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FANO DEFORMATION RIGIDITY OF RATIONAL HOMOGENEOUS SPACES OF

SUBMAXIMAL PICARD NUMBERS
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ABSTRACT. We study the question whether rational homogeneous spaces are rigid under Fano deformation.
In other words, given any smooth connected family 7 : X — Z of Fano manifolds, if one fiber is biholo-
morphic to a rational homogeneous space S, whether is m an S-fibration? The cases of Picard number
one were studied in a series of papers by J.-M. Hwang and N. Mok. For higher Picard number cases, we
notice that the Picard number of a rational homogeneous space G/P satisfies p(G/P) < rank(G). Re-
cently A. Weber and J. A. Wisniewski proved that rational homogeneous spaces G/P with Picard numbers
p(G/P) = rank(G) (i.e. complete flag manifolds) are rigid under Fano deformation. In this paper we show
that the rational homogeneous space G/P is rigid under Fano deformation, providing that G is a simple
algebraic group of type ADE, the Picard number p(G/P) = rank(G) — 1 and G/P is not biholomorphic to
F(1,2,P3) or F(1,2,Q%). The variety F(1,2,P3) is the set of flags of projective lines and planes in P2, and
F(1,2,Q%) is the set of flags of projective lines and planes in 6-dimensional smooth quadric hypersurface.
We show that F(1,2,P3) have a unique Fano degeneration, which is explicitly constructed. The structure
of possible Fano degeneration of F(1,2,Q6) is also described explicitly. To prove our rigidity result, we
firstly show that the Fano deformation rigidity of a homogeneous space of type ADE can be implied by
that property of suitable homogeneous submanifolds. Then we complete the proof via the study of Fano
deformation rigidity of rational homogeneous spaces of small Picard numbers. As a byproduct, we also
show the Fano deformation rigidity of other manifolds such as F(0,1,...,k1,k2,k2 +1,...,n — 1,P™) and
F(O,1,...,k1, ko, ka+1,...,n,Q%"F2) with 0 < k1 < ko <n — 1.
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1. INTRODUCTION

We work over the field C of complex numbers. A Fano manifold M is said to be rigid under Fano
deformation if any smooth connected family 7w : X — Z of Fano manifolds with M being a fiber must be an
M-fibration. If the fiber X, := 77 !(z) at some point z € Z is not biholomorphic to M, we say &; is a Fano
degeneration of M.

Our interest in this paper is the Fano deformation rigidity of rational homogeneous spaces. The Fano
deformation rigidity of rational homogeneous spaces of Picard number one is studied by J.-M. Hwang and
N. Mok in [5][8][9][I0]. Among the rational homogeneous spaces of Picard number one, F(1, Q%) is the only
variety that is not rigid under Fano deformation, where F(1,Q°) is the family of projective lines on a 5-
dimensional smooth quadric hypersurface. Moreover, the variety F(1,Q%) has a unique Fano degeneration,
see [14] and [7]. In particular, we have

Theorem 1.1. [5][8][9][10] Let S be a rational homogeneous space of Picard number one. If S 2 F(1,Q°),
then S is rigid under Fano deformation.

To our knowledge the first result on higher Picard number cases is due to J. A. Wisdniewski [I7].

Theorem 1.2. [I7] The variety F(1,n,C"1) is rigid under Fano deformation, where F(1,n,C"*1) is the
set of flags of 1-dimensional and n-dimensional vector subspaces in C"1,

A rational homogeneous space is denoted by G/P, where G is a semisimple algebraic group and P is a
parabolic subgroup of G. The Picard number of G/P satisfies that p(G/P) < rank(G), where rank(G) is
the dimensional of any maximal torus of G. Recently A. Weber and J. A. Wisniewski [I6] verified Fano
deformation rigidity of the cases with p(G/P) = rank(G). More precisely,

Theorem 1.3. [I6] The rational homogenous space G/B is rigid under Fano deformation, where G is a
semisimple algebraic group and B is a Borel subgroup.

Motivated by Theorem [LI] and Theorem [[.3] one naturally ask what about the intermediate cases?
A previous result of the author [I3, Theorem 1] shows that product structure is preserved under Fano
deformation. In particular, a rational homogeneous space S, satisfying S = S; x S, is rigid under Fano
deformation if and only if so are S; and S,. It reduces the problem to the case when G is simple.

Our main result is on the cases with submaximal Picard number, i.e. p(G/P) = rank(G) — 1. More
precisely, we have the following

Theorem 1.4. Let G be a simple algebraic group of type ADE and P be a parabolic subgroup of G such
that the Picard number p(G/P) = rank(G) — 1. If G/P is not biholomorphic to F(1,2,P3) or F(1,2,Q°),
then it is rigid under Fano deformation, where F(1,2,P3) (resp. F(1,2,Q5)) is the set of flags of projective
lines and planes on P (resp. a 6-dimensional smooth quadric hypersurface).

It was observed by A. Weber and J. A. Wisniewski [16] that F?(1,2;C*) is a Fano deformation of
F(1,2,P3), where F4(1,2;C*) is defined as follows.

Construction 1.5. Let w be a symplectic form on C*, i.e. w is a nondegenerate antisymmetric form on
C*. Denote by £L¥ C TP? the associated contact distribution on P? := P(C*), and write £, := TP?/L%. We
define F4(1,2;C*) :=P(L, © LY).

Indeed we can show moreover the following
Theorem 1.6. The variety F%(1,2;C*) is the unique Fano degeneration of F(1,2,P3).

We also describe the structure possible Fano degeneration of F(1,2,Q°), see Proposition ELGH

The strategy to prove Theorem [[4]is as follows. Firstly, we show that the Fano deformation rigidity of a
rational homogenous space is implied the that property of a suitable class of its homogeneous submanifolds.
Then we show the Fano deformation rigidity of these homogeneous submanifolds.

To explain the sketch, we need some convention on notations. Given a simple algebraic group G and a
Borel subgroup B. Denote by R the set of simple roots and I" the Dynkin diagram. There is a one to one
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correspondence between subsets I of R and parabolic subgroups Py containing B such that Pr = B, Py = G
and Py C Py if and only if I’ C I. There is a one to one correspondence between rational homogeneous
spaces G/Pr and marked Dynkin diagrams defined by marking nodes I in the Dynkin diagram of G. One
can see the diagrams on page Bl intuitively. The following proposition reduces the Fano deformation rigidity
of G/ Py to that property of its homogeneous submanifolds.

Proposition 1.7. Let G be a simple algebraic group of type ADE, and I be a subset of R with cardinality
|[I| > 3. Suppose that for any o # B € I, there exists a subset A C I such that a, 8 € A and the rational
homogeneous space Pp a/Pr is rigid under Fano deformation. Then G/ Pr is rigid under Fano deformation.

Note that in the proposition above the variety Pp 4/Pr is a rational homogeneous space whose Picard
number is |A| < |I| = p(G/Pr). By Proposition [T an easy analysis of marked Dynkin diagrams shows that
Theorem [[4] is a direct consequence of Theorems [T} .2 and the following

Proposition 1.8. The rational homogeneous spaces Ay/ P and Ds/Pri are rigid under Fano deformation,
where |I'| = 3 and |I"| = 4 respectively.

As an example we analysis the Fano deformation rigidity of Dy/P; with I = {aq, a3, as}. Given any two
different roots a, 8 € I, the rational homogeneous space Pp\ ¢4, gy/Pr is biholomorphic to A3/P{m’a3}, which
is rigid under Fano deformation. Hence, D,/ Py is rigid under Fano deformation.

Our argument to Fano deformation rigidity of As4/Pfa, as,a4}, Which is a special case of Proposition [
works equally well for A,,/P{a, as,a,,3 With m > 3. In other words, we have

Proposition 1.9. The rational homogeneous spaces A,/ Pia, as,a,,3 With m > 3 are rigid under Fano
deformation.

Applying Proposition [[.7, we have the following consequence.

Theorem 1.10. Let G be a simple algebraic group of type ADE, T' be the Dynkin diagram of G, and I be
a subset of the set of simple roots R. Denote by J := R\ I and & the node with three branches in T' (of type
DE). Suppose J contains no end nodes of T, the subdiagram with nodes J are connected, and there is at
most one B € J with Cartan pairing (8,a) # 0. Then the rational homogeneous space G/ Py is rigid under
Fano deformation.

If G is of type AD in Theorem [[.I0, the manifolds G/P; are exact F(0,1,... k1, ko, ko +1,...,n—1,P")
and F(O,l,...,kl,kg,kg + 1,...,7’L,Q2n+2) with 0 < k3 < ks <n—1.

Now let us explain the proof of Propositions [ and It is well-known that the local deforma-
tion rigidity of rational homogeneous spaces follows from the vanishing H'(G/Pr, Tq /p;) = 0, which is a
consequence of Borel-Weil-Bott theorem. So we only need to discuss in the following Setting [[.TT] and show
Xy = S in each corresponding case.

Setting 1.11. Let 7 : X — A 2 0 be a holomorphic map such that X; = S := G/P; for t # 0 and X is a
connected Fano manifold, where G is a connected simple algebraic group of ADE type and I C R. Here R
is the set of simple roots and we define J := R\ I.

The key point to prove Propositions 7] and [[L9is the study of symbol algebras. Given a distribution
Y on a complex manifold Y, the weak derived system V=% gives rise to a filtration V' c V"' c V=2 cC---,
where V := 0, V=1 :=V, and VF1 := V=F £ [V=1 V=F] for k > 1. In an open neighborhood of a general
point y € Y these V™*’s are subbundles of TY. The graded vector space Symby(V) = @kzlv;k/vy—’fﬂ is
a graded nilpotent Lie algebra, and called the symbol algebra of V at y.

Let g_1(S) be the sum of all G-invariant minimal distributions on S. The subscript —1 in the notation
g-1(S) comes from the grading induced by I, see Subsection 2J] There is a meromorphic distribution
g—1(X) C T™ such that its singular locus is a (possibly reducible) proper closed subvariety of Xy and its
restriction on X; with ¢ # 0 coincides with the distribution g_1(S).

It is known that Symb,(g_1(S)) = g_(I), where s is any point of S, g_(I) is the nilradical of the Lie
algebra of P;", and P, the opposite parabolic group of P;. By the works of A. Cap and H. Schichl [2] and
K. Yamaguchi [19], we can conclude the following
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Proposition 1.12. Suppose in Setting [L11l that |I| > 3 and Symb,(g—1(Xo)) = g_(I) at general points
r € Xy. Then Xy = 8.

We can complete the proof of Propositions [[.7] and by applying Proposition [[.T2 and the following

Proposition 1.13. If the manifold S in Setting [L11] is the variety G/Pr in Propositions [1.7, or .9,
then Symb,,(g—1(Xp)) = g—(I) at general points x € Xy.

To prove Proposition [[.I3] we need the algebraic and geometric feature of each situation. As an example,
we suppose S = A,/ Pa, as,a,,} 0 Setting [LTT} It can be shown that any two points in Xy can be jointed
by chains of rational curves tangent to g_1(Xp). Hence the tangent bundle T X is k-th weak derivative of
g-1(Ap) for some k. In particular, dim Symb,(g_1(Xp)) = dim Xy = dimg_(I) at a general point x € Xj.
One the other hand, if the symbol algebra Symb, (g_1(Xy)) 2 g—(I), then an easy calculation of Lie algebras
shows that dim Symb, (g_1(Xy)) < dimg_(I). The contradiction implies that Symb, (g_1(Xp)) = g—(I).

The organization of this paper is as follows. In Section 2] by studying the G-action on family of rational
curves and the G-invariant minimal distributions on S we give a characterization of g_(I), which is a
variation of Serre’s theorem on simple Lie algebras. In Section Bl we firstly study the basic properties of
Fano deformations and symbol algebras in Setting [[T1] and then prove Proposition [[12l With the help of
Proposition and the characterization of g_(I), we give the proof of Proposition [[7 in Section In
Section ] we prove the rigidity results by applying Proposition [[.7} In Subsection 1] we prove Theorems
4] and by assuming Propositions [[.§ and The proof of Proposition is given in Subsection
44l Theorem is proved in Section [43] and with the help of this theorem we prove Proposition [L.8 in
Subsection 4l Finally we analysis the possible Fano degeneration of F(1,2, Q).

2. GEOMETRY ON RATIONAL HOMOGENEOUS SPACES

2.1. Distributions and families of lines. In this subsection, we collect the geometric properties on ra-
tional homogeneous spaces, which are useful in this paper. These results are classical, and most of them are
stated without proof.

Setting 2.1. Let G be a connected semisimple algebraic group of adjoint type such that each simple factor
is of type ADE, B be a Borel subgroup, and R be the set of simple roots. Fix a subset I of R and denote
by J:= R\ I.

Denote by P := () P, where P, is the associated maximal parabolic subgroup of G which contains B.
acl

Denote by P, the opposite parabolic subgroup of Pr, and Gg := Py N P, .

Definition 2.2. Denote by g the Lie algebra of G. Let A be the set of all roots of G and h the fixed Cartan
subalgebra of g. For each nn € A, denote by g, the 1-dimensional linear subspace of g with weight 7. We can

write n = > nge, where either all n, are nonnegative integers or all n,, are nonpositive integers. Define
aER

deg;n = > no. For each k € Z denote by Ay(I) the set of elements n € A with deg;(n) = k. Equip a
acl
grading on g such that gx(I) '= € g,fork#0and go(L):=h&( @ g,). Then g becomes a graded
neAr(I) neNo(I)
Lie algebra. Moreover go, p; := €D g and p; = € gi are Lie algebras of Gy, P; and P; respectively.
k>0 k<0

When there is no confusion, we omit I in the expressions, for example gy := gi(I). In case I = R, we may
also write g_(G) := g_(R) in order to emphasize on the group G.

A rational homogeneous space can be expressed by a marked Dynkin diagram. To explain the order of
simple roots and the way to express a rational homogeneous space, we draw the marked Dynkin diagram
corresponding to G/P(q, a,} as follows, where G = A,, D, or B with n > 2, m > 4 and k = 6,7,8
respectively.
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(2.1) Ay o ° o-————o0———0
851 Q2 a3 Qy Qn—1 O
(2.2) D, ° ° o— — — —
a1 Qa2 Qs Qy Am42 Qm—1
Qm
(2.3) Ey ° -———o0——0
851 a3 4 Qk—1 Qg
Q2

Since we assume G to be of adjoint type, the restriction of Adjoint representation induces an injective
homomorphism Gy C GL(g—(I)), where g_(I) := @ g_r(I).
k>1

Notation 2.3. Given any « € R, denote by N(«) the set of simple roots that are next to « in the Dynkin
diagram T'p of G, and set Nj(a) := N(a) N J. For each subset A of R, denote by a semisimple subgroup
G 4 of G associated to the Dynkin subdiagram I" 4 of I'g.

Definition 2.4. Set S := G/P;. Given a subset A C I, denote by S4 the central fiber of ®4 : § —
G/ Pp\ a, which is a rational homogeneous space of Picard number |A|. Given any a € I, each fiber of ®* is
biholomorphic to S%, which is covered by lines under its minimal embedding. Denote by %(S) the family
of these lines (associated with ) on S. Indeed K%(S) = G/P(1un(a))\{a}> Which can be concluded from the
following commutative diagram of Tits fibrations

(2.4) G/Pron(a) = G/ P

| |

G/PuuN(e)far — G/Pn(ay-

Denote by C*(S) C P(T'S) the variety of tangent directions of K*(8S), i.e. at each point = € S,
cxS)= U BI0) c P(Tu(8)),
ceKa(s)
Denote by Z% := C(S) C P(T},S), where p is the base point of S.
Remark 2.5. Tits [15] studied diagrams in the style of ([Z4)) and he called u(ev~'(z)) the shadow of z € G/ P;.

This variety is biholomorphic to C¢(S) for = € ev™!(z) C G/P;. The notation C2(S) called the variety of
minimal rational tangents (VMRT for short) at 2 of the minimal rational component K£%(S). One could find
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more details about minimal rational components and VMRT in [6]. For more details about the properties
of those C%, one can consult [12].

