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FANO DEFORMATION RIGIDITY OF RATIONAL HOMOGENEOUS SPACES OF

SUBMAXIMAL PICARD NUMBERS

QIFENG LI

Abstract. We study the question whether rational homogeneous spaces are rigid under Fano deformation.
In other words, given any smooth connected family π : X → Z of Fano manifolds, if one fiber is biholo-
morphic to a rational homogeneous space S, whether is π an S-fibration? The cases of Picard number
one were studied in a series of papers by J.-M. Hwang and N. Mok. For higher Picard number cases, we
notice that the Picard number of a rational homogeneous space G/P satisfies ρ(G/P ) ≤ rank(G). Re-
cently A. Weber and J. A. Wísniewski proved that rational homogeneous spaces G/P with Picard numbers
ρ(G/P ) = rank(G) (i.e. complete flag manifolds) are rigid under Fano deformation. In this paper we show
that the rational homogeneous space G/P is rigid under Fano deformation, providing that G is a simple
algebraic group of type ADE, the Picard number ρ(G/P ) = rank(G) − 1 and G/P is not biholomorphic to
F(1, 2,P3) or F(1, 2, Q6). The variety F(1, 2,P3) is the set of flags of projective lines and planes in P3, and
F(1, 2, Q6) is the set of flags of projective lines and planes in 6-dimensional smooth quadric hypersurface.
We show that F(1, 2, P3) have a unique Fano degeneration, which is explicitly constructed. The structure
of possible Fano degeneration of F(1, 2, Q6) is also described explicitly. To prove our rigidity result, we

firstly show that the Fano deformation rigidity of a homogeneous space of type ADE can be implied by
that property of suitable homogeneous submanifolds. Then we complete the proof via the study of Fano
deformation rigidity of rational homogeneous spaces of small Picard numbers. As a byproduct, we also
show the Fano deformation rigidity of other manifolds such as F(0, 1, . . . , k1, k2, k2 + 1, . . . , n − 1, Pn) and
F(0, 1, . . . , k1, k2, k2 + 1, . . . , n,Q2n+2) with 0 ≤ k1 < k2 ≤ n− 1.
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1. Introduction

We work over the field C of complex numbers. A Fano manifold M is said to be rigid under Fano
deformation if any smooth connected family π : X → Z of Fano manifolds with M being a fiber must be an
M -fibration. If the fiber Xz := π−1(z) at some point z ∈ Z is not biholomorphic to M , we say Xt is a Fano
degeneration of M .

Our interest in this paper is the Fano deformation rigidity of rational homogeneous spaces. The Fano
deformation rigidity of rational homogeneous spaces of Picard number one is studied by J.-M. Hwang and
N. Mok in [5][8][9][10]. Among the rational homogeneous spaces of Picard number one, F(1, Q5) is the only
variety that is not rigid under Fano deformation, where F(1, Q5) is the family of projective lines on a 5-
dimensional smooth quadric hypersurface. Moreover, the variety F(1, Q5) has a unique Fano degeneration,
see [14] and [7]. In particular, we have

Theorem 1.1. [5][8][9][10] Let S be a rational homogeneous space of Picard number one. If S ≇ F(1, Q5),
then S is rigid under Fano deformation.

To our knowledge the first result on higher Picard number cases is due to J. A. Wísniewski [17].

Theorem 1.2. [17] The variety F (1, n,Cn+1) is rigid under Fano deformation, where F (1, n,Cn+1) is the
set of flags of 1-dimensional and n-dimensional vector subspaces in Cn+1.

A rational homogeneous space is denoted by G/P , where G is a semisimple algebraic group and P is a
parabolic subgroup of G. The Picard number of G/P satisfies that ρ(G/P ) ≤ rank(G), where rank(G) is
the dimensional of any maximal torus of G. Recently A. Weber and J. A. Wísniewski [16] verified Fano
deformation rigidity of the cases with ρ(G/P ) = rank(G). More precisely,

Theorem 1.3. [16] The rational homogenous space G/B is rigid under Fano deformation, where G is a
semisimple algebraic group and B is a Borel subgroup.

Motivated by Theorem 1.1 and Theorem 1.3, one naturally ask what about the intermediate cases?
A previous result of the author [13, Theorem 1] shows that product structure is preserved under Fano
deformation. In particular, a rational homogeneous space S, satisfying S = S1 × S2, is rigid under Fano
deformation if and only if so are S1 and S2. It reduces the problem to the case when G is simple.

Our main result is on the cases with submaximal Picard number, i.e. ρ(G/P ) = rank(G) − 1. More
precisely, we have the following

Theorem 1.4. Let G be a simple algebraic group of type ADE and P be a parabolic subgroup of G such
that the Picard number ρ(G/P ) = rank(G) − 1. If G/P is not biholomorphic to F(1, 2,P3) or F(1, 2, Q6),
then it is rigid under Fano deformation, where F(1, 2,P3) (resp. F(1, 2, Q6)) is the set of flags of projective
lines and planes on P3 (resp. a 6-dimensional smooth quadric hypersurface).

It was observed by A. Weber and J. A. Wísniewski [16] that F d(1, 2;C4) is a Fano deformation of
F(1, 2,P3), where F d(1, 2;C4) is defined as follows.

Construction 1.5. Let ω be a symplectic form on C4, i.e. ω is a nondegenerate antisymmetric form on
C4. Denote by Lω ⊂ TP3 the associated contact distribution on P3 := P(C4), and write Lσ := TP3/Lω. We
define F d(1, 2;C4) := P(Lσ ⊕ Lω).

Indeed we can show moreover the following

Theorem 1.6. The variety F d(1, 2;C4) is the unique Fano degeneration of F(1, 2,P3).

We also describe the structure possible Fano degeneration of F(1, 2, Q6), see Proposition 4.65.
The strategy to prove Theorem 1.4 is as follows. Firstly, we show that the Fano deformation rigidity of a

rational homogenous space is implied the that property of a suitable class of its homogeneous submanifolds.
Then we show the Fano deformation rigidity of these homogeneous submanifolds.

To explain the sketch, we need some convention on notations. Given a simple algebraic group G and a
Borel subgroup B. Denote by R the set of simple roots and Γ the Dynkin diagram. There is a one to one
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correspondence between subsets I of R and parabolic subgroups PI containing B such that PR = B, P∅ = G
and PI ⊂ PI′ if and only if I ′ ⊂ I. There is a one to one correspondence between rational homogeneous
spaces G/PI and marked Dynkin diagrams defined by marking nodes I in the Dynkin diagram of G. One
can see the diagrams on page 5 intuitively. The following proposition reduces the Fano deformation rigidity
of G/PI to that property of its homogeneous submanifolds.

Proposition 1.7. Let G be a simple algebraic group of type ADE, and I be a subset of R with cardinality
|I| ≥ 3. Suppose that for any α 6= β ∈ I, there exists a subset A ⊂ I such that α, β ∈ A and the rational
homogeneous space PI\A/PI is rigid under Fano deformation. Then G/PI is rigid under Fano deformation.

Note that in the proposition above the variety PI\A/PI is a rational homogeneous space whose Picard
number is |A| ≤ |I| = ρ(G/PI). By Proposition 1.7, an easy analysis of marked Dynkin diagrams shows that
Theorem 1.4 is a direct consequence of Theorems 1.1, 1.2, 1.3 and the following

Proposition 1.8. The rational homogeneous spaces A4/PI′ and D5/PI′′ are rigid under Fano deformation,
where |I ′| = 3 and |I ′′| = 4 respectively.

