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Periods of complete intersection algebraic cycles

Roberto Villaflor Loyola1

Abstract

For every even number n, and every n-dimensional smooth hypersurface of Pn+1 of degree
d, we compute the periods of all its n

2
-dimensional complete intersection algebraic cycles.

Furthermore, we determine the image of the given algebraic cycle under the cycle class map
inside the De Rham cohomology group of the corresponding hypersurface in terms of its
Griffiths basis and the polarization. As an application, we use this information to address
variational Hodge conjecture for a non complete intersection algebraic cycle. We prove
that the locus of general hypersurfaces containing two linear cycles whose intersection is of
dimension less than n

2
− d

d−2
, corresponds to the Hodge locus of any integral combination of

such linear cycles.

1 Introduction

Consider X any smooth degree d hypersurface of Pn+1, and let us denote by θ ∈ H1,1(X) ∩
H2(X,Z) its polarization. From Lefschetz hyperplane section theorem it follows that the image
of the cycle class map for codimension k algebraic cycles is generated over Q by θk for k 6= n

2 . In
the case n is even, it remains to determine the image of the cycle class map for n

2 -dimensional
algebraic cycles in X. The Hodge conjecture claims that this image corresponds to the space
of Hodge cycles H

n
2
,n
2 (X) ∩Hn(X,Q). Since the cycle class map of an algebraic cycle captures

the cohomological information of the cycle, to describe its image is equivalent to determine
all its periods. In order to compute the periods of an algebraic cycle, we restrict ourselves to
the subgroup of CH

n
2 (X) generated by the algebraic subvarieties Z ⊆ X that are complete

intersections inside Pn+1. Our main result is the following:

Theorem 1.1. Let X ⊆ Pn+1 be a smooth degree d hypersurface of even dimension n given by
X = {F = 0}. Suppose that Z := {f1 = · · · = fn

2
+1 = 0} ⊆ X is a complete intersection inside

Pn+1 and
I(Z) = 〈f1, . . . , fn

2
+1〉 ⊆ C[x0, . . . , xn+1].

Write
F = f1g1 + · · ·+ fn

2
+1gn

2
+1,

and define
H = (h0, . . . , hn+1) := (f1, g1, . . . , fn

2
+1, gn

2
+1).

Then

[Z] =
deg(Z)

deg(X)
θ

n
2 −

n
2 !

deg(X)
res

(
det(Jac(H))Ω

F
n
2
+1

)n
2
,n
2

∈ H
n
2
,n
2 (X),

where Ω =
∑n+1

i=0 (−1)ixidx0 ∧ · · · d̂xi · · · ∧ dxn+1 is the generator of H0(Pn+1,Ωn+1
Pn+1(n+ 2)).

The previous result follows from a direct computation of all the periods of the algebraic cycle
Z over a set of generators of the De Rham cohomology group of X, therefore is a consequence
of the following result:
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Theorem 1.2. Under the hypothesis of Theorem 1.1, let JF := 〈 ∂F
∂x0

, . . . , ∂F
∂xn+1

〉 ⊆ C[x0, . . . , xn+1]

be the Jacobian ideal associated to F . Then, for every homogeneous polynomial P ∈ C[x0, . . . , xn+1]
of degree deg(P ) = (d− 2)(n2 + 1)

(1)

∫

Z

res

(
PΩ

F
n
2
+1

)
=

(2π
√
−1)

n
2

n
2 !

c · (d− 1)n+2,

where c ∈ C is the unique number such that

P · det(Jac(H)) ≡ c · det(Hess(F )) (mod JF ).

It is implicit in the statement of Theorem 1.2 that P · det(Jac(H)) ∈ JF + 〈det(Hess(F ))〉.
In fact if we denote the Jacobian ring by RF := C[x0, . . . , xn+1]/J

F , it satisfies RF
(d−2)(n+2) =

C · det(Hess(F )). This is consequence of a classical theorem due to Macaulay (see §2, Theorem
2.1), which implies that RF is an Artinian Gorenstein algebra of socle (d − 2)(n + 2). We will
briefly discuss Artinian Gorenstein algebras and ideals in §2.

The advantage of working with periods instead of considering directly the cohomology classes
is that the period equation (1) depends continuously on the parameters H = (h0, . . . , hn+1) (see
§5, Proposition 5.1). And so, we can perturb the pair (Z,X) in order to reduce ourselves to
the case where Z is also smooth. After this reduction, the main idea in the proof of Theorem
1.2 is to construct a chain of smooth projective varieties Z = Z0 ⊆ Z1 ⊆ · · · ⊆ Zn

2
+1 = Pn+1

where each Zi is a hypersurface of Zi+1 given by the intersection of Zi+1 with a very ample
divisor of Pn+1. Then using an explicit description of the coboundary map in Čech cohomology
associated to the Poincaré residue sequence, we relate the periods of Zi with the periods of Zi+1

(see §4, Proposition 4.4). And so, the period computation is reduced to a computation of an
integral of a top form over Pn+1, which is computed in §4, Corollary 4.2. In §8 we produce some
applications of Theorem 1.1 and Theorem 1.2, getting computable formulas for the intersection
of two n

2 -dimensional complete intersection algebraic cycles inside X, in terms of their defining
equations (see §8, Corollary 8.1).

In Deligne’s work on absolute Hodge cycles [Del82], he showed that the periods of algebraic
cycles belong to the field of definition of the variety and the corresponding algebraic cycle.
Providing necessary conditions on the periods of Hodge cycles in order to satisfy the Hodge
conjecture. Periods of algebraic cycles played a central role in the study of components of the
Noether-Lefschetz locus by means of the infinitesimal variations of Hodge strucutres, leaded
by Voisin [Voi88, Voi89, Voi90, Voi91], Green [Gre88, Gre89], Harris [CGGH83, CHM88] and
many others [Lop91, Kim91, Otw03, Mac05, Klo07, Dan17]. In 2014, Movasati reconsidered the
problem of computing explicitly the periods of algebraic cycles. In [Mov17b], Movasati exposed
several possible applications of these computations, among them a computational approach to
certain special cases of variational Hodge conjecture. These ideas gave place to the computation
of formulas for periods of linear cycles inside Fermat varieties appearing in [MV18, Theorem 1]
(these formulas can be deduced from Theorem 1.2, see §8, Corollary 8.4). On the other hand, a
parallel approach was considered by Sertöz in [CS18], where he implemented an algorithm for
approximating periods of arbitrary Hodge cycles inside hypersurfaces.

Following [Mov17b], we used the period formulas in [MV18] to handle variational Hodge
conjecture for a non-complete intersection algebraic cycle inside the Fermat variety. Variational
Hodge conjecture is a major conjecture proposed by Grothendieck in 1966, as a weak version
of Hodge conjecture (see [Gro66, page 103]). While Hodge conjecture claims that every Hodge
cycle inside a smooth projective variety is an algebraic cycle. Variational Hodge conjecture
claims that in all proper families of smooth projective varieties with connected base, a flat
section of its de Rham cohomology bundle is an algebraic cycle at one point if and only if it is an
algebraic cycle everywhere. In 1972, Bloch proved variational Hodge conjecture for deformations
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of algebraic cycles supported in local complete intersections which are semi-regular inside the
corresponding smooth projective variety (see [Blo72]). Semi-regularity is a strong condition,
difficult to check in concrete examples (see [DK16] for a discussion about examples of semi-
regular varieties). In 2003, Otwinowska considered variational Hodge conjecture for algebraic
cycles inside smooth degree d hypersurfaces X of the projective space Pn+1 of even dimension
n. In this context, she proved (among several other remarkable results) that variational Hodge
conjecture is satisfied for algebraic cycles supported in one n

2 -dimensional complete intersection
Z of Pn+1 contained in X, for deg(X) ≫ 0 (see [Otw03]). An improvement of this result was
presented by Dan, removing the condition on the degree (see [Dan17]). Despite Otwinowska
and Dan’s result, it is not known if the complete intersection subvarieties are semi-regular inside
the corresponding hypersurface. The first explicit non-complete intersection algebraic cycle
considered in high dimension hypersurfaces was treated in [MV18, Theorem 2] with computer
assistance. Several Z-combinations of two linear cycles inside Fermat varieties where considered,
but only some of them were proved to satisfy variational Hodge conjecture (by means of a first
order approximation of the Hodge locus).

