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NEF CONE AND SESHADRI CONSTANTS ON PRODUCTS OF

PROJECTIVE BUNDLES OVER CURVES

RUPAM KARMAKAR AND SNEHAJIT MISRA

Abstract. Let X = P(E1) ×C P(E2) where C is a smooth curve and let E1, E2 be vector
bundles over C. In this paper, we extend the results in [KMR] by computing the nef cone of
X without restriction on the rank or semistability of E1 and E2. We also study the Seshadri
constants of ample line bundles on X . We calculate the Seshadri constants in some cases and
give bounds in some of the remaining cases.

1. introduction

The nef cone Nef(X) ⊆ N1(X) of nef divisors on a projective variety X is an important

invariant which gives useful information about the projective embeddings of X . The nef cones

of various smooth irreducible projective varieties have been studied by many authors in the last

few decades ( See [Laz1] (Section 1.5), [Miy], [Ful], [BP], [MOH], [KMR] for more details ). In his

paper [Miy], Miyaoka found that in characteristic 0, the nef cone of PC(E) is determined by the

smallest slope of any nonzero torsion free quotient of E. Then, [Ful] generalized this to arbitrary

co-dimension cycles showing that the effective cones of cycles ( and their duals ) on PC(E) are

determined by the numerical data in the Harder-Narasimhan filtration of E. [BP] studied the

nef cone of divisors on Grassmann bundles Grs(E) and flag bundles over smooth curves and

extended Miyaoka’s result to characteristic p. In [KMR], nef cones Nef(PC(E1)×C PC(E2)) of

divisors are computed under the assumption that E1 and E2 are semistable bundles over a

smooth curve C and in few other cases e.g., rank(E1) = rank(E2) = 2. Note that in [KMR],

the cones are 3-dimensional while the literature abounds with 2-dimensional examples (e.g.,

Nef(PC(E)) or Nef(Grs(E)) etc.). In this paper, we extend the results in [KMR], by computing

Nef(PC(E1)×C PC(E2)) without restriction on the rank or semistability of E1 and E2.

Let X be a smooth complex projective variety and let L be a nef line bundle on X . The

Seshadri constant of L at x ∈ X is defined as

ε(X,L, x) := inf
x∈C

{ L · C
multxC

}

where the infimum is taken over all irreducible curves in X passing through x having the

multiplicity multxC at x. One can easily check that it is enough to take the infimum over

irreducible and reduced curves C. The Seshadri criterion for ampleness says that L is ample iff

ε(X,L, x) > 0 for all x ∈ X . The Seshadri constant ε(X,L, x) of a nef line bundle L at a point
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x ∈ X is an interesting invariant of L that measures local positivity around x in several ways:

some numerical, some cohomological via asymptotic jet separation, and even via differential

geometry or from arithmetic height theory.

If L is an ample line bundle, then ε(X,L, x) ≤ n
√
Ln for all x ∈ X , where n is the dimension

of X and Ln is the n fold self-intersection of L. Hence, ε(X,L, x) ∈ (0, n
√
Ln]. Usually, Seshadri

constants are very hard to calculate and most of the time, one tries to give bounds which

sharpen the above mentioned bounds. To get an overview of the current research on Seshadri

constants, see [BDHKKSS].

For an ample line bundle L on X , we define

ε(X,L, 1) := sup
x∈X

{

ε(X,L, x)
}

ε(X,L) := inf
x∈X

{

ε(X,L, x)
}

so that 0 < ε(X,L) ≤ ε(X,L, x) ≤ ε(X,L, 1) ≤ n
√
Ln for every point x ∈ X .

Miranda (See [Laz1], Example 5.2.1) constructs examples on surfaces where Seshadri con-

stants are arbitrarily small. More precisely, he showed that given a positive real number δ > 0,

there is an algebraic surface X ( which is obtained by blowing up the projective plane P2

at suitably chosen points ) and an ample line bundle L on X such that ε(X,L, x) < δ at a

particular point x ∈ X .