As an example we analysis the Fano deformation rigidity of D4/PI with I = {α1, α3, α4}. Given any two
different roots α, β ∈ I, the rational homogeneous space PI\{α,β}/PI is biholomorphic to A3/P{α1,α3}, which
is rigid under Fano deformation. Hence, D4/PI is rigid under Fano deformation.

Our argument to Fano deformation rigidity of A4/P{α1,α2,α4}, which is a special case of Proposition 1.8,
works equally well for Am/P{α1,α2,αm} with m ≥ 3. In other words, we have

Proposition 1.9. The rational homogeneous spaces Am/P{α1,α2,αm} with m ≥ 3 are rigid under Fano
deformation.

Applying Proposition 1.7, we have the following consequence.

Theorem 1.10. Let G be a simple algebraic group of type ADE, Γ be the Dynkin diagram of G, and I be
a subset of the set of simple roots R. Denote by J := R \ I and ᾱ the node with three branches in Γ (of type
DE). Suppose J contains no end nodes of Γ, the subdiagram with nodes J are connected, and there is at
most one β ∈ J with Cartan pairing 〈β, ᾱ〉 6= 0. Then the rational homogeneous space G/PI is rigid under
Fano deformation.

If G is of type AD in Theorem 1.10, the manifolds G/PI are exact F(0, 1, . . . , k1, k2, k2 +1, . . . , n− 1,Pn)
and F(0, 1, . . . , k1, k2, k2 + 1, . . . , n,Q2n+2) with 0 ≤ k1 < k2 ≤ n− 1.

Now let us explain the proof of Propositions 1.7, 1.8 and 1.9. It is well-known that the local deforma-
tion rigidity of rational homogeneous spaces follows from the vanishing H1(G/PI , TG/PI

) = 0, which is a
consequence of Borel-Weil-Bott theorem. So we only need to discuss in the following Setting 1.11 and show
X0
∼= S in each corresponding case.

Setting 1.11. Let π : X → ∆ ∋ 0 be a holomorphic map such that Xt ∼= S := G/PI for t 6= 0 and X0 is a
connected Fano manifold, where G is a connected simple algebraic group of ADE type and I ⊂ R. Here R
is the set of simple roots and we define J := R \ I.

The key point to prove Propositions 1.7, 1.8 and 1.9 is the study of symbol algebras. Given a distribution
V on a complex manifold Y , the weak derived system V−k gives rise to a filtration V0 ⊂ V−1 ⊂ V−2 ⊂ · · · ,
where V0 := 0, V−1 := V , and V−k−1 := V−k + [V−1,V−k] for k ≥ 1. In an open neighborhood of a general
point y ∈ Y these V−k’s are subbundles of TY . The graded vector space Symby(V) := ⊕k≥1V−k

y /V−k+1
y is

a graded nilpotent Lie algebra, and called the symbol algebra of V at y.
Let g−1(S) be the sum of all G-invariant minimal distributions on S. The subscript −1 in the notation

g−1(S) comes from the grading induced by I, see Subsection 2.1. There is a meromorphic distribution
g−1(X ) ⊂ T π such that its singular locus is a (possibly reducible) proper closed subvariety of X0 and its
restriction on Xt with t 6= 0 coincides with the distribution g−1(S).

It is known that Symbs(g−1(S)) ∼= g−(I), where s is any point of S, g−(I) is the nilradical of the Lie
algebra of P−

I , and P−
I the opposite parabolic group of PI . By the works of A. Čap and H. Schichl [2] and

K. Yamaguchi [19], we can conclude the following
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Proposition 1.12. Suppose in Setting 1.11 that |I| ≥ 3 and Symbx(g−1(X0)) ∼= g−(I) at general points
x ∈ X0. Then X0

∼= S.

We can complete the proof of Propositions 1.7 and 1.8 by applying Proposition 1.12 and the following

Proposition 1.13. If the manifold S in Setting 1.11 is the variety G/PI in Propositions 1.7, 1.8 or 1.9,
then Symbx(g−1(X0)) ∼= g−(I) at general points x ∈ X0.

To prove Proposition 1.13, we need the algebraic and geometric feature of each situation. As an example,
we suppose S = Am/P{α1,α2,αm} in Setting 1.11. It can be shown that any two points in X0 can be jointed
by chains of rational curves tangent to g−1(X0). Hence the tangent bundle TX0 is k-th weak derivative of
g−1(X0) for some k. In particular, dim Symbx(g−1(X0)) = dimX0 = dim g−(I) at a general point x ∈ X0.
One the other hand, if the symbol algebra Symbx(g−1(X0)) ≇ g−(I), then an easy calculation of Lie algebras
shows that dim Symbx(g−1(X0)) < dim g−(I). The contradiction implies that Symbx(g−1(X0)) ∼= g−(I).

The organization of this paper is as follows. In Section 2 by studying the G-action on family of rational
curves and the G-invariant minimal distributions on S we give a characterization of g−(I), which is a
variation of Serre’s theorem on simple Lie algebras. In Section 3 we firstly study the basic properties of
Fano deformations and symbol algebras in Setting 1.11, and then prove Proposition 1.12. With the help of
Proposition 1.12 and the characterization of g−(I), we give the proof of Proposition 1.7 in Section 3. In
Section 4 we prove the rigidity results by applying Proposition 1.7. In Subsection 4.1 we prove Theorems
1.4 and 1.10 by assuming Propositions 1.8 and 1.9. The proof of Proposition 1.9 is given in Subsection
4.4. Theorem 1.6 is proved in Section 4.3, and with the help of this theorem we prove Proposition 1.8 in
Subsection 4.4. Finally we analysis the possible Fano degeneration of F(1, 2, Q6).

2. Geometry on rational homogeneous spaces

2.1. Distributions and families of lines. In this subsection, we collect the geometric properties on ra-
tional homogeneous spaces, which are useful in this paper. These results are classical, and most of them are
stated without proof.

Setting 2.1. Let G be a connected semisimple algebraic group of adjoint type such that each simple factor
is of type ADE, B be a Borel subgroup, and R be the set of simple roots. Fix a subset I of R and denote
by J := R \ I.

Denote by PI :=
⋂
α∈I

Pα, where Pα is the associated maximal parabolic subgroup of G which contains B.

Denote by P−
I the opposite parabolic subgroup of PI , and G0 := PI ∩ P

−
I .

Definition 2.2. Denote by g the Lie algebra of G. Let Λ be the set of all roots of G and h the fixed Cartan
subalgebra of g. For each η ∈ Λ, denote by gη the 1-dimensional linear subspace of g with weight η. We can
write η =

∑
α∈R

nαα, where either all nα are nonnegative integers or all nα are nonpositive integers. Define

degI η =
∑
α∈I

nα. For each k ∈ Z denote by Λk(I) the set of elements η ∈ Λ with degI(η) = k. Equip a

grading on g such that gk(I) :=
⊕

η∈Λk(I)

gη for k 6= 0 and g0(I) := h⊕ (
⊕

η∈Λ0(I)

gη). Then g becomes a graded

Lie algebra. Moreover g0, pI :=
⊕
k≥0

gk and p−I :=
⊕
k≤0

gk are Lie algebras of G0, PI and P−
I respectively.