The following results are straight-forward.

Lemma 2.6. (i) The group G; is the semisimple part of the reductive group Gj.
(ii) The simple factor of G is of type ADE;
(iii) There is a natural Go-action on C%, and the action is transitive.

Lemma 2.7. The tangent bundle of S is identified with G x*1 (g/pr). For each o € I there exists a unique
G-invariant holomorphic distribution

g*(8) = G x™ ((g-1(a) +p1)/p1)-
The G-invariant holomorphic distribution

g-1(8) := G < ((g-1(1) +p1)/p1)
satisfies that

g-1(8) = e*(S) =D g*(8) cTS.
acl aecl
Lemma 2.8. Take any oo € I. Then
(1) C*(8) C P(g™(9));
(2) The inclusion Z* C P(g_1()) is Go-equivariant;
(3) Z* is the unique closed Go-orbit in P(g_1(a));
(4) Z% is nondegenerate in P(g_1(c)).
(5) The G j-action on Z“ induces the isomorphism

Z°=Gy/Py,= ] Gi/Ps
BEN ()

Particularly each Zj := G;/Ps = Go/Pg is a rational homogeneous space of Picard number one, where
acl and € Nyj(a).

Remark 2.9. Given o € I and 3 € Ny(a), as in Definition [Z4] we have a family of rational curves K (Z®)
and its associated variety of tangent directions C”(Z®) on the rational homogeneous space Z“. As in
Lemma 7 we can construct the distribution g”(Z*) on Z®, which is the minimal Gy-invariant (hence G ;-

invariant) distribution associated with the root 8 € Nj(«) C J. Denote by 7" c g_1(a) the affine cone of
~a

Z® C P(g_1()). Then can define C*(S), CB(ZQ), CAB(ZQ) and g’(Z ") in an obvious way.

Notation 2.10. Write J = |J J;, which is a disjoint union such that I'j,...,I';_ are the connected
1<i<r
components of the Dynkin diagram of T";.

The following is straight-forward.

Lemma 2.11. Take any o € I, and any B € Nj(a). Then there exists a unique J; containing 5. Moreover,
B is an end verter of the Dynkin diagram T';,, and Z5 = G,/ Pp.

The following result on automorphism groups of rational homogeneous spaces is straight-forward.

Lemma 2.12. The natural homomorphism G — Aut’(S) is bijective. Take o € I and let Aut"(%a, g-1(a))
be the identity component of

Aut(Z",g-1(0)) == {p € GL(g_1(a)) | ¢ Z" = Z"}.

~

Then the natural homomorphism Gy — Auto(ia) is surjective and Aut’(Z ) = Auto(ia, g-1(a)). Take any
B € Ny(a). Then the distribution g°(Z*) on Z is Aut’(Z*)-invariant.
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Given o, B € I, k > 1 and [C®] € K%(S), we can describe the splitting type along C* =2 P! of distributions
g’(i «(S) on S. To obtain it, we need to apply Grothendiecks splitting theorem for principal bundles on P!
with reductive structure groups and associated vector bundles [3].

Proposition 2.13. (Grothendieck). Let O(1)* be the C*-principal bundle on P corresponding to the line
bundle O(1). Let L be a reductive complex Lie group. Up to conjugation, any L-principal bundle on P!
is associated to O(1)* by a group homomorphism from C* to a mazimal torus of L. If E is the coroot
of sl(2), such a group homomorphism is determined by the image of E in Y, a fivred Cartan subalgebra of
L. Given a representation of L with weights i, ..., e € h*, the associated vector bundle on P! splits as
O((E)) & - & O(ue(E)), where p;(E) denotes the value of u; on the image of E in §.

Given § € I and [C?] € K¥(S), we can identify C* with exp(sls(2))/ exp(gs @ [93, 9—3]), where slg(2) :=
03 D g—5 D [95,9-5] C g is a subalgebra isomorphic to si(2), and gg @ (g3, 9-5] = pr N slz(2) is a Borel
subalgebra. Then as a direct consequence of Proposition 213 we have the following result.

Proposition 2.14. Given o, € I, k> 1 and [C*] € K*(S), we have
i (S)loe = @ On((r,0)).
YEAR(B)
2.2. Characterization of the nilradical of a parabolic subalgebra. We want to give a description of
the algebra g_ (1) := @ g’ ,. When I = R, it is described by Serre’s theorem on semisimple Lie algebra in
k>1

the following way.

Proposition 2.15. [4, Section 18] Let R be a set of simple roots for g and choose a nonzero element
Za € §—q for each o € R. Then the subalgebra g—(R) of g is the quotient of the free Lie algebra generated
by {xo | & € R} by the relations

ad(xo) P N (2g) = 0 for all a # B € R.

Proposition 2.16. Denote by F(g_1(I)) the free graded Lie algebra generated by g_1(I). Fix an arbitrary

2 € 2" \ {0} for each v € I. Let T := Z(zq, € I) be the ideal of F(g_1(I)) generated by the following
relations:

(i) for all &/ # " € I and all (v',v") € Go - (20, 2ar) € ARYAN
(advl)_<a”’a/>+l (’UH) _ 0;
(it) for allaw € I, B € Ny(a), v € zZ \ {0}, and u € gf(?a),
(adv) =% (u) = 0.

Then g—(I) :== €D g—i is isomorphic to F(g_1(I))/Z as graded nilpotent Lie algebra. In particular, up to
i>1

isomorphism F(g_1(I))/Z(zqa, € I) is independent of the choice of those zq € zZ \ {0}.

Proof. Step 1. We will show that g_ (I) satisfies conditions (¢) and (7).

The inclusion g_(R) C p; induces a semidirect product decomposition of Lie algebra structure g_ (R) =
ng x g—(I), where ng := g_(R) Ngo(I). For each o € R we choose a nonzero element z, € g_q.

For those o € I, we write z, := x4. Since the point P(g_,) € Z% C P(g%,), we have z, € z" \ {0}. For
those f € J := R\ I, we have zg € ng. Denote by 7 : ng C go(I) — aut(g_(I)) the homomorphism induced
by the adjoint representation, and write 7z := 7w(xg) € aut(g—(I)). Then by Proposition 215, we have

(2.5) (adzar) @4 (200) = 0, for all o/ # " €1,
(2.6) (adza) " (1s(24)) =0, forallaeland B¢ 1.

Since the Lie algebra g_(I) is a Gp-module, the conclusion (Z3]) implies the condition (i) in the statement
of Proposition 2.10
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Now let us check the condition (ii). By 2.4), ns(z+) = 0 for 8 € J\ Nj(a). Now suppose that 8 € N ().
Then ng(ve) = [23,2q] is a nonzero vector in g_1(or) = >, g, Moreover, P(15(z4)) is a point in
vEA_1(a)

(Z%) C P(g-1(c)). Since g—(I) is a Gp-module, we have
(ad(¢ - za)) " (p - ng(2a)) =0 for all ¢ € Go.

Denote by Pé := P3N Gy. Then Pé 2o C Czq, and P,é ng(za) = 26

Za

J2

[Za]

~

(2“) Since ii(z ) is nondegenerate
in the subspace g7 (ia) of g_1(a), we have
ad(za) %) (u) = 0 for all u € g2 (Z").
It follows that
(ad(p - 20)) P (- u) =0 for all ¢ € Gy and all u € gfa(za).

SO

Since Z“ is Go-transitive and g#(Z ) is Go-equivariant, the condition (i) holds.

Step 2. Show that the isomorphism F(g_1(I))/Z(za,« € I) is independent of the choice of those z, €
Z"\ {0}, . .
AaNow take any z/, € Z \ {0} for each o € I. Since the inclusion Z C g_;(a) is Gp-equivariant and
Z \ {0} is a single Gy-orbit, there exists an isomorphism ¢ : g_;(a) — g_1(a) of Gp-modules sending

~

Z onto itself and ¢*(z,) = z.,. These ¢ induce an isomorphism F(g_1(I)) — F(g_1(I)) whose restriction
sending Z(zq,a € I) onto Z(z},,« € I). Hence we have an isomorphism

F(g-1(1))/Z(za, € 1) 2 F(g-1(1))/L(2zq,a € I).

Step 3. Show the isomorphism F(g_y(1))/Z = g_(I).
By Step 1 and Step 2 we can set zq =T € Z \ {0} for each a € I and get a surjective homomorphism
of Go-modules ¢ : F(g_1(I))/Z — g_(I). It should be noticed that

Fi=gol) ® (F(g-1(1))/Z) = (go(I) & F(g-1(1)))/Z, and
pr = so(D) @ 9-(I) = Paill)
i<0
are both graded Lie algebras as well as Gp-modules. Moreover, 1 induces a surjective homomorphism

between Lie algebras as well as between Go-modules: ¢ : F — p} .
Similarly as in Step 1 let ny be the Lie subalgebra of go(I) generated by those xg with 8 € J. We have

g-(R) =nyg@®g_(I) C p;, and set F :=no® (F(g_1(I))/T) C F. Then the restriction of ¢/ induces a
surjective homomorphism of Lie algebras N
P F = g_(R).
Denote by I the free graded Lie algebra generated by those z, with v € R. Let Z be the ideal of I
generated by the set

{(aday) =0 (@) |y £ 4" € R}

There is a commutative diagram of Lie algebras as follows:

F
ellx
P

We claim that 6;(Z) = 0. Equivalently we claim that for all 7/ # +” € R,
(2.7) 01 ((aday ) =" (@) = 0.
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Case 1. Suppose 7,7 € I. Recall our definition of T for z, := 24 € Z° \ {0}. Then in this case (Z1)
follows from the condition (i) of Proposition 216l

Case 2. Suppose 7' € I and v € J := R\ I. The condition (ii) of Proposition 2.T6 implies (2.7) under
the additional assumption that 4" € N;(y') by noting that 6, (z,/) € g—1(I) and 0;(z~) € ng.

Now for o' € I and 4" € J\ N;(v'), we have (y",~) = 0. The ([2.1) becomes that [0 (), 01(z)]z = 0.
The latter can be deduced from the go-action (hence the ng-action) on g_1 (7).

Case 3. Suppose 7/ € J := R\ I and 4" € I. Similarly in this case (Z7) can also be deduced from the
go-action (hence the ng-action) on g_1 (7).

Case 4. Suppose v',v"” € J := R\ I. In this case ([27)) can also be deduced from the Lie algebra structure
of ng (coming from that of go).

In summary, the claim 6;(Z) = 0 holds. Then it induces a homomorphism
51 : F/i — .%
By the construction of F , the morphism 6, is surjective. Hence 51 is surjective. By Proposition 215,

A5 induces an isomorphism 52 : I?/f >~ g_(R). Hence 1[ is an isomorphism preserving gradings, and its
restriction gives an isomorphism of graded nilpotent Lie algebras F(g_1(I))/Z = g_(I). O

3. FANO DEFORMATION OF RATIONAL HOMOGENEOUS SPACES

From now on, we study the family X over A in Setting LTIl The organization of this section is as follows.
In subsection [3I] we study the basic property of minimal rational curves and Cartier divisors on the family
X/A. In subsection B2 we study the property of symbol algebras and prove Proposition [[LT2] which is
reformulated in Proposition 319l In subsection B3] we prove Theorem [3.22] which implies Proposition [[.7]
as a corollary.

3.1. Minimal rational curves on the family. The following result is due to Wi$niewski [I8].
Proposition 3.1. [I8 Theorem 1] We can identify the Mori cones NE(X/A) = X; for allt € A.
The following is a classical result on the rational homogeneous space S := G/ P;.

Lemma 3.2. The Mori cone NE(S) is a simplicial cone generated by those R, = RT[K*(S)] with a € T

i.e. dim NE(S) equals to the cardinality of I, and NE(S) = Y. R,, where K®(S) is as in Definition 24}
ael
The set of extremal faces of NE(S) can be identified with the set of subsets of I.

As a direct consequence of Proposition 3] and Lemma [3.2] we have the following result.

Proposition-Definition 3.3. For each A C I, denote by ®4 : § — G/ Pp\ 4 the Mori contraction associated

with the estremal face Y. Ry of NE(S). We can extend it to be a relative Mori contraction 74 : X — X4,
acA
We denote by m{* := 4| x, for each t € A.

Notation 3.4. Given a subset A C I and a point z € X, denote by FIA the fiber of 74 : X — X4 passing
through =. In particular, if ¢ Xy then FA 2 S where S* is defined in Definition 241

Proposition 3.5. Take any o € I. Then F¥ = 8% for x € Xy general.

Proof. The fiber F is a smooth Fano deformation of S®. Then the conclusion follows from the Fano
deformation rigidity of S, which is obtained by J.-M. Hwang and N. Mok [, Main Theorem]. O

By Proposition Bl Proposition and intersection theory on rational homogeneous spaces, we have the
following result.

Proposition-Definition 3.6. Take any o € I. Denote by K*(X) the irreducible component of Chow(X)
extending K*(S). Take any [C] € K*(X). Then C is an irreducible and reduced rational curve on X; for a
unique t € A. If either t # 0 or [C] is general in K(Xp), then C =2 P*. Moreover, there exists a unique
LY € Pic(X/A) such that (L - KP(X)) = 6ap for all B € 1.
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Proposition 3.7. Any two points x,y € Xy can be connected by chains of elements in |J K*(AD).
acl

Proof. Consider the rational map 1 : Xy --» Z defined by equivalence relation induced by |J K%(Ap). For
acl
the existence and the property of such a rational map, see [I1, Theorem IV.4.16]. Suppose dim Z > 1. Take

a general divisor D C Z and a general point € Z \ D. Then 1~ !(z) is a closed subvariety of Xy which has
empty intersection with the indeterminant locus of 1. Thus ¢~ 1(2) N E = (), where E := ~1(D) C X} is
an effective divisor. For each x € 1~!(z) and each a € I, we have K2(Xp) # 0. By definition C¢ C ¢p~1(z2)
(hence C N E = 0) for all [CY] € K¢ (Xp). It follows that (E-K*(Xp)) = 0 for all @ € I, which implies that
E = 0. It contradicts the choice of E. Then the conclusion follows. 0

3.2. Properties of symbol algebras.

Definition 3.8. Given a distribution V on a complex manifold Y, define the weak derived system V~*
inductively by

V=0,
yli=v,
e A | A Vi Y - B

Denote by V™ := klirn V~F. There exists a positive integer d such that V=9 = Y=< for all i > 0. In
—00

particular, V=>° = V=% and it is integrable on Y. In an open neighborhood of a general point y € Y
these V™*’s are subbundles of TY. We define the symbol algebra of V at y as the graded nilpotent Lie

algebra Symb, (V) := P Vy_k/Vy_k“. We say V is bracket-generating if V=°° = TY. When V is bracket-
1<k<d
generating, dim Symb, (V) = dim 7,V = dim Y.

Notation 3.9. Take a subset A C I. The distribution

g21(S) =G x" (Z(g—l(a) +p1)/p1)

acA

on S can be extended to be a meromorphic distribution D4 on X, which is well-defined on general points of

Xp and all points of |J &;. Take a general point € Xy. Denote by m,(A) the symbol algebra of D2, i.e.
t£0

m,(A) := Symb, (D?). We say m,(A) is standard if it is isomorphic to the symbol algebra of the distribution

g4,(S) on S. Otherwise, we say m,(A) is degenerate. When A = I, we omit the superscript I and write

D := D! briefly.

Proposition 3.10. The unique integrable meromorphic distribution on Xy containing D is the tangent
bundle. Consequently, Then the distribution D is bracket-generating on Xy and dimm,(I) = dim Xy for
x € Xy general.

Proof. Let V be an integrable meromorphic distribution on Xy containing D, and M be a general leaf. Take
a € I and [C] € K¥(Xy) with C N M # . Then at a point z € C' N M we have T,,C' C D, C V,. Thus C
is contained in the analytic closure of M. By Proposition 3.7 the leaf closure of M is X, completing the
proof. O

To continue, we need to recall some concepts and results related with Cartan connections.