Seshadri constants on ruled surfaces PC(E) (rank(E) = 2) over a smooth curve C have

been studied by many authors (see [Gar], [Sy], [HM] etc. ). More generally, [BHNN] computes

the Seshadri constants of ample line bundles on the Grassmann bundle Grr(E) over a smooth

curve C under the assumption that E is an unstable bundle on C. In particular, under some

suitable conditions on the Harder-Narasimhan filtration of E, [BHNN] computes the Seshadri

constants of ample line bundles on PC(E), whenever E is an unstable vector bundle over a

smooth curve C. Some bounds for the Seshadri constants of ample bundle on ruled surfaces

PC(E) over smooth curve C are known due to [Gar]. However, the Seshadri constants of ample

line bundles on PC(E) are not completely known in the general set up.

Let E be a semistable bundle of rank r and degree 0 over a smooth curve C. Then,

Nef(PC(E)) =
{

aξ + bf | a, b ∈ R≥0

}

, where ξ and f denote the numerical classes of OPC(E)(1)

and a fibre of the projectivization map respectively. For any point x ∈ PC(E) and any ample

line bundle numerically equivalent to aξ+bf , it is known that ε(PC(E), aξ+bf, x) ≥ min{a, b}.
If a = min{a, b}, then the Seshadri constants can be computed by a line through x in the fibre

f and ε(aξ + bf, x) = a. But the case, b = min{a, b} is not known.

Most of the research on Seshadri constants is focused on smooth surfaces X ( e.g.; K3

surfaces, surfaces of general type etc.) as well as on smooth projective varieties having Picard

rank 2 ( e.g.; PC(E), Grr(E) ). Also, not much is known for higher dimensional varieties with

Picard rank more than 2. Motivated by this, in this paper, we have calculated the Seshadri

constants of ample line bundles on X = P(E1)×C P(E2), where E1 and E2 are vector bundles



NEF CONE AND SESHADRI CONSTANTS ON PRODUCTS OF PROJECTIVE BUNDLES OVER CURVES 3

over a smooth irreducible curve C of rank r1 and r2 respectively, under some assumptions on

E1 and E2, and have given bounds in some other cases.

2. preliminaries

All the algebraic varieties are assumed to be irreducible and defined over the field of complex

numbers, C.

2.1. Definitions. A line bundle L ( a Cartier divisor D ) on an irreducible smooth projective

variety X is said to be nef, if L · C ≥ 0 ( D · C ≥ 0 respectively ) for all irreducible curves

C ⊆ X . The nef cone Nef(X) is the convex cone of all nef R-divisor classes on X .

Let X be a smooth projective variety and Nk(X) be the real vector space of k-cycles on

X modulo numerical equivalence. For each k, Nk(X) is a finite dimensional real vector space.

Since X is smooth, we can identify Nk(X) with the abstract dual Nn−k(X) := Nn−k(X)∨ via

the perfect intersection pairing Nk(X)×Nn−k(X) −→ R . In particular, N1(X) is the space of

curves and N1(X) is the real Néron-Severi group.

For any k-dimensional subvariety V of X , let [V ] be its class in Nk(X). A class α ∈ Nk(X)

is said to be effective if there exist subvarieties V1, V2, · · · · ·, Vm and non-negative real numbers

n1, n2, ..., nm such that α can be written as α =
m
∑

i=1

ni[Vi]. The pseudo-effective cone Effk(X) ⊂
Nk(X) is the closure of the cone generated by the classes of effective k-cycles in X .

Note that, Eff1(X) is the closed cone of curves, which is also denoted by NE(X) in the

literature.

Let, D be a Q-divisor on X . The stable base locus of D is

B(D) :=
⋂

m∈N

Bs(| mD |)red,

where the intersection is taken over all m such that mD is an integral divisor and the base

locus Bs(|D|) of a complete linear system |D| of Cartier divisors on X is the set of common

zeros of all sections of the associated line bundle L(D).

The restricted base locus of a R-divisor D on X is defined to be

B−(D) :=
⋃

A

B(D + A),

where the union is taken over all ample divisors A such that D + A is a Q-divisor.

A vector bundle E of rank 2 over C is said to be normalised ( in the sense of [H]) ifH0(E) 6= 0,

but for all line bundles L on C with deg(L) < 0, H0(E ⊗ L) = 0.