When there is no confusion, we omit I in the expressions, for example gk := gk(I). In case I = R, we may
also write g−(G) := g−(R) in order to emphasize on the group G.

A rational homogeneous space can be expressed by a marked Dynkin diagram. To explain the order of
simple roots and the way to express a rational homogeneous space, we draw the marked Dynkin diagram
corresponding to G/P{α1,α2} as follows, where G = An, Dm or Ek with n ≥ 2, m ≥ 4 and k = 6, 7, 8
respectively.
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An : •
α1

•
α2

◦
α3

◦
α4

❴❴❴❴❴ ◦
αn−1

◦
αn

(2.1)

Dm : •
α1

•
α2

◦
α3

◦
α4

❴❴❴❴❴ ◦
αm−2

◦
αm−1

◦
αm

✦
✦
✦
✦
✦
✦
✦
✦
✦
✦
✦
✦
✦
✦

(2.2)

Ek : •
α1

◦
α3

◦
α4

❴❴❴❴❴ ◦
αk−1

◦
αk

•
α2

(2.3)

Since we assume G to be of adjoint type, the restriction of Adjoint representation induces an injective
homomorphism G0 ⊂ GL(g−(I)), where g−(I) :=

⊕
k≥1

g−k(I).

Notation 2.3. Given any α ∈ R, denote by N(α) the set of simple roots that are next to α in the Dynkin
diagram ΓR of G, and set NJ(α) := N(α) ∩ J . For each subset A of R, denote by a semisimple subgroup
GA of G associated to the Dynkin subdiagram ΓA of ΓR.

Definition 2.4. Set S := G/PI . Given a subset A ⊂ I, denote by SA the central fiber of ΦA : S →
G/PI\A, which is a rational homogeneous space of Picard number |A|. Given any α ∈ I, each fiber of Φα is
biholomorphic to Sα, which is covered by lines under its minimal embedding. Denote by Kα(S) the family
of these lines (associated with α) on S. Indeed Kα(S) = G/P(I∪N(α))\{α}, which can be concluded from the
following commutative diagram of Tits fibrations

G/PI∪N(α)

µ

��

ev // G/PI

��
G/P(I∪N(α))\{α}

// G/PI\{α}.

(2.4)

Denote by Cα(S) ⊂ P(TS) the variety of tangent directions of Kα(S), i.e. at each point x ∈ S,

Cαx (S) =
⋃

C∈Kα
x (S)

P(TxC) ⊂ P(Tx(S)),

Denote by Zα := Cαp (S) ⊂ P(TpS), where p is the base point of S.

Remark 2.5. Tits [15] studied diagrams in the style of (2.4) and he called µ(ev−1(z)) the shadow of z ∈ G/PI .
This variety is biholomorphic to Cαx (S) for x ∈ ev−1(z) ⊂ G/PI . The notation Cαx (S) called the variety of
minimal rational tangents (VMRT for short) at x of the minimal rational component Kα(S). One could find
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more details about minimal rational components and VMRT in [6]. For more details about the properties
of those Cα, one can consult [12].

The following results are straight-forward.

Lemma 2.6. (i) The group GJ is the semisimple part of the reductive group G0.
(ii) The simple factor of GJ is of type ADE;
(iii) There is a natural G0-action on C

α, and the action is transitive.

Lemma 2.7. The tangent bundle of S is identified with G×PI (g/pI). For each α ∈ I there exists a unique
G-invariant holomorphic distribution

gα(S) := G×PI ((g−1(α) + pI)/pI).

The G-invariant holomorphic distribution

g−1(S) := G×PI ((g−1(I) + pI)/pI)

satisfies that

g−1(S) =
⊕

α∈I

gα(S) =
∑

α∈I

gα(S) ⊂ TS.

Lemma 2.8. Take any α ∈ I. Then
(1) Cα(S) ⊂ P(gα(S));
(2) The inclusion Z

α ⊂ P(g−1(α)) is G0-equivariant;
(3) Z

α is the unique closed G0-orbit in P(g−1(α));
(4) Z

α is nondegenerate in P(g−1(α)).
(5) The GJ -action on Z

α induces the isomorphism

Z
α ∼= GJ/PNJ(α)

∼=
∏

β∈NJ(α)

GJ/Pβ .

Particularly each Z
α
β := GJ/Pβ ∼= G0/Pβ is a rational homogeneous space of Picard number one, where

α ∈ I and β ∈ NJ(α).

Remark 2.9. Given α ∈ I and β ∈ NJ(α), as in Definition 2.4 we have a family of rational curves Kβ(Zα)
and its associated variety of tangent directions Cβ(Zα) on the rational homogeneous space Zα. As in
Lemma 2.7 we can construct the distribution gβ(Zα) on Zα, which is the minimal G0-invariant (hence GJ -

invariant) distribution associated with the root β ∈ NJ(α) ⊂ J . Denote by Ẑ
α
⊂ g−1(α) the affine cone of

Zα ⊂ P(g−1(α)). Then can define Ĉα(S), Cβ(Ẑ
α
), Ĉβ(Ẑ

α
) and gβ(Ẑ

α
) in an obvious way.

Notation 2.10. Write J =
⋃

1≤i≤τ
Ji, which is a disjoint union such that ΓJ1 , . . . ,ΓJτ

are the connected

components of the Dynkin diagram of ΓJ .

The following is straight-forward.

Lemma 2.11. Take any α ∈ I, and any β ∈ NJ(α). Then there exists a unique Ji containing β. Moreover,
β is an end vertex of the Dynkin diagram ΓJi

, and Z
α
β
∼= GJi

/Pβ.

The following result on automorphism groups of rational homogeneous spaces is straight-forward.

Lemma 2.12. The natural homomorphism G→ Auto(S) is bijective. Take α ∈ I and let Auto(Ẑ
α
, g−1(α))

be the identity component of

Aut(Ẑ
α
, g−1(α)) := {ϕ ∈ GL(g−1(α)) | ϕ · Ẑ

α
= Ẑ

α
}.

Then the natural homomorphism G0 → Auto(Ẑ
α
) is surjective and Auto(Ẑ

α
) = Auto(Ẑ

α
, g−1(α)). Take any

β ∈ NJ(α). Then the distribution gβ(Zα) on Z
α is Auto(Zα)-invariant.
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Given α, β ∈ I, k ≥ 1 and [Cα] ∈ Kα(S), we can describe the splitting type along Cα ∼= P1 of distributions

g
β
−k(S) on S. To obtain it, we need to apply Grothendiecks splitting theorem for principal bundles on P1

with reductive structure groups and associated vector bundles [3].

Proposition 2.13. (Grothendieck). Let O(1)∗ be the C∗-principal bundle on P1 corresponding to the line
bundle O(1). Let L be a reductive complex Lie group. Up to conjugation, any L-principal bundle on P1

is associated to O(1)∗ by a group homomorphism from C∗ to a maximal torus of L. If E is the coroot
of sl(2), such a group homomorphism is determined by the image of E in h, a fixed Cartan subalgebra of
L. Given a representation of L with weights µ1, . . . , µℓ ∈ h∗, the associated vector bundle on P1 splits as
O(µ1(E))⊕ · · · ⊕ O(µℓ(E)), where µj(E) denotes the value of µj on the image of E in h.