In the same spirit of [MV18], we use Theorem 1.2 in order to analyze variational Hodge
conjecture for cycles obtained as Z-combinations of two linear cycles inside a hypersurface. We
separate our analysis depending on the dimension of the intersection of the considered linear
cycles. We generalize [MV18, Theorem 2] (providing a theoretic proof) to arbitrary degree and
dimension in the following way:

Theorem 1.3. Let X ⊆ Pn+1 be the Fermat variety of even dimension n and degree d. Let
P

n
2 , P̌

n
2 ⊆ X be the two linear subvarieties such that P

n
2 ∩ P̌

n
2 = Pm given by

Pn−m := {xn−2m − ζ2dxn−2m+1 = · · · = xn − ζ2dxn+1 = 0},

P
n
2 := {x0 − ζ2dx1 = · · · = xn−2m−2 − ζ2dxn−2m−1 = 0} ∩ Pn−m,

P̌
n
2 := {x0 − ζα0

2d x1 = · · · = xn−2m−2 − ζ
αn−2m−2

2d xn−2m−1 = 0} ∩ Pn−m,

where ζ2d ∈ C is a primitive 2d-root of unity, and α0, α2, . . . , αn−2m−2 ∈ {3, 5, . . . , 2d − 1}.
Then, for m < n

2 − d
d−2 , a, b ∈ Z \ {0} and δ := a · Pn

2 + b · P̌n
2 ∈ CH

n
2 (X) we have

V[δ] = V
[P

n
2 ]

∩ V
[P̌

n
2 ]
,

and the Hodge locus V[δ] is smooth and reduced (see §7, Definition 7.1, for the definition of the

Hodge locus). In particular, variational Hodge conjecture holds for [δ] ∈ Hn(X,Z) ∩H
n
2
,n
2 (X)

in these cases. On the other hand, for m ≥ n
2 − d

d−2 , the Zariski tangent space of V[δ] has
dimension strictly bigger than the dimension of V

[P
n
2 ]

∩ V
[P̌

n
2 ]

(which is smooth and reduced, see

§9, Proposition 9.1).

We remark that [Mac05, Theorem 2] covers the case (n, d) = (2, 5). The main ingredient
missing from [MV18] that allows us to prove Theorem 1.3 is the explicit computation of the
cycle class map given in Theorem 1.1. After the algebraicity of the locus of Hodge cycles proved
by Cattani, Deligne and Kaplan [CDK95], we can state variational Hodge conjecture in the
following local analytic format: “If δ0 ∈ Hn(X0,Z) ∩ H

n
2
,n
2 (X0) is the cohomological class of

an algebraic cycle, then δt ∈ Hn(Xt,Z) ∩ H
n
2
,n
2 (Xt) is the cohomological class of an algebraic

cycle for every t ∈ Vδ0 .” This version of variational Hodge conjecture is the one we are always
referring to, in particular in Theorem 1.3. Finally, by a simple argument informed by Movasati,
we can deduce from Theorem 1.3 the following result confirming variational Hodge conjecture
for combinations of linear cycles inside general hypersurfaces containing such cycles.
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Theorem 1.4. Let π : X → T be the family of smooth degree d hypersurfaces of Pn+1, of even
dimension n. Consider

Wm := {t ∈ T : Xt contains two linear cycles P
n
2 , P̌

n
2 with P

n
2 ∩ P̌

n
2 = Pm}.

If m < n
2 − d

d−2 , then for all a, b ∈ Z\{0} variational Hodge conjecture holds for the Hodge cycle

[δ] = a[P
n
2 ] + b[P̌

n
2 ] ∈ Hn(Xt,Z) ∩H

n
2
,n
2 (Xt), for t ∈ Wm general.

2 Artinian Gorenstein algebras

As part of the algebraic background we need, we will state in this section some results about
Artinian Gorenstein algebras. We begin with a classical result due to Macaulay (for a proof see
[Voi03, Theorem 6.19]).

Theorem 2.1 (Macaulay [Mac16]). Given f0, . . . , fn+1 ∈ C[x0, . . . , xn+1] homogeneous polyno-
mials with deg(fi) = di and

{f0 = · · · = fn+1 = 0} = ∅ ⊆ Pn+1.

Let

R :=
C[x0, . . . , xn+1]

〈f0, . . . , fn+1〉
.

Then for σ :=
∑n+1

i=0 (di − 1), we have that

(i) dimC Rσ = 1.

(ii) For every 0 ≤ i ≤ σ the multiplication map

Ri ×Rσ−i → Rσ

is a perfect pairing.

(iii) Re = 0 for e > σ.

Definition 2.1. Let n ∈ N, and I ⊆ C[x0, . . . , xn+1] an ideal. We say that the quotient ring
R := C[x0, . . . , xn+1]/I is an Artinian Gorenstein algebra if it satisfies items (i), (ii), (iii) of
Macaulay Theorem 2.1 for some σ ∈ N. We say σ is the socle of R and denote it σ = soc(R).

Notation 2.1. Despite the Artinian Gorenstein property is reserved for algebras, we will also
say that I is Artinian Gorenstein of socle σ, when R = C[x0, . . . , xn+1]/I is.

Remark 2.1. An elementary observation is that if I is Artinian Gorenstein of socle σ, and
P ∈ C[x0, . . . , xn+1]µ \ Iµ, then the quotient ideal

(I : P ) := {Q ∈ C[x0, . . . , xn+1] : PQ ∈ I},

is Artinian Gorenstein of socle σ − µ. Is also elementary that if I1 ⊆ I2 are two Artinian
Gorenstein ideals of the same socle, then I1 = I2.

We end this section with a proposition we will use in the proof of Theorem 1.3.
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Proposition 2.2. Consider the ideal I := 〈xd−1
0 , . . . , xd−1

2r−1〉 ⊆ C[x0, . . . , x2r−1]. Let d ≥ 3, and
β1, β2, c1, c2 ∈ C× with β1 6= β2. For i = 1, 2, define

Ri := ci ·
r∏

j=1

(xd−1
2j−2 − (βix2j−1)

d−1)

(x2j−2 − βix2j−1)
.

Then

(2) (I : R1)e ∩ (I : R2)e = (I : R1 +R2)e,

if and only if e 6= (d− 2) · r.
Proof First of all, note that (I : R1), (I : R2) and (I : R1 +R2) are Artinian Gorenstein ideals
of socle (d− 2) · r. In consequence,

(I : R1) ∩ (I : R2) 6= (I : R1 +R2).

Otherwise, we would have (I : R1 +R2) ⊆ (I : R1), which implies

(I : R1) = (I : R1 +R2) = (I : R2),

a contradiction. Therefore, in order to prove the proposition, it is enough to prove (2) for
e 6= (d − 2) · r. If e > (d − 2) · r, the equality (2) is trivial since (d − 2) · r is the socle of the
three ideals. If e < (d− 2) · r, we claim (2) reduces to the case e = (d− 2) · r − 1. In fact, if we
assume (2) fails for some e < (d− 2) · r, we can choose

(3) p ∈ (I : R1 +R2)e \ (I : R1)e.

Since (I : R1) is Artinian Gorenstein of socle (d − 2) · r, the perfect pairing property implies

that we can find a degree (d− 2) · r − e monomial xi = xi00 · · · xi2r−1

2r−1 such that

(4) xi · p ∈ (I : R1 +R2)(d−2)·r \ (I : R1)(d−2)·r.

Since deg(xi) > 0, there exist some ij > 0, then (3) and (4) imply that

xi

xj
· p ∈ (I : R1 +R2)(d−2)·r−1 \ (I : R1)(d−2)·r−1,

and so (2) would fail for e = (d − 2) · r − 1, as claimed. Therefore, we just consider the case
e = (d − 2) · r − 1. It is enough to show that (I : R1 + R2)e ⊆ (I : R1)e ∩ (I : R2)e. Take
p ∈ (I : R1 +R2)e. Without loss of generality we may assume it can be written as

p =
∑

k even

d−3∑

l=0

xlkx
d−3−l
k+1 pk,l,

where each pk,l does not depend on xk and xk+1, and is a C-linear combination of monomials of

the form xi00 · · · xik−1

k−1 x
ik+2

k+2 · · · x
i2r−1

2r−1 with i2j−2 + i2j−1 = d − 2, for all j ∈ {1, . . . , r} \ {k
2 + 1}.

For every k and l, and i = 1, 2, there exist a constant ak,l,i ∈ C such that

pk,l
Ri

(xd−2
k + xd−3

k (βixk+1) + · · ·+ (βixk+1)d−2)
≡ ak,l,i

(x0 · · · x2r−1)
d−2

(xkxk+1)d−2
,

modulo 〈xd−1
0 , . . . , xd−1

k−1, x
d−1
k+2, . . . , x

d−1
2r−1〉. Then

pRi ≡ (x0 · · · x2r−1)
d−2

∑

k even

(
1

xk

d−3∑

l=0

ak,l,iβ
l+1
i +

1

xk+1

d−3∑

l=0

ak,l,iβ
l
i

)
,
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modulo I. Since p · (R1 +R2) ∈ I we conclude that

d−3∑

l=0

ak,l,1β
l+1
1 +

d−3∑

l=0

ak,l,2β
l+1
2 =

d−3∑

l=0

ak,l,1β
l
1 +

d−3∑

l=0

ak,l,2β
l
2 = 0.