2.2. Geometry of fibre product of projective bundles over a smooth curve. Let E1 and

E2 be two vector bundles over a smooth curve C of rank r1, r2 and degrees d1, d2 respectively.

Let P(E1) = Proj (⊕d≥0Sym
d(E1)) and P(E2) = Proj (⊕d≥0Sym

d(E2)) be the associated

projective bundles together with the projection morphisms π1 : P(E1) −→ C and π2 : P(E2) −→
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C respectively. Let X = P(E1) ×C P(E2) be the fibre product over C. Consider the following

commutative diagram:

X = P(E1)×C P(E2) P(E2)

P(E1) C

p1

p2 π2

π1

Let f1, f2 and F denote the numerical equivalence classes of the fibres of the maps π1, π2 and

π1 ◦ p2 = π2 ◦ p1 respectively. Note that X ∼= P(π∗
1(E2)) ∼= P(π∗

2(E1)). We first fix the following

notations for the numerical equivalence classes,

η1 =
[

OP(E1)(1)
]

∈ N1(P(E1)) , η2 =
[

OP(E2)(1)
]

∈ N1(P(E2)),

We here summarise some results that have been discussed in [KMR] ( See Section 3 in [KMR]

for more details) :

F = p∗2(f1) = p∗1(f2) , F 2 = 0 , N1(X) = R(p∗1η2)⊕ R(p∗2η1)⊕ RF ,

(p∗1η2)
r2 · F = 0 , (p∗1η2)

r2+1 = 0 , (p∗2η1)
r1 · F = 0 , (p∗2η1)

r1+1 = 0 ,

(p∗2η1)
r1 = (deg(E1))F · (p∗2η1)r1−1 , (p∗1η2)

r2 = (deg(E2))F · (p∗1η2)r2−1 ,

(p∗2η1)
r1 · (p∗1η2)r2−1 = deg(E1) , (p∗1η2)

r2 · (p∗2η1)r1−1 = deg(E2) .

Also, the dual basis of N1(X) is {δ1, δ2, δ3} where,

δ1 = F · (p∗2η1)r1−2 · (p∗1η2)r2−1 , δ2 = F · (p∗2η1)r1−1 · (p∗1η2)r2−2,

δ3 = (p∗2η1)
r1−1 · (p∗1η2)r2−1−deg(E1)F · (p∗2η1)r1−2 · (p∗1η2)r2−1−deg(E2)F · (p∗2η1)r1−1 · (p∗1η2)r2−2.

3. Nef cones of fibre product

Let C be a smooth curve over the field of complex numbers C and let E be a vector bundle

over C. The slope of E is defined as

µ(E) := degE
r

∈ Q

A vector bundle E over C is said to be semistable is µ(F ) ≤ µ(E) for all subbundle F ⊆ E.

For every vector bundle E, there is a unique filtration

E = E0 ⊃ E1 ⊃ · · · ⊃ El−1 ⊃ El = 0

called the Harder-Narasimhan filtration, such that Ei/Ei+1 is semistable for each i ∈ {0, 1, · ·
··, l− 1} and µ(Ei/Ei+1) > µ(Ei−1/Ei) for all i ∈ {1, 2, · · ·, l− 1}. See [HL] for more details on

semistability.

Let E1 and E2 be two vector bundles of rank r1 and r2 and degree d1 and d2 respectively

over a smooth curve C.

Let E1 admits the unique Harder-Narasimhan filtration

E1 = E10 ⊃ E11 ⊃ ... ⊃ E1l1 = 0
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with Q1i := E1(i−1)/E1i being semistable for all i ∈ [1, l1 − 1]. Denote n1i = rank(Q1i),

d1i = deg(Q1i) and µ1i = µ(Q1i) :=
d1i
n1i

for all i.

Similarly, let E2 also admits the unique Harder-Narasimhan filtration

E2 = E20 ⊃ E21 ⊃ ... ⊃ E2l2 = 0

with Q2i := E2(i−1)/E2i being semistable for i ∈ [1, l2 − 1]. Denote n2i = rank(Q2i),

d2i = deg(Q2i) and µ2i = µ(Q2i) :=
d2i
n2i

for all i.