Definition 3.11. Fix a positive integer v. Let [ =[_1®---®[_, be a graded nilpotent Lie algebra. Denote
by grAut(l_) the group of Lie algebra automorphisms of [_ preserving the gradation and by graut(l_) its
Lie algebra. Fix a connected algebraic subgroup Ly C grAut(l_) and its Lie algebra [y C graut(l_). For
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each positive integer i, the i-th prolongation of [y is inductively defined as

bi={oetom(t, P )= ijHom([_k, Cess),

—v<j<i
Bl(vrvali) = $(vn) (1) = $(va)(vr), for any v v € L.
Here [ , ]i_ denotes the Lie bracket on [_ and, if ¢(v1) € [, then

¢(v1)(v2) := [()]

For convenience, we put [_,_; = 0 for every positive integer j and write
L=

The graded vector space
(=P
keZ
is a graded Lie algebra and called the universal prolongation of ([, [_).

The following result on prolongations is due to K. Yamaguchi [19].

Proposition 3.12. [19, Theorem 5.2] Suppose in Setting [Z1] that G is simple.
(1) Suppose G/Pr is not biholomorphic to a projective space. Then g is the universal prolongation of

(6-(1),g0(1))-

(i1) Suppose |I| > 2 and (G, I) is not one of the following:
(3.1) (A, {a1,a4}), 2<i<m;
(3.2) (A, {ai,am}), 1<i<m-—1;
Then go(I) is isomorphic to aut(g_(I)), the Lie algebra of grAut(g—_).

Definition 3.13. Let L be a connected algebraic group and L° C L be a connected algebraic subgroup.
Let I° C [ be their Lie algebras. A Cartan connection of type (L,L°) on a complex manifold M with
dimM = dim L/LY is a principal L%bundle E — M with a [-valued 1-form Y on E with the following
properties.
(i) For A € I, denote by (4 the fundamental vector field on E induced by the right L-action on E.
Then Y((4) = A for each A € [V
(ii) For a € LY, denote by R, : E — E the right action of a. Then R:Y = Ad(a=') o T for each a € L°.
(iii) The linear map Y, : T,F — [ is an isomorphism for each y € E.

The Cartan connection (E — M, YT) is flat if the curvature s := d¥ + 3[Y, Y] vanishes.

Example 3.14. Let L and L° be as in Definition B.I3 and denote by w™¢ the Maurer-Cartan form on L.
Then (L — L/L° wM) is a flat Cartan connection of type (L, LY).

Definition 3.15. Let [_ = ®;enl_j be a graded nilpotent Lie algebra with [_; = 0 for all j larger than for
a fixed positive integer v. A filtration of type [_ on a complex manifold M is a filtration (FVM,j € Z) on
M such that

(i) F*M =0 for all k > 0;
(ii) F~*M = TM for all k > v; and
(iii) for any = € M, the symbol algebra
gr, (M) =@ F, " M/F; ' M
ieN

is isomorphic to [_ as graded Lie algebras.
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The graded frame bundle of the manifold M with a filtration of type [_ is the grAut(l_)-principal bundle
grFr(M) on M whose fiber at z is the set of graded Lie algebra isomorphisms from [_ to gr,(M). Let
Ly C grAut(I_) be a connected algebraic subgroup. An Lg-structure (subordinate to the filtration) on M
means an Lo-principal subbundle E C grFr(M).

Remark 3.16. Now let us summarize the work of A. Cap and H. Schichl [2] on the construction of Cartan
connections of type (G, Pr). For more detail of our summarization, see Sections 3.20-3.23 in [2]. Let G/ Py
be as in Setting 2] and suppose that g is the universal prolongation of (g_(I),go(I)). Suppose there is a
differential system V and a principal bundle £ on a complex manifold M such that the weak derivatives of
V induces a filtration of type g_(I) and E C grFr(M) is an Go-structure on M. Then we can construct a
Cartan connection of type of (G, P;) on M. The construction is canonical in the sense that it works well
for a family, which will be explained in the proof of Proposition I8 and that the Cartan connection we
construct on G/ Py itself is (G — G/Pr,w™®).

Now we state a setting that is slightly more general than Setting [LT1]

Setting 3.17. Suppose in Setting [2.1] that G is simple and G/ P; is not biholomorphic to a projective space.
Let ¢ : Y — A 3 0 be a holomorphic map from an irreducible analytic variety ) to A such that )V, = G/ Py
for t #£ 0 and ) is an irreducible reduced projective variety.

Proposition 3.18. Suppose in Setting [3.17 that there exists a proper closed algebraic subset Z C Yy and
a holomorphic fiber bundle € — Y \ Z such that my(I) = g_(I) for allx € Yo\ Z and & — YV, \ Z is an
Go-structure for all t € A. Then Yy = G/ Pr.

Proof. By Proposition the Lie algebra g is the universal prolongation of (g_,go). By Sections 3.20 —
3.23 in [2] we can construct a Cartan connection of type (G, Pr) in the neighborhood of a general point
x € Vy. Furthermore, the construction works well for the family ) over A. In other words, there exists an
analytic open subset Y° of ), a principal P;-bundle ¥ : P — Y°, and a holomorphic 1-form w : TP — g
such that

(1) Y° D Y, for all t # 0;

(2) V§ = Y° N is an analytic open neighborhood of the general point x € Y;

(3) for each t € A (including t = 0), (¥4, w;) is a Cartan connection of type (G, Pr);
(4) for each t # 0, the Cartan connection (U, w;) is flat.

By the continuity on t € A of the curvature k; := dw; + %[wt, wt], the Cartan connection (¥g,wp) is also
flat. By [19, Corollary 5.4] the Lie algebra of infinitesimal automorphisms of )y, which preserves the symbol
algebras on )§ and the Go-structure, is isomorphic to g.

By upper semi-continuity of dim H°();, TY;), dimaut()y) > dim g, where aut())) is the Lie algebra of
automorphism group of ). Hence aut())) = g and G acts on ) with isotropy subgroup at a general point
x € Yp being conjugate to Pr. It follows that Yy = G/ P. ]

Proposition 3.19. In Setting[3.17 suppose |I| > 2 and (G, I) is neither 1)) nor B.2) listed in Proposition
[7.12. Then the followings are equivalent:

(1) Yo = G/Pr;

(17) my(I) is standard at general points x € V.
Proof. Tt is straight-forward to see (i) = (i7). Now let us prove (i) = (7). Let Y° be the open subset of Y
where the symbol algebras of D are isomorphic to g—(I). In particular, }, C Y° for all ¢ # 0 and ) is a
dense open subset of ). Denote by F a connected component of the graded frame bundle of the family )°
over A.

By Proposition the group Go = grAut’(g_(I)). Thus the Go-structure F; on Y, with ¢ # 0 is
holomorphically extended to be the Go-structure Fy on ). The conclusion follows from Proposition 318 O

The key point to obtain Yy = G/ Py in Setting BT is invariance of symbol algebras. Once this is done,
it is not hard to extend the Gy-structure E C grFr(G/Pr) holomorphically to general points on ), even in
case (3] or (32) listed in Proposition BI2 For instance we have the following result.
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Proposition 3.20. Suppose in Setting [3.17 that S = A,,/Pr and my(ai,a2) = g_(I), where m > 2,
I ={ai,as}, and x € Yy is general. Then Yo = A,/ Pr.

Proof. The distributions D* and D** are integrable on )y. Thus the isomorphism my (a1, as) = g_(I)
implies that F': D% @ D*2 — T'™ /D is surjective on the general point x € ), where F is the restriction of
the Frobenius bracket of D = D* 4+ D C T

Denote by Z C Y the set of points z such that m,(I) 22 g_(I). Then Z is a proper closed algebraic subset
of V. Take any y € Y\ Z and define &, to be the set of grading preserving isomorphisms ¢ : m,(I) — g_(I)
such that ¢(Dy?) = g—1(a;) for i = 1,2. Then & is an Go-structure on the family J \ Z over A, and the
conclusion follows from Proposition O

3.3. Reduction to homogeneous submanifolds. The following is straight-forward.
Lemma-Definition 3.21. Take o # (8 € I in Setting[Z1l Then the followings are equivalent:
(i) the manifold $*° =~ §* x §°;
(i1) the roots a and f lie in different connected components of the Dynkin diagram of G juqa,py -
If (i) and (ii) do not hold, we say (o, B) is a J-connected pair.

Our main aim in this subsection is to show that

Theorem 3.22. In Setting[I 11 suppose |I| > 3 and F*P = 8§ for any J-connected pair o # 5 € I and
general x € Xy. Then the manifold Xy = S.

As a direct consequence of Theorem [3.22] we have the following result.

Corollary 3.23. In Setting [21] suppose |I| > 2 and that for any o # B € I, there exists a subset A C I
such that a, f € A and the rational homogeneous space sS4 s rigid under Fano deformation. Then G /Py is
rigid under Fano deformation.

Proof. By Proposition [3.24] in the following, we can assume the group G is simple. Then we can discuss in
Setting [LTT} Given any subset A C I, a general fiber of 7§ : Xy — X' is a Fano deformation of S. Then
the conclusion follows from Theorem [3.22] 0

Proposition 3.24. [13] Theorem 1] Let ¢ : £ — A 2 0 be a holomorphic map with all fiber being connected
Fano manifolds. Suppose that Zy = Z§ x Z{. Then there are holomorphic maps ¢ : W' — A and
¢ W — A such that all fiber of ¢' and ¢" are connected Fano manifolds, W, = Zi, W} = Zl/, and
Z=W xaW".

Now we turn to the proof of Theorem By Proposition B9, it suffices to show that the symbol
algebra m, (1) is standard for z € X general. To verify it, we will apply Proposition [ZT6l

Lemma 3.25. In Setting [L.11] the followings hold at general points x € Xy:

(3.3) S TP =Ty C T,
acl acl
(3.4) D, =Y Dy =PD; C T,
acl acl

where the distributions D% and D are as in Notation[3.9
Proof. The relative Mori contractions 7® : X — X® and 7'M} . ¥ — XM} induce a morphism
T Xy — XS x A M
z = (), #Med (2)),

which contracts no curves. Then T, FS N T, M = {0} for a € I and = € AX), which implies (8:3). Now
B4) follows from the inclusion DY C T, FS and (B3). O

Lemma 3.26. Take o € I and x € Xy general in setting of Theorem[Z 22 Then C¥ C P(DY) is projectively
equivalent to Z* C P(g_1(c)).
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Proof. By Proposition3.A] the fiber F¢ at a general point « € Xj is biholomorphic to S*. Thus C¥ = Z«. O
Lemma 3.27. In setting of Theorem[T23, take o € I and € Nj(«) and a general point x € Xy. Then

the distribution gﬂ(/Za) is extended a holomorphic distribution DP (5;") on CY, and under the identification
7 = CS we have gﬂ(Za) =DA(C2).
Proof. 1t is a direct consequence of Lemma and Lemma O

Now we are ready to check condition (i7) of Proposition 216 while condition (7) is to be checked later.

Lemma 3.28. In setting of Theorem [3.23, take x € Xy general, and any o € I, B € Ny(a), v € 2: \ {0}
and u € gg(ZZ), we have

(3.5) (adv)™ P (u) = 0 in m,(I).
Proof. Let v € I\ {a} be any root that is J-connected with . By assumption of Theorem 322
(adv) ™% (4) = 0 in mg (e, y)
Then the inclusion D7 C D! implies that ([B35) holds. O
To check the condition () of Proposition Z16] we need to write I as a disjoint union I(j) in a special way.

Construction 3.29. Fix any element @ € I and define I(1) := {@}. Now for each j > 1 define by induction
that

Ij+1):={aecl\ U I(s) | (e, B) is J-connected for some 8 € I(j)}.

s<j

Lemma 3.30. In setting of Construction[Z29, the followings hold.
(1) The set I is the disjoint union of I(j),j > 1.
(2) Given any j > 2 with 1(j) # 0 and any o € 1(3j), there exists a unique 8 € (|J I(s)) \ {a} such that
s<j
(a0, B) is J-connected. Moreover, this unique 8 belongs to I(j —1).
(3) Given any J-connected pair («, 3), there exists a unique j > 1 such that {a, f} C I(j)UI(5 + 1).
Moreover, either « € I(j),8 € I(j+1) or e I(j),acI(j+1).

Proof. The assertion (1) holds because the Dynkin diagram I';; is connected. To prove (2), it suffices

to notice that I';y; contains no loop and each element in  |J I(s) is connected with the unique element
2<s<j
a € I(1) by the elements in J U (|J I(s)). The assertion (3) is a direct consequence of (1) and (2). O
s<J

Now we are ready to check the condition (i) of Proposition 216l in our situation.
Lemma 3.31. In setting of Theorem [T 23, take a general point x € Xy. We can define a Go-representation
on DS and fix some 0 # vy, € CS for each a € I such that for all o # o' € I and all (v',0") € Go-(var, Vo) €
7" <7,
(3.6) (adv’)~ @) = 0 in my(I).
Proof. Now we will define a G-representation on Dy and fix some 0 # v, € 5;1 foreach a € I = |J I(j)

Jjz1

and show they satisfy (B:6]) by induction on j > 1.

By our construction, I(1) = {a} consists of a unique element. Since |I| > 1, the set I(2) # 0. Fix

any 3 € I(2). By definition (@,j) is J-connected. By assumption of Theorem B22 F&# with » € Ap
general is biholomorphic to Pp\ ;5 5;/Pr. This is also biholomorphic to G ;15 51/ Pia,5y, see Notation

By Lemma T2 G ;15,5 — Aut®(F2P) is a surjective homomorphism with a finite kernel. Then we obtain

the Go(J U {a, 3}) representations on Dy and Dg on any point y € F%?, which preserves CAS‘ and (?5 Here
Go(J U{a, 3}) is the Lie subgroup of G juga,5) associated with Lie subalgebra go C Lie(G j15,5;). The
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Go(JU{@a, B}) representations induce the required Go(= Go(R)) representations on Dy and Dg respectively.
Note that Go(J U {@, 8}) is the quotient group of Go := Go(R) by some torus in the center. This torus acts
trivially on DS and DJ. Denote by

2.5 1 Go = Aut®(C2, DY) € GL(DY),
< Go— Aut®(C, DY) € GL(D)),

4

™I

4

~ T R

.

Applying Proposition B16 to F&F = PJ\{@,B}/PL we can conclude that there exists 0 # vs € C$ and
0# vz € CP such that for any (wa,ws) € Go - (va,vp) € Co x CP,

In case I(2) consists of the unique element (3, we have constructed the Go-representation for both (1)
and I(2).
Now suppose (for the moment) that |[I(2)] > 2. By Lemma ZI2 Gy — Aut’(C*) = Aut®(C%,g%,) is
surjective. Take any v € I1(2) \ {3}. Then as previous argument for (&, 3) we get Go-representations
@?@,y} : Go — Aut®(C2, DY) c GL(DY),
#lany : Go = Aut’(C), DY) C GL(DY).
There is an automorphism
$(@fy): Aut(CE, D) — Aut’(CF, DF)
such that the following diagram commutes:

1.5} 0/P8 i
Go —— Aut’(C2, DY)

\ ld)(a;ﬁ,'y)
Plav}

Aut®(C%, D).

Since G is reductive, there is an automorphism 6(a;3,v) : Gy — Go such that the following diagram
commutes

Pla}

Go —22 Aut®(C%, D2)

e(a;Bw)l /
Pla.p}

Go.

In other words, we lift the automorphism (a; 3,7) of Aut®(C%, D) to an automorphism 6(a; 3,7) of Go.
Define 7(vy) = cp?a 0 © 0(a; 3,7)" : Go — Go — Aut’(C),D)) C GL(D}) and 7(a) = Plan ©
0(a; 3,7)~!. In particular, we have 7(&) = cp?a e Applying Proposition2ZI6to F&Y = Pp\(5,4}y/Pr, we can

conclude that there exists 0 # v}, € 52‘ and 0 # v}, € ég such that for any (wa,w,) € Go - (v, v)) € CAg‘ X (:’;Z
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(under the representation ¢, _, and gp'{yaﬁ}),

(3.7) (adwa)~ T (1w,) = 0 in (@, 7),
(3.8) (adw,) @ (we) = 0 in m,(a,~).
Denote by R(a,7) := ¢(a}(Go) - ([v5], [v)]) € HE x H]. Then R(a,7) is a closed Go-orbit, and the two

prOJectlons R(a,v) = HE and R(a,vy) — 7—{7 are surjective. In particular, for the previously chosen element
0 # vg € CZ there exists 0 # vy € C2 such that ([va), [vy]) € R(&,7). Furthermore,

R(a,7) = (a1 (Go) - ([val, W) = ¢1a 3 (Go) - ([val, [vy]) € HE x HY.

