`, b` ∈ C are such that |a`| � (kc1)

q. The
exponent q → 1/2 as c1 →∞, since the slope of ∂Dj tends to 0. Therefore for ` = 1, 2, the length
of f`(Aa,b) is

c
1/2+o(1)
1 (c

−19/16+o(1)
1 )1/2 = c

−3/32+o(1)
1 as c1 →∞.

On the other hand, since the curve Γ is C2 with O(k) second derivative, the distance between yj+`−1
and f−1` (i) is O(k)O(k−2c−21 ) = O(k−1c−21 ). Noting that the derivative of f` at f−1` (i) is O(kc1),

we have that Re(f`(yj+`−1)) = Re(f`(yj+`−1)− i) = O(kc1)O(k−1c−21 ) = O(c−11 ) which is less than

c
−3/32+o(1)
1 . This implies that the harmonic measure of Aa,b seen from yj+`−1 is c

−3/32+o(1)
1 for c1

large enough.
Note that we have the following facts for Bi for i = 1, 2:
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• The event that Bi(T i) ∈ Aa ∪ Ab has probability 1 − c−3/32+o(1)1 . Conditionally on this

event, the probability that Bi stops on the same side of η̃([0, τj ]) as Bi(T i) is 1−O(c
−19/64
1 ).

Indeed, on Ej , by (Ij) we know that η̃(τj) is in the c
−3/2
1 (2k)−1-neighborhood of Γ, hence has

distance at most k−1c
−77/64
1 /2 to Γ((tj−1 + tj)/2). We condition on the point Bi(T i) and

let di denote the distance between Bi(T i) and Γ((tj−1 + tj)/2). Note that di ≥ k−1c−19/161 .

Since the slope of the lines which make the two sides of ∂Dj is c
−19/64
1 , Bi(T i) is at distance

at most 2dic
−19/64
1 to η̃([0, τj ]). In order for Bi to stop at the other side of η̃([0, τj ]), it

has to travel distance at least di − (2k)−1c
−77/64
1 before hitting η̃([0, τj ]). Consequently,

conditionally on Bi(T i), the probability that Bi stops on the other side of η̃([0, τj ]) as Bi(T i)

is O(dic
−19/64
1 /(di − (2k)−1c

−77/64
1 )) = O(c

−19/64
1 ).

• The event that Bi(T i) ∈ Aa,b has probability c
−3/32+o(1)
1 as c1 →∞.

Recall that on the event Ej , the probability that B1 stops on the left side of η̃([0, τj ]) (we denote

this event by B1
left) differs from 1/2 by at most O(c

−19/64
1 ). On the other hand, P[B1

left] is also equal
to

P[B1(T 1) ∈ Aa]P[B1
left | B1(T 1) ∈ Aa] + P[B1(T 1) ∈ Ab]P[B1

left | B1(T 1) ∈ Ab]
+ P[B1(T 1) ∈ Aa,b]P[B1

left | B1(T 1) ∈ Aa,b]

=P[B1(T 1) ∈ Aa](1−O(c
−19/64
1 )) + P[B1(T 1) ∈ Ab]O(c

−19/64
1 )

+ P[B1(T 1) ∈ Aa,b]P[B1
left | B1(T 1) ∈ Aa,b]

=P[B1(T 1) ∈ Aa ∪Ab]/2 +O(c
−19/64
1 ) + P[B1(T 1) ∈ Aa,b]P[B1

left | B1(T 1) ∈ Aa,b]

=1/2 +O(c
−19/64
1 ) + P[B1(T 1) ∈ Aa,b]

(
P[B1

left | B1(T 1) ∈ Aa,b]− 1/2
)

=1/2 +O(c
−19/64
1 ) + c

−3/32+o(1)
1

(
P[B1

left | B1(T 1) ∈ Aa,b]− 1/2
)
.