Since β1 6= β2, this implies
d−3∑

l=0

ak,l,1β
l
1 =

d−3∑

l=0

ak,l,2β
l
2 = 0,

and so pRi ∈ I for i = 1, 2.

3 Cycle class map and periods

Let us explain what we mean by periods of algebraic cycles inside smooth hypersurfaces. Let X
be any smooth projective variety of dimension n, and Z ∈ CHk(X) a codimension k algebraic
cycle of X. The cycle class map can be factored as

[·] : CHk(X)
η−→ H2n−2k

dR (X)∗ ≃ H2k
dR(X)

where the second map is given by the perfect pairing in De Rham cohomology induced by
the integration over X of the wedge product (divided by (2π

√
−1)n), and the former map

corresponds to

ηZ(ω) :=
1

(2π
√
−1)n−k

∫

Z

ω ∈ C, ∀ω ∈ H2n−2k
dR (X).

Note that for k = 1 the cycle class map corresponds to the first Chern class.

Definition 3.1. Given an algebraic cycle Z ∈ CHk(X), we say that the complex numbers ηZ(ω)
are the periods of Z, for all ω ∈ H2n−2k

dR (X).

Remark 3.1. In general, forX any smooth projective variety we have natural mapsH2k(X,Z) →
H2k(X,Q) →֒ H2k(X,C) ≃ H2k

dR(X). In spite the first map H2k(X,Z) → H2k(X,Q) is not in
general injective, we will always denote by H2k(X,Z) the cohomology with Z-coefficients modulo
torsion. Thus we will identify them without further mention as a chain of abelian groups

H2k(X,Z) ⊆ H2k(X,Q) ⊆ H2k(X,C) = H2k
dR(X).

Under this identification we will say that some ω ∈ H2k
dR(X) is an integral (respectively rational)

class, denoted ω ∈ H2k
dR(X) ∩H2k(X,Z) (respectively ω ∈ H2k

dR(X) ∩H2k(X,Q)), if it only has
integral (respectively rational) periods over H2k(X,Z), i.e.

1

(2π
√
−1)k

∫

δ

ω ∈ Z , ∀δ ∈ H2k(X,Z).

Recalling Griffiths’ work [Gri69], in the case X = {F = 0} ⊆ Pn+1 is a smooth hypersurface
of even dimension n given by a homogeneous polynomial with degF = d, each piece of the
Hodge filtration of Hn

dR(X)prim is generated by the differential forms

ωP := res

(
PΩ

F q+1

)
∈ Fn−qHn

dR(X)prim,

for P ∈ C[x0, . . . , xn+1]d(q+1)−n−2, where Ω := ι∑n+1
i=0 xi

∂
∂xi

(dx0∧· · ·∧dxn+1) =
∑n+1

i=0 (−1)ixid̂xi,

and res : Hn+1
dR (Pn+1 \X) → Hn

dR(X) is the residue map.
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Notation 3.1. Whenever we are considering a set of 1-forms {yi : i = 1, . . . , k} we will use the
notation

ŷi := y1 ∧ · · · ŷi · · · ∧ yk.

This notation will be highly used in §5.

We are interested in computing the periods of all n
2 -dimensional algebraic cycles Z ⊆ X.

Notice that, since Z is a projective variety of positive dimension, it intersects every divisor of
X, so it is impossible to find an affine chart of X where to compute the periods of Z. Since
we are integrating over an algebraic cycle (consequently a Hodge cycle) we just care about the
(n2 ,

n
2 )-part of ωP . Thus, we will fix q = n

2 , and we will work with ωP as an element of the

quotient F
n
2 Hn

dR(X)/F
n
2
+1Hn

dR(X) ≃ H
n
2
,n
2 (X) ≃ H

n
2 (X,Ω

n
2
X). After Carlson-Griffiths’ work

[CG80, page 7], we know

(5) (ωP )
n
2
,n
2 =

1
n
2 !

{
PΩJ

FJ

}

|J |=n
2

∈ H
n
2 (U ,Ω

n
2
X).

Where U is the Jacobian covering of X. For J = (j0, . . . , jn
2
), FJ := Fj0 · · ·Fjn

2
, where Fi :=

∂F
∂xi

for every i = 0, . . . , n+ 1, and

(6) ΩJ := ι ∂
∂xjn

2

(· · · ι ∂
∂xj0

(Ω) · · · ) = (−1)
j0+···+jn

2
+(

n
2 +2

2 )

n
2∑

l=0

(−1)lxkl d̂xkl ,

for (k0, . . . , kn
2
−l) the multi-index obtained from (0, 1, . . . , n + 1) by removing the entries of J .

We will usually write (ωP )
n
2
,n
2 in Čech cohomology as in (5), but we will denote the period

by abuse of notation as
∫
Z
ωP ∈ C, letting it be understood that we are working under the

identifications F
n
2Hn

dR(X)/F
n
2
+1Hn

dR(X) ≃ H
n
2 (U ,Ω

n
2
X) ≃ H

n
2
,n
2 (X) ⊆ Hn

dR(X).

4 Preliminaries on periods

In this section we prove some preliminary results about periods. We begin by computing pe-
riods of top forms over the projective space Pn+1. By a top form we mean an element of
Hn+1,n+1(Pn+1) seen as an element of the Čech cohomology group Hn+1(U ,Ωn+1

Pn+1) with respect
to some affine open cover U of Pn+1.

Proposition 4.1 (Periods of top forms over the projective space). Let l > 0, and consider a
collection of degree l homogeneous polynomials f0, . . . , fn+1 ∈ C[x0, . . . , xn+1]l, such that

{f0 = · · · = fn+1 = 0} = ∅ ⊆ Pn+1.

They define the finite morphism f : Pn+1 → Pn+1 given by

f(x0 : · · · : xn+1) := (f0 : · · · : fn+1).

Let Uf = {Vi}n+1
i=0 be the open covering associated to f , i.e. Vi = {fi 6= 0}. Then the top form

Ωf

f0 · · · fn+1
:=

∑n+1
i=0 (−1)ifid̂fi
f0 · · · fn+1

∈ Hn+1(Uf ,Ω
n+1
Pn+1),

has period ∫

Pn+1

Ωf

f0 · · · fn+1
= ln+1 · (−1)(

n+2
2 )(2π

√
−1)n+1.
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Proof The form Ω
x0···xn+1

∈ Hn+1(Pn+1,Ωn+1
Pn+1) corresponds to a global top form ω ∈ H2n+2

dR (Pn+1).
We determine this element via the natural isomorphism in hypercohomology

Hn+1(Pn+1,Ωn+1
Pn+1) ≃ H2n+2(Pn+1,Ω•

Pn+1) ≃ H2n+2(Pn+1,Ω•
(Pn+1)∞) ≃ H2n+2

dR (Pn+1),

where Ωk
(Pn+1)∞ denotes the sheaf of C∞ differential k-forms over Pn+1. Let {ai}n+1

i=0 be a partition

of unity subordinated to the standard covering {Ui}n+1
i=0 of Pn+1. Computing ω in terms of this

partition of unity, we see that

Supp ω ⊆ U0 ∩ · · · ∩ Un+1.

In fact, taking the standard coordinates of U0 given by (z1, . . . , zn+1) = (x1
x0
, . . . , xn+1

x0
) ∈ Cn+1

we can write
∫

Pn+1

ω = (n+ 1)!(−1)n+1

∫

Cn+1

da1 ∧ · · · ∧ dan+1 ∧
dz1
z1

∧ · · · ∧ dzn+1

zn+1
.

Furthermore, we can assume that a1, . . . , an+1 are C∞ functions defined in Cn+1 such that

ai =

{
0 if |zi| ≤ 1
1 if |zi| ≥ 2, |zj | ≤ 1∀j ∈ {1, . . . , n + 1} \ {i}

and
a1 + · · · + an+1 = 1 if ∃j ∈ {1, . . . , n+ 1} : |zj | ≥ 2.

Applying Stokes theorem several times we obtain
∫

Pn+1

Ω

x0 · · · xn+1
= (−1)(

n+2
2 )
∫

Tn+1

dz1
z1

∧ · · · ∧ dzn+1

zn+1
= (−1)(

n+2
2 )(2π

√
−1)n+1.

Pulling back this form by f , it follows that
∫

Pn+1

Ωf

f0 · · · fn+1
= deg(f) ·

∫

Pn+1

Ω

x0 · · · xn+1
= deg(f) · (−1)(

n+2
2 )(2π

√
−1)n+1.

Since f is defined by a base point free linear system, the fiber of f is generically reduced and
corresponds to ln+1 points by Bézout’s theorem.

Remark 4.1. The sign appearing in the formula comes from the identification

Hn+1(Pn+1,Ωn+1
Pn+1) ≃ H2n+2(Pn+1,Ω•

Pn+1) ≃ H2n+2
dR (Pn+1).