Since 6 := 0(a; 8, ) is an automorphism of Gy, we know that

T(am}(Go) = ¢(a,} (071(Go)) = ¢(a .} (Go),
where 7¢5 ,1(Go) := (7(@),7(7)). It follows that
T(an}(Go) - ([val, [vy]) = ©15,71(Go) - ([val, [v4]) = R(a, 7).
Hence for all (wa, wy) € T(5,41(Go) - (va,vy) C C% x C) the formulae (37) and () hold. Then the inclusion

D*Y C D := D’ implies that for all (wa,wy) € T{a,}(Go) - (va,vy) C CaxCY,

(adwg )~ (w,)) = 0 in m, (),

(adw,) ™ @ (wg) = 0 in m,(1).

Now we have obtained Go-representations on D% and chosen 0 # v, € C* for all a € I(1) U I(2) such
that (B0 holds for J-connected pair o, a” € I(1) U I(2). Repeat the argument above, we can obtain
Ta : Go = Awt’(CS, DY) C GL(DY) and choose 0 # v, € CO for all @« € I = |J I(j) such that (3) holds

for all J-connected pair (o/,a”) € I x I. =

Now take any pair o # 8 € I x I which is not J-connected. By Lemma-Definition B21}, F# = F x FJ?
at any y € tgo X;. By Proposition 3.24]
(3.9) F&P = F® x FP at any z € X,.
Now for x € X, general, D%, D? and D, are well-extended. By ([B.9) the Levi bracket of vector fields satisfies

[Dg, D] € DY +Df C Dy,
which implies that for any (wq,wg) € Co x CP c D2 x DP
[Wa, wg] = 0 in my(I).

In summary, (36) holds for all pairs (/, ") € I x I with o/ # «”. O
Now we are ready to complete the proof of Theorem [B.22]

Proof of Theorem[3.22, Take a general point x € Xy. By Lemma and Lemma B3] the symbol algebra
m,,(I) satisfies conditions (¢) and (¢i) in Proposition 216 Then by PropositionZI6the symbol algebra m,. (1)
is a quotient algebra of g_(I). By Proposition BI0, dimm,(I) = dim g_(I), which implies m,(I) = g_(I).
Then the conclusion follows from Proposition B.19 O
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4. RIGIDITY AND DEGENERATION UNDER FANO DEFORMATION

4.1. Proof of Main results. Now we will prove Theorems [[L4] and [[L.T0l by assuming Propositions and
It is devoted to the proof of Proposition [[L.8] from next subsection until the end of the paper.

Proof of Theorem[1.j] By assumption we can write the rational homogeneous space to be S := G/ Pr\ (3,1,
where f3y is a root in R. When p(S) < 3, S is biholomorphic to P2, F(1,2,P?), F(1,2,Q°%) or F(0,2,Q°).
It remains to check the Fano deformation rigidity of F(0,2,Q%) = D,/Pr with I = {a1,a3,a4}. Take any
two different roots Sy, 82 € I. The manifold §PPz g biholomorphic to P(7ps), which is rigid under Fano
deformation by Theorem By Corollary BZ3 F(0, 2, Q) is rigid under Fano deformation.

Now we will apply Corollary[B.23[to S with p(G/Pgy{s,3) > 4. Take any J-connected pair (31, f2) € I x1I.
By our assumption, one of the followings hold:

() the Dynkin diagram I'g, g, 8, = I'g, UT's, g, is of type A1 x Ay;

(1) the Dynkin diagram I'g, . g, is of type A4 for some 85 € I\ {B1, B2};

(#9i) the Dynkin diagram I'g, . g, is of type D5 for some 3, 84 € I\ {1, B2}

By Theorem [[3] and Proposition [8, the manifolds S#172, §P1:82:8 and §P1-F1 corresponding to (i),
(ii) and (44i) respectively are rigid under Fano deformation. Then so is G/ P ¢g,} by Corollary B.23l O

Proof of Theorem [[.I0. In this situation for any J-connected pair («,3) € I x I, the unique connected
component of the Dynkin diagram I ;¢4 5} containing both o and 3 is one of the following types:

(1) (Am, {1, aum}) with m > 2;

(79) (Am,{a1,az}) with m > 3.

By our assumption, in case (i) there exists v € I'\{«, 8} such that the unique connected component of the
Dynkin diagram I ;4 5,4} containing all of o, 8 and v is of type (Amq1, {a1, a2, amy1}) up to symmetry.
Then the conclusion follows from Corollary B.23 O

Indeed by a careful analysis of Dynkin diagrams we can apply the same proof to deduce the following
rigidity result.

Theorem 4.1. Let G be a simple algebraic group of type ADE, I C R be a subset and J := R\ I. Write I
as the disjoint union UI;, where each L'y, is a connected component of I'r. Suppose that

(1) the end nodes of Dynkin diagram of G is contained in I,

(2) each I; satisfies that either I; N OR # O or its cardinality |I;| > 3,

(3) in case G is of type D or E, there exists at most one § € J such that (3,a) # 0, where & is the node
in Dynkin diagram of G with three branches.

Then the rational homogeneous space G/ Py is rigid under Fano deformation.

Remark 4.2. As a direct consequence of Proposition[3.24] we can know that S is rigid under Fano deformation
if S=S; x--- xSy and each S; is as in the statement of one of Theorems [[23] 4] [.10] or E11

4.2. Rigidity of A,,/P(a, as,a,,}- The aim of this subsection is to show the following rigidity property.
Theorem 4.3. The flag manifold Ap /P, as,a.,} i Tigid under Fano deformation.

In other words, we want to prove Xy = A,/ Pia, as,a,,} 0 Setting [LTT under additional assumption that
S = A/ Pay,az,am}- Firstly, we have the following rigidity result on fibers.

Proposition 4.4. Suppose 8 = Ay, /Pa, 0,0, in Setting LTI Then the followings hold for x € Xy
general:

(4.1) For P!, FraPn? pom P
(42) Fgom = Pt x Fom 2P x P,
(4.3) Fo2om 2 P [Pl am)-

Proof. The conclusions ([Il) and (@3 follows from Fano deformation rigidity of projective spaces and
Ay /Pia, o respectively, see Theorem [L2l The conclusion ([.2)) follows from {1]) and Proposition3.24. O



18 QIFENG LI

As a direct consequence of Proposition 4.4 we have the following result.

Corollary 4.5. Suppose 8 = Am/P(a, as,a,,} @ Setting[LT1. Then the followings hold for x € Xy general.
(1) The symbol algebras my(ay), m,(as) and my(ay,) are standard. More precisely, they are abelian
algebras of dimension 1, m — 2 and m — 2 respectively.
(2) The symbol algebras my(aq, o) and my(oe, auy) are standard. More precisely,
(i) there is a decomposition of abelian algebra my (o, ) = My (ar) & My (i );
(i) dimm_s (g, ) = 1 and the bilinear map
my(a2) X My () — (Mg (g, am))—2
(2, y) = [2,9]
induces an isomorphism of vector spaces my(as) = Hom(my (auy), (ma (@, amm))—2).
Proposition 4.6. Suppose 8= A,/ Pa, as,a,,} 0 Setting[LI1 Then F*** = Pp 1o, a,1/Pr for x € X
general.

Proof. Take xz € X general. We claim that
(4.4) the symbol algebra m, (aq, as) is standard.

For the simplicity of discussion, we omit the subscript « in the notations of symbol algebras such as m, (a, )
and my (agy,).

Now suppose that m(aq, az) is not standard. Then there exists 0 # vy € m(ag) such that [m(ay),ve] = 0.
Since m(ag, ayy,) is standard, there exists 0 # vz € m(ayy,) such that vy 1= [ve,v3] # 0 and m_s(ag, ayy,) =
Cuvy. In particular, there is a decomposition of vector spaces

m(a, ap) = m(az) & m(ag,) @ Coy.

Take 0 # v; € m(ay). Then we have
(4.5) [v1,v4] = [v1, [V2, v3]] = [[v1, val, v3] + [v2, [v1, v3]] = 0.

In other words, [m(«a1),Cvy] = 0. Let A(ai, az, ay,) be the vector subspace of m(aq, az, o) generated by
m(aq, az), m(a,,) and Cvy. Denote by

m(l; aq, 042) = m(al) D m(ag),

m(k; a1, az) := [m(1; a1, a2), m(k — 1; a1, )] for each k > 2.

18

Thus m(ay,az) = > m(k; g, az). We claim that (when (4] fails),

k=1

(4.6) A(aq, ag, ap,) is a Lie subalgebra of m(aq, aa, ayp ).
Indeed by Corollary [£.5] we already know that
Ao, ag, ) = m(ag, az) + m(aq, ap) + m(ag, am).
It follows that
[m(cvm) + Cog, m(auy,) + Coy] C m(ag, ap) C Alaq, ag, a).

Hence to prove the claim ({6 it remains to show that

(4.7) [m(k; a1, a2), m(ay,) + Cug] C Az, a2, ayy) for all k > 1.
Now let us prove ([@7) by induction on k. The case k = 1 of ([@X) follows from

(4.8) [m(a), m(am) + Cvg] = 0,

(4.9) [m(az), m(am) + Cos] € m(ag, am) C Alar, az, am),

where in the first equality we apply Corollary 5 and ([@.5]).
Now we assume that & > 2 and

[(m(4; 01, a2), m(ayy,) + Cug] C Aa, g, ) for all 1 <4 <k — 1.
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Then by the definition of m(k; oy, a2) we have

(4.10) [m(k; o, a2), m(cum) + Cua]
C _Z [[m(a;), m(k — 1; 1, o2)], m(au,) + Coy
C _Z (M), m(cum) + Coal, m(k — 1; a1, a2)]

+m(a)), [m(k — 1; 00, az), m(am) + Cog]).
We analyse term by term. By (L)) we have
(4.11) [m(aq), m(am) + Cog], m(k — 1; 1, 0)] = 0.
On one hand, we have

(4.12)

N
ERERE
2

3w

N N

By Corollary .5 we have
[m(az), m(a) + Coyg] C m(az) + m(a,) + Cuoy,
which implies that
(4.13) [m(az), m(am,) + Coyq], m(k — 1; a1, a2)]
[m(az), m(k — 1; a1, a2)] + [m(am) + Cog, m(k — 1; a1, a2)]

m(k; g, az) + Ao, ag, )

n N

Alar, ag, ).

Meanwhile by induction we have
[m(k — 1; a1, az), m(am,) + Coy)
C A(ala a2, am)
= m(ag,a2) + m(a,) + Cuy,

which implies that

(4.14) [m(az), [m(k — 1; a1, a2), m(am,) + Cuy]]
C  m(ag),m(ar, a2)] + [m(a2), m(am,) + Cos] 4+ [m(az), Cuyl
C m(ag,a2) + mag, ay)
C  Alag, a2, am).

By (I10)-@I4) we have [m(k; a1, az), m(o,) + Cog] C A(aq, a2, ). In other words (£1) holds. Then the
claim (6] holds.

Now A(a1, @, auy,) is a Lie subalgebra of m(a, a, auy,) that contains m(aq) + m(asg) + m(au,). Recall
that m(aq, ag, auy,) is a Lie algebra generated by m(a;) + m(as) + m(ayy,). Then we have A(aq, as, o) =
m(aq, @2, auy, ). This contradicts the fact that

dim A(aq, ag, i) = 3m — 4 = dimm(ag, ag, ) — 1

)

where the dimension of m(aq, as, a;y,) is obtained by Proposition B 10l Hence we conclude that m, (a1, asg) is
standard for x € Xy general, verifying the claim [£4] Then the conclusion follows from Proposition 320 [

Now we are ready to prove Theorem [£.3]
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Proof of Theorem[{.3 Suppose S = A,,/Piq, as,a,,} in Setting [LTTl By Proposition B.4 and Proposition
Ao Fof =~ Pp\{a,py/Pr for all @ # B € I and general points 2 € Ap. Then by Theorem B.22 &) =
A/ Piay as,amy- In other words, the manifold A,,/P(a, as,a,,} is rigid under Fano deformation. O

4.3. Fano degeneration of A3/Pi,, q,}- The aim of this section is to prove Theorem [[.6 namely the
manifold F4(1,2;C*) in Construction is the unique Fano degeneration of A3/Pi,, 4,3 Throughout
Section 3], we always discuss under the following assumption.

Assumption 4.7. Let 7 : X — A 3 0 be a holomorphic map such that X; = A3/ P, a,} for t #0, Xp is a
connected Fano manifold, and Xy 2 A3/ P,

Otg}'

By definition F4(1,2;C*) := P(L, ® £¥). Then the restriction of the P2-bundle F¢(1,2;C*) — P? gives
a biholomorphic map P(£,) = P3. Moreover the hyperplane bundle P(£*) is biholomorphic to the complete
flag manifold Cs/B.

The outline to show Xy = Fd(l, 2;C*) is as follows. Firstly, the Mori contraction T2t X — Af? isa
P2-bundle over P3. We know that at a general point z € Xy, the family K1 (X;) consists a single element,
denoted by [Cy]. An irreducible component of the locus {x € Xy | dim K1 (Xp) > 1} gives a meromorphic
section o : P2 --» Xj. Let H be an effective divisor on X, which is a general element in a linear system
satisfying (H - K®') = 0 and (H - K*2) = 1. The restriction of 75 on H is a fibration over P3, whose
general fiber is a line in P?. Then we show that ¢ is a holomorphic section, H — P2 is a P'-bundle and
H N o(P3) = (. Finally we show H = Cy/B and X, = F4(1,2;C*).

Now we sketch how to show H = C5/B, which is the key point of the argument in this section. Denote
by K% (Xy/P?) the closure in the Chow scheme of P? of the set of those 7(?(C,), where x € X, general
and K2 (Xy) = {[C.]}. By considering the symbol algebra of D = D* + D*2 on Xj, we obtain that a
meromorphic distribution £ of rank two on P? satisfying that £ (X, /P3) is the family of lines on P? that
are tangent to €. This gives an antisymmetric form w on C* — which is shown to be a symplectic form later
— such that & coincides with the induced contact form £% on P? = P(C*).

This section is organized as follows. In the part L3Il by studying splitting types of various meromorphic
vector bundles along a general element in 2 (Xy), we obtain the symbol algebra of D = D** + D*2 on AXj,.
In the part [£32] we obtain the meromorphic section o by studying splitting types of various meromorphic
vector bundles along a general element in £ (Xy). In the part 233 we study the property of the family
K1 (X /P3). In the part 3.4, we complete the proof of Theorem LG by studying the property of divisor H
explained above. In the part f.3.5] we summarize some properties of the manifold F4(1,2;C*), which will
be useful in Subsections [£.4] and

4.3.1. Type of symbol algebra.

Convention 4.8. In Section I3l we denote by 2%, 2 and 2~ the restriction of D%, D and D% on &)
respectively, where the latter is defined in Notation [3.9

Lemma 4.9. Under Assumption there exists a unique meromorphic line bundle N' C T™"* Xy such that
NV, 9] C 2, where 9 := T 4+ T = Dlx,. Moreover rank? =2 =4 and 273 = TXj.