Given β ∈ I and [Cα] ∈ Kα(S), we can identify Cα with exp(slβ(2))/ exp(gβ ⊕ [gβ , g−β]), where slβ(2) :=
gβ ⊕ g−β ⊕ [gβ , g−β ] ⊂ g is a subalgebra isomorphic to sl(2), and gβ ⊕ [gβ , g−β] = pI ∩ slβ(2) is a Borel
subalgebra. Then as a direct consequence of Proposition 2.13, we have the following result.

Proposition 2.14. Given α, β ∈ I, k ≥ 1 and [Cα] ∈ Kα(S), we have

g
β
−k(S)|Cα =

⊕

γ∈Λk(β)

OP1(〈γ, α〉).

2.2. Characterization of the nilradical of a parabolic subalgebra. We want to give a description of
the algebra g−(I) :=

⊕
k≥1

gI−k. When I = R, it is described by Serre’s theorem on semisimple Lie algebra in

the following way.

Proposition 2.15. [4, Section 18] Let R be a set of simple roots for g and choose a nonzero element
xα ∈ g−α for each α ∈ R. Then the subalgebra g−(R) of g is the quotient of the free Lie algebra generated
by {xα | α ∈ R} by the relations

ad(xα)
−〈β,α〉+1(xβ) = 0 for all α 6= β ∈ R.

Proposition 2.16. Denote by F(g−1(I)) the free graded Lie algebra generated by g−1(I). Fix an arbitrary

zα ∈ Ẑ
α
\ {0} for each α ∈ I. Let I := I(zα, α ∈ I) be the ideal of F(g−1(I)) generated by the following

relations:

(i) for all α′ 6= α′′ ∈ I and all (v′, v′′) ∈ G0 · (zα′ , zα′′) ∈ Ẑ
α′

× Ẑ
α′′

,

(adv′)−〈α′′,α′〉+1(v′′) = 0;

(ii) for all α ∈ I, β ∈ NJ (α), v ∈ Ẑ
α
\ {0}, and u ∈ gβv (Ẑ

α
),

(adv)−〈β,α〉(u) = 0.

Then g−(I) :=
⊕
i≥1

g−i is isomorphic to F(g−1(I))/I as graded nilpotent Lie algebra. In particular, up to

isomorphism F(g−1(I))/I(zα, α ∈ I) is independent of the choice of those zα ∈ Ẑ
α
\ {0}.

Proof. Step 1. We will show that g−(I) satisfies conditions (i) and (ii).
The inclusion g−(R) ⊂ p−I induces a semidirect product decomposition of Lie algebra structure g−(R) =

n0 ⋊ g−(I), where n0 := g−(R) ∩ g0(I). For each α ∈ R we choose a nonzero element xα ∈ g−α.

For those α ∈ I, we write zα := xα. Since the point P(g−α) ∈ Zα ⊂ P(gα−1), we have zα ∈ Ẑ
α
\ {0}. For

those β ∈ J := R \ I, we have xβ ∈ n0. Denote by π : n0 ⊂ g0(I)→ aut(g−(I)) the homomorphism induced
by the adjoint representation, and write ηβ := π(xβ) ∈ aut(g−(I)). Then by Proposition 2.15, we have

(adzα′)−〈α′′,α′〉+1(zα′′) = 0, for all α′ 6= α′′ ∈ I,(2.5)

(adzα)
−〈β,α〉(ηβ(zα)) = 0, for all α ∈ I and β /∈ I.(2.6)

Since the Lie algebra g−(I) is a G0-module, the conclusion (2.5) implies the condition (i) in the statement
of Proposition 2.16.



8 QIFENG LI

Now let us check the condition (ii). By (2.6), ηβ(zα) = 0 for β ∈ J \NJ(α). Now suppose that β ∈ NJ(α).
Then ηβ(vα) = [xβ , xα] is a nonzero vector in g−1(α) =

∑
γ∈Λ−1(α)

gγ . Moreover, P(ηβ(zα)) is a point in

Hβ
[zα](Z

α) ⊂ P(g−1(α)). Since g−(I) is a G0-module, we have

(ad(ϕ · zα))
−〈β,α〉(ϕ · ηβ(zα)) = 0 for all ϕ ∈ G0.

Denote by P ′
β := Pβ ∩G0. Then P

′
β · zα ⊂ Czα, and P ′

β · ηβ(zα) = Ẑ
β

zα(Ẑ
α
). Since Ẑ

β

zα(Ẑ
α
) is nondegenerate

in the subspace gβzα(Ẑ
α
) of g−1(α), we have

ad(zα)
〈β,α〉(u) = 0 for all u ∈ gβzα(Ẑ

α
).

It follows that

(ad(ϕ · zα))
−〈β,α〉(ϕ · u) = 0 for all ϕ ∈ G0 and all u ∈ gβzα(Ẑ

α
).

Since Zα is G0-transitive and gβ(Ẑ
α
) is G0-equivariant, the condition (ii) holds.

Step 2. Show that the isomorphism F(g−1(I))/I(zα, α ∈ I) is independent of the choice of those zα ∈

Ẑ
α
\ {0}.

Now take any z′α ∈ Ẑ
α
\ {0} for each α ∈ I. Since the inclusion Ẑ

α
⊂ g−1(α) is G0-equivariant and

Ẑ
α
\ {0} is a single G0-orbit, there exists an isomorphism ϕα : g−1(α) → g−1(α) of G0-modules sending

Ẑ
α
onto itself and ϕα(zα) = z′α. These ϕ

α induce an isomorphism F(g−1(I))→ F(g−1(I)) whose restriction
sending I(zα, α ∈ I) onto I(z′α, α ∈ I). Hence we have an isomorphism

F(g−1(I))/I(zα, α ∈ I) ∼= F(g−1(I))/I(z
′
α, α ∈ I).

Step 3. Show the isomorphism F(g−1(I))/I ∼= g−(I).

By Step 1 and Step 2 we can set zα := xα ∈ Ẑ
α
\ {0} for each α ∈ I and get a surjective homomorphism

of G0-modules ψ : F(g−1(I))/I → g−(I). It should be noticed that

F := g0(I)⊕ (F(g−1(I))/I) ∼= (g0(I)⊕ F(g−1(I)))/I, and

p−I := g0(I)⊕ g−(I) =
⊕

i≤0

gi(I)

are both graded Lie algebras as well as G0-modules. Moreover, ψ induces a surjective homomorphism
between Lie algebras as well as between G0-modules: ψ′ : F → p−I .

Similarly as in Step 1 let n0 be the Lie subalgebra of g0(I) generated by those xβ with β ∈ J . We have

g−(R) = n0 ⊕ g−(I) ⊂ p−I , and set F̃ := n0 ⊕ (F(g−1(I))/I) ⊂ F . Then the restriction of ψ′ induces a
surjective homomorphism of Lie algebras

ψ̃ : F̃ → g−(R).

Denote by F̃ the free graded Lie algebra generated by those xγ with γ ∈ R. Let Ĩ be the ideal of F̃
generated by the set

{(adxγ′)−〈γ′′,γ′〉+1(xγ′′) | γ′ 6= γ′′ ∈ R}.

There is a commutative diagram of Lie algebras as follows:

F̃

θ1

��

θ2

""❉
❉
❉
❉
❉
❉
❉
❉
❉

F̃
ψ̃

// g−(R).