Theorem 3.1. Let E1 and E2 be two vector bundles on a smooth complex projective curve C

and let X = P(E1)×C P(E2) as discussed earlier. Then,

Nef(P(E1)×C P(E2)) =
{

aτ1 + bτ2 + cF | a, b, c ∈ R≥0

}

.

where τ1 = (p∗2η1)−µ11F and τ2 = (p∗1η2)−µ21F and µ11 and µ21 are the smallest slopes of any

torsion-free quotients of E1 and E2 respectively, with the same notation as above.

Proof. By the result of [Ful], Nef(P(Ei)) =
{

ai(ηi − µi1fi) + bifi | ai, bi ∈ R≥0

}

for i = 1, 2.

Since pullback of nef line bundles are nef, we get , τ1 = (p∗2η1)− µ11F , τ2 = (p∗1η2)− µ21F and

F are nef.

Now, from the Harder-Narasimhan filtration of Ei’s (i = 1, 2) as described above, we get

the following short exact sequences

0 −→ Ei1 −→ Ei −→ Qi1 −→ 0

for i = 1, 2.

Let ji : P(Qi1) −→ P(Ei) denote the canonical embeddings for i = 1, 2.

We now proceed along the lines of [Section 2, [Ful]]. The result in [Example 3.2.17, [Fult]]

adjusted to bundles of quotients over curves shows that
[

P(Q11)
]

= ηr1−n11

1 + (d11 − d1)η
r1−n11−1
1 f1 ∈ Nn11

(P(E1))

and
[

P(Q21)
]

= ηr2−n21

2 + (d21 − d2)η
r2−n21−1
2 f2 ∈ Nn21

(P(E2))

where n11 = rank(Q11), n21 = rank(Q21), d11 = deg(Q11) and d21 = deg(Q21).

As (η1 − µ11f1) and (η2 − µ21f2) are both nef divisors, we have

θ11 :=
[

P(Q11)
]

·
(

η1 − µ11f1
)n11−1

=
{

ηr1−n11

1 + (d11 − d1)η
r1−n11−1
1 f1

}

·
(

η1 − µ11f1
)n11−1 ∈ Eff1(P(E1))

and

θ21 :=
[

P(Q21)
]

·
(

η2 − µ21f2
)n21−1

=
{

ηr2−n21

2 + (d21 − d2)η
r2−n21−1
2 f2

}

·
(

η2 − µ21f2
)n21−1 ∈ Eff1(P(E2)).
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Note that, p1 and p2 are proper, flat morphisms, and as the base space is smooth, p1, p2

are also smooth. Hence, numerical pullbacks of cycles are well defined and the flatness of p1

and p2 ensure that pullbacks of numerical classes preserve the pseudo-effectivity. We consider

D := p∗2(θ11) · p∗1(θ21), which is equal to

p∗2
[

P(Q11)
]

· p∗1
[

P(Q21)
]

·
{

(p∗2η1)− µ11F
}n11−1 ·

{

(p∗1η2)− µ21F
}n21−1

By using the above descriptions of θ11 and θ21, D can be written as

D =
{

(p∗2η1)
r1−n11 +(d11−d1)F · (p∗2η1)r1−n11−1

}

·
{

(p∗1η2)
r2−n21 +(d21−d2)F · (p∗1η2)r2−n21−1

}

·
{

(p∗2η1)− µ11F
}n11−1 ·

{

(p∗1η2)− µ21F
}n21−1

=
{

(p∗2η1)
r1−1 + (µ11 − d1)F · (p∗2η1)r1−2

}

·
{

(p∗1η2)
r2−1 + (µ21 − d2)F · (p∗1η2)r2−2

}

= (p∗2η1)
r1−1 ·(p∗1η2)r2−1+(µ11−d1)F ·(p∗2η1)r1−2 ·(p∗1η2)r2−1+(µ21−d2)F ·(p∗1η2)r2−2 ·(p∗2η1)r1−1

which is clearly a 1-cycle in X . Now, p∗2
[

P(Q11)
]

· p∗1
[

P(Q21)
]

=
[

P(Q11) ×C P(Q21)
]

is an

effective cycle in X , and (p∗2η1)−µ11F, (p
∗
1η2)−µ21F are nef divisors in X . Hence, D ∈ Eff1(X).