Proof. The restriction of the Frobenius bracket of & induces a homomorphism F : 2% @ 9 — TXy/ 9.
The image of F is 272/2 on Xj, whose rank is at most two. By Proposition BI0, rank(272/2) > 1. If
rank(22/%) = 2, then my (o1, az) = g— (a1, az) for & € Xy. Then by Proposition B20 Xy = As/Pa, a1
contradicting Assumption 7l Hence rank(2~2/%) = 1. By PropositionBI0rank(2~3/%~2) > 1, implying
that 273 = T X,. O

Lemma 4.10. Under Assumption[{.7, there exists a unique meromorphic vector subbundle W C 9~ of
rank two such that W, 272 C 2. Furthermore, N C W.

Proof. The conclusion follows from the two facts that rank2 3 = rank?~2+1 and that [N, 21| c 2~!. O

The following result is important to the proof of Theorem
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Proposition 4.11. We have W = %2,

In summary of the description of symbol algebras Symb(%), studied in Lemma [£.9] Lemma and
Proposition @11l we have the following result.

Corollary 4.12. The symbol algebra m, (a1, as) = Symb(2). at general point x € Xy is isomorphic to
g (Cax Ay), where g_(C2 x Ay) is defined in Definition[Z2. More precisely, there exists a nonempty Zariski
open subset Q of Xy such that

(i) there is an isomorphism on €):

(4.15) D =P O D
(i) the Frobenius bracket of 9 induces a surjective homomorphism on §):
(4.16) NGt 9@ (92 IN)=(272%)97Y),

where 271 := 9 by definition;
(iii) the restriction of the Frobenius bracket of =2 induces a surjective homomorphism on €:
(4.17) P22 (27227 = 20 (272272 (273D,
(iv) the derivative 2= of is the whole tangent bundle of Xy, i.e. D72 =TXj.
Remark 4.13. (i) The isomorphisms in (@I5) [I6) and (@IT) hold on € instead of on the whole holomorphic

loci of corresponding meromorphic vector bundles. Meanwhile as meromorphic vector bundles over Xy, we
have injective homomorphisms

DD P2 — 9,
P R (22 IN) — 927291,
P (D297~ 973972

(ii) The Lie algebra Symb(Z), = g_(C2 x Aj) can be descried explicitly as the following graded Lie
algebram_ := @ m_y:

E>1
m_1 := Cv; ® Cvy ® Cuosg,
m_s := Cug,
m_3 := Cuvjay,
m_;:=0, forall k>4
where v12 := [v1, v2] and v121 := [v12,v1]. In the identification Symb(2), = m_, we have

mz(al) = .@sl = (C’Ul,
N, = Cug C 292,
mw(ag) = @;12 = Cuvg @ Cus.

The rest of the part [£31]is devoted to the proof of Proposition [Z11l Firstly, the following conclusion is
straight-forward.

Lemma 4.14. There exists a closed variety Y1 C Xy such that codimy, (Y1) > 2, 9°*, 2°2, N, W and
2 are holomorphic vector bundles over Xp\Y1. Moreover, for [C1] € K (Xy) general and [C3] € K*2(Xp)
general, C1yNY; =0 and CoNYy = 0.

To continue, we need a useful result in [I] due to L. Bonavero, C. Casagrande and S. Druel.

Proposition 4.15. [I, Proposition 1] Let Y be a normal Q-factorial projective variety, and F be a quasi-
unsplit covering family of 1-cycles on Y. Denote by Ex C Y the union of all F-equivalence classes of
dimension larger than m, where m is the dimension of a general F-equivalence class. Then

(i) Ex is a Zariski closed subset of Y, and dim Ex < dimY — 2;

(ii) there exists a normal variety Z and a surjective morphism ¢ : Y\Ex — Z such that fibers o~ *(2),
z € Z are F-equivalence classes on'Y .
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Remark 4.16. (i) In the setting of Proposition .15l the meaning of F being a quasi-unsplit family is that
all irreducible components of the cycles parameterized by F are numerically proportional.

(ii) In the setting of Proposition 415 two points in Y are defined to be F-equivalent if they are connected
by a chain of elements in F.

(iii) In our situation of Assumption 7 both K (Xp) and K*2(Ap) are unsplit (hence quasi-unsplit)
covering family of rational curves on the complex projective manifold Ap. In particular, the conditions in
Proposition LAl is satisfied by both families £ (Xp) and K2 (Ap).

Applying Proposition [LI8l to X}, we obtain the following result immediately.

Corollary 4.17. Denote by
Tt X\EYT — 25, ot A\E? — 257

morphisms in Proposition [{.13 corresponding to K (Xy) and K**(Xy) respectively. We can take Yo C Xy
to be Y1 U sing(Pg") U sing(V?) U &' U EY? where Y is as in Lemma .13, and sing(Vg") C X\EG" is the
singular locus of the morphism Wg*. Then dimYs < dim Ay — 2 = 3.

Proof. The existence of ¥y! and W2 follows from Proposition [LI5l The rest follows from the generic
smoothness and the equi-dimensionality of ¥§*, ¢ = 1,2. O

Proposition 4.18. Take [Cs] € K*2(Xpy) general. Then 2°|c, = Opi(—1), 2°?|c, = Op1(2) ® Op1(1).
Qs

Proof. The curve C5 is a line in a general fiber 92 2 P? of the elementary Mori contraction 7, where
is a general point in C5. Thus,

2| ¢, = TF822|C2 =0Op:(2) ® Op1(1).

Now take a general local section of £*?(X) — A passing through [Cs] € K*?(Xp) C £*?(X). We obtain a

holomorphic family {A’};ca (by shrinking A if necessary) such that S := |J A’ C X is a complex manifold
teA

of dimension two, and A° = Cy C &), At C X,. Moreover, SNYs = Co, NYy = ) by Corollary &I7 Thus
for any x € S, there exists a unique [l;] € K*'(X) such that = € [,,. Furthermore, x is a smooth point of /.
Denote by £ := |J Tyxly which is a holomorphic line bundle over S. By Proposition 2:I4] we know that for

€S
any t # 0,
Llae =T |40 = Opi ({0, a2)) = Opa (—1).
It follows that L|c, = Opi(—1). Thus 2|c, = L|c, = Opi(—1). O
Proposition 4.19. Take [C3] € K*2(Xy) general. Then 21, 2%, 9, 9~2, 273 N, W are holomorphic in
an open neighborhood of Co C Xy, and
N|Cz = 0(1)7
2% [Nlc, = 0(2),
772/9)c, = O(1),
D390, = O,
DNey = P e, ® 9%, = 02) ® O(1) © O(-1),
7%, = 0(2) ® O(1) ® 02,
273, = TXo|c, = O(2) ® O(1) @ O°.
Proof. By the generality of [Ca] € K®2(X), TXo|c, = O(2) & O(1) & O3. Then by Proposition I8 and the
injectivity of 2% @ %2 — 2 C T A&} in an open neighborhood of Cy C Xj, either
DNe, =02)201) 0, 2/92%|c, =0, or
De, =0R2) 0 0(1)® O(-1), 2/7%|c, = O(-1),
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By Lemma B9, [N, 2] C 2, [2°,2**] C 92** C P and [2,%] ¢ 2. Then the Frobenius bracket
A?9 — TX,/2 induces an nonzero homomorphism:

(4.18) [+ (2/2°?) @ (2°2/N) = TXy/ 9.

Note that deg(2/2?)|c, > —1, deg(2*2 /N)|c, > 2 and that the degree of each factor of TXy/ 2|, is at
most one. Since f in [@IF) is a nonzero morphism, 2/2°%|c, = O(-1), 2°2 /N|c, = O(2) and 272/ P|c, =
O(1). It follows that N|¢, = O(1), and Z|c, = O(2)®O(1)®O(—1). Since -2/ 9°2|c, C TXy/ D> = O3,
and deg(22/22|c,) = deg(272/D|c,) + deg(2/2°2|c,) = 0, we have 2 2|c, = O(2) & O(1) & O?, and
D3] 920, = O. O

Now we can complete the proof of Proposition 1Tl

Proof of Proposition .11} By definition of 272, we have [2°2, 271] C 972. Then the Frobenius bracket
A2272 — TX,/2~2 induces a homomorphism of meromorphic vector bundles over Xy as follows:

VDR (D7%/D) = TXy) 272

Recall that 292, 9272/9,TXy/ 22 are holomorphic in an open neighborhood of Cy C X, where [Cs] €
K22(Xy) is a general element. By Proposition I8 and Proposition I, 22|, = O(2)00(1), (272/27Y)|c, =
O(1) and (TXy/2?)|c, = O. Thus, ¥|c, = 0. By the general choice of Ca, 1 = 0. In other words,
(272, 9~1] C 972, By the uniqueness of W in Lemma 10, we have W = 2°2. O

4.3.2. The meromorphic section o. Let us firstly recall a result of A. Weber and J. A. Wisniewski in [16], in
which paper they studied Fano deformation rigidity of complete flag manifolds.

Proposition 4.20. [16] Corollary 1.4, Corollary 3.3] In the setting[L11] let o be an element of I such that
¢ : G/Pr — G/Pp\ay is a Pk-bundle for some k > 1. Suppose either

(i) H*(G/Pp{ay, Q) is generated by H2(G/PI\{Q},Q); or

(ii) X§ is smooth.

Then 7§+ Xo — X§' is also a P*-bundle.

As a consequence of Proposition 120, we have the following result.

Proposition 4.21. There erists a unique vector bundle of rank 3 over P3, denoted by V, such that
(i) Xo is biholomorphic to P(V) and X§* is biholomorphic to P3;
(ii) w52+ Xo — X$? coincides with the projective bundle ¢ : P(V) — P3;
(ii1) the distribution 92 = T?, which is holomorphic on Xy;

(iv) ¢(Ch) is a line in P3 for each [C1] € K1 (Xp).

(v) along any line | in P3, 4 < deg(V|;) < 6.

Proof. By Proposition 220} there exists a vector bundle V on P? satisfying the properties (i) and (i7). Hence
92 = T, verifying (ii). By Proposition B.6, ¢(C) is a line in P3, verifying (iv). Since deg(V ® O(k))|; =
deg(V];) + 3k, we obtain the uniqueness of V with property (v). O

Notation 4.22. In the rest of Section 3] we fix the vector bundle V as in Proposition [£2I1 We use
¢ : P(V) — P3 to represent w2 : Xy — X2, For t € P3 general, we denote by P? := ¢~ 1(¢).

Now let us check the splitting types of various meromorphic vector bundles along general elements in
JCor (XQ)
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Proposition 4.23. Take [C1] € K*(Xy) general. Then 2, 92, 9,92, 93, N are holomorphic in an
open neighborhood of C1 C Xy, and
Nle, =0,
7 |Cl = 0(2)a
2|c, = 0(=2) ® O,
2% [Nle, = 0(=2),
@72/@|cl =0,
-@73/-@7%01 = 0(2)a
Dley, = D ey, ® 2|, = O(2) & O(-2) @ O,
.@73|C1 =TX|lc, =012) & 0%,
Proof. The restriction 2%?|¢, = T'C7 = O(2). Choose a holomorphic family [I,] € K (X,), t € A satisfying
[lo] = [C1] € K* (X)). By Proposition F21)(i4),
deg(2°%|¢,) = deg(T”g2 li,) = deg(T”?2 |1,) for all t € A.
By Proposition 214l we have
deg(T”?2|lt) = (a2, 1) + (@2 + az, 1) = =2 for t £ 0.

It follows that deg(2%?|c,) = —2. Then can write 2?|¢, = O(a1) ® O(az), where a1 + az = —2. Since
P73, = TXo|o, = O(2) ® O* and 9 |¢, = O(2), we know that a; < 0,as < 0. Hence

(4.19) cither 2°2|c, = O(—1)2, or 2°2|¢, = O(-2) & O.
It follows that
(4.20) (2°2/N)|c, = Opi(a), where a > —2.

The injectivity of the homomorphism 2 @ (22 /N) — 272/2 C TXy/% in an open neighborhood of
C1 C X, implies that

(4.21) P72/ P|c, = Op1(b), where b > a+ 2.
The injectivity of 2% ® (.@*2/@) — TXy/272 in an open neighborhood of C; C A} implies that
(4.22) D732 2|c, =TXy/ 2 2|0, = Opi(c), where ¢ > b+ 2.

On the other hand, the injectivity of 22 — 2/92% C TXy/2*" in an open neighborhood of C; C &)
implies that

(4.23) deg(2/2)|c, > deg(2?|¢,) = —2.
We also have
(4.24) deg(TXy|c,) — deg(2°1)|c, — deg(27 ) 2°)|c,

= deg(77%/D)lc, +deg(27°/272)|c,.

By ([E20)-#24), we have
2 > —deg(2/2*)|c, = deg(27%/D)lc, +deg(P7° /D7) e,
= b+c2>22b+22>2a+62>2.

Hence deg(2/2")|c, = =2, a = —2,b=0 and ¢ = 2. By (£19) and the fact

deg(7°* /N)lc, = a= -2 =deg(2/7")|cy,
we know that 2°?|c, = O(=2) ® O = (2/2*)|c,. The rest of the conclusion follows immediately. O
Proposition 4.24. In setting of Proposition [{.Z1, V| o2 ¢,y = 0(2)? & O for [C1] € K> (Xy) general.
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Proof. Take [C1] € K®*(Xp) general. Denote by £(C7) the line subbundle of V over the line 7(*(Cy) C P3
such that ¢} = P(L(C})) € P(V) = Xy. Then the relative tangent bundle 770 |, = £(C})*® (Vle,/L(C)).
By Proposition E2ZI(ii4) and Proposition I23, T™0 " |¢, = 2°?|¢, = O(=2) & O. Then Vizez(cy) = O(k)? @
O(k — 2), where k := deg £(C1). By Proposition l22T|(v), k = 2 and the conclusion follows. O

Proposition 4.25. Let V be as in Proposition [{-.21} Then the following holds.

(i) Over any line | C P3, either V|; = O(2) & O(1)% or V|, = O(2)* & O.

(13) Take any [C1] € K*(Xy). Then L(Cy) = Op1(2), where L(Cy) is the unique line subbundle of
Vo2 g,y such that C1 = P(L(C1)) C P(V) = Ap.

Proof. Since X, = P(V) by Proposition L2} any [C}] € K (Xp) must be a section over the line 75*(Cy) C P?
with largest degree. The degree of this section over the line 7(?(C1), is independent of the choice of
[C1] € K*'(X)). Then the assertion (i) follows from proposition [1.24

Take any line [ C P3. Then by Proposition 2T} V|, is a deformation of V|w§2(cl) = Op1(2)? @ Op1. Thus
we can write V|; = O(a1) ® O(az) ® O(as), where

(4.25) a1 +as+az =4, and a1 > as > as.

By the maximality of deg £(C}) among sections of V over lines in P3, we have

(4.26) a; < deg L(Cy) = 2.

The assertion (i) follows from ([@2H) and (E24]). O

Corollary 4.26. Let V be as in Proposition[{.21. Then there exists a nonempty Zariski open subset U C P3
and a section of 7§* : Xy = P(V) — P? over U, denoted by o : U — Xy, such that for any x € (75*)~1(U) \
o(U),

(i) N is holomorphic at x;

(i1) Ny = Tily, where I, == (z,0(ny?(x))) is the line in (75?) (72 (z)) 2 P? joining x and o(n?(x));
(ii1) the leaf of N at x is the affine line I, \ {o(7y?(x))}.

Proof. Take [C1] € K (Xp) general. Then 7{2(Cy) is a line in P3 and e 0(2)? ® O. The
curve Oy is identified with P(L(C1)) C P(V[re20,)) = (m5?) Y (m52(Cy)), where L(C1) = Opi(2) C
Vlzez(c,) is as in Proposition E20(ii). We know ' C 292, Nc, = Opm and O(=2) & O = 2*?|¢, =

L(C1)* @ (V]zoz(cy)/L(C1)). Tt follows that Nle, = U T$P(V|:a2(m)), where V|:a2(c) = 0(2)? C
zeCy 0 0 !

VIrez(cy) = 0(2)? ® O and TClP(V':}??(Cl)) is the relative tangent bundle of P(V|:§2(Cl)) — 152(Ch)

along C; C P(W:"‘?(cl))' In other words, at any point z € Cy, N, = Tz]P’(Oﬂgz(Cl)(2)2|ﬁgz(m)), where
0

Ow§2(cl)(2)2|w§2(m) C Vioz (g is the fiber of 0(2)* Vlzo2(¢y) at the point 75* (z) € mg*(C1).