We have adopted Carlson and Griffiths’ convention for the total complex differential

D := (d+ (−1)kδ)|C2n+2−k(Pn+1,Ωk

Pn+1 )
,

associated to the Čech-de Rham double complex C•(Pn+1,Ω•
Pn+1), see [CG80, page 9]. This sign

was already pointed out by Deligne in [Del82, page 6]. The previous proposition can also be
found in [CG80, Remark (2), page 19].

Corollary 4.2 (Periods of top forms over the projective space II). For every homogeneous
polynomial Q ∈ C[x0, . . . , xn+1](l−1)(n+2),

∫

Pn+1

QΩ

f0 · · · fn+1
= c · ln+2 · (−1)(

n+2
2 )(2π

√
−1)n+1,

where c ∈ C is the unique number such that
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Q ≡ c · det(Jac(f)) (mod 〈f0, . . . , fn+1〉).

Proof Using Euler’s identity one easily sees that

(7) Ωf = l−1 det(Jac(f))Ω,

where Jac(f) =
(

∂fi
∂xj

)
0≤i,j≤n+1

is the Jacobian matrix of f . The rest follows from item (i) of

Macaulay’s Theorem 2.1 and Proposition 4.1.

Remark 4.2. Corollary 4.2 implies in particular that the top form Ω
x0···xn+1

∈ Hn+1(U ,Ωn+1
Pn+1)

(with respect to the standard open cover U of Pn+1) integrates (−1)(
n+2
2 )(2π

√
−1)n+1. This can

also be deduced from the fact that the polarization θ ∈ H1(U ,Ω1
Pn+1) is given by θij =

dxi

xi
− dxj

xj
,

and so applying several times the twisted product formula we get

θn+1 = (−1)(
n+2
2 ) Ω

x0 · · · xn+1
.

Proposition 4.3. Under the hypothesis of Proposition 4.1. For every top form

ω ∈ Hn+1(Uf ,Ω
n+1
Pn+1)

there exist explicit polynomials Q1, . . . , Qk ∈ C[x0, . . . , xn+1] of degree (l − 1)(n + 2) such that

∫

Pn+1

ω =

k∑

i=1

∫

Pn+1

QiΩ

f0 · · · fn+1
.

Proof In general, any element of Hn+1(Uf ,Ω
n+1
Pn+1) is of the form

ω =
PΩ

fα0
0 · · · fαn+1

n+1

,

where α0, . . . , αn+1 ∈ Z>0 with l ·(α0+ · · ·+αn+1) = deg(P )+n+2. Using Macaulay’s Theorem
2.1 applied to 〈f0, . . . , fn+1〉 ⊆ C[x0, . . . , xn+1], we obtain that

P =
∑

l(β0+···+βn+1)=deg(P )−l(n+2)

fβ0
0 · · · fβn+1

n+1 Pβ,

with deg(Pβ) = (l− 1)(n+2). This reduces the problem of computing periods of top forms over
Pn+1 with respect to the cover Uf , to forms

(8)
PβΩ

fα0
0 · · · fαn+1

n+1

∈ Hn+1(Uf ,Ω
n+1
Pn+1),

with α0, . . . , αn+1 ∈ Z such that α0 + · · ·+ αn+1 = n+ 2 and deg(Pβ) = (l − 1)(n+ 2). If some
αi is non-positive, (8) represents an exact top form of Pn+1. Therefore, the following are the
forms which may have non-trivial periods

QΩ

f0 · · · fn+1
∈ Hn+1(Uf ,Ω

n+1
Pn+1),

with deg(Q) = (l − 1)(n + 2).
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In order to compute periods of complete intersection algebraic cycles, we will compute periods
of smooth hyperplane sections of a given projective smooth variety X (by hyperplane section,
we mean that in some projective embedding it corresponds to the intersection of a hyperplane
with X). In fact, for Y →֒ X a smooth hypersurface given by {F = 0}, we will give an explicit
description of the isomorphism

Hn(Y,Ωn
Y ) ≃ Hn+1(X,Ωn+1

X ),

ω 7→ ω̃

together with the relation between periods, i.e. the number a ∈ C such that

∫

X

ω̃ = a

∫

Y

ω.

For this purpose recall the long exact sequence

· · · → Hk+1
dR (X) → Hk+1

dR (U)
res−−→ Hk

dR(Y )
τ−→ Hk+2

dR (X) → · · · ,

induced by Poincaré residue sequence

0 → Ω•
X → Ω•

X(log Y )
res−−→ j∗Ω

•−1
Y → 0.

Since H2n+1
dR (U) = H2n+2

dR (U) = 0, the coboundary map is an isomorphism

H2n
dR(Y )

τ≃ H2n+2
dR (X).

Noting that these vector spaces are one dimensional, and that τ induces an isomorphism of
Hodge structures of weight (1, 1) (since it is nothing else than the wedge product with the
cohomological class of Y inside X, i.e. its first Chern class), we obtain the desired isomorphism

(9) Hn(Y,Ωn
Y )

τ≃ Hn+1(X,Ωn+1
X ).

Proposition 4.4 (Coboundary map (9) and periods). Let X ⊆ PN be a smooth complete
intersection of dimension n + 1, and Y ⊆ X a smooth hypersurface given by {F = 0} ∩ X,
for some homogeneous F ∈ C[x0, . . . , xN ]d. Let U be an affine open cover of X and let ω ∈
Hn(U|Y ,Ωn

Y ). Take any ω ∈ Cn(U ,Ωn+1
X (log Y )) such that res(ω) = ω. Define

ω̃ := δ(ω) ∈ Cn+1(U ,Ωn+1
X ),

where δ is the Čech differential. Then ω̃ ∈ Hn+1(X,Ωn+1
X ) and

(10)

∫

X

ω̃ = 2π
√
−1

∫

Y

ω.

Proof The map defined in the statement of the proposition is the coboundary map τ , i.e.
τ(ω) = ω̃. It is known that the long exact sequence associated to the Poincaré residue sequence
corresponds to the Thom-Gysin sequence and so τ corresponds to ω̃ = ω ∧ [Y ]. Therefore (10)
corresponds to Poincaré duality.
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5 Proof of Theorem 1.2

Let X ⊆ Pn+1 be a smooth degree d hypersurface of even dimension n. Given the complete
intersection Z ⊆ X of dimension n

2 , we construct a chain of subvarieties

Z = Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆ Zn
2
+1 = Pn+1,

where each Zi is the intersection of Zi+1 with a very ample divisor of Pn+1. In order to prove
Theorem 1.2, we will apply inductively the coboundary map, to reduce the computation of the
period of Z to the computation of a period of Pn+1.

Proposition 5.1. Both sides of the periods equation (1) depend continuously on the parameters

(f1, g1, . . . , fn
2
+1, gn

2
+1) ∈

⊕n
2
+1

i=1 C[x0, . . . , xn+1]di ⊕ C[x0, . . . , xn+1]d−di , such that F := f1g1 +
· · ·+ fn

2
+1gn

2
+1.

Proof Consider

U :=



(f1, g1, . . . , fn

2
+1, gn

2
+1) ∈

n
2
+1⊕

i=1

C[x]di ⊕ C[x]d−di :

X := {f1g1 + · · ·+ fn
2
+1gn

2
+1 = 0} is smooth and

Z := {f1 = f2 = · · · = fn
2
+1 = 0} is a complete intersection

}
.

Let σ := (d − 2)(n2 + 1) and fix any P ∈ C[x]σ. For (f1, g1, . . . , fn
2
+1, gn

2
+1) ∈ U , we know

that the Jacobian ideal JF := 〈 ∂F
∂x0

, . . . , ∂F
∂xn+1

〉 (where F := f1g1 + · · · + fn
2
+1gn

2
+1 ∈ C[x]d) is

Artinian Gorenstein of soc(JF ) = 2σ, and that det(Hess(F )) ∈ C[x]2σ \ JF
2σ (by Corollary 4.2).

Therefore there exists a unique number c ∈ C such that

P · det(Jac(f1, g1, . . . , fn
2
+1, gn

2
+1)) ≡ c · det(Hess(F )) (mod JF ).

We claim that this number c depends continuously on

λ := (f1, g1, . . . , fn
2
+1, gn

2
+1) ∈ U.