Since τ1 · D =
{

(p∗2η1) − µ11F
}

· D = 0, τ2 · D =
{

(p∗1η2) − µ21F
}

· D = 0 and F 2 = 0 ,

τ1, τ2, F are in the boundary of Nef(X).

If aτ1 + bτ2 + cF is any element in Nef(X), then (aτ1 + bτ2 + cF ) · D ≥ 0 , which implies

that c ≥ 0. Also, F · τ r1−2
1 · τ r2−1

2 and F · τ r1−1
1 · τ r2−2

2 are intersections of nef divisors. Now

(aτ1 + bτ2 + cF ) · (F · τ r1−2
1 · τ r2−1

2 ) = aF · τ r1−1
1 · τ r2−1

2 + bF · τ r1−2
1 · τ r22 + cF 2 · τ r1−2

1 · τ r2−1
2

= aF · (p∗2η1)r1−1 · (p∗1η2)r2−1 + bF · (p∗2η1)r1−2 · (p∗1η2)r2 + 0

= a+ 0 + 0

= a

and

(aτ1 + bτ2 + cF ) · (F · τ r1−1
1 · τ r2−2

2 ) = aF · τ r11 · τ r2−2
2 + bF · τ r1−1

1 · τ r2−1
2 + cF 2 · τ r1−1

1 · τ r2−2
2

= b+ 0 + 0

= b

Since, aτ1 + bτ2 + cF ∈ Nef(X), we have a ≥ 0, b ≥ 0. This completes the proof. �

Corollary 3.2. Assume that the hypotheses of Theorem 3.1 holds. Then, the closed cone of

curves of X is given by

NE(X) =
{

pδ1 + qδ2 + r(δ3 + µ11δ1 + µ21δ2) | p, q, r ∈ R≥0

}

.

Remark 1. If E1 and E2 both are semistable bundles in Theorem 3.1 , then for each i ∈ {1, 2},
P(Qi1) ⊂ P(Ei) becomes an equality and by putting µ1 and µ2, (µi = µ(Ei), i = 1, 2) in place of

µ11 and µ21 in the description above, we recover an earlier result in [KMR] ( see Theorem 4.1

in [KMR]). Similar alterations can be made if one of the vector bundles is semistable and the

other is unstable.
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4. Seshadri Constants

In this section, we will compute the Seshadri constants of ample line bundles on X =

P(E1)×C P(E2) in certain cases and will give bounds in some other cases. See the introduction

for the definition of Seshadri constant.

Theorem 4.1. Let E1 and E2 be two vector bundles on a smooth curve C with µ11 and µ21

being the smallest slopes of any torsion-free quotient of E1 and E2 respectively and let X =

P(E1)×C P(E2). Let L be an ample line bundle on X which is numerically equivalent to aτ1 +

bτ2 + cF ∈ N1(X). Then, the Seshadri constants of L satisfy,

ε(X,L, x) ≥ min{a, b, c}, ∀x ∈ X.

Moreover,

(4.1.1) if a = min{a, b, c}, then ε(X,L, x) = a, ∀x ∈ X

(4.1.2) if b = min{a, b, c}, then ε(X,L, x) = b, ∀x ∈ X.

Before going into the proof of the Theorem 4.1, we will prove the following useful lemma.

Lemma 4.2. Let L be an R-divisor of type (a, b) on Pn × Pm, with a, b ∈ R≥0. Then,

ε(Pn × Pm, L, p) = min{a, b} ∀p ∈ Pn × Pm

Proof. Let B be an irreducible curve in Pn × Pm. Then, B can be written as B = x(1, 0)n−1 +

y(0, 1)m−1 for some x, y ∈ R≥0. Also, for any p ∈ Pn × Pm, we have degB ≥ multpB. Hence,

L · B
multpB

=
ay + bx

multpB
≥ min{a, b} · y + x

multpB
≥ min{a, b}

Now, for any point p ∈ Pn×Pm, write p = (p1, p2), with p1 ∈ Pn and p2 ∈ Pm. Then, p ∈ p1× l2

and p ∈ l1 × p2, where l1 and l2 are classes of lines in Pn and Pm respectively. This gives us