Since the above should be equal to 1/2 +O(c
−19/64
1 ), we must have

P[B1
left | B1(T 1) ∈ Aa,b]− 1/2 = O(c

−(19/64−3/32+o(1))
1 ) ≤ c−13/64+o(1)1 .(A.5)

We can further express P[B1
left | B1(T 1) ∈ Aa,b] as an integration w.r.t. the position of B1(T 1) on

Aa,b. Note that conditionally on the event that B1(T 1) hits Aa,b, the point f1(B1(T 1)) is distributed

according to a measure on f1(Aa,b) which has Radon-Nikodym derivative at least 1− c−3/16+o(1)1

w.r.t. the uniform measure on f1(Aa,b). (Indeed, f`(yj+`−1) = i+O(c−11 ) and the density at x ∈ R of
the harmonic measure in H seen from i is a constant times 1/(1 + x2) = 1 +O(x2). Moreover, every

x ∈ Aa,b satisfies |x| ≤ c−3/32+o(1)1 as c1 →∞.) The same is true for B2 and T 2 and f2(Aa,b). Note

that the image under f2 ◦ f−11 of the uniform measure on f1(Aa,b) is equal to the uniform measure
on f2(Aa,b), since f1 = cf2 for some c > 0. This implies that P[B2

left | B2(T 2) ∈ Aa,b] differs from

P[B1
left | B1(T 1) ∈ Aa,b] by at most c

−3/16+o(1)
1 , hence by (A.5) it also differs from 1/2 by at most

c
−3/16+o(1)
1 . This implies that P[B2

left, B
2(T 2) ∈ Aa,b] differs from P[B2(T 2) ∈ Aa,b]/2 by at most

c
−3/32+o(1)
1 c

−3/16+o(1)
1 = c

−9/32+o(1)
1 . On the other hand, we know that P[B2

left, B
2(T 2) ∈ Aa ∪ Ab]

differs from P[B2(T 2) ∈ Aa ∪Ab]/2 by O(c
−19/64
1 ) which is smaller than c

−9/32+o(1)
1 . Hence (A.4) is

true.
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Recall that πΘ
j+1
t evolves according to (A.1) and its drift term tends to 0 as Θ

j+1
t tends to 1/2.

By (A.4), at time τj , Θ
j+1

is in a c
−9/32+o(1)
1 -neighborhood of 1/2, hence it has a positive probability

p0 to remain in the (larger) O(c
−17/64
1 )-neighborhood of 1/2 for t ∈ [τj , τj+1) and then stop in the

O(c
−19/64
1 )-neighborhood of 1/2 at t = τj+1.

Let F̃t := σ(η̃|[0,t]). It follows that for all 1 ≤ j ≤ n− 1, we have

P[Ej+1 | F̃τj ]1Ej ≥ p01Ej .

This implies that P[En] ≥ pn0 . Since n = c1k
2 log ε−1, this completes the proof. �

We will prove Proposition 2.2 by iteratively applying Lemma A.1 as η travels from 0 to ∂D. Let
m1,m2 > 0 be constants that we will adjust later. For any ε > 0 and j ∈ N, we define the stopping
times

σj = inf{t ≥ 0 : η(t) ∈ ∂B(0, (m1 +m2)jε)}.
Let us first prove the following lemma.

Lemma A.2. Fix C > 0. Let n(ε) = ((m1 + m2)ε)
−1. There exist constants ε0, c1, c2 > 0 and

q0 ∈ (0, 1) so that for all ε ∈ (0, ε0), we have

(A.6) P[Im(η(σj)) ≤ Cε for more than a q0 fraction of 1 ≤ j ≤ n(ε)] ≤ c1e−c2/ε.

Proof. Let Ft = σ(η(s) : s ≤ t). We will establish (A.6) by showing that there exists a constant
p0 > 0 so that

(A.7) P[Im(η(σj+1)) ≥ Cε | Fσj ] ≥ p0 for each j.

Indeed, (A.7) implies that the number of 1 ≤ j ≤ n(ε) for which Im(η(σj)) ≥ Cε is stochastically
dominated from below by a binomial random variable with parameters p = p0 and n(ε). Thus (A.6)
with q0 = 1− p0 follows from Lemma 2.6.

To see that (A.7) holds, fix a value of j ∈ N and let θj = arg(η(σj)). Let θj (resp. θj) be such

that [θj , θj ] is the set of θ ∈ [0, π] so that the imaginary part of (j + 1)eiθ is at least 2Cε. We then

let zj be the point on ∂B(0, (m1 + m2)(j + 1)ε) with argument (θj ∨ θj) ∧ θj . We note that the
harmonic measure as seen from zj of the part of ∂Hσj which is to the left (resp. right) of η(σj) is at
least some constant a0 > 0. Moreover, if Im(η(σj+1)) ≤ Cε, then the harmonic measure seen from
zj of either the part of ∂Hσj+1 which is to the left or right of η(σj+1) will be at most some constant
a1 > 0. We note that from the explicit form of (A.1) that there is a positive chance that Θ (with
w = zj) in the time interval [σj , σj+1] starting from a point (a0, 1− a0) ends in (a1, 1− a1). On this
event, Im(η(σj+1)) ≥ Cε, which completes the proof of (A.7). �

We let (σjk) be the subsequence of (σj) so that Im(η(σj)) ≥ Cε. For each k, let zk ∈ ∂B(0, ((m1 +
m2)jk + m1)ε) be the point with the same argument as η(σjk). Let φk be the unique conformal
transformation Hσjk

→ H which sends η(σjk) to 0, ∞ to ∞ and such that Im(φk(zk)) = 1/10. See
Figure A.3.