In fact, consider the C-vector space V := C[x]2σ . For every λ ∈ U define the hyperplane
Vλ := JF

2σ ⊆ V , we claim that Vλ varies continuously with respect to λ in the space of hyperplanes
of V , in fact, each Vλ is generated as C-vector space by the vectors

Vλ =

〈
∂Fλ

∂xi
xI : i = 0, . . . , n+ 1, xI monomials with |I| = 2σ − d+ 1

〉
,

where Fλ := F = f1g1 + · · · + fn
2
+1gn

2
+1, and each of these vectors depend continuously on

λ ∈ U (here we are using the non-trivial fact that we know a priori that the generated spaces
are hyperplanes). In consequence, there exists a continuous map

ϕ : U → P(V ∗)

such that Vλ = Ker ϕλ. Now we can compute c in terms of continuous functions depending on
λ ∈ U as

c =
ϕλ(P · det(Jac(λ)))
ϕλ(det(Hess(Fλ)))

.
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Proposition 5.1 implies that it is enough to prove Theorem 1.2 for a general (f1, g1, . . . ,
fn

2
+1, gn

2
+1). This is why we may assume each Zl−1 is a smooth hyperplane section of Zl, for

l = 1, . . . , n2 + 1, as in the hypothesis of Proposition 4.4.

Let P ∈ C[x0, . . . , xn+1](d−2)(n
2
+1), U be the Jacobian cover of Pn+1, and

ω := ωP ∈ H
n
2 (U|X ,Ω

n
2
X),

as in (5). Using Proposition 4.4 we construct inductively

ω(0) := ω|Z ∈ H
n
2 (U|Z ,Ω

n
2
Z ) and Z0 := Z.

Then for l = 1, . . . , n2 + 1 we define

ω(l) := ω̃(l−1) ∈ H
n
2
+l(U|Zl

,Ω
n
2
+l

Zl
) and Zl := {fl+1 = · · · = fn

2
+1 = 0} ⊆ Pn+1.

Observe that Zn
2
+1 = Pn+1.

Lemma 5.2. For l ∈ {0, . . . , n2 + 1} and J = (j0, . . . , jn
2
+l), 0 ≤ j0 < · · · < jn

2
+l ≤ n+ 1,

(ω(l))J =
(−1)(

n
2 +2

2 )+j0+···+jn
2 +lPdld1 · · · dl

n
2 ! · FJ

·




l∑

m=1

(−1)m−1gm
d̂gm
d

n
2
−l∧

r=0

dxkr

l∧

t=1

dft
dt

+(−1)l

n
2
−l∑

p=0

(−1)pxkp

l∧

s=1

dgs
d

∧ d̂xkp ∧
l∧

t=1

dft
dt

+(−1)
n
2
+l

l∑

q=1

d̂gq
d

∧ dF

d

n
2
−l∧

r=0

dxkr ∧
d̂fq
dq


 ,

where K = (k0, . . . , kn
2
−l) is obtained from (0, 1, . . . , n + 1) by removing the entries of J (the

notation d̂gm
d

:= dg1
d

∧ · · · d̂gm
d

· · · ∧ dgl
d
, and analogously for d̂xkp and

d̂fq
dq

, was already set in

Notation 3.1).

Proof We proceed by induction on l:

Computing ΩJ (as in (6)) we get

(ω(0))j0···jn
2
= (ω)j0···jn

2
=

(−1)(
n
2 +2

2 )+j0+···+jn
2 P

n
2 ! · FJ




n
2∑

p=0

(−1)pxkp d̂xkp


 .

12



Assuming it is true for l, then we can take ω(l)
J ∈ C

n
2
+l(Zl+1,Ω

n
2
+l+1

Zl+1
(logZl)) given by

ω(l)
J =

(−1)(
n
2 +2

2 )+j0+···+jn
2 +lPdld1 · · · dl+1

n
2 ! · FJ · fl+1

·




l∑

m=1

(−1)m−1gm
d̂gm
d

n
2
−l∧

r=0

dxkr

l+1∧

t=1

dft
dt

+(−1)l

n
2
−l∑

p=0

(−1)pxkp

l∧

s=1

dgs
d

∧ d̂xkp ∧
l+1∧

t=1

dft
dt

+(−1)
n
2
+l

l∑

q=1

d̂gq
d

∧ dF

d

n
2
−l∧

r=0

dxkr ∧
d̂fq
dq

∧ dfl+1

dl+1

+(−1)
n
2
+l+1fl+1

l+1∑

u=1

d̂gu
d

n
2
−l∧

r=0

dxkr ∧
d̂fu
du


 .

Applying the Čech differential δ we get

ω
(l+1)
J =

(−1)(
n
2 +2

2 )+j0+···+jn
2 +l+1Pdld1 · · · dl+1

n
2 ! · FJ · fl+1

·




l∑

m=1

(−1)m−1gm
d̂gm
d

∧




n
2
+l+1∑

p=0

Fjpdxjp




n
2
−l−1∧

r=0

dxkr

l+1∧

t=1

dft
dt

+(−1)l




n
2
+l+1∑

p=0

Fjpxjp




l∧

s=1

dgs
d

n
2
−l−1∧

q=0

dxkq

l+1∧

t=1

dft
dt

+(−1)l+1

n
2
−l−1∑

p=0

(−1)pxkp

l∧

s=1

dgs
d

∧




n
2
+l+1∑

r=0

Fjrdxjr


 ∧ d̂xkp

l+1∧

t=1

dft
dt

+(−1)
n
2
+l

l∑

q=1

d̂gq
d

∧ dF

d
∧




n
2
+l+1∑

p=0

Fjpdxjp




n
2
−l−1∧

r=0

dxkr ∧
d̂fq
dq

∧ dfl+1

dl+1

+(−1)
n
2
+l+1fl+1

l+1∑

u=1

d̂gu
d

∧




n
2
+l+1∑

p=0

Fjpdxjp




n
2
−l−1∧

r=0

dxkr ∧
d̂fu
du



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=
(−1)(

n
2 +2

2 )+j0+···+jn
2 +l+1Pdl+1d1 · · · dl+1

n
2 ! · FJ · fl+1

·




l∑

m=1

(−1)m−1gm
d̂gm
d

∧ dF

d

n
2
−l−1∧

r=0

dxkr

l+1∧

t=1

dft
dt

+(−1)lF
l∧

s=1

dgs
d

n
2
−l−1∧

q=0

dxkq

l+1∧

t=1

dft
dt

+(−1)l+1

n
2
−l−1∑

p=0

(−1)pxkp

l∧

s=1

dgs
d

∧ dF

d
∧ d̂xkp

l+1∧

t=1

dft
dt

+(−1)
n
2
+l

l∑

q=1

d̂gq
d

∧ dF

d
∧ dF

d

n
2
−l−1∧

r=0

dxkr ∧
d̂fq
dq

∧ dfl+1

dl+1

+(−1)
n
2
+l+1fl+1

l+1∑

u=1

d̂gu
d

∧ dF

d

n
2
−l−1∧

r=0

dxkr ∧
d̂fu
du


 .

Replacing F = f1g1+ · · ·+ fn
2
+1gn

2
+1 in the first three sums above we obtain the claimed equal-

ity.

Proof of Theorem 1.2 Let P ∈ C[x0, . . . , xn+1] be an homogeneous polynomial of degree
σ = (d− 2)(n2 + 1), and let

ω = ωP = res

(
PΩ

F
n
2
+1

)
.

In order to compute the period of ω over the complete intersection cycle

Z = {f1 = · · · = fn
2
+1 = 0} ⊆ Pn+1,

we apply Proposition 4.4 several times. Recall that by Proposition 5.1 we can reduce ourselves
to a general choice of polynomials f1, . . . , fn

2
+1, and so we can assume each

Zl := {fl+1 = · · · = fn
2
+1 = 0} ⊆ Pn+1

is a smooth hypersurface of Zl+1, for each l = 0, . . . , n2 . The result of this iterative application
of Proposition 4.4 was computed in Lemma 5.2. It follows that for l = n

2 + 1 we have

(ω(n
2
+1))0···n+1 =

(−1)(
n
2 +1

2 )Pd
n
2
+1d1 · · · dn

2
+1

n
2 ! · F0 · · ·Fn+1




n
2
+1∑

m=1

(−1)m−1gm
d̂gm
d

n
2
+1∧

t=1

dft
dt

+(−1)n+1

n
2
+1∑

q=1

d̂gq
d

∧ dF

d
∧ d̂fq

dq


 .
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Replacing F = f1g1 + · · ·+ fn
2
+1gn

2
+1 on the above equation we obtain

(ω(n
2
+1))0···n+1 =

(−1)(
n
2 +1

2 )Pd
n
2
+1d1 · · · dn

2
+1

n
2 ! · F0 · · ·Fn+1

·




n
2
+1∑

m=1

(−1)m−1

(
d− dm

d

)
gm

d̂gm
d

n
2
+1∧

t=1

dft
dt

+(−1)
n
2

n
2
+1∑

q=1

(−1)qfq

n
2
+1∧

s=1

dgs
d

∧ d̂fq
dq


 .

