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Abstract

This paper proves the existence of optimal stopping times via elemen-

tary functional analytic arguments. The problem is first relaxed into a

convex optimization problem over a closed convex subset of the unit ball

of the dual of a Banach space. The existence of optimal solutions then

follows from the Banach–Alaoglu compactness theorem and the Krein–

Millman theorem on extreme points of convex sets. This approach seems

to give the most general existence results known to date. Applying con-

vex duality to the relaxed problem gives a dual problem and optimality

conditions in terms of martingales that dominate the reward process.
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1 Introduction

Given a complete filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the
usual hypotheses, let R be an optional process of class (D), and consider the
optimal stopping problem

maximize ERτ over τ ∈ T , (OS)

where T is the set of stopping times with values in [0, T ]∪{T+} and R is defined
to be zero on T+. We allow T to be ∞ in which case [0, T ] is interpreted as the
one-point compactification of the positive reals.

Without further conditions, optimal stopping times need not exist (take any
deterministic process R whose supremum is not attained). Theorem II.2 of
Bismut and Skalli [6] establishes the existence for bounded reward processes R

such that R ≥
�

R and
�

R ≤ pR. Here,

�

Rt := lim sup
sր t

Rs and
�

Rt := lim sup
sց t

Rs,

the left- and right-upper semicontinuous regularizations of R, respectively. Bis-
mut and Skalli mention on page 301 that, instead of boundedness, it would
suffice to assume that R is of class (D).
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In order to extend the above, we study the “optimal quasi-stopping problem”

maximize E[Rτ +
�

Rτ̃ ] over (τ, τ̃ ) ∈ T̂ , (OQS)

where T̂ is the set of quasi-stopping times (“split stopping time” in Dellacherie
and Meyer [9]) defined by

T̂ := {(τ, τ̃) ∈ T × Tp | τ̃ > 0, τ ∨ τ̃ = T+},

where Tp is the set of predictable times. When R is cadlag,
�

R = R−, and our
formulation of the quasi-optimal stopping coincides with that of Bismut [5]. Our

main result gives the existence of optimal quasi-stopping times when R ≥
�

R.

When R ≥
�

R and
�

R ≤ pR, we obtain the existence for (OS) thus extending
the existence result of [6, Theorem II.2] to possibly unbounded processes R as
suggested already on page 301 of [6].

Our existence proofs are based on functional analytical arguments that avoid
the use of Snell envelopes which are used in most analyses of optimal stopping.
Our strategy is to first look at a convex relaxation of the problem. This turns
out be a linear optimization problem over a compact convex set of random
measures whose extremal points can be identified with (quasi-)stopping times.
As soon as the objective is upper semicontinuous on this set, Krein-Milman
theorem gives the existence of (quasi-)stopping times. Sufficient conditions for
upper semicontinuity are obtained as a simple application of the main result of
Perkkiö and Trevino [13]. The overall approach was suggested already on page
287 of Bismut [4] in the case of optimal stopping. We extended the strategy (and
provide explicit derivations) to quasi-optimal stopping for a merely right-upper
semicontinuous reward process.

The last section of the paper develops a dual problem and optimality condi-
tions for optimal (quasi-)stopping problems. The dual variables turn out to be
martingales that dominate R. As a simple consequence, we obtain the duality
result of Davis and Karatzas [8] in a more general setting where the reward
process R is merely of class (D).

2 Regular processes

In this section, the reward process R is assumed to be regular, i.e. of class (D)
such that the left-continuous version R− and the predictable projection pR of
R are indistinguishable; see e.g. [3] or [9, Remark 50.d]. Our analysis will be
based on the fact that the space of regular processes is a Banach space whose
dual can be identified with optional measures of essentially bounded variation;
see Theorem 1 below.

The space M of Radon measures may be identified with the space X0 of left-
continuous functions of bounded variation on R+ which are constant on (T,∞]
and x0 = 0. Indeed, for every x ∈ X0, there exists a unique Dx ∈ M such that
xt = Dx([0, t)) for all t ∈ R. Thus x 7→ Dx defines a linear isomorphism between
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X0 andM . The value of x for t > T will be denoted by xT+. Similarly, the space
M∞ of optional random measures with essentially bounded total variation may
be identified with the space N∞

0 of adapted processes x with x ∈ X0 almost
surely and Dx ∈ M∞.