ε(Pn × Pm, L, p) ≤ L · (p1 × l2)

1
= a and ε(Pn × Pm, L, p) ≤ L · (l1 × p2)

1
= b

which implies ε(Pn × Pm, L, p) ≤ min{a, b}. This proves the lemma. �

Proof. of Theorem 4.1 : By Theorem 3.1 and Corollary 3.2,

Nef(X) =
{

aτ1 + bτ2 + cF | a, b, c ∈ R≥0

}

and

NE(X) =
{

pδ1 + qδ2 + rδ3 ∈ N1(X) | p, q, r ∈ R≥0

}

,

where δ3 = δ3 + µ11δ1 + µ21δ2.

Let B be a reduced and irreducible curve passing through x ∈ X with multiplicity m at

x ∈ X . Then B can be written as B = pδ1 + qδ2 + rδ3 ∈ NE(X) ⊆ N1(X) . Two cases can

occur :
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Case I. Assume that B is not contained in any fibre of the map (π1 ◦ p2) over the curve C.

Hence, by Bézout’s Theorem :

F · B ≥ multxB = m(1)

This implies, r ≥ m. Since L is ample, a, b, c > 0. Hence,

L · B
multx B

=
L · B
m

=
(aτ1 + bτ2 + cF ) · (pδ1 + qδ2 + rδ3)

m

=
ap+ bq

m
+ c · r

m
≥ c · r

m
≥ c.

Case II. Assume that B is contained in some fibre F of the map (π1 ◦ p2) over the curve

C. Hence, F · B = 0 which implies r = 0. We know that the fibres of the map (π1 ◦ p2) are

isomorphic to Pr1−1×Pr2−1. Since B is curve in Pr1−1×Pr2−1 passing through x of multiplicity

m, then from Lemma 4.2. , L·B
multx B

≥ min{a, b}.
Combining both cases, we have, ε(X,L, x) := inf

x∈C
{ L·C
multx C

} ≥ min{a, b, c} , ∀x ∈ X .

Now, a point x ∈ X can be written as x = (x1, x2), where x1 ∈ P(E1), x2 ∈ P(E2). Take

the class of a line l2 in the fibre f2 of π2 passing through x2. Then,

x ∈ x1 × l2 = δ1{= F · (p∗2η1)r1−2 · (p∗1η2)r2−1} in N1(X). So,

ε(X,L, x) ≤ L · δ1
1

= a.

When a = min{a, b, c}, using the above inequality and the fact that ε(X,L, x) ≥ min{a, b, c},
we conclude that ε(X,L, x) = a.

Similarly, take the class of a line l1 in the fibre f1 of π1 passing through x1. Then,

x ∈ l1 × x2 = δ2{= F · (p∗2η1)r1−1 · (p∗1η2)r2−2} in N1(X). So,

ε(X,L, x) ≤ L · δ2
1

= b.

So, if b = min{a, b, c}, the above inequality and ε(X,L, x) ≥ min{a, b, c} implies that

ε(X,L, x) = b. This proves (4.1.1) and (4.1.2). �

In the above theorem if c = min{a, b, c} more can be said about the Seshadri constants of

ample line bundles on P(E1)×P(E2). These results are explained in the following two theorems.

Theorem 4.3. Let E1 and E2 be two unstable vector bundles over a smooth curve C of rank r1

and r2 respectively and X = P(E1)×C P(E2). Let L be an ample line bundle on X numerically

equivalent to aτ1 + bτ2 + cF ∈ N1(X).When c = min{a, b, c} the Seshadri constants of L have

the following properties.

(i) Assume c ≤ a ≤ b, rank(E1) = 2 and E1 is normalised.

If x is a point outside B−(p
∗
2η1), then ε(X,L, x) = a.

If x belongs to B−(p
∗
2η1), then c ≤ ε(X,L, x) ≤ a.

(ii) Assume c ≤ b ≤ a, rank(E2) = 2 and E2 is normalised.
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If x is a point outside B−(p
∗
1η2), then ε(X,L, x) = b.

If x belongs to B−(p
∗
1η2), the c ≤ ε(X,L, x) ≤ b.