Lemma A.3. Fix α > 1. We can choose m1 = C big enough so that there exists c0 > 0 such that
whenever ε is small enough, for all k ∈ N, we have

B(φk(zk), c0ε
α−1) ⊆ φk(B(zk, ε

α)) ⊆ φk(B(zk, ε)) ⊆ B(φk(zk), 1/100).(A.8)

With this value of m1 = C chosen, there exists r > 0 such that for all k ∈ N, we have

φk(zk) ∈ B(0, r) ∩H.(A.9)
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εαε
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α−1φk

(m1 +m2)jkε m1ε m2ε

zk

φk(zk)

1/100

r 2r

Figure A.3. Illustration of the setup for the proof of Proposition 2.2

We can finally choose m2 big enough so that whenever ε is small enough, for all k ∈ N,

B(0, 2r) ∩H ⊆ φk(B(0, (m1 +m2)(jk + 1)ε) ∩H).(A.10)

Proof. Let us first prove (A.8). Lemma 2.4 implies that |φ′k(zk)| is within a factor of 4 of
dist(φk(zk), ∂H)/dist(zk, ∂Hσk). By definition, dist(φk(zk), ∂H) = 1/10. On the other hand,

if we choose C = m1, we have dist(zk, ∂Hσk) = m1ε. It follows that |φ′k(zk)| ∈ (4−1 ·10−1m−11 ε−1, 4 ·
10−1m−11 ε−1). By the Koebe 1/4 theorem (Lemma 2.3), this impliesB(φk(zk), c0ε

α−1) ⊆ φk(B(zk, ε
α))

for c0 = m−11 /40 and φk(B(zk, ε)) ⊆ B(φk(zk), r0) for r0 = 4m−11 /10. We can choose m1 ≥ 40 so
that r0 ≤ 1/100. This completes the proof of (A.8).

Let us then prove (A.9). For a Brownian motion started at zk and stopped upon exiting Hσjk
,

the probability that it hits the right hand-side of η[0, σjk ] or R+ (resp. the left-hand side of η[0, σjk ]
or R−) is bounded below by some constant c > 0. Since we have imposed Im(φk(zk)) = 1/10, it
follows that there exists r > 0 such that |Re(φk(zk))| ≤ r, because otherwise the harmonic measure
seen from φk(zk) of either R− or R+ will be less than c. This completes the proof of (A.9).

Finally let us prove (A.10). For any δ > 0, we can choose m2 big enough (with m1 fixed) so that in
B(0, (m1+m2)(jk+1)ε)∩Hσjk

, the harmonic measure seen from zk of ∂B(0, (m1+m2)(jk+1)ε)∩H
is at most δ. After applying the conformal map φk, we have that the harmonic measure seen from
φk(zk) of φk(∂B(0, (m1 +m2)(jk + 1)ε) ∩H) is at most δ. By choosing δ small enough, we can
force ∂B(0, (m1 +m2)(jk + 1)ε) to stay out of B(0, 2r). This completes the proof of (A.10). �

Proof of Proposition 2.2. Fix α > 1. We will adjust its value later in the proof. By Lemma A.1 and
Lemma A.3, the conditional probability given Fσjk that η makes n crossings across B(zk, ε)\B(zk, ε

α)

before exiting B(0, (m1 +m2)(jk + 1)ε) is at least c1ε
c2n2(α−1) for constants c1, c2 > 0. Since this

is true for all k, by combining with Lemma A.2 we see that the probability that η fails to make

n such crossings for all k with σjk before η first hits ∂D is at most (1− c1εc2n
2(α−1))1/(q0ε). This

tends to 0 as ε→ 0 provided we take α > 1 sufficiently close to 1, which completes the proof. �

Proof of Proposition 2.1. This follows from Proposition 2.2 and the local absolute continuity between
whole-plane and chordal SLEκ [37]. �
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