Let C the space of continuous functions on [0, T ] equipped with the supre-
mum norm and let L1(C) be the space of (not necessarily adapted) continuous
processes y with E‖y‖ < ∞. The norm E‖y‖ makes L1(C) into a Banach space
whose dual can be identified with the space L∞(M) of random measures whose
pathwise total variation is essentially bounded. The following result is essentially
from [3]; see [11, Theorem 8] or [12, Corollary 16]. It provides the functional
analytic setting for analyzing optimal stopping with regular processes.

Theorem 1. The space R1 of regular processes equipped with the norm

‖y‖R1 := sup
τ∈T

E|yτ |

is Banach and its dual can be identified with M∞ through the bilinear form

〈y, u〉 = E

∫

ydu.

The optional projection is a continuous surjection of L1(C) to R1 and its adjoint
is the embedding of M∞ to L∞(M). The norm of R1 is equivalent to

p(y) := inf
z∈L1(C)

{E‖z‖ | oz = y}

which has the dual representation

p(y) = sup{〈y, u〉 | ess sup(‖u‖) ≤ 1}.

We first write the optimal stopping problem as

maximize 〈R,Dx〉 over x ∈ Ce,

where
Ce := {x ∈ N∞

0 |Dx ∈ M∞
+ , xt ∈ {0, 1}}.

The equation τ(ω) = inf{t ∈ R | xt(ω) ≥ 1} gives a one-to-one correspondence
between the elements of T and Ce. Consider also the convex relaxation

maximize 〈R,Dx〉 over x ∈ C, (ROS)

where
C := {x ∈ N∞

0 |Dx ∈ M∞
+ , xT+ ≤ 1}.

Clearly, Ce ⊂ C so the optimum value of optimal stopping is dominated by the
optimum value of the relaxation. The elements of C are randomized stopping
times in the sense of Baxter and Chacon [2, Section 2].

Recall that x ∈ C is an extreme point of C if it cannot be expressed as a
convex combination of two points of C different from x.
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Lemma 2. The set C is convex, σ(N∞
0 ,R1)-compact and Ce is the set of its

extreme points.

Proof. The set C is a closed convex set of the unit ball that N∞
0 has as the dual

of the Banach space R1. The compactness thus follows from Banach-Alaoglu.
It is easily shown that the elements of Ce are extreme points of C. On the other
hand, if x /∈ Ce there exists an s̄ ∈ (0, 1) such that the processes

x1
t :=

1

s̄
[xt ∧ s̄] and x2

t :=
1

1− s̄
[(xt − s̄) ∨ 0]

are different elements of C. Since x = s̄x1+(1− s̄)x2, it is not an extreme point
of C.

Since the function x 7→ 〈R,Dx〉 is continuous, the compactness of C in
Lemma 2 implies that the maximum in (ROS) is attained. The fact that the
maximum is attained at a genuine stopping time follows from the characteriza-
tion of the extreme points in Lemma 2 and the following variant of the Krein-
Millman theorem; see e.g. [7, Theorem 25.9].

Theorem 3 (Bauer’s maximum principle). In a locally convex Hausdorff topo-
logical vector space, an upper semicontinuous (usc) convex function on a com-
pact convex set K attains its maximum at an extremal point of K.

Combining Lemma 2 and Theorem 3 gives the following.

Theorem 4. Optimal stopping time in (OS) exists for every R ∈ R1.

The above seems to have been first proved in Bismut and Skalli [6, Theo-
rem I.3], which says that a stopping time defined in terms of the Snell envelope
of the regular process R is optimal. Their proof assumes bounded reward R but
they note on page 301 that it actually suffices that R be of class (D). The proof
of Bismut and Skalli builds on the (nontrivial) existence of a Snell envelope and
further limiting arguments involving sequences of stopping times. In contrast,
our proof is based on elementary functional analytic arguments in the Banach
space setting of Theorem 1, which is of independent interest.