=
(−1)(

n+2
2 )Pe0 · · · en+1

n
2 ! · F0 · · ·Fn+1

n+1∑

k=0

(−1)khk
d̂hk
ek

,

where ek = deg(hk). Replacing eihi =
n+1∑

j=0

∂hi
∂xj

· xj and dhi =
n+1∑

j=0

∂hi
∂xj

dxj we get

(ω(n
2
+1))0···n+1 =

(−1)
n
2
+1P · det(Jac(H))

n
2 ! · F0 · · ·Fn+1

n+1∑

k=0

(−1)kxkd̂xk.

Corollary 4.2 tells us what is the period of ω(n
2
+1) above, and Proposition 4.4 tells how to obtain

the period of ω from this period. Putting all together we get the desired result.

6 Proof of Theorem 1.1

After Griffiths basis theorem we know that

(11) [Z] = (ωPZ
)
n
2
,n
2 + αθ

n
2 ∈ H

n
2
,n
2 (X)

for some α ∈ C and some PZ ∈ C[x0, . . . , xn+1](d−2)(n
2
+1). In order to compute α let us integrate

the polarization θ
n
2 over Z

deg(Z) =
1

(2π
√
−1)

n
2

∫

Z

θ
n
2 =

1

(2π
√
−1)n

∫

X

θ
n
2 ∧ αθ

n
2 = α · deg(X),

and so α = deg(Z)
deg(X) . We will need the following fact whose proof was essentially done in the proof

of [CG80, Theorem 2].

Proposition 6.1. Let X ⊆ Pn+1 be a smooth degree d hypersurface of even dimension n. Let
P,Q ∈ C[x0, . . . , xn+1](d−2)(n

2
+1), then

∫

X

ωP ∧ ωQ =
−(2π

√
−1)n

(n2 !)
2

c · (d− 1)n+2d,

where c ∈ C is the unique number such that

PQ ≡ c · det(Hess(F )) (mod JF ).

Proof Let U be the Jacobian covering of Pn+1. By (5) we know explicitly how (ωP )
n
2
,n
2

and (ωQ)
n
2
,n
2 look like in the Čech cohomology group H

n
2 (U ,Ω

n
2
X). Then we can also compute
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(ωP ∧ ωQ)
n,n ∈ Hn(U ,Ωn

X) by performing the twisted product

((ωP )
n
2
,n
2 ∧ (ωQ)

n
2
,n
2 )0···m̂···n+1 =





(−1)
n
2 +m

PQxmΩ(n2 +1)Fm

(n
2
!)2F0···Fn+1·Fn

2 +1
if m ≤ n

2

(−1)
n
2 +m

PQxmΩ(n2 )Fm

(n
2
!)2F0···Fn+1·Fn

2

if m > n
2

where Ω(i) = ι ∂
∂xi

(Ω) for i = n
2 ,

n
2 + 1. A direct application of Proposition 4.4 gives us

∫

Pn+1

ω̃ = 2π
√
−1

∫

X

ωP ∧ ωQ,

for

ω̃ =
d · (−1)

n
2 PQΩ

(n2 !)
2F0 · · ·Fn+1

∈ Cn+1(U ,Ωn+1
Pn+1).

The result follows from Corollary 4.2.

Proof of Theorem 1.1 Let RZ :=
−n

2
!

deg(X) det(Jac(H)) ∈ C[x0, . . . , xn+1](d−2)(n
2
+1), we claim

that PZ = RZ (where PZ is given by (11)). In fact, since the wedge product on Hn
dR(X)prim is

not degenerated it is enough to check that

1

(2π
√
−1)

n
2

∫

Z

ωP =
1

(2π
√
−1)n

∫

X

ωPZ
∧ ωP =

1

(2π
√
−1)n

∫

X

ωRZ
∧ ωP ,

∀P ∈ C[x0, . . . , xn+1](d−2)(n
2
+1), which follows from Theorem 1.2 and Proposition 6.1.

7 Hodge locus

Before going to the applications of Theorem 1.1 and Theorem 1.2, let us recall the Hodge locus
associated to a Hodge cycle inside a smooth degree d hypersurface of the projective space Pn+1,
of even dimension n.

Definition 7.1. Let π : X → T be the family of smooth degree d hypersurfaces of Pn+1, of even
dimension n. Fix a parameter 0 ∈ T , and a Hodge cycle λ0 ∈ Hn(X0,Z) ∩H

n
2
,n
2 (X0). Since π

is a locally trivial fibration, we can extend λ0 to a polydisc around 0 ∈ T by parallel transport.
If we denote this extension by λt ∈ Hn(Xt,Z), the Hodge locus associated to λ0 is

Vλ0 := {t ∈ (T, 0) : λt ∈ Hn(Xt,Z) ∩H
n
2
,n
2 (Xt)},

where (T, 0) denotes the germ of neighbourhoods of 0 ∈ T in the analytic topology. Consid-
ering ω1, . . . , ωk ∈ Hn

dR(X/T ) such that they form a basis for F
n
2
+1Hn

dR(Xt) for every t in a
neighbourhood of 0 ∈ T , we can induce an structure of analytic space in the Hodge locus as

OVλ0
=

O(T,0)

〈f1, . . . , fk〉
,

where λt =
∑k

i=1 fi(t)ωi(t) for every t ∈ (T, 0). This structure might be non-reduced, see for
instance [Voi03, page 154, Exercise 2].

We will end this section with a restatement of a well known fact relating periods of a Hodge
cycle, to the Zariski tangent space of its associated Hodge locus.

16



Proposition 7.1. Let T ⊆ C[x0, . . . , xn+1]d be the parameter space of smooth degree d hypersur-
faces of Pn+1, of even dimension n. For t ∈ T , let Xt = {F = 0} ⊆ Pn+1 be the corresponding
hypersurface. For every Hodge cycle λ ∈ Hn(Xt,Z) ∩ H

n
2
,n
2 (Xt), we can compute the Zariski

tangent space of its associated Hodge locus Vλ as

TtVλ =

{
P ∈ C[x0, . . . , xn+1]d :

∫

δ

res

(
PQΩ

F
n
2
+1

)
= 0,∀Q ∈ C[x0, . . . , xn+1]dn

2
−n−2

}
,

where δ ∈ Hn(Xt,Z) is the dual of λ ∈ Hn(Xt,Z) (note that Hn(Xt,Z) is free).

Proof We know from Voisin [Voi03, Lemma 5.16], that

TtVλ = Ker ∇t(λt),

where ∇t is induced by the infinitesimal variations of Hodge structures. This map is well known
in the case of hypersurfaces and corresponds with

∇t : H
n
2
,n
2 (Xt)× TtT → H

n
2
−1,n

2
+1(Xt)

∗,

given by the multiplication map (see [Voi03, Theorem 6.17])

(∇t(λt, P ))(res

(
QΩ

F
n
2

)
) =

∫

δ

res

(
PQΩ

F
n
2
+1

)
.

Note that we have identified P ∈ C[x0, . . . , xn+1]d ≃ TtT .

8 First applications

Definition 8.1. We will say that an algebraic cycle δ ∈ CHn(X) is of complete intersection
type if

δ =
k∑

i=1

ni · Zi,

for Z1, . . . , Zk ⊆ X a set of n
2 -dimensional subvarieties that are complete intersection inside

Pn+1, given by
Zi = {fi,1 = · · · = fi,n

2
+1 = 0},

for every i = 1, . . . , k, such that there exist gi,1, . . . , gi,k ∈ C[x0, . . . , xn+1] with

F =

n
2
+1∑

j=1

fi,jgi,j.

We denote this subspace by CHn(X)cit. For every δ ∈ CHn(X)cit, we define its associated
polynomial

Pδ :=

k∑

i=1

ni · det(Jac(Hi)) ∈ RF
(d−2)(n

2
+1),

where Hi := (fi,1, gi,1, . . . , fi,n
2
+1, gi,n

2
+1). We define its degree as its degree as an element of

Hn(Pn+1,Z), i.e. deg(δ) :=
∑k

i=1 ni · deg(Zi). It follows from Theorem 1.1 and the linearity of
the cycle class map that

(12) [δ] =
deg(δ)

deg(X)
θ

n
2 −

n
2 !

deg(X)
(ωPδ

)
n
2
,n
2 .
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Corollary 8.1. Let X ⊆ Pn+1 be a smooth hypersurface given by

X = {F = 0}.

If δ, µ ∈ CHn(X)cit are complete intersection type algebraic cycles, then

(i) Pδ ∈ JF if and only if [δ] = α · [X ∩ P
n
2
+1], for α = deg(δ)/deg(X).

(ii) Let c ∈ C be the unique number such that Pδ · Pµ ≡ c · det(Hess(F )) (mod JF ), then

(13) δ · µ =
deg(δ) · deg(µ)

deg(X)
− c · (deg(X) − 1)n+2

deg(X)
.

Proof The first part is a direct application of Griffiths basis theorem and (12). The second
part is a direct application of the fact

δ · µ =
1

(2π
√
−1)n

∫

X

[δ] ∧ [µ],

together with equation (12), Corollary 4.2 and Proposition 6.1.