Note that Pw32(cl)(0(2)2) ~ Pl x 702(Cy) = P It follows that given any z € C; and any y €
P(Oﬂgz(cl)(2)2|ﬂgz(m)) lying in the regular locus of N, there exists [C,] € gt (Ap) such that 75*(Cy) =
752 (C1) and N, = TyP(Oﬂg‘?(cl)(2)2|ﬂ§2(z))- Hence, the closure of the leaf at @ € C; C Ap is the line
le = P(Org2 () (2702 (0)-

Take t € P? general and denote by P? := (75?) "1 (t) 2 P? C X,. Let A C (P?)* be the closure of the family
of lines [, := P(Owg2(cz)(2)2|wg2(m))7 where z runs over the set of general points on P? such that K21 (Xp)

consists of a unique element [C,] and N is holomorphic at z. For a general point # € P?, E,, := {[I] € (P?)*}
is a line in (P?)* and E, N A consist of a single point, namely [I,], in (P?)*. Since E, could be a general line
in (P?)*, the intersection number (E, - A) = 1. It follows that A is a line in (P?)* and there exists a unique
point o(t) € P? such that A = {[l] € (P?)* | o(t) € L}.

It turns out that N is well-defined on P? \ {o(t)}, and at any = € P? \ {o(¢)}, the line (z,0(t)) is the leaf
closure of N at . The conclusion follows. O
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4.3.3. A subset of family of lines on P3.

Notation 4.27. For t € P? general, denote by K (Xo/P?) the Zariski closure of
{[76°(Co)] € G(1,P%) | x € (m5?) ™" (t) general ,K3" (Xo) = {[C]}}
in G(1,P?), and set
CoM (X /PP == U P(T3l) C P(T;P?).
(e (Xo/P?)
Here G(1,P?) is the family of lines in P3. Denote by
K1 (Xy/P?) := Zariski closure of U K9(x%/P?) in G(1,P?),
tePs general
C™(Xy/P?) := Zariski closure of U ¢ (x/P?) in P(TP?).
tePs general

Let U (Xy/P3) be the inverse image of K (X,/P3) under the natural morphism F(1,2;C*) — G(1,P?) D
Ker(Xy /P3).

Lemma 4.28. Take t € P3 general. Then Kt (Xo/P3) is an irreducible rational curve. Take any [l] €
K3 (Xo /P3). There exists [C] € ICg‘(lt) (Xo) such that ny?(C) = L.

Proof. Take t € P3 general and z € P? := (m(?)71(t) general. Then K21 consists of a single element,
written as [C,]. Furthermore, C, = P! and 7(* sends C, biholomorphically onto a line in P3. Since
Vo2 o,y = O(2)? ® O and the line (z,0(t)) in P} coincides with the fiber P(O,e2 ¢, (2)?[¢), there exists a

unique [Cy o] € K71, (X0) such that 75*(Cy) = G2 (Cy). Take y € P2\ (x,0(z)) general. Then the fact
P(Ore2 ¢,y (2)*]6) NP(Orez ¢,y (2)]2) = (z,0(1)) N {y, o(t)) = {o(t)}

implies that n;?(Cy) # 752(Cy) (and hence Cy, # C.,). This induces injective rational maps (hence
injective morphisms)

& Pl (B |o(t) € 1} - KZy (X0)
(2.0(t)) = [Cr.a],
n: P (i) € (B | o(t) € 1} > K§* (Xo/P?)
(2,0 () = [x5(CL)].

By definition K (X,/P?) is the closure of the image of 7. Then the conclusion follows immediately from
these morphisms ¢ and 7. O

The following can also be deduced from the proof of Lemma
Lemma 4.29. Take t € P? general. Denote by P? := ()~ (t) C Xy. Define
Y P2 KMY(X/PP) C G(1,P?)
z— [m5* (Ca)l,

where x € P? general and [Cy] is the unique element of K& (Xp). Then 1 coincides with the linear projection
of P? with center o(t). In other words, for x,y € Dom(), 1 (z) = ¥ (y) if and only if (z,o(t)) = (y,o(t)).
Construction 4.30. Take x € & general. Recall two elementary Mori contractions:

ot Xy — A, and

T Ay =PV) = Ay =P
Set $o(z) := {z}. For each k > 0 let Lo511(x) be the unique irreducible component of (752) ™ (752 (Xax(z)))

dominating 75?2 (Zak(z)), and Yogio(z) be the unique irreducible component of (7(*)~!(m§* (Zakt1()))
dominating 7" (Laok+1(x)).
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Lemma 4.31. In setting of Construction[{.30, we have
dim Xy (z) =k + 1, where 1 <k <A4.
In particular, X4(x) = Ap.

Proof. By construction, ¥ (x) = (7§?)~(r§? (z)) = P?, which has dimension 2. Now we claim that for each
k > 1, either i (x) = Xy or dim 3y (x) > dim X (z) + 1.

Suppose dim Y41 (z) = dim X (z) for some k > 1. Then Y41 (z) = Tk (). By construction of Xy (z) and
Ser1(x), Cf C Bp(z) and CF C Xy (x) for y € Xy (x) general, [C)] € K5 (Xp) and [C}] € Kg2(Xy) general.
By Proposition B we have Y (z) = Ap, and the claim holds.

By general choice of x € X and the construction of Xy (z), for each i > 1 we have

dim E2i+1($) < dim7r8‘2 (Egl(w)) +2 < dim Egi(l') + 2,
dim ZQZ(I) S dimwgl (221',1(56)) + 1 S dim 221',1(56) + 1.

Note that 72 (Z2(z)) = U I, which has dimension 2 by Lemma .28 Then the conclusion
MIEKL, - (Xo/P%)
0
follows from the inequalities above. O

Lemma 4.32. Take t € P? general, and set
Ai(t) = U i1cr
(K™ (Xo/P?)
Ao (t) := Zariski closure of U 1 in P3,
MER, v
where we define
K3, = U K2t (Xo/PP).

zeA(t) general
Then Ao (t) = P3.
Proof. Take z € P7 := (w?)~1(t) general, then by construction we have
T (Bak(2)) = Ak(t), k=12,
where Yo () is as in Construction 301 By Lemma [3T] ¥4(x) = Xy, which implies the conclusion. O

Lemma 4.33. Let L, C V be the meromorphic line subbundle of V over P3 defining the meromorphic section
o of Ty Xy = P(V) — P3, and S, be the singular locus of 0. Then dim S, < 1 and there exist nonempty
Zariski open subsets U" C U' C P3\ S, such that

(i) C1 CP(Ly) for any t € U and any [C1] € ICg‘(lt) (Xo);

(73) given any t € U"” we have My(t) = P(L,), where

Mi(t) == U C CcP(L,),
[ClekSE, (Xo)

o

My (t) := Zariski closure of U C cP(L,),

o
[C] GICMI (t)No(U’)

where we define

Kihonown = U K ().

xeMy(t)No(U’)
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Proof. Being the singular locus of a meromorphic section, the dimension of S, is less or equal to dimP3 —2 =
1. By Lemma .28 dim Kg‘(lt)(Xo) > 1 for t € P3 general. By semicontinuity of the dimension function,
dim £ (Xp) > 1 for all x € P(L,). Hence P(L,) C E(K*), where E(K*') C Xj is the union of £ (Xp)-
equivalence classes that are of dimension at least two. By Proposition 15 E(K*!) is a Zariski closed subset
of Xp and dim E(K**) < dim Xy —2 = 3. By dimension reason the variety P(L,) is an irreducible component
of E(K).

Denote by U the nonempty Zariski open subset of P(£,) such that at any « € U, P(L,) is the unique
irreducible component of E(K*!) containing z. Set U’ := 7y?(U) \ S, then the assertion (i) of Lemma 33|
holds.

By Lemma 28 7y?(My(t)) = Ag(t) for k = 1,2. Then by Lemma #(Mz(t)) = P3, implying that
dim My(t) > 3. Since Ms(t) C P(L,) by the assertion (i), we have Ms(t) = P(L,), verifying the assertion
(it). O

Lemma 4.34. Fort € P? general, C{* (X /P3) is a line in P(TyP3). Furthermore, K (Xy/P?) is a hyper-
plane section of G(1,P3) C P®.

Proof. By Proposition 11l [2%2,272] C 272, where 272 is the weak derivative of 2 = 2% + 9. It
follows that € := dr(?(2~?) is a meromorphic distribution € on P? of rank 2, where dr(? : T'(Xy) — T(P?)
is the tangent map of 7(?. Take a general element [C1] € K“'(X)). Then T(Cy) = 2°'|¢, C 92, which
implies that 7'(75*(C1)) C &|02(¢,)- Hence at a general point ¢ € P3, we have C;'* (X /P?) C P(&;). Since
K1 (X /P?) is a set of lines on P2, we have C;** (X, /P?) = K¢t (Xp/P?), which is an irreducible rational curve
by Lemma FE28 Hence C;"' (Xo/P?) = P(&;) is a line in P(T;P?). Moreover,

dim K (Xp /P?) = dim P? + dim K (X /P?) — 1 = 3.
Thus the variety K1 (X /P?) is an effective divisor on G(1,P?). Consider

(4.27) UL (X /P?) — K1 (X, /P?)
P(TP3) G(1,P3)
:

Since for t € P? general,

C (X /P?) = U™ (X /P°) N P(TLP)
is a line in P(T;P3), we can conclude that K (Xy/P3) € [t*Ops(1)], where ¢ : G(1,P3) — P® is the Pliiker
embedding. Since G(1,P?) C P5 is linearly normal, K% (X,/P3) is a hyperplane section of (1,P%) c P5. O
4.3.4. Hyperplane bundles of P(V) over P3.

Notation 4.35. Let £;’ be the Cartier divisor on Xj such that the intersection number (L£y* - C;) = d;5,
where [C}] € K% (X)) and 1 < 4,j < 2. In other words, £’ := L%, where L™ is as in Proposition-Definition
Denote by |£g?| the corresponding linear system of effective Weil divisors on Xp.

Lemma 4.36. We have dim |£g*| = 3 and dim |£g?] > 5.

Proof. Since X5* = P3, we have £§* = (7%)*Ops(1) and dim |£{*| = dim P = 3. There exists a holomor-
phic line bundle £** on X such that £ = £*|y, and for 0 # t € A, the linear system |£;?| induces the
morphism

X, = F(1,2;C*) — Gr(2,C*) c P,

where £7? := £%2|y, By semicontinuity, we have dim |[£g?| > 5. O
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Notation 4.37. Take any W € |£§?|. Then for ¢ € P? general, we denote by
K (W/PP) i= p(We) € K (Xo/P?),
where 1) is as in Lemma [£.29] Set
Ko (W/P3) := Zariski closure of U KO (W/P3) in KO (X, /P3).

tEP3 general
Lemma 4.38. In setting of Notation [{.37, there is an injective map
0: {Wel|Ly?||P(L,) C W} — {hyperplane sections of K (Xy/P?)}
W — Ko (W/P3).
Proof. Take t € P? general. Then the fact o(t) € W implies that W; is a line in P? := (7(?)~1(¢) passing
through o(t). By Lemma H29, K (W/P3) consists of a single element. Then K% (W/P?) is an effective

divisor on K% (Xp/P?). Similarly with the analysis for diagram [@2T), we know that Ko (W/P3) is a
hyperplane section of K (Xy/P?). O

Lemma 4.39. Take W € |L{?| general. Then o(t) ¢ W for t € P3 general.

Proof. By Lemma .34 and Lemma 38 the space {W € |£;?| | P(L,) C W} has dimension at most 4. On
the other hand, dim |£5?| > 5 by Lemma L3360 Then the conclusion follows. O

Lemma 4.40. Take W € |L£(?| general, and denote by
(4.28) S(W):={teP®| (x§>)"1(t) c W}.
Then dim S(W) <1 and W |ps\swy — P? \ S(W) is a P*-bundle.

Proof. As a Cartier divisor we have Ox,(W)|pz = Opz(1) for any t € P?, where P} := (m5?)~"(¢). Thus
for any ¢t € P3\ S(W), the scheme-theoretic intersection of W with P? is a line. By dimension counting
dim S(W) < dim W —2 = 2. If dim S(W) = 2, then the intersection number (W-C7) > 0 for [C1] € K*' (Xp),
contradicting our definition of £§? in Notation O

Lemma 4.41. Take W € |L§?| general, and denote by Sw := 75 (P(L,) N W) C P3. Then dim Sy < 1.

Proof. Now suppose dim Sy > 2. By Lemma 39 Sy # P3. Choose any irreducible component Sw of Sy
such that dim §W =2.

We claim that for € Sy general, there exists t € U” and [I] € K (Xp/P?) such that £ € [, where U” is
as in Lemma L33 (i7).

Suppose the claim holds. By Lemma 28] there exists [C] € Kg‘(lt)()fo) such that 7(%(C) = I. By Lemma
E33] dim S, < 1, where S, C P? is the singular locus of the section o. Then the general choice of t in the
divisor Sy C P? implies that f ¢ S,. In particular, P(L,); = o(f) € C N W. Since the intersection number
(W -C) =0, we have C C W, implying that o(t) € W. By Lemma [33(i7) and the fact (W - Cy) = 0 for
any [C4] € K*' (X)), we have P(L,) C W. This contradicts Lemma .39 Hence we obtain the conclusion of
Lemma 471 N

Now we turn to prove the claim. Suppose it fails. Let A be the Zariski closure of the union |J(I N Sw ) in
Sy, where [[] runs over the set U K (Xy/P3). By assumption, dim A < dim Sw—1=1.

tep3 general
Since every element in K (Xy/P3) has a nonempty intersection with Sy, there is an irreducible compo-

nent A of A such that
dim K2 (X /P?) > dim K (X, /P?) — dim A > 2 for each s € A.
Since K& (Xy/P3) =2 Co1 (Xy/P3) C P(T5P?), we know that
dim A =1, Ko (X,/P3) 2 Co (X, /P3) = P(T,P3)
and [(t, )] € K& (Xo/P?) for all s € A and all ¢ € P3\ {s}.
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Take ¢ € P3 general. By Lemma L34 and the conclusions above, K (Xo/P?) = {[(t,s)] | s € A},

and the join variety J (¢, A) := |J (t,s) is a plane in P3. Thus in the notations of Lemma [£32] we have

s€A
A1 (t) = J(t, A). For t' € Ai(t) general, the same reason implies that A1 (') = J(t', A) = J(t, A) = A1 (t). Tt
follows that Ay(t) = Ay (t) S P?, contradicting Lemma E32L Hence, the claim holds. O

Lemma 4.42. There exists a meromorphic vector subbundle Ly C V of rank two over P? and a closed
subvariety Sy C P3 such that

(ii) both L, and Ly are holomorphic vector bundles on P? \ Sy, where L, is as in Lemma[{.33;

(ii1) there is a direct sum decomposition V|ps\s,, = Lo|ps\ sy © Lw [ps\ sy 5

(v) P(Lw) € |L£y?] is a chosen general divisor.

Proof. Tt is a direct consequence of Lemma 40 Lemma 41l and the fact dim S, < 1, where S, is the
singular locus of the section P(L,). O

To continue, we need to collect a result of decomposition of vector bundles, which can be found on page
409 in [§]. See also [13, Proposition 5] for an explicit statement with a brief proof.

Proposition 4.43. [8, page 409] Let £ be a vector bundle over a connected complex manifold Y. Suppose
there is a complex subvariety A C'Y and vector bundles € and E; over Y \ A such that dim A < dimY — 2
and 5|y\A =& ®E. Then & and & can be extended uniquely as vector bundles & and &) over Y such
that £ = & & &}.

As a direct consequence of Lemma [£.42] and Proposition [£.43] we have the following result.

Proposition 4.44. In setting of Lemma -2 both L, and Ly are holomorphic vector bundles on P3, and
V=L;DLy.