Note that x solves the relaxed optimal stopping problem if and only if R is
normal to C at x, i.e. if R ∈ ∂δC(x) or equivalently x ∈ ∂σC(R), where

σC(R) = sup
x∈C

〈R,Dx〉.

Here, ∂ denotes the subdifferential of a function; see e.g. [15]. If R is nonnegative,
we have σC(R) = ‖R‖R1 (by Krein–Milman) and the optimal solutions of the
relaxed stopping problem are simply the subgradients of the R1-norm at R.

3 Cadlag processes

This section extends the previous section to optimal quasi-stopping problems
when the reward process R is merely cadlag and of class (D). In this case,
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optimal stopping times need not exist (see the discussion on page 1) but we will
prove the existence of a quasi-stopping time by functional analytic arguments
analogous to those in Section 2.

The Banach space of cadlag functions equipped with the supremum norm
will be denoted by D. The space of purely discontinuous Borel measures will
be denoted by M̃ . The dual of D can be identified with M × M̃ through the
bilinear form

〈y, (u, ũ)〉 :=

∫

ydu+

∫

y−dũ

and the dual norm is given by

sup
y∈D

{
∫

ydu+

∫

y−dũ

∣

∣

∣

∣

‖y‖ ≤ 1

}

= ‖u‖+ ‖ũ‖,

where ‖u‖ denotes the total variation norm on M . This can be deduced from
[14, Theorem 1] or seen as the deterministic special case of [9, Theorem VII.65]
combined with [9, Remark VII.4(a)].

The following result from [12] provides the functional analytic setting for
analyzing quasi-stopping problems with cadlag processes of class (D).

Theorem 5. The space D1 of optional cadlag processes of class (D) equipped
with the norm

‖y‖D1 := sup
τ∈T

E|yτ |

is Banach and its dual can be identified with

M̂∞ := {(u, ũ) ∈ L∞(M × M̃) | u is optional, ũ is predictable}

through the bilinear form

〈y, (u, ũ)〉 = E

[
∫

ydu+

∫

y−dũ

]

.

The optional projection is a continuous surjection of L1(D) to D1 and its adjoint
is the embedding of M̂∞ to L∞(M × M̃). The norm of D1 is equivalent to

p(y) := inf
z∈L1(D)

{E‖z‖ | oz = y},

which has the dual representation

p(y) = sup{〈y, (u, ũ)〉 | ess sup(‖u‖+ ‖ũ‖) ≤ 1}.

The space M × M̃ may be identified with the space X̂0 of (not necessarily
left-continuous) functions x : R+ → R of bounded variation which are constant
on (T,∞] and have x0 = 0. Indeed, every x ∈ X̂0 can be written uniquely as

xt = Dx([0, t)) + D̃x([0, t]),

5



where D̃x ∈ M̃ and Dx ∈ M are the measures associated with the functions
x̃t :=

∑

s≤t(xs−xs−) and x−x̃, respectively. The linear mapping x 7→ (Dx, D̃x)

defines an isomorphism between X̂0 and M × M̃ . The value of x for t > T will
be denoted by xT+. Similarly, the space M̂∞ may be identified with the space
N̂∞

0 of predictable processes x with x ∈ X̂0 almost surely and (Dx, D̃x) ∈ M̂∞.
Problem (OQS) can be written as

maximize 〈R, (Dx, D̃x)〉 over x ∈ Ĉe,

where
Ĉe := {x ∈ N̂∞

0 | (Dx, D̃x) ∈ M̂∞
+ , xt ∈ {0, 1}}.

Indeed, the equations τ(ω) = inf{t ∈ R | xt(ω) ≥ 1} and τ̃ (ω) = inf{t ∈ R |
xt − xt−(ω) ≥ 1} give a one-to-one correspondence between the elements of T̂
and Ĉe.

Consider also the convex relaxation

maximize 〈R, (Dx, D̃x)〉 over x ∈ Ĉ, (ROQS)

where
Ĉ := {x ∈ N̂∞

0 | (Dx, D̃x) ∈ M̂∞
+ , xT+ ≤ 1}.