Remark 8.1. It follows from (13) that for every pair of algebraic cycles δ, µ ∈ CH
n
2 (X), the

unique number c ∈ C such that Pδ ·Pµ ≡ c ·det(Hess(F )) (mod JF ) is in fact a rational number
such that

c · (d− 1)n+2 ∈ Z and c · (d− 1)n+2 ≡ deg(δ) · deg(µ) (mod d).

In general, it is not known how to determine whether a given element of Griffiths basis (ωP )
n
2
,n
2 ∈

H
n
2
,n
2 (X) is an integral or rational class in terms of the polynomial P ∈ C[x0, . . . , xn+1](d−2)(n

2
+1).

Equation (13) gives us a (computable) necessary condition: If (ωP )
n
2
,n
2 ∈ H

n
2
,n
2 (X) ∩Hn(X,Z)

then for every complete intersection type algebraic cycle δ ∈ CH
n
2 (X)cit

(14) P · Pδ ≡ c · det(Hess(F )) (mod JF ),

for some c ∈ Q such that c · (d− 1)n+2 ∈ n
2 !Z. A further condition that follows from Proposition

6.1 is

(15) P 2 ≡ cP · det(Hess(F )) (mod JF ),

for some cP ∈ Q such that cP (d− 1)n+2d ∈ (n2 !)
2Z.

Remark 8.2. Another observation we can derive from Theorem 1.2 is that each period is of
the form (2π

√
−1)

n
2 times an element from a number field k, where k is the smallest number

field containing the coefficients of f1, g1, . . . , fn
2
+1, gn

2
+1, i.e. the periods belong to the same field

where we can decompose F as f1g1 + · · ·+ fn
2
+1gn

2
+1. This was already mentioned in Deligne’s

work about absolute Hodge cycles (see [Del82, Proposition 7.1]).

One of the main ingredients of the proof of Theorem 1.3 is the description of the Zariski
tangent space of the Hodge locus V[δ] as the degree d part of the quotient ideal (JF : Pδ).

Corollary 8.2. Let T be the parameter space of smooth degree d hypersurfaces of Pn+1, of even
dimension n. For t ∈ T , let Xt = {F = 0} ⊆ Pn+1 be the corresponding hypersurface. If
δ ∈ CHn(Xt)cit is a complete intersection type algebraic cycle, then

TtV[δ] = (JF : Pδ)d.

18



Proof By Proposition 7.1 and Theorem 1.2 we have

TtV[δ] = {P ∈ C[x0, . . . , xn+1]d : P ·Q · Pδ ∈ JF ,∀Q ∈ C[x0, . . . , xn+1]dn
2
−n−2}.

By item (ii) of Macaulay’s Theorem 2.1 applied to the Jacobian ring RF , we conclude

TtV[δ] = {P ∈ C[x0, . . . , xn+1]d : P · Pδ ∈ JF} = (JF : Pδ)d.

In order to prove Theorem 1.3 we will use Corollary 8.2 for t = 0 ∈ T corresponding to the
Fermat variety, and δ = P

n
2 ∈ CHn(X0) a linear cycle inside it.

Corollary 8.3. Let
X = {xd0 + · · ·+ xdn+1 = 0}

be the Fermat variety. For α0, α2, . . . , αn ∈ {1, 3, . . . , 2d− 1} consider

(16) P
n
2
α := {x0 − ζα0

2d x1 = · · · = xn − ζαn

2d xn+1 = 0},

and δ := P
n
2
α . Its associated polynomial is

(17) Pδ = d
n
2
+1ζα0+···+αn

2d

n
2
+1∏

j=1

(
d−2∑

l=0

xd−2−l
2j−2 ζ

α2j−2l

2d xl2j−1

)
.

In particular

P
n
2
α · P

n
2
β =

1− (1− d)m+1

d

where m = dim P
n
2
α ∩ P

n
2
β .

Proof Computing the Jacobian matrix of H as in Theorem 1.2, we see it is diagonal by 2× 2
blocks, and each block has determinant

d(ζ
α2j−2

2d xd−1
2j−2 + xd−1

2j−1)

x2j−2 − ζ
α2j−2

2d x2j−1

,

and so (17) follows. In order to compute the intersection product apply Corollary 8.1, part (ii).
We just need to compute c ∈ C such that Pδ · Pµ ≡ c · dn+2(d − 1)n+2(x0 · · · xn+1)

d−2 (mod

〈xd−1
0 , . . . , xd−1

n+1〉), where δ = P
n
2
α and µ = P

n
2
β . It follows from (17) that

c =
ζ
(α0+β0)+···+(αn+βn)
2d

(d− 1)n+2

n
2
+1∏

j=1

(
d−2∑

l=0

ζ
α2j−2l+β2j−2(d−2−l)
2d

)
=

∏n
2
+1

j=1

(∑d−2
l=0 ζ

α2j−2(l+1)+β2j−2(d−1−l)
2d

)

(d− 1)n+2
.

For every j = 1, . . . , n2 + 1

d−2∑

l=0

ζ
α2j−2(l+1)+β2j−2(d−1−l)
2d = −

d−1∑

l=1

ζ
(α2j−2−β2j−2)l
2d =

{
1− d if α2j−2 = β2j−2,
1 if α2j−2 6= β2j−2.

Therefore c(d− 1)n+2 = (1− d)m+1 and so by (13) the result follows.
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We end this section by computing the periods of linear cycles inside Fermat varieties. This
was the main theorem in [MV18, Theorem 1]. Consider the following set

I(d−2)(n
2
+1) := {(i0, . . . , in+1) ∈ {0, . . . , d− 2}n+2 : i0 + · · ·+ in+1 = (d− 2)(

n

2
+ 1)},

we define for every i ∈ I(d−2)(n
2
+1)

ωi := res

(
xiΩ

F
n
2
+1

)
=

1
n
2 !

{
xiΩJ

FJ

}

|J |=n
2

∈ H
n
2 (X,Ω

n
2
X).

From Griffiths’ work [Gri69] we know these forms are a basis for H
n
2
,n
2 (X)prim.

Corollary 8.4 ([MV18]). Let X ⊆ Pn+1 be the degree d even dimensional Fermat variety, let
P

n
2 ⊆ X as in (16) for α0 = · · · = αn = 1, and let i ∈ I(d−2)(n

2
+1). Then

∫

P
n
2

ωi =





(2π
√
−1)

n
2

d
n
2 +1·n

2
!
ζ2d

n
2
+1+i0+i2+···+in if i2l−2 + i2l−1 = d− 2,∀l = 1, . . . , n2 + 1,

0 otherwise.

Proof By Theorem 1.2 we just need to compute c ∈ C such that

xiPδ ≡ c · dn+2(d− 1)n+2(x0 · · · xn+1)
d−2 (mod 〈xd−1

0 , . . . , xd−1
n+1〉).

By Proposition 8.3

xiPδ = d
n
2
+1ζ

n
2
+1

2d xi

n
2
+1∏

j=1

(
d−2∑

l=0

xd−2−l
2j−2 ζ l2dx

l
2j−1

)
,

≡ ci · (x0 · · · xn+1)
d−2 (mod 〈xd−1

0 , . . . , xd−1
n+1〉).

If for every j = 1, . . . , n2 + 1 there exist lj ∈ {0, . . . , d − 2} such that lj + i2j−1 = d − 2 and

d − 2 − lj + i2j−2 = d − 2, then ci = ζ
n
2
+1+l1+···+ln

2
2d . This condition is equivalent to lj = i2j−2

and i2j−2 + i2j−1 = d− 2. Otherwise ci = 0, and the result follows.

9 Proof of Theorem 1.3

Let T be the parameter space of smooth degree d hypersurfaces of Pn+1, of even dimension n.
Let 0 ∈ T be the point corresponding to the Fermat variety X0 = {xd0+ · · ·+xdn+1 = 0}. Letting

Pn−m := {xn−2m − ζ2dxn−2m+1 = · · · = xn − ζ2dxn+1 = 0},

P
n
2 := {x0 − ζ2dx1 = · · · = xn−2m−2 − ζ2dxn−2m−1 = 0} ∩ Pn−m,

P̌
n
2 := {x0 − ζα0

2d x1 = · · · = xn−2m−2 − ζ
αn−2m−2

2d xn−2m−1 = 0} ∩ Pn−m,

where α0, α2, . . . , αn−2m−2 ∈ {3, . . . , 2d− 1}. Then

Pm := P
n
2 ∩ P̌

n
2 = {x0 = x1 = · · · = xn−2m−1 = 0} ∩ Pn−m.

The following result is due to Movasati [Mov17a, Propositions 17.9 and 17.9].