Lemma 4.45. In setting of Proposition [[.44} the followings hold.

(i) For any [l] € K*(Xy/P?), Lo = O(2) and Lw | = O(2) & O.

(ii) For any [l] € K (Xo/P3), there exists a unique [Cy] € K (Xy) such that C; C W and 7§*(Cy) = L.
Moreover, this curve C; = PL.

(ti1) For any x € W, K¢ (Xp) consists of a single element, denoted by [Cy]. Moreover, this curve Cyy C W
and C, = PL.

Proof. By Proposition £.24]
(4.29) Vi=02)?@0, for[l] € K*(Xy/P?) general.

By Proposition [25](4), the restriction of V on any line of P? is either O(2)%? & O or O(2) & O(1)%. Then by
(#29), we conclude that

(4.30) Vi=02)?®0, forany [l] € K*(Xy/P?) = K (W/P?).

This is because a positive dimensional family of vector bundles over P! of type O(2)? & O can not have a
limit of type O(2) ® O(1)2.

Now take any [I] € K (Xy/P?), we have £,|; = O(2) by Proposition E25(ii). Thus by (#30) and
Proposition 44l Ly |; = O(2) @ O, verifying the assertion (7). It follows that there exists a unique [C}] €
K1 (Xp) such that C; € W = P(Ly), and 782 (Cy) = L. In fact C; = P(O(2)])) € P(O(2)®O)]1) = P(Lw1).
Moreover C) = P! verifying the assertion (ii).

Take any [C] € K (Xp). Since (W -C) =0, either C C W or CNW = (). Then the assertion (¢i¢) follows
from () and (ii). O

Lemma 4.46. In setting of Proposition [[{4} the variety K% (Xo/P?) is a smooth hyperplane section of
G(1,P3) C P°, and W = Co/(Ps,NPs,), where 31 and B2 are the short and long simple root of Cy respectively.
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Proof. By Lemma 34 K (X,/P3) is a hyperplane section of G(1,P?) C P5. By Proposition and
Lemma EZH] there is a Pl-fibration ¢ : W — K*(W) = K% (Xy/P3), where K (W) is the set of [C] €
K1 (Xp) such that C C W. The variety K (Xy/P3) is smooth because so is W. Then there exists a
nondegenerate form w € A2(C%)* such that A = P3 = P(C*),

(4.31) K (X /P?) = {[A] € Gr(2,C") | w(A, A) =0},
and 72|y : W — P3 is the evaluation morphism of the family X (X, /P?). Then the conclusion follows. [

Now we can complete the proof of Theorem

Proof of Theorem [ By Proposition [L21] and Proposition 44 X, = P(V), and V = L7 & Ly. By
Proposition L25(i7), £, = O(2). By Lemma B46 Ly = LY ® O(k) for some k € Z, where w is the
symplectic form on C* satisfying [@31). Take any line [ C P3. We have

deg(Lw|i) = deg(V];) — deg(Lo]1) = 2,
deg (L)1) = deg(TP?);) — deg(O(2)]1) = 2.

Then k=0 and Ly = £¥. Hence V = O(2) @ LY and Xy = F(1,2;C*). O

4.3.5. Properties of F%(1,2;C*). For the convenience of discussion later, we give several basic properties of
the manifold F'¢(1,2; C*) in Construction[[5l All these properties are straight-forward from the construction.
They have also been proved in a more involved way in the previous arguments in subsection [£.3] by realizing
F?(1,2;C*) as the a priori unclear Fano degeneration of A3/Pia; sy, see Lemma EI0, Corollary B.12]
Corollary .20l Lemma for the corresponding statements of them.

Notation 4.47. In setting of Construction [L5l denote by ¢ : F?(1,2;C*) — P? the P2-bundle, and let
o:P3 - P(L,) C F(1,2;C* be the holomorphic section. Given a point z € F¢(1,2;C*) \ P(L,), denote
by I, the line (z,0(¢(z))) in the projective plane ¢~!(¢p(z)) = P2. By abuse of notations (to be compatible
with those in Section E3)), we denote by 2! the meromorphic distribution of rank one on F9(1,2;C*)
whose general leaves are minimal rational curves biholomorphically sent to isotropic lines in P3, and by
Ko (F4(1,2;C*)) the closure this family of minimal rational curves. Set 22 := T'® and 2 := P + P2,
Denote by K2 (F?(1,2;C*)) the family of minimal rational curves which are lines in the fibers of ¢.

The following two propositions are immediate from the constructions.

Proposition 4.48. At any point x € F4(1,2;CH)\P(L,), K& (Xo) consists of a unique element, denoted by
[Cy]. Two points y,z € P\ {o(t)} satisfy ¢(Cy) = ¢(C.) if and only if the two lines (y,o(t)) and (z,o(t))
in P? coincide, where t € Xg'* is an arbitrary point and P? := ¢~ (¢).

Proposition 4.49. In setting of Construction[L3] the surjective homomorphism L, ® LY — L, induces a
rational map F(1,2;C*) —-» P(L¥) = Cy/B over P2. It is a linear projection from P? := ¢~1(t) with center
o(t) over each t € P3.

Proposition 4.50. In setting of Notation [[.77, define a meromorphic distribution N' on F(1,2;C*) such
that Ny, = Ty (L) at any point x € F4(1,2;C*) \ P(L,). Then N is the unique meromorphic line subbundle
of 2 on F(1,2;C*) such that [N', 2] C 9. Moreover, [N, 2°] C N + 9.

Proof. The leaf of N passing through a point z € F4(1,2;C*) \ P(L,) is IS := I, \ {o(t)}, where t := ¢(x)
and I, = (x,0(t)). The the leaf of D** passing through a point y € [9 is C,, where [C,] is the unique
element of K91 (Xp). Since |J Cy = ¢(Cy) X I, we have [N, 2*'] C N + 2. Since 2°* is integrable and
yelg
N C 22, we have [N, 2°2] C 2*2. Tt follows that [N, 2] C 2.
If the uniqueness of N fails, then the rank three distribution D has to be integrable. However one can

easily check the F'¢(1,2;C*) is chained-connected by the family |J K (F9(1,2; C*)). It is a contradiction.
i=1,2
Hence N is unique. O
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Proposition 4.51. At each point x € F(1,2;C*)\IP(L,), the symbol algebra Symb,(7) = g_(C2)Dg_(A1).
Moreover, this isomorphism is induced by the identification g_ (A1) = Ny, 222 = g_(a2) + g— (A1) and
22 = g_(aq), where ay and ay is the long and short simple root of Cy respectively.

Proof. Tt follows from Proposition .50 and Construction [T directly. O

4.4. Proof of Proposition[I.8l The main aim of this subsection is to show the following proposition, from
which we can complete the proof of Proposition

Proposition 4.52. The manifold Ay/P{a, 04,04} 15 Tigid under Fano deformation.

Proof of Proposition .8 (i) Consider the Fano deformation rigidity of A4/P; with |I| = 3. The set of simple
roots is R = {ai,...,a4}. The manifolds A4/ Pg\{a,} and As/Pg\{a,} are biholomorphic to each other,
which are rigid under Fano deformation by Proposition The manifolds A4/ Pr\{a,} and A4/ Ppg\{a,}
are biholomorphic to each other, which are rigid under Fano deformation by Proposition [I.9

(74) Consider the Fano deformation rigidity of S := D5/ Py with |I| = 4. Set J := R\ I = {«;} for some
i, where R is the set of simple roots. Take any J-connected pair 51 # B2 € I. There exists S35 € T\ {31, 82}
such that the manifold S°#2% is biholomorphic to As/Pp with |I’| = 3 or 4. The latter is rigid under Fano
deformation by (i) as well as Theorem [[3l By Corollary B223] D5/ Py is rigid under Fano deformation . [

To prove Proposition .52 it suffices to deduce a contradiction in the following setting.

Setting 4.53. Let m : X — A be a holomorphic map such that X; = S for all ¢t # 0, A} is a connected Fano
manifold and Xy 2 S, where S := Ay/Pyq, q,,

014}'

Remark 4.54. Let us firstly explain the idea to prove Proposition[452lin the following, while the rigorous proof
is not no so immediate from this idea. In Setting[£53] X has to be a compactification of the total space of the
normal bundle Ny/g, where U is the inverse image of some hyperplane section of A4/P, = Gr(2, C%) cP?
under the natural morphism S — A4/ P,,. On the other hand, we can show that any Fano deformation of S
must be a P2-bundle over Ay/P,, o,y = F(3,4;C"), while the compactification Xy of Ny/g does not have
such a projective bundle structure.

Proposition 4.55. In Setting [[.53, take a general point x € Xy. Then F2?* = P? Fs =~ Pl [ = Pl
Fozaa =2 P2 x PLognd Fosvs =2 P(TP?) = F(1,2;C3) respectively.

Proof. The assertions for F, F&>* and F3:** follow from the rigidity of projective spaces, Proposition
3.24] and Theorem [[3] respectively. O

Proposition 4.56. In Setting [[.53, take a general point x € Xy. Then Fo» = Fd4(1,2;C*), where
F(1,2;C*) is as in Construction L2

Proof. By Theorem [[G, either Fo2s = F(1,2;C*) or Fos = [4(1,2;C*). In the former case, Xy =
A4/Piay.a,a04 by Theorem B.221and Proposition .55 This contradicts our assumption in Setting O

Proposition 4.57. In Setting[J.53, the morphism 75* : Xo — X§* is a P2-bundle. In particular, the variety
X is smooth.

Proof. By formula (3.4) in [16], the cohomology ring H* (A, /Piq, s}, Q) is generated by H?(A, / Piq, a1, Q).
Then the conclusion of Proposition .57 follows from Proposition immediately. O

Convention 4.58. In Subsection 4] we denote by 2%, %% & and 2" the restriction of D% D%
D and D% on A} respectively, where the latter is defined in Notation 39l

Now let us turn to analysis the symbol algebra Symb(2) on Xp.

Lemma 4.59. In Setting[[-03, there exists a unique meromorphic distribution N' C 2 of rank one over
Xo such that the Levi bracket of vector fields |N', 9] C 9.
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Proof. By Proposition .56, F&2:% = F4(1,2;C*) for x € X} general. Then by Proposition EL50 there exists
a unique meromorphic line subbundle N' C 2%2 over Xj such that [N, 2%] C N+ 2. By Proposition
[L50] Fo2aa = Fa2 x F4 for o € Xy general. Then [292, 2%4] C 22 + 9+, implying the conclusion. O

Notation 4.60. We construct a graded nilpotent Lie algebra m_ := € m_j, as follows:
E>1
m_; = @ Cuy,
1<i<4

m_g = Cuvaz @ Cuay,
m_3 = Cvazz © Cuvozy,
m_y = Cuazay,
m_=0, k>5,

where v, i = [vi, 4. _1,0i, ] The Lie algebra structure on m_ is defined uniquely by the following rules:
1
[mfi,m—j] cm_;—j, [v1,m_] =0, [veg,v34] = 502334,

and there is a table of Lie brackets

V23 V34 V233 V234
(432) (%) 0 V234 0 . 0
vy | —vegz | O 0 —5V2334
vy | —va3q | O | —vo33g 0

In the table above, we compute the Lie bracket of left end entry with top end entry. For example, [vy,v23] =
—vg34 and [v3, va34] = — 102334

Lemma 4.61. In Setting[{.53, the symbol algebra of 7 at a general point x € Xy is isomorphic to m_ in
Notation [[-60, where we have identifications Ny = Cvy, 292 = Cvy + Cvg, 293 = Cuvz and 24 = Cuy.
Proof. By Proposition 55, Proposition and Proposition [L5]] (see also Remark [L13)(i)), we have the
description of m(«;) and m(wy, o) for 2 < i # j < 4. In particular, in m,(aq, as, aq) := Symb,(Z) we have
[v1,v;] = 0,5 =2,3,4, (advy)?(v3) =0, (adw3)®(ve) =0,
[v2,v4] =0, (adv3)?(v4) =0, (advy)?(v3) = 0.

Then by Proposition 218 Symb,(2) is a quotient algebra of g_ := g_(C5) @ g_(A;1). More precisely,
g- = @ g_ as follows:
k>1

g1 = @ Cuy,

1<i<4

g2 = Cuaz ® Cusy,

g3 = Cuazz ® Cuazy,

9-4 = Cuagz,

9-5 = Cuaszua,

gr=0, k>6.
Denote by q the ideal of g such that Symb, (%) = g_/q as graded nilpotent Lie algebra. By Proposition
BI0 dim Symb,(2) = dim T, Xy = 9, which implies that dim q = dim g_ — dim Symb_(2) = 1.

To complete the proof of Lemma [LGT] it suffices to show the claim that g = Cuvg, where vy := va3344 + At

for some A € C. Note that the graded Lie algebra structure on g_/Cwy is independent of the choice of
reC.

Suppose the claim fails. Then there exists 1 < kg < 4 such that q = Cvg and vog = Avy + v]) + v{, where

vl € D 9ok, 0 A v) Egopy if ko >2,and 0 £ v) € @ Cu; if kg = 1. Then there exists 2 < j <4
k>ko+1 2<i<4
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such that [vj,v] # 0, see table (@32). Then 0 # [vj,v] € @ g_k. Since q is an ideal of g_, we have
k>ko+1
0 # [vj,v0] € q = Cvp. In particular, [v;,v] has a nonzero component in g_g,. It is a contradiction. Hence

the claim holds. O

Lemma 4.62. In Setting[[-53 the Frobenius bracket of (T™">""* +T7"*"")| y, induces a homomorphism of
meromorphic vector bundles over Xy:

(TTr"‘QvO‘S /Tﬂ'o‘2)|XO ® (Tﬂa2v°‘4 /T7r°‘2)|X0 N TXO/(TﬁO‘QvWS + 1171""2*"‘3)lafo7
which is a surjective homomorphism over a nonempty Zariski open subset of Xj.

Proof. Tt is a direct consequence of Lemma [L.61] More precisely, the weak derivatives of 22, 9% + s
and 7% + %4 induces symbol algebras at a general point x € Xj as follows:

gr(T™?*) = Cuv; @ Cuy,

gI‘(Tﬂﬂ%ag) = (Cv1 (S C'UQ (&) (Cvg S (C’Uzg S C'U233,
gr(T’TGZM) = Cv; @ Cvy @ Cuy.

Then it is straight-forward to deduce the conclusion from the Lie algebra structure of m_ in Notation
4,60 0

Proposition 4.63. In Setting[[-59 the variety X5 is biholomorphic to F(3,4;CP).

Proof. By Proposition L5T] the variety X§? is smooth. Being the smooth deformation of F'(3,4; C%) = X
with ¢ # 0, A;? is of Picard number two. The relative Mori contraction 7®>% : X — X*2* induces a
relative Mori contraction ¢)®* : X2 — X% extending W** : Ay/Pa, a,) — Aa/Pa,, wherei # k € {3,4}.
The existence of two elementary contractions of fiber types implies that X is a Fano manifold.

For each k € {3,4}, the relative tangent sheaf T%"* is a meromorphic distribution on X2, whose singular
locus is a proper closed subvariety of X3*>. Denote by £ := T%"" |X(312, and & := &% + £ C TAS?. The
Frobenius bracket of the meromorphic distribution £ on Xj*? induces F : £%¢ @ £* — T A /€, which is a
homomorphism of meromorphic vector bundles over Xj*.

It is easy to see that & = dn§*(T™ > + T7*"™") and £ = dn§*(T™"*"*) for k = 3,4, where dn§? is
the tangent map of 75?. By Lemma [£.62] F' is surjective at general points of Xj*>. The conclusion follows
from Proposition B.20 O

Corollary 4.64. In Setting[].53 the varieties Xy and X3**** are biholomorphic to Ay/P,, and Ay/P,,
respectively. The morphisms 75> + Xy — X3 and 75>« Xy — A3 are F4(1,2;C*)-bundle and
(P2 x PY)-bundle respectively.