Lemma 6. The set Ĉ is convex, σ(M̂∞,D1)-compact and the set of quasi-
stopping times Ĉe is its extreme points. Moreover, the set of stopping times is
σ(M̂∞,D1)-dense in Ĉe and, thus, C is σ(M̂∞,D1)-dense in Ĉ.

Proof. The set Ĉ is a closed convex set of the unit ball that N̂∞
0 has as the dual

of the Banach space D1. The compactness thus follows from Banach-Alaoglu.
It is easily shown that the elements of Ĉe are extreme points of Ĉ.

If x /∈ Ĉe, there exist s̄ ∈ (0, 1) such that

x1
t :=

1

s̄
[xt ∧ s̄], x2

t :=
1

1− s̄
[(xt − s̄) ∨ 0]

are distinguishable processes that belong to Ĉ. Since x = s̄x1 + (1 − s̄)x2, x is
not an extremal in Ĉ.

To prove the last claim, let (τ, τ̃ ) be a quasi-stopping time and (τν) an
announcing sequence for τ̃ . We then have

〈(δτ∧τν , 0), y〉 → 〈(δτ , δτ̃ ), y〉

for every y ∈ D1.

Just like in Section 2, a combination of Lemma 6 and Theorem 3 gives
the following existence result which was established in Bismut [5] using more
elaborate techniques based on the existence of Snell envelopes.

Theorem 7. If R ∈ D1, then optimal quasi-stopping time in (OQS) exists and
the optimal values of (OQS), (OS) and (ROQS) are all equal.
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As another implication of Lemma 6 and Theorem 5, we recover the following
result of Bismut which says that the seminorms in Theorem 5 are not just
equivalent but equal.

Theorem 8 ([3, Theorem 4]). For every y ∈ D1,

‖y‖D1 = inf
z∈L1(D)

{E‖z‖D | oz = y}.

Proof. The expression on the right is the seminorm p in Theorem 5 with the
dual representation

p(y) = p(|y|) = sup
x∈Ĉ

〈|y|, (Dx, D̃x)〉

which, by Theorem 7, equals the left side.

Combining the above with Theorem 1 gives a simple proof of the following.

Theorem 9 ([3, Theorem 3]). For every y ∈ R1,

‖y‖R1 = inf
z∈L1(C)

{E‖z‖D | oz = y}.

Proof. By Jensen’s inequality, the left side is less than the right which is the
seminorm p in Theorem 1 with the dual representation

p(y) = sup{〈y, u〉 | ess sup(‖u‖) ≤ 1}

≤ sup{〈y, (u, ũ)〉 | ess sup(‖u‖+ ‖ũ‖) ≤ 1}

= sup
x∈Ĉ

〈|y|, (Dx, D̃x)〉,

which, again by Theorem 7, equals the left side.

4 Non-cadlag processes

This section gives a further extension to cases where the reward process is not
necessarily cadlag but merely right-upper semicontinuous (right-usc) in the sense

that R ≥
�

R. In this case, the objective of the relaxed quasi-optimal stopping
problem (ROQS) need not be continuous. The following lemma says that it is,
nevertheless, upper semicontinuous, so Bauer’s maximum principle still applies.

Lemma 10. If R is right-usc and of class (D), then the functional

Ĵ (u, ũ) =

{

E
[

∫

Rdu+
∫ �

Rdũ
]

if (u, ũ) ∈ M̂∞
+

−∞ otherwise

is σ(M̂∞,D1)-usc.
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Proof. Recalling that every optional process of class (D) has a majorant in D1

(see [9, Remark 25, Appendix I]), the first example in [13, Section 8] shows,
with obvious changes of signs, that Ĵ is usc.

Combining Lemma 10 with Theorem 3 gives the existence of a relaxed quasi-
stopping time at an extreme point of C which, by Lemma 6, is a quasi-stopping
time. We thus obtain the following.

Theorem 11. If R is right-usc and of class (D), then (OQS) has a solution.