Proposition 9.1. dim V
[P

n
2 ]

∩ V
[P̌

n
2 ]

= dim T0V[P
n
2 ]

∩ T0V[P̌
n
2 ]
.
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Movasati’s proof of Proposition 9.1 consists in computing explicitly both sides of the equality.
Since variational Hodge conjecture holds for linear cycles (see [Dan17], [Mov17b], or [MV18]),
V
[P

n
2 ]

∩ V
[P̌

n
2 ]

corresponds to the locus of hypersurfaces containing two linear cycles intersecting

each other in am dimensional linear subvariety. Knowing this, it is easy to compute its dimension
as a fibration over the incidence variety of pairs of n

2 -dimensional linear subvarieties of Pn+1

intersecting each other in a m-dimensional linear subvariety. In fact, (this computation can be
found in [Mov17a, Proposition 17.9])

(18) Codim V
[P

n
2 ]

∩ V
[P̌

n
2 ]

= 2

(n
2 + d

d

)
− 2(

n

2
+ 1)2 −

(
m+ d

d

)
+ (m+ 1)2.

On the other hand, it is also easy to compute the codimension of T0V[P
n
2 ]
∩T0V[P̌

n
2 ]

(see [Mov17a,

Proposition 17.8]) and coincides with (18)

Codim T0V[P
n
2 ]

∩ T0V[P̌
n
2 ]

= 2Codim T0V[P
n
2 ]

− Codim T0V[P
n
2 ]

+ T0V[P̌
n
2 ]

= 2

(
n
2 + d

d

)
− 2(

n

2
+ 1)2 −

(
m+ d

d

)
+ (m+ 1)2.

Remark 9.1. After Proposition 9.1, Theorem 1.3 is reduced to show that

T0V[P
n
2 ]

∩ T0V[P̌
n
2 ]

= T0V[δ],

if and only if m < n
2 − d

d−2 . By Corollaries 8.2 and 8.3, this is equivalent to the following
algebraic equality

(19) (JF : P1)d ∩ (JF : P2)d = (JF : P1 + P2)d.

Where P1 = R1Q, P2 = R2Q,

Q :=
∏

k≥n−2m even

(xd−1
k − (ζ2dxk+1)

d−1)

(xk − ζ2dxk+1)
,

R1 := c1 ·
∏

k<n−2m even

(xd−1
k − (ζ2dxk+1)

d−1)

(xk − ζ2dxk+1)
,

and

R2 := c2 ·
∏

k<n−2m even

(xd−1
k − (ζαk

2d xk+1)
d−1)

(xk − ζαk

2d xk+1)
,

for some c1, c2 ∈ C×.

Proof of Theorem 1.3 After Remark 9.1 we have reduced the proof to prove the equality (19).
We claim that

(20) (JF : P1)e ∩ (JF : P2)e = (JF : P1 + P2)e,

if and only if e < (d− 2)(n2 −m) or e > (d− 2)(n2 + 1). In fact, for e > (d− 2)(n2 +1) the claim
follows from the fact that (d − 2)(n2 + 1) is the socle of the three ideals appearing in (20). For
e < (d− 2)(n2 −m), consider any q ∈ (JF : P1 + P2)e. Write

q = r + s,

where r ∈ C[x0, . . . , xn−2m−1]e and s ∈ 〈xn−2m, . . . , xn+1〉e ⊆ C[x0, . . . , xn+1]e. Noting that

(JF : Q) = 〈xd−1
0 , . . . , xd−1

n−2m−1, xn−2m, . . . , xn+1〉,
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it is clear that s ∈ (JF : Pi) = ((JF : Q) : Ri) for every i = 1, 2. In consequence r ∈ ((JF : Q) :
R1 +R2). Since r · (R1 +R2) does not depend on xn−2m, . . . , xn+1 we conclude that

r ∈ (I : R1 +R2)e ⊆ C[x0, . . . , xn−2m−1]e

for I = 〈xd−1
0 , . . . , xd−1

n−2m−1〉. Using Proposition 2.2 for r = n
2 −m, we conclude that r ∈ (I : Ri)e

for i = 1, 2, and so q ∈ (JF : Pi)e for i = 1, 2 as claimed.
Finally, if (d− 2)(n2 −m) ≤ e ≤ (d− 2)(n2 +1), we know from Proposition 2.2 for r = n

2 −m,
that there exist some p ∈ C[x0, . . . , xn−2m] such that

p ∈ (JF : R1 +R2)(d−2)(n
2
−m) \ (JF : R1)(d−2)(n

2
−m),

and so
p ∈ (JF : P1 + P2)(d−2)(n

2
−m) \ (JF : P1)(d−2)(n

2
−m).

Since (JF : P1) is Artinian Gorenstein with socle (d − 2)(n2 + 1), we conclude that there exist
some q ∈ C[x0, . . . , xn+1]e−(d−2)(n

2
−m) such that

pq ∈ (JF : P1 + P2)e \ (JF : P1)e,

as desired.

10 Proof of Theorem 1.4

Let π : X → T be the family of smooth degree d hypersurfaces of Pn+1, of even dimension n.
Consider

Wm := {t ∈ T : Xt contains two linear cycles P
n
2 , P̌

n
2 with P

n
2 ∩ P̌

n
2 = Pm}.

Let H be the incidence variety (between elements of the Hilbert scheme) parametrizing triples
(Xt,P

n
2 , P̌

n
2 ), where Xt is a smooth degree d hypersurface of Pn+1 containing two linear subva-

rieties P
n
2 , P̌

n
2 ⊆ Xt such that P

n
2 ∩ P̌

n
2 = Pm. Consider the map

Φ : H → HomC(C[x0, . . . , xn+1]d,C[x0, . . . , xn+1]
∗
dn

2
−n−2),

given by

Φ(Xt,P
n
2 , P̌

n
2 ) =

[∫

a·P
n
2 +b·P̌

n
2

res

(
PQΩ

F
n
2
+1

)]

P,Q

.

This map is regular (by [CDK95] or by Theorem 1.2), hence it is continuous in the Zariski
topology of H . By Proposition 7.1 we already know that

TtVa[P
n
2 ]+b[P̌

n
2 ]

= Ker Φ(Xt,P
n
2 , P̌

n
2 ).

This implies that each subset of H where Ker Φ has constant dimension is a locally closed
subset in Zariski topology. Theorem 1.3 implies that

dim H = dim T0Va[P
n
2 ]+b[P̌

n
2 ]
.

Therefore, the point (X0,P
n
2 , P̌

n
2 ) corresponding to the Fermat variety together with its two

linear subvarieties, is a smooth point of H . Furthermore Ker Φ has constant dimension in a
polydisc around (X0,P

n
2 , P̌

n
2 ) ∈ H , hence the same holds in a Zariski neighbourhood of this

point. Therefore
dim H = dim TtVa[P

n
2 ]+b[P̌

n
2 ]

∀t ∈ U,

for U a Zariski open set of Wm (not necessarily a neighbourhood of the Fermat variety), and
variational Hodge conjecture holds for [δ] = a[P

n
2 ] + b[P̌

n
2 ] ∈ Hn(Xt,Z) ∩H

n
2
,n
2 (Xt) and t ∈ U .
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11 Final remarks

Considering [δ] = a[P
n
2 ] + b[P̌

n
2 ] ∈ Hn(X0,Z) ∩ H

n
2
,n
2 (X0), we can ask if this Hodge cycle

satisfies variational Hodge conjecture for the cases not covered by Theorem 1.3. The remaining
open cases are the following: (d,m) = (3, n2 − 3), (3, n

2 − 2), (4, n2 − 2) and m = n
2 − 1 with

a 6= b. Note that the cases m = n
2 − 1 with a = b, and m = n

2 are both complete intersection
algebraic cycles, where variational Hodge conjecture holds by [Dan17]. It would be interesting
to determine whether for the remaining cases the corresponding Hodge locus V[δ] is smooth
and reduced. This problem has been considered by Movasati for small degree and dimension in
[Mov17a, Chapter 18]. After knowing all the periods of the linear cycles inside Fermat, Movasati
was able to compute higher order approximations of the Hodge locus. Using them, he proves
in several cases (see [Mov17a, Theorem 18.3]) that V[δ] is not smooth and reduced (explaining
the difference between the tangent spaces of V[δ] and V

[P
n
2 ]

∩ V
[P̌

n
2 ]

in Theorem 1.3). On the

other hand he also provides interesting examples, such as (n, d,m, a, b) = (6, 3, 1, 1,−1) and
(n, d,m) = (6, 3, 0) (see [Mov17a, Theorem 18.2]), where V[δ] is possibly smooth and reduced.
In such cases V[δ] must be strictly bigger than V

[P
n
2 ]

∩ V
[P̌

n
2 ]
, and it would be very interesting

to study this phenomenon, and determine if it is due to the existence of some new algebraic
cycle (with cohomological class having the same primitive part as [δ]) with a larger deformation
space.
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