We claim that θ1(Ĩ) = 0. Equivalently we claim that for all γ′ 6= γ′′ ∈ R,

θ1((adxγ′)−〈γ′′,γ′〉+1(xγ′′)) = 0.(2.7)
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Case 1. Suppose γ′, γ′′ ∈ I. Recall our definition of I for zα := xα ∈ Ẑ
α
\ {0}. Then in this case (2.7)

follows from the condition (i) of Proposition 2.16.
Case 2. Suppose γ′ ∈ I and γ′′ ∈ J := R \ I. The condition (ii) of Proposition 2.16 implies (2.7) under

the additional assumption that γ′′ ∈ NJ(γ′) by noting that θ1(xγ′) ∈ g−1(I) and θ1(xγ′′) ∈ n0.
Now for γ′ ∈ I and γ′′ ∈ J \NJ(γ′), we have 〈γ′′, γ′〉 = 0. The (2.7) becomes that [θ1(xγ′′), θ1(xγ′)]F̃ = 0.

The latter can be deduced from the g0-action (hence the n0-action) on g−1(I).
Case 3. Suppose γ′ ∈ J := R \ I and γ′′ ∈ I. Similarly in this case (2.7) can also be deduced from the

g0-action (hence the n0-action) on g−1(I).
Case 4. Suppose γ′, γ′′ ∈ J := R \ I. In this case (2.7) can also be deduced from the Lie algebra structure

of n0 (coming from that of g0).

In summary, the claim θ1(Ĩ) = 0 holds. Then it induces a homomorphism

θ̃1 : F̃/Ĩ → F̃ .

By the construction of F̃ , the morphism θ1 is surjective. Hence θ̃1 is surjective. By Proposition 2.15,

θ2 induces an isomorphism θ̃2 : F̃/Ĩ ∼= g−(R). Hence ψ̃ is an isomorphism preserving gradings, and its
restriction gives an isomorphism of graded nilpotent Lie algebras F(g−1(I))/I ∼= g−(I). �

3. Fano deformation of rational homogeneous spaces

From now on, we study the family X over ∆ in Setting 1.11. The organization of this section is as follows.
In subsection 3.1, we study the basic property of minimal rational curves and Cartier divisors on the family
X/∆. In subsection 3.2, we study the property of symbol algebras and prove Proposition 1.12, which is
reformulated in Proposition 3.19. In subsection 3.3, we prove Theorem 3.22, which implies Proposition 1.7
as a corollary.

3.1. Minimal rational curves on the family. The following result is due to Wísniewski [18].

Proposition 3.1. [18, Theorem 1] We can identify the Mori cones NE(X/∆) = Xt for all t ∈ ∆.

The following is a classical result on the rational homogeneous space S := G/PI .

Lemma 3.2. The Mori cone NE(S) is a simplicial cone generated by those Rα := R+[Kα(S)] with α ∈ I
i.e. dimNE(S) equals to the cardinality of I, and NE(S) =

∑
α∈I

Rα, where Kα(S) is as in Definition 2.4.

The set of extremal faces of NE(S) can be identified with the set of subsets of I.

As a direct consequence of Proposition 3.1 and Lemma 3.2, we have the following result.

Proposition-Definition 3.3. For each A ⊂ I, denote by ΦA : S→ G/PI\A the Mori contraction associated

with the extremal face
∑
α∈A

Rα of NE(S). We can extend it to be a relative Mori contraction πA : X → XA.

We denote by πAt := πA|Xt
for each t ∈ ∆.

Notation 3.4. Given a subset A ⊂ I and a point x ∈ X , denote by FAx the fiber of πA : X → XA passing

through x. In particular, if x /∈ X0 then FAx
∼= SA, where SA is defined in Definition 2.4.

Proposition 3.5. Take any α ∈ I. Then Fαx
∼= S

α for x ∈ X0 general.

Proof. The fiber Fαx is a smooth Fano deformation of Sα. Then the conclusion follows from the Fano
deformation rigidity of Sα, which is obtained by J.-M. Hwang and N. Mok [9, Main Theorem]. �

By Proposition 3.1, Proposition 3.5 and intersection theory on rational homogeneous spaces, we have the
following result.

Proposition-Definition 3.6. Take any α ∈ I. Denote by Kα(X ) the irreducible component of Chow(X )
extending Kα(S). Take any [C] ∈ Kα(X ). Then C is an irreducible and reduced rational curve on Xt for a
unique t ∈ ∆. If either t 6= 0 or [C] is general in Kα(X0), then C ∼= P1. Moreover, there exists a unique
Lα ∈ Pic(X/∆) such that (Lα · Kβ(X )) = δαβ for all β ∈ I.
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Proposition 3.7. Any two points x, y ∈ X0 can be connected by chains of elements in
⋃
α∈I
Kα(X0).

Proof. Consider the rational map ψ : X0 99K Z defined by equivalence relation induced by
⋃
α∈I
Kα(X0). For

the existence and the property of such a rational map, see [11, Theorem IV.4.16]. Suppose dimZ ≥ 1. Take
a general divisor D ⊂ Z and a general point x ∈ Z \D. Then ψ−1(z) is a closed subvariety of X0 which has

empty intersection with the indeterminant locus of ψ. Thus ψ−1(z) ∩ E = ∅, where E := ψ−1(D) ⊂ X0 is
an effective divisor. For each x ∈ ψ−1(z) and each α ∈ I, we have Kαx (X0) 6= ∅. By definition Cαx ⊂ ψ−1(z)
(hence Cαx ∩E = ∅) for all [Cαx ] ∈ K

α
x (X0). It follows that (E · Kα(X0)) = 0 for all α ∈ I, which implies that

E = 0. It contradicts the choice of E. Then the conclusion follows. �

3.2. Properties of symbol algebras.

Definition 3.8. Given a distribution V on a complex manifold Y , define the weak derived system V−k

inductively by

V0 := 0,

V−1 := V ,

V−k−1 := V−k + [V−1,V−k], k ≥ 1.

Denote by V−∞ := lim
k→∞

V−k. There exists a positive integer d such that V−d+i = V−d for all i ≥ 0. In

particular, V−∞ = V−d and it is integrable on Y . In an open neighborhood of a general point y ∈ Y
these V−k’s are subbundles of TY . We define the symbol algebra of V at y as the graded nilpotent Lie
algebra Symby(V) :=

⊕
1≤k≤d

V−k
y /V−k+1

y . We say V is bracket-generating if V−∞ = TY . When V is bracket-

generating, dimSymby(V) = dimTyY = dimY .

Notation 3.9. Take a subset A ⊂ I. The distribution

gA−1(S) := G×PI (
∑

α∈A

(g−1(α) + pI)/pI)

on S can be extended to be a meromorphic distribution DA on X , which is well-defined on general points of
X0 and all points of

⋃
t6=0

Xt. Take a general point x ∈ X0. Denote by mx(A) the symbol algebra of DAx , i.e.

mx(A) := Symbx(D
A). We say mx(A) is standard if it is isomorphic to the symbol algebra of the distribution

gA−1(S) on S. Otherwise, we say mx(A) is degenerate. When A = I, we omit the superscript I and write

D := DI briefly.

Proposition 3.10. The unique integrable meromorphic distribution on X0 containing D is the tangent
bundle. Consequently, Then the distribution D is bracket-generating on X0 and dimmx(I) = dimX0 for
x ∈ X0 general.