We have not been able find the above result in the literature but it can
be derived from Theorem 2.39 of El Karoui [10] on “divided stopping times”
(temps d’arret divisés). A recent analysis of divided stopping times can be found
in Bank and Besslich [1]. These works extend Bismut’s approach on optimal
quasi-stopping by dropping the assumption of right-continuity and augmenting
quasi-stopping times with a third component that acts on the right limit of the
reward process. Much like Bismut’s approach, [10, 1] build on the existence of
a Snell envelope.

Theorem 11 yields the existence of an optimal stopping time when the reward

process R is subregular in the sense that it is right-usc, of class (D) and
�

R ≤ pR.

Theorem 12. If R is subregular, then (OS) has a solution and its optimum
value equals that of (OQS).

Proof. Clearly, the optimum value of (OQS) is at least that of (OS) while for
subregular R,

E[Rτ +
�

Rτ̃ ] ≤ E[Rτ + pRτ̃ ] = E[Rτ +Rτ̃ ] = ERτ∧τ̃ ,

where the first equality holds by the definition of predictable projection. The
claim now follows from Theorem 11.

The above seems to have been first established in Bismut and Skalli [6,
Section II] for bounded R (again, they mention on page 301 that, instead of
boundedness, it would suffice to assume that R is of class (D)).

Regularity properties are preserved under compositions with convex func-
tions much like martingale properties. Indeed, if R is regular and g is a real-
valued convex function on R then g(R) is subregular as soon as it is of class
(D). Indeed, for any τ ∈ Tp, conditional Jensen’s inequality gives

E[g(
�

Rτ )1τ<+∞] = E[g(pRτ )1τ<+∞] ≤ E[g(Rτ )1τ<+∞].

Similarly, if R is subregular and g is a real-valued increasing convex function,
then g(R) is subregular as soon as the composition is of class (D).
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5 Duality

We end this paper by giving optimality conditions and a dual problem for the
optimal stopping problems. The derivations are based on the conjugate duality
framework of [15] which addresses convex optimization in general locally convex
vector spaces. The results below establish the existence of dual solutions without
assuming the existence of optimal (quasi-)stopping times. They hold without
any path properties as long as the reward process R is of class (D).

We denote the space of martingales of class (D) by R1
m.

Theorem 13. Let R be of class (D). Then the optimum values of (OQS) and
(OS) coincide and equal that of

inf{EM0 | M ∈ R1
m, R ≤ M}, (DOS)

where the infimum is attained.
Moreover, x ∈ Ĉ is optimal in the convex relaxation of (OQS) if and only if

there exists M ∈ R1
m with R ≤ M and
∫

(M −R)dx+

∫

(M− −
�

R)dx̃ = 0, (1)

xT+ = 1 or MT = 0 (2)

almost surely. Thus, (τ, τ̃ ) ∈ T̂ is optimal in (OQS) if and only if there exists

M ∈ R1
m with R ≤ M , Mτ = Rτ , Mτ̃− =

�

Rτ̃ and almost surely either τ + τ̃ <
∞+ or MT = 0.

In particular, x ∈ C is optimal in the convex relaxation of (OS) if and only
if there exists M ∈ R1

m with R ≤ M and
∫

(M −R)dx = 0,

xT+ = 1 or MT = 0

almost surely. Thus, τ ∈ T is optimal in (OS) if and only if there exists
M ∈ R1

m with R ≤ M , Mτ = Rτ and almost surely either τ < ∞+ or MT = 0.

Proof. By [9, Remark 25, Appendix I], there are measurable processes z and z̃

such that R = oz,
�

R = oz̃ and E[supt zt + supt z̃t] < ∞. The optimum value
and optimal solutions of (OQS) coincide with those of

maximize
x∈N̂∞

E
[

Ĵ (Dx, D̃x)− ρ(xT+ − 1)+
]

, (3)

where ρ := supt zt + supt z̃t + 1 and Ĵ is defined as in Lemma 10. Indeed, if
x is feasible in (3) then x̄ := x ∧ 1 is feasible in (OQS) and since x − x̄ is an
increasing process with (x − x̄)T+ = (xT+ − 1)+, we get

Ĵ (Dx̄, D̃x̄) = Ĵ (Dx, D̃x)− Ĵ (D(x − x̄), D̃(x− x̄))

≥ Ĵ (Dx, D̃x)− Eρ(xT+ − 1)+.