(iii) If x is on some curve whose class is proportional to δ3, then ε(X,L, x) = c, where

δ3 = δ3 + µ11δ1 + µ21δ2.

Proof. Let B ⊆ X be a reduced and irreducible curve passing through x ∈ X and m be the

multiplicity of B at x. Let B = pδ1+ qδ2+ rδ3 ∈ NE(X) ⊆ N1(X), where p, q, r are in R≥0 and

δ3 = δ3 + µ11δ1 + µ21δ2.

First, assume that c ≤ a ≤ b. Let x be a point outside of B−(p
∗
2η1). Then, B is also not

contained in B−(p
∗
2η1). Hence, p

∗
2η1 ·B ≥ 0 i.e,

p∗2η1 · (pδ1 + qδ2 + rδ3) ≥ 0.

which implies, p+ rµ11 ≥ 0.

Now if B is not contained in the fibre, then by Case(I) in the proof of Theorem 4.1, we get

r ≥ m. Hence,

ε(X,L, x) =
ap+ bq + cr

m
≥ r

m
(c− aµ11) +

bq

m
≥ r

m
(c− aµ11) ≥ (c− aµ11) ≥ −aµ11 ≥ a.

( since rank(E1) = 2 and E1 is normalised, µ(Q11) = µ11 = deg(Q11) ≤ −1).

And if B is contained in the fibre, then by Case (II) in the proof of Theorem 4.1, we get,

(p+ q) ≥ m. Hence,

ε(X,L, x) =
ap + bq

m
≥ a(p+ q)

m
≥ a

as our assumption is b ≥ a ≥ c. We already know that ε(X,L, x) ≤ a from the proof of (4.1.1).

So, ε(X,L, x) = a. If x belongs to B−(p
∗
2η1), then it is obvious that c ≤ ε(X,L, x) ≤ a. This

completes the proof of (i). A similar kind of argument will prove (ii).

To prove (iii), observe that L · δ3 = c. So,

ε(X,L, x) ≤ L · δ3
multx δ3

≤ c

multx δ3
≤ c.

Therefore, by the above inequality and first part of theorem 4.1, we get, ε(X,L, x) = c. �

Corollary 4.4. Assume the hypotheses of Theorem 4.3 holds and let L be an ample line bundle

on X numerically equivalent to aτ1 + bτ2 + cF ∈ N1(X). Then, we have,

(i) ε(X ,L) = min{a, b, c}.
(ii) ε(X ,L, 1 ) ≤ min{a, b}.

Proof. Since ε(X,L, x) ≥ min{a, b, c}, for all x ∈ X , we have,

ε(X,L) = inf
x∈X

ε(X,L, x) ≥ min{a, b, c}.

Now, if min{a, b, c} = a, ε(X,L, x) = ε(X,L) = min{a, b, c} = a, ∀x ∈ X . Similarly, if

min{a, b, c} = b, ε(X,L, x) = ε(X,L) = min{a, b, c} = b, ∀x ∈ X . Also, when min{a, b, c} = c,
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then, ε(X,L, x) = min{a, b, c} = c ≥ ε(X,L), if x is on some curve of class proportional to δ3.

Therefore, combining all three cases, we have, ε(X,L) = min{a, b, c}.
In the proof of Theorem 4.1 we have showed that for all x ∈ X , ε(X,L, x) ≤ min{a, b}. So,

this implies that ε(X,L, 1) ≤ min{a, b}. �

Theorem 4.5. Let E1 be a semistable vector bundle of rank r1 and E2 be an unstable vector

bundle of rank r2 over a smooth curve C and let X = P(E1)×C P(E2). Let L be an ample bundle

on X numerically equivalent to aτ1 + bτ2 + cF ∈ N1(X). When c = min{a, b, c} the Seshadri

constants of L have the following properties.

Assume that c ≤ b ≤ a, rank(E2) = 2 and E2 is normalised.

(i) if x is a point outside B−(p
∗
1η2), then ε(X,L, x) = b.

(ii) if x belongs to B−(p
∗
1η2), then c ≤ ε(X,L, x) ≤ b.

Proof. The proof is similar to the proof of the Theorem 4.3. �
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