Proof. By Proposition BL63, X§? = Ay4/Pia, a,)- Hence X5 = Ay/P,, and Xy = A4/P,,. Further-
more, the two elementary Mori contractions 1§? : X5'? — X5 and ¢§* : A5 — X5>* are P3-bundle
and P'-bundle respectively. Then by Proposition EE57] 722 : Xy — P* (resp. w2 : Xy — Gr(3,C?)) is
a smooth morphism such that each fiber is a Fano manifold admitting a P2-bundle structure over P? (resp.
over P1). By rigidity of projective space and Proposition B:24] the morphism 752** is a (P? x P!)-bundle.
By Theorem [[6] each fiber of 75*“® is biholomorphic to either F(2,3;C*%) or F¢(1,2;C*). By the local
rigidity of F'(2,3;C*) and Proposition EE56], the morphism 752'** is an F?(1,2; C*)-bundle. O

Now we are ready to complete the proof of Proposition[£.52] As a trivial analogue with Construction [[.5]
we can define F%(2,3; C*) by using the contact distribution on A3/ P,, instead of that on Az/P,,. Although
F(2,3;C* = F(1,2;CY), we use F%(2,3,C*) in the following to make our discussion compatible with the
involved simple roots of Ay.

Proof of Proposition [[.59 We discuss in Setting It suffices to deduce a contradiction. In summary of
Proposition EE57, Proposition and Corollary 64, 722 : Xy — X5 = F(3,4;CP) is a P?-bundle and
T L Xy — Xy =Pt is a F4(2,3;C*)-bundle. By Proposition 48 there exists a holomorphic section
o X§? = F(3,4;C5) — X, of m? such that
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(1) at any point x € Xy \ o(X;?), K£33(Xy) consists of a unique element, denoted by [Cy];

(ii) at any point z € Xy \ o(X§?), Cp = P! and 752 sends C, biholomorphically to a line in a fiber of
P X2 = F(3,4;CP) — X5 = Ay/Pa,;

(iii) two points z,y € PZ\ {o(t)} satisfy n52(C,) = 75%(C,) if and only if the two lines (z,o(t)) and
(z,0(t)) in P? coincide, where ¢ € X is an arbitrary point and P? := (7§?) =1 (¢).

Set K3 (Xo/X5?) = Ua2[7r8‘2(Cz)] C A4/ Play,ay = K3 (X3?). Denote by Ag? < U (Xo/X5?) —

teX;

K3 (Xp /Xy ) the restriction of the universal family X5 = A4/ Pla, 0.1 ¢ A4/ Plas,as,a0y — KP(AG?) =
A4/P{0¢270¢4}'

Since w5 1 Xy — Xy = Pt is a FY(2,3;C*)-bundle, we can apply Proposition to obtain a
commutative diagram over X as follows:

(4.33) Xo = "= = U™ (Xo/ X5*) > A4/ Play az.0)
K ’Yl / l
X5? = F(3,4;CP) Gr(2,C%),
where at any point ¢ € X§ the horizontal rational map 6; is the linear projection from P? := (7§?)~1(t)

with center o(¢).In particular,

(iv) v : U (X /X5?) — X5 is a Pl-bundle.

Now we claim that

(v) under the natural surjective morphism Ay /Piq, ay.0,3 — A4/Pa, = Gr(2,C), the variety U (X / Xg?) C
A4/ P{ay,as,0,) 15 the inverse image of a hyperplane section of Gr(2, C?).

To verify the claim (v), it suffices to show that as a divisor on S := A4/Pq, ay,04}, D = U (Xo/A5?)
satisfies

(434) (D . Cz) = 61'2, [Cl] S ICO”(S), 2 <1 <4.
Take a point [A4] € Xg*** = A4/ P,,, where Ay is the corresponding 4-dimensional linear subspace of C°.
The restriction U**(Xy/X§?) C As/Piay,as,0s) — Gr(2,C%) on the fiber (75> ")~ ([A4]) = F%(2,3; Ag) is
C2/B C A3/ Pa, ayy — Gr(2,C*). Hence ([@34) holds for i = 2 and 3.

Now consider a part of [@33)), which is a commutative diagram as follows:

Xo—— — — — >Ua3(XQ/X(;l2)

|

X0 = F(3,4,C%) <8
Take any [l4] € K (X?). Restricting on Iy C &, we obtain a commutative diagram:

P2x i, — 2 =Pl x 1,

l4<—]P)2><l4

where the horizontal rational map o1 : P2 x Iy --» P! x I is the linear projection from P? x {t}, t € I4
with center o(t) € P? := P? x {t}, and the vertical morphism ¢ : P! x Iy — P? x 4 is a hyperplane bundle
over l4. By this diagram we can choose [Cy4] € K% (S) such that Cy C P2 x Iy C S is a section of I and
CyNU*(Xy/X$?) = 0. In particular, (D - Cy) = 0, verifying ([@34) and claim (v) too.

Denote by 0 # w € A?(C%)* the antisymmetric form on C® such that

Gro(2,C%) = {[A] € Gr(2,C%) | w(A, A) = 0}

is the hyperplane section of Gr(2,C%) C P mentioned in claim (v). The assertion w # 0 follows from the
fact U3 (Xo/X5?) S S.



36 QIFENG LI

Then we can conclude that
(vi) at any point t = ([A3], [A4]) € XS = F(3,4;C5) the fiber U/ (Xo/X;?) is identified with the space
M; = {[Ag] S er(2,(C5) | Ay C A3}
Denote by w’ € A?Aj the restriction of w on A4 = C* C C°. If the point ¢t = ([As],[A4]) is general in
X2 = F(3,4;C®), then
Ay ={v e Ay |w(v,A3) =0} C Ay
is a linear subspace of dimension one and M; is exact

{[AQ] (S GT‘(Q,(C5) | A3 “ Ay C Ag},

which is isomorphic to P!,
However by dimension reason, Null(w) # 0, where

Null(w) := {v € C° | w(v,C®) = 0}.

Hence, there exists [A3] € Gr(3,C®) such that Null(w) N Az # 0 and A3 € A3* C C®, where A7~ := {v €
C® | w(v, A3) = 0}. Choose t := ([A3],[A4]) € XS*. Then by definition we have

M; = {[As] € Gr(2,CP) | Ay C A3} = P2

It contradicts with the assertion (vi). This completes the proof of Proposition [£.52 |

4.5. Fano deformation of Dy/Pj,, a,,

O¢4}‘

4.5.1. Possible degenerations. The aim in this section is to show the following

Proposition 4.65. Suppose in Setting [LT1] that Xy = Dy/P{ay aq,0,) fort # 0 and Xo 2 Da/Piay 05,04}
Then at a general point x € Xy, the fibers Fo2 = Pl Fos = Pl poa = pl - pas,as o pl oy pl paz.as o
F(1,2;C*Y) and Fo24 = F4(1,2;CY).

Throughout the Subsection 5] we discuss in the following setting.

Setting 4.66. Let # : X — A > 0 be a holomorphic family of connected Fano manifolds such that &; =
D4/P{a2,a3,oz4} for ¢ # 0.

Firstly we have four possibilities as follows.

Proposition 4.67. In Setting [[.60, take x € Xy general. Then Fo2 = P! Fo: = Pl fos =~ Pl gpd
Fosaa =2 PLx PL Moreover, one of the following cases occur:
(A) Fozas =2 F(2,3;CY) and Fo22 =2 F(2,3;CY);
(B) Fozs =2 Fd(1,2;C*) and Fo» @ = F4(1,2;C);
(C) Fo22s = F(2,3;CY) and Fo22 = Fd(1,2;C*
(D) Fozo3 = pd(1,2;C*) and Fo2* = F(2,3;C*

);
)

Proof. The description of F¢* and F'*3** follows from the Fano deformation rigidity of projective spaces
and Proposition 3:2241 The description of F>*3 and F22* follows from Theorem [L.6 O

Remark 4.68. The positive roots of D, are as follows:

g, 2, A3, Q4] a1+a2,a2+a3,a2+a4;
o1 + o + a3, + g + oy, a2 + a3 + ag;

a1 +as + a3+ ay; o+ 200 + ag + aq.
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Take G = Dy and I = {ag, a3, a4} in Definition 2.2 then g_(I) = @ g_r(I) is as follows:
k>1

9-1(0) = 9-a1-a; D 9—a; ® g—as B I—au;

9-—2() = 9-a1-as—as D -as—as D I-ai—as—as D J—as—au
(4.35) 9-3(I) = 9-a1—as—as—as B J—as—as—au>

g-4(I) = 0-a1—200—as—ass

g-x(I) =0 for k > 5.

Now we fix nonzero vectors w1 € g—a, —aq, W2 € Gy, W3 € G—ay, and wy € g_,, respectively. Then ([E33)
can be written explicitly as follows:

g-1(I) = Cw; ® Cwy @ Cws ® Cuwy,
g-2() = Cwiz @ Cwzz ® Cwiy © Cway,
(4.36) 9-3(I) = Cwizs ® Cwaay,
g-4(I) = Cwizaz,
g_r(I) =0 for k > 5,
where w;, ;. = [wiy. 4, _,,w;, ] by inductive definition.
Take G = Dy and I = {a, a3} in Definition 222 then g_(I) = @ g_r(I) is as follows:
k>1
9-1(I') = 90102 D 02 D I-a1-a2—0as D I—as—as D I—as,
(4.37) 9-2(I') = 9-a1-az-as D J-az—as D I—a1—az—as—as B §—az—as—aus;
9-3(I") = 9-a1—202—as—au

g_r(I') =0 for k > 4.
The choice of w; is kept unchanged. Then ([@37) can be written explicitly as follows:
g-1(I") = Cw; & Cwz & Cwis ® Cway @ Cuws,
(4.38) g_2(I') = Cwiz ® Cwaz ® Cwizy ® Cwoay,
g-3(I') = Cwizaz,
g-x(I") =0 for k > 4.

Convention 4.69. In Subsection @5 we denote by 2%, 2 and 2~ the restriction of D%, D and D% on
Xp respectively, where the latter is defined in Notation B9l For simplicity we write (m_), := m, (a2, as, )
and (m_g), := (m_g (a2, a3, aq))s, where k > 1 and z € Xj is general.

Lemma 4.70. At x € Xy general dim(m_), = dim Xy = 11.
Proof. Tt is a special case of Proposition [3.10] O

4.5.2. Exclude possibility of case (C'). Throughout part[L5.2] we suppose case (C) of Proposition[ 67 occurs,
and aim at deducing a contradiction.

Lemma 4.71. In case (C) of Proposition[].67, there exists a unique meromorphic line subbundle N of 22
such that [N, 2%] C N+ @%4. Consequently, [N, 22 + 9“1 C 92 + 9% C D.

Proof. Tt follows from Proposition L8]] and the assumption in case (C) directly. O

Construction 4.72. In setting of Lemma [L7T] take z € A) general. Choose a local section v7 (resp. Us,
v4) of N (resp. 2%, 2*4), which is nonzero in an open neighborhood of = in Xy. Take a local section vy
of 22 such that (v2), ¢ C(v71), at any point y in an open neighborhood of = in Xy. Define by induction

k> 1 that vs,...5, ., = [Ui;...i,, Vip,,) as local vector field in an open neighborhood of  in Ap. Take a subset
A C I :={az,a3,as}. When all v;; are local sections of QA = > 2” we denote by vﬁ,,,ik the class of
BeA

Viy-ip in Symb(24). When A = I we omit the superscript I, i.e. denote by v;,...,, € Symb(Z) of class
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of ¥j,...;,. For simplicity we also use v}, ; and vl ; to represent the corresponding class in the symbol

algebras Symb,_ (24) and Symb,(2) at a chosen general point x.

Proposition 4.73. In setting of Construction [{.73, the symbol algebra of ¥ at a general point x € Xy is a
quotient algebra of g—(By), denoted by g—(By)/q. More precisely, under the isomorphism (m_), = g_(B4)/q
the elements vy, v2,v3,v4 have weights — 1, —Ps, — B2, — B4 respectively, where By, ..., Bs are the three long
simple roots of By, and 4 is the short one. The ideal q is generated by g_p, —g,—p, in §—(Ba). We can write
explicitly (m_), as follows:

1)z = Cv; @ Cvz @ Cvy @ Cuy,

2)z = Cu1z ® Cuzy @ Cuzg,

3)z = Cuz2q @ Coaua,

5)e = Cuzaaqo,
)z =0 for k> 6,
where dim(m_y), =4,3,2,1,1 for k =1,...,5 respectively.

Proof. In case (C) of Proposition[.67 both (m_(ag, ag)), and (m_(as, a4)), are standard. Thus by Remark
1.68 we have

(
(
(4.39) (
(
(
(

)
)
)
4)m = Cusa44,
)
)

advy (v2) = 0, advs(vs) = 0, (adw;)?*(v3) = 0, (advs)?(v;) = 0 in (m_),,
where i = 1,2. Since F22®+ = [4(1,2;C*), we know from Lemma 7T and Proposition EE5T] that
advy (v2) = 0, advy (v4) = 0, (adwve)?(vs) = 0, (advy)?(v2) =0 in (Mm_),.

In summary (m_), is a quotient algebra of g_(By), where we write the four simple roots of By to be 1, ..., 84
in order with 84 being the short simple root, and the elements v, va, v3, v4 have weights — 51, — 3, — B2, — 4
respectively. Since (m_g(a2,a3)), = 0 for all k > 3, [v13,v2] = 0 in (m_),. It follows that (m_), is

a quotient algebra of g_(B4)/q, where q is the ideal in g_(B4) generated by g_s,—g,—3,. It is straight-
forward to see that g_(By4)/q is isomorphic to the graded Lie algebra described in ([39). By Lemma FL70]
dim(m_), =dimg_(By)/q=11. Hence (m_), = g_(B4)/q. O
Proposition 4.74. Case (C) of Proposition[].67 does not occur.
Proof. Suppose we are in case (C') of Proposition .67l Denote by £ the meromorphic distribution on X
such that €[ yes coincides with g—1(Da/Pas,a,}) under the identification X = Dy /Py, a4 for each t 7 0.
Then the singular locus on X** of £ is a proper closed algebraic subset of Aj“. By Remark and
Proposition 73, € = dr® (D +T™ >""), where dn®* : TX — TX®* is the tangent map of 7% : X — X4,
Take z € Ay general. Denote by & := &|yea, and y := 7% (z) € A". We claim that Symb, (&) =
g— (a2, avg), where g_ (a2, a3) C g = Lie(Dy) is as in Definition 2:21 Note that g_ (a2, as) has been explicitly

described in ([@37) and ([€38).

By abuse of notation, we denote by v;,...;, € Symby(g) the class of the local vector field dm®* (v;, . 4, )
on A5, Now v1, va, vs, U4, and vass form a basis of &,. There is a unique linear isomorphism ¢ : &, —
g—1(ae, as) such that

P(v1) = wi, Y(v2) = wa, Y(vs3) = ws,
Y(v2a) = was,  Y(v214) = W4,
where w;, w;; € g_1(ae, a3) are as in Remark By direct calculation ) induces an isomorphism ¥ :
Symb(&)y = (8- (Da/P{ay,as}))q satisfying
U(v13) = w123, VU (v32) = —was3, U (v324) = —W234,
U(v3244) = —wizs, V(v32332) = —wi342.

By Proposition BI9 the variety X5 = Dy/Pya, aq3- Thus 75" : Xy — Xg' is a P!-fibration by Proposition
4. 20)]
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On the other hand, by assumption F22:% = Fd(1,2; C*). The restriction of 7§* on F2:® coincides with
the morphism F?(1,2;C*) — cone(pt, @%). In particular, a fiber of m§* is biholomorphic to P3, contracting
the assertion that m* is a P!-fibration. Hence case (C) of Proposition LGl does not occur. O

Now we can complete the proof of Proposition [4.63

Proof of Proposition [{-65 By Proposition [.G7] there are four possibilities (A) — (D). By Proposition F.74]
case (C) does not occur. By symmetry of Dynkin diagram, case (D) is also impossible. If case (A) occur,
then by Theorem .22 the manifold Xy = D4/ Py, a4,q4}, contradicting to our assumption. Hence only case
(B) is possible, verifying the conclusion. O
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