9



Problem (3) fits the general conjugate duality framework of [15] with U =
L∞, Y = L1 and

F (x,w) = −Ĵ (Dx, D̃x) + Eρ(xT+ + w − 1)+.

By [15, Theorem 22], w → F (0, w) is continuous on L∞ in the Mackey topology
that it has as the dual of L1. Thus, by [15, Theorem 17], the optimum value of
(3) coincides with the infimum of the dual objective

g(y) := − inf
x∈N̂∞

L(x, y),

where L(x, y) := infw∈L∞{F (x,w) − Ewy}, and moreover, the infimum of g is
attained. By the interchange rule [16, Theorem 14.60],

L(x, y) =

{

+∞ if x /∈ N̂∞
+ ,

−Ĵ (Dx, D̃x) + E [infu∈R{ρ(xT+ + u− 1)+ − uy}] otherwise

=

{

+∞ if x /∈ N̂∞
+ ,

−Ĵ (Dx, D̃x) + E
[

xT+y − y − δ[0,ρ](y)
]

otherwise.

We have

E[xT+y] = E[

∫

(y1)dx+

∫

(y1)dx̃] = 〈M, (Dx, D̃x)〉,

where M =
o
(y1) ∈ R1

m. Thus,

L(x, y) =











+∞ if x /∈ N̂∞
+ ,

−Ĵ (Dx, D̃x) + 〈M, (Dx, D̃x)〉 − EMT if x ∈ N̂∞
+ and 0 ≤ MT ≤ ρ,

−∞ otherwise.

The dual objective can be written as

g(y) =

{

EM0 if 0 ≤ MT ≤ ρ, M ≥ R and M− ≥
�

R,

+∞ otherwise.

Since M is cadlag, M− ≥
�

R holds automatically when M ≥ R. In summary,
the optimum value of (OQS) equals that of (DOS).

The dual problem of (OS) is obtained similarly by defining

F (x,w) = −J (Dx) + Eρ(xT+ + w − 1)+.

The function w → F (0, w) is again Mackey-continuous on L∞ and one finds
that the dual is again (DOS). Thus, the optimum value of (OS) equals that of
(DOS).

As to the optimality conditions, [15, Theorem 15] says that x is optimal in
(3) and y is optimal in the dual if and only if

0 ∈ ∂xL(x, y), 0 ∈ ∂y[−L](x, y).

10



The former means that x ∈ N̂∞
+ , M ≥ R and

∫

(M −R)dx = 0,

∫

(M− −
�

R)dx̃ = 0 P -a.s.

By the interchange rule for subdifferentials ([15, Theorem 21c]), the latter is
equivalent to (2).

Note that for any martingale M ∈ R1
m,

sup
τ∈T

ERτ = sup
τ∈T

E(Rτ +MT −Mτ ) ≤ E sup
t∈[0,T ]

(Rt +MT −Mt),

where the last expression is dominated by EM0 if R ≤ M . Thus,

sup
τ∈T

ERτ ≤ inf
M∈R1

m

E sup
t∈[0,T ]

(Rt +MT −Mt)

≤ inf
M∈R1

m

{E sup
t∈[0,T ]

(Rt +MT −Mt) |R ≤ M}

≤ inf
M∈R1

m

{EM0 |R ≤ M},

where, by Theorem 7, the last expression equals the first one as soon as R is of
class (D). The optimum value of the stopping problem then equals

inf
M∈R1

m

E sup
t∈[0,T ]

(Rt +MT −Mt).

This is the dual problem derived in Davis and Karatzas [8] and Rogers [17].
Note also that if Y is the Snell envelope of R (the smallest supermartingale that
dominates R), then the martingale part M in the Doob–Meyer decomposition
Y = M −A is dual optimal. These facts were obtained in [8] and [17] under the
assumptions that supt Rt is integrable.
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