Proof. Let V be an integrable meromorphic distribution on X0 containing D, and M be a general leaf. Take
α ∈ I and [C] ∈ Kα(X0) with C ∩M 6= ∅. Then at a point x ∈ C ∩M we have TxC ⊂ Dx ⊂ Vx. Thus C
is contained in the analytic closure of M . By Proposition 3.7, the leaf closure of M is X0, completing the
proof. �

To continue, we need to recall some concepts and results related with Cartan connections.

Definition 3.11. Fix a positive integer ν. Let l− = l−1⊕· · ·⊕ l−ν be a graded nilpotent Lie algebra. Denote
by grAut(l−) the group of Lie algebra automorphisms of l− preserving the gradation and by graut(l−) its
Lie algebra. Fix a connected algebraic subgroup L0 ⊂ grAut(l−) and its Lie algebra l0 ⊂ graut(l−). For
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each positive integer i, the i-th prolongation of l0 is inductively defined as

li :=
{
φ ∈ Hom(l−,

⊕

−ν≤j<i

lj)i :=

ν⊕

k=1

Hom(l−k, l−k+i),

φ([v1, v2]l−) = φ(v1)(v2)− φ(v2)(v1), for any v1, v2 ∈ l−

}
.

Here [ , ]l− denotes the Lie bracket on l− and, if φ(v1) ∈ l−, then

φ(v1)(v2) := [φ(v1), v2]l− .

For convenience, we put l−ν−j = 0 for every positive integer j and write

l− =
⊕

k∈N

l−k.

The graded vector space

l :=
⊕

k∈Z

lk

is a graded Lie algebra and called the universal prolongation of (l0, l−).

The following result on prolongations is due to K. Yamaguchi [19].

Proposition 3.12. [19, Theorem 5.2] Suppose in Setting 2.1 that G is simple.
(i) Suppose G/PI is not biholomorphic to a projective space. Then g is the universal prolongation of

(g−(I), g0(I)).
(ii) Suppose |I| ≥ 2 and (G, I) is not one of the following:

(Am, {α1, αi}), 2 ≤ i ≤ m;(3.1)

(Am, {αi, αm}), 1 ≤ i ≤ m− 1;(3.2)

Then g0(I) is isomorphic to aut(g−(I)), the Lie algebra of grAut(g−).

Definition 3.13. Let L be a connected algebraic group and L0 ⊆ L be a connected algebraic subgroup.
Let l0 ⊂ l be their Lie algebras. A Cartan connection of type (L,L0) on a complex manifold M with
dimM = dimL/L0 is a principal L0-bundle E → M with a l-valued 1-form Υ on E with the following
properties.

(i) For A ∈ l0, denote by ζA the fundamental vector field on E induced by the right L0-action on E.
Then Υ(ζA) = A for each A ∈ l0.

(ii) For a ∈ L0, denote by Ra : E → E the right action of a. Then R∗
aΥ = Ad(a−1) ◦Υ for each a ∈ L0.

(iii) The linear map Υy : TyE → l is an isomorphism for each y ∈ E.

The Cartan connection (E →M,Υ) is flat if the curvature κ := dΥ+ 1
2 [Υ,Υ] vanishes.

Example 3.14. Let L and L0 be as in Definition 3.13, and denote by ωMC the Maurer-Cartan form on L.
Then (L→ L/L0, ωMC) is a flat Cartan connection of type (L,L0).

Definition 3.15. Let l− = ⊕k∈Nl−k be a graded nilpotent Lie algebra with l−j = 0 for all j larger than for
a fixed positive integer ν. A filtration of type l− on a complex manifold M is a filtration (F jM, j ∈ Z) on
M such that

(i) F kM = 0 for all k ≥ 0;
(ii) F−kM = TM for all k ≥ ν; and
(iii) for any x ∈M , the symbol algebra

grx(M) :=
⊕

i∈N

F−i
x M/F−i+1

x M

is isomorphic to l− as graded Lie algebras.
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The graded frame bundle of the manifold M with a filtration of type l− is the grAut(l−)-principal bundle
grFr(M) on M whose fiber at x is the set of graded Lie algebra isomorphisms from l− to grx(M). Let
L0 ⊂ grAut(l−) be a connected algebraic subgroup. An L0-structure (subordinate to the filtration) on M
means an L0-principal subbundle E ⊂ grFr(M).

Remark 3.16. Now let us summarize the work of A. Čap and H. Schichl [2] on the construction of Cartan
connections of type (G,PI). For more detail of our summarization, see Sections 3.20-3.23 in [2]. Let G/PI
be as in Setting 2.1 and suppose that g is the universal prolongation of (g−(I), g0(I)). Suppose there is a
differential system V and a principal bundle E on a complex manifold M such that the weak derivatives of
V induces a filtration of type g−(I) and E ⊂ grFr(M) is an G0-structure on M . Then we can construct a
Cartan connection of type of (G,PI) on M . The construction is canonical in the sense that it works well
for a family, which will be explained in the proof of Proposition 3.18, and that the Cartan connection we
construct on G/PI itself is (G→ G/PI , ω

MC).

Now we state a setting that is slightly more general than Setting 1.11.

Setting 3.17. Suppose in Setting 2.1 that G is simple and G/PI is not biholomorphic to a projective space.
Let ψ : Y → ∆ ∋ 0 be a holomorphic map from an irreducible analytic variety Y to ∆ such that Yt ∼= G/PI
for t 6= 0 and Y0 is an irreducible reduced projective variety.

Proposition 3.18. Suppose in Setting 3.17 that there exists a proper closed algebraic subset Z ⊂ Y0 and
a holomorphic fiber bundle E → Y \ Z such that mx(I) ∼= g−(I) for all x ∈ Y0 \ Z and Et → Yt \ Z is an
G0-structure for all t ∈ ∆. Then Y0 ∼= G/PI .

Proof. By Proposition 3.12 the Lie algebra g is the universal prolongation of (g−, g0). By Sections 3.20 –
3.23 in [2] we can construct a Cartan connection of type (G,PI) in the neighborhood of a general point
x ∈ Y0. Furthermore, the construction works well for the family Y over ∆. In other words, there exists an
analytic open subset Yo of Y, a principal PI -bundle Ψ : P → Yo, and a holomorphic 1-form ω : TP → g

such that

(1) Yo ⊃ Yt for all t 6= 0;
(2) Yo0 := Yo ∩ Y0 is an analytic open neighborhood of the general point x ∈ Y0;
(3) for each t ∈ ∆ (including t = 0), (Ψt, ωt) is a Cartan connection of type (G,PI);
(4) for each t 6= 0, the Cartan connection (Ψt, ωt) is flat.

By the continuity on t ∈ ∆ of the curvature κt := dωt +
1
2 [ωt, ωt], the Cartan connection (Ψ0, ω0) is also

flat. By [19, Corollary 5.4] the Lie algebra of infinitesimal automorphisms of Y0, which preserves the symbol
algebras on Yo0 and the G0-structure, is isomorphic to g.

By upper semi-continuity of dimH0(Yt, TYt), dim aut(Y0) ≥ dim g, where aut(Y0) is the Lie algebra of
automorphism group of Y0. Hence aut(Y0) ∼= g and G acts on Y0 with isotropy subgroup at a general point
x ∈ Y0 being conjugate to PI . It follows that Y0 ∼= G/PI . �

Proposition 3.19. In Setting 3.17 suppose |I| ≥ 2 and (G, I) is neither (3.1) nor (3.2) listed in Proposition
3.12. Then the followings are equivalent:

(i) Y0 ∼= G/PI ;
(ii) mx(I) is standard at general points x ∈ Y0.

Proof. It is straight-forward to see (i)⇒ (ii). Now let us prove (ii)⇒ (i). Let Yo be the open subset of Y
where the symbol algebras of D are isomorphic to g−(I). In particular, Yt ⊂ Yo for all t 6= 0 and Yo0 is a
dense open subset of Y0. Denote by F a connected component of the graded frame bundle of the family Yo

over ∆.
By Proposition 3.12 the group G0

∼= grAuto(g−(I)). Thus the G0-structure Ft on Yt with t 6= 0 is
holomorphically extended to be the G0-structure F0 on Y0

0 . The conclusion follows from Proposition 3.18. �

The key point to obtain Y0 ∼= G/PI in Setting 3.17 is invariance of symbol algebras. Once this is done,
it is not hard to extend the G0-structure E ⊂ grFr(G/PI) holomorphically to general points on Y0, even in
case (3.1) or (3.2) listed in Proposition 3.12. For instance we have the following result.
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Proposition 3.20. Suppose in Setting 3.17 that S ∼= Am/PI and mx(α1, α2) ∼= g−(I), where m ≥ 2,
I = {α1, α2}, and x ∈ Y0 is general. Then Y0 ∼= Am/PI .

Proof. The distributions Dα1 and Dα2 are integrable on Y0. Thus the isomorphism mx(α1, α2) ∼= g−(I)
implies that F : Dα1 ⊗Dα2 → T π/D is surjective on the general point x ∈ Y0, where F is the restriction of
the Frobenius bracket of D = Dα1 +Dα2 ⊂ T π.

Denote by Z ⊂ Y the set of points z such that mx(I) ≇ g−(I). Then Z is a proper closed algebraic subset
of Y0. Take any y ∈ Y \Z and define Ey to be the set of grading preserving isomorphisms ϕ : mx(I)→ g−(I)
such that ϕ(Dαi

y ) = g−1(αi) for i = 1, 2. Then E is an G0-structure on the family Y \ Z over ∆, and the
conclusion follows from Proposition 3.18. �

3.3. Reduction to homogeneous submanifolds. The following is straight-forward.

Lemma-Definition 3.21. Take α 6= β ∈ I in Setting 2.1. Then the followings are equivalent:
(i) the manifold S

α,β ∼= S
α × S

β;
(ii) the roots α and β lie in different connected components of the Dynkin diagram of GJ∪{α,β}.
If (i) and (ii) do not hold, we say (α, β) is a J-connected pair.

Our main aim in this subsection is to show that

Theorem 3.22. In Setting 1.11 suppose |I| ≥ 3 and Fα,βx
∼= S

α,β for any J-connected pair α 6= β ∈ I and
general x ∈ X0. Then the manifold X0

∼= S.

As a direct consequence of Theorem 3.22, we have the following result.

Corollary 3.23. In Setting 2.1 suppose |I| ≥ 2 and that for any α 6= β ∈ I, there exists a subset A ⊂ I

such that α, β ∈ A and the rational homogeneous space S
A is rigid under Fano deformation. Then G/PI is

rigid under Fano deformation.

Proof. By Proposition 3.24 in the following, we can assume the group G is simple. Then we can discuss in
Setting 1.11. Given any subset A ⊂ I, a general fiber of πA0 : X0 → XA0 is a Fano deformation of SA. Then
the conclusion follows from Theorem 3.22. �

Proposition 3.24. [13, Theorem 1] Let φ : Z → ∆ ∋ 0 be a holomorphic map with all fiber being connected
Fano manifolds. Suppose that Z0

∼= Z ′
0 × Z

′′
0 . Then there are holomorphic maps φ′ : W ′ → ∆ and

φ′′ : W ′′ → ∆ such that all fiber of φ′ and φ′′ are connected Fano manifolds, W ′
0
∼= Z ′

0, W
′′
0
∼= Z ′′

0 , and
Z =W ′ ×∆W ′′.

Now we turn to the proof of Theorem 3.22. By Proposition 3.19, it suffices to show that the symbol
algebra mx(I) is standard for x ∈ X0 general. To verify it, we will apply Proposition 2.16.

Lemma 3.25. In Setting 1.11 the followings hold at general points x ∈ X0:∑

α∈I

TxF
α
x =

⊕

α∈I

TxF
α
x ⊂ TxX0,(3.3)

Dx =
∑

α∈I

Dαx =
⊕

α∈I

Dαx ⊂ TxX0,(3.4)

where the distributions Dα and D are as in Notation 3.9.

Proof. The relative Mori contractions πα : X → Xα and πI\{α} : X → X I\{α} induce a morphism

π′ : X0 → Xα0 ×X
I\{α}
0

x 7→ (πα(x), πI\{α}(x)),

which contracts no curves. Then TxF
α
x ∩ TxF

I\{α}
x = {0} for α ∈ I and x ∈ X0, which implies (3.3). Now

(3.4) follows from the inclusion Dαx ⊂ TxF
α
x and (3.3). �

Lemma 3.26. Take α ∈ I and x ∈ X0 general in setting of Theorem 3.22. Then Cαx ⊂ P(Dαx ) is projectively
equivalent to Z

α ⊂ P(g−1(α)).
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Proof. By Proposition 3.5, the fiber Fαx at a general point x ∈ X0 is biholomorphic to Sα. Thus Cαx ∼= Zα. �

Lemma 3.27. In setting of Theorem 3.22, take α ∈ I and β ∈ NJ(α) and a general point x ∈ X0. Then

the distribution gβ(Ẑ
α
) is extended a holomorphic distribution Dβ(Ĉαx ) on Cαx , and under the identification

Ẑ
α
= Ĉαx we have gβ(Ẑ

α
) = Dβ(Ĉαx ).

Proof. It is a direct consequence of Lemma 3.26 and Lemma 2.12. �

Now we are ready to check condition (ii) of Proposition 2.16, while condition (i) is to be checked later.

Lemma 3.28. In setting of Theorem 3.22, take x ∈ X0 general, and any α ∈ I, β ∈ NJ(α), v ∈ Ẑ
α

x \ {0}

and u ∈ gβv (Ẑ
α

x), we have

(adv)−〈β,α〉(u) = 0 in mx(I).(3.5)

Proof. Let γ ∈ I \ {α} be any root that is J-connected with α. By assumption of Theorem 3.22,

(adv)−〈β,α〉(u) = 0 in mx(α, γ)

Then the inclusion Dα,γ ⊂ DI implies that (3.5) holds. �

To check the condition (i) of Proposition 2.16, we need to write I as a disjoint union I(j) in a special way.

Construction 3.29. Fix any element ᾱ ∈ I and define I(1) := {ᾱ}. Now for each j ≥ 1 define by induction
that

I(j + 1) := {α ∈ I \
⋃

s≤j

I(s) | (α, β) is J-connected for some β ∈ I(j)}.

Lemma 3.30. In setting of Construction 3.29, the followings hold.
(1) The set I is the disjoint union of I(j), j ≥ 1.
(2) Given any j ≥ 2 with I(j) 6= ∅ and any α ∈ I(j), there exists a unique β ∈ (

⋃
s≤j

I(s)) \ {α} such that

(α, β) is J-connected. Moreover, this unique β belongs to I(j − 1).
(3) Given any J-connected pair (α, β), there exists a unique j ≥ 1 such that {α, β} ⊂ I(j) ∪ I(j + 1).

Moreover, either α ∈ I(j), β ∈ I(j + 1) or β ∈ I(j), α ∈ I(j + 1).

Proof. The assertion (1) holds because the Dynkin diagram ΓI∪J is connected. To prove (2), it suffices
to notice that ΓI∪J contains no loop and each element in

⋃
2≤s≤j

I(s) is connected with the unique element

ᾱ ∈ I(1) by the elements in J ∪ (
⋃
s≤j

I(s)). The assertion (3) is a direct consequence of (1) and (2). �

Now we are ready to check the condition (i) of Proposition 2.16 in our situation.

Lemma 3.31. In setting of Theorem 3.22, take a general point x ∈ X0. We can define a G0-representation

on Dαx and fix some 0 6= vα ∈ Ĉαx for each α ∈ I such that for all α′ 6= α′′ ∈ I and all (v′, v′′) ∈ G0 ·(vα′ , vα′′) ∈

Ẑ
α′

× Ẑ
α′′

,

(adv′)−〈α′′,α′〉+1(v′′) = 0 in mx(I).(3.6)

Proof. Now we will define a G0-representation on Dαx and fix some 0 6= vα ∈ Ĉαx for each α ∈ I =
⋃
j≥1

I(j)

and show they satisfy (3.6) by induction on j ≥ 1.
By our construction, I(1) = {ᾱ} consists of a unique element. Since |I| > 1, the set I(2) 6= ∅. Fix

any β̄ ∈ I(2). By definition (ᾱ, β̄) is J-connected. By assumption of Theorem 3.22, F ᾱ,β̄x with x ∈ X0

general is biholomorphic to PI\{ᾱ,β̄}/PI . This is also biholomorphic to GJ∪{ᾱ,β̄}/P{ᾱ,β̄}, see Notation 2.3.

By Lemma 2.12, GJ∪{ᾱ,β̄} → Auto(F ᾱ,β̄x ) is a surjective homomorphism with a finite kernel. Then we obtain

the G0(J ∪ {ᾱ, β̄}) representations on Dᾱy and Dβ̄y on any point y ∈ F ᾱ,β̄x , which preserves Ĉᾱy and Ĉβ̄y . Here

G0(J ∪ {ᾱ, β̄}) is the Lie subgroup of GJ∪{ᾱ,β̄} associated with Lie subalgebra g0 ⊂ Lie(GJ∪{ᾱ,β̄}). The
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G0(J ∪{ᾱ, β̄}) representations induce the required G0(= G0(R)) representations on Dᾱy and Dβ̄y respectively.

Note that G0(J ∪ {ᾱ, β̄}) is the quotient group of G0 := G0(R) by some torus in the center. This torus acts

trivially on Dᾱy and Dβ̄y . Denote by

ϕᾱ{ᾱ,β̄} : G0 → Auto(Ĉᾱx ,D
ᾱ
x ) ⊂ GL(D

ᾱ
x ),

ϕβ̄
{ᾱ,β̄}

: G0 → Auto(Ĉβ̄x ,D
β̄
x) ⊂ GL(D

β̄
x).

Applying Proposition 2.16 to F ᾱ,β̄x
∼= PI\{ᾱ,β̄}/PI , we can conclude that there exists 0 6= vᾱ ∈ Ĉᾱx and

0 6= vβ̄ ∈ Ĉ
β̄
x such that for any (wᾱ, wβ̄) ∈ G0 · (vᾱ, vβ̄) ∈ Ĉ

ᾱ
x × Ĉ

β̄
x ,

(adwᾱ)
−〈β̄,ᾱ〉+1(wβ̄) = 0 in mx(ᾱ, β̄),

(adwβ̄)
−〈ᾱ,β̄〉+1(wᾱ) = 0 in mx(ᾱ, β̄).

Then the inclusion Dᾱ,β̄ ⊂ D := DI implies that

(adwᾱ)
−〈β̄,ᾱ〉+1(wβ̄) = 0 in mx(I),

(adwβ̄)
−〈ᾱ,β̄〉+1(wᾱ) = 0 in mx(I).

In case I(2) consists of the unique element β̄, we have constructed the G0-representation for both I(1)
and I(2).

Now suppose (for the moment) that |I(2)| ≥ 2. By Lemma 2.12, G0 → Auto(Ĉᾱ) = Auto(Ĉᾱ, gᾱ−1) is

surjective. Take any γ ∈ I(2) \ {β̄}. Then as previous argument for (ᾱ, β) we get G0-representations

ϕᾱ{ᾱ,γ} : G0 → Auto(Ĉᾱx ,D
ᾱ
x ) ⊂ GL(D

ᾱ
x ),

ϕγ{ᾱ,γ} : G0 → Auto(Ĉγx ,D
γ
x) ⊂ GL(D

γ
x).

There is an automorphism

ψ(ᾱ; β̄, γ) : Auto(Ĉᾱx ,D
ᾱ
x )→ Auto(Ĉᾱx ,D

ᾱ
x )

such that the following diagram commutes:

G0

ϕᾱ
{ᾱ,γ} %%❑

❑❑
❑❑

❑❑
❑❑

❑

ϕᾱ
{ᾱ,β̄}

// Auto(Ĉᾱx ,D
ᾱ
x )

ψ(ᾱ;β̄,γ)

��

Auto(Ĉᾱx ,D
ᾱ
x ).

Since G0 is reductive, there is an automorphism θ(ᾱ; β̄, γ) : G0 → G0 such that the following diagram
commutes

G0

θ(ᾱ;β̄,γ)

��

ϕᾱ
{ᾱ,γ}

// Auto(Ĉᾱx ,D
ᾱ
x )

G0.

ϕᾱ
{ᾱ,β̄}

99rrrrrrrrrrr

In other words, we lift the automorphism ψ(ᾱ; β̄, γ) of Auto(Ĉᾱx ,D
ᾱ
x ) to an automorphism θ(ᾱ; β̄, γ) of G0.

Define τ(γ) := ϕγ{ᾱ,γ} ◦ θ(ᾱ; β̄, γ)
−1 : G0 → G0 → Auto(Ĉγx ,D

γ
x) ⊂ GL(Dγx) and τ(ᾱ) := ϕᾱ{ᾱ,γ} ◦

θ(ᾱ; β̄, γ)−1. In particular, we have τ(ᾱ) = ϕᾱ
{ᾱ,β̄}

. Applying Proposition 2.16 to F ᾱ,γx
∼= PI\{ᾱ,γ}/PI , we can

conclude that there exists 0 6= v′ᾱ ∈ Ĉ
ᾱ
x and 0 6= v′γ ∈ Ĉ

γ
x such that for any (wᾱ, wγ) ∈ G0 · (v′ᾱ, v

′
γ) ∈ Ĉ

ᾱ
x × Ĉ

γ
x
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(under the representation ϕᾱ{ᾱ,γ} and ϕγ{ᾱ,γ}),

(adwᾱ)
−〈γ,ᾱ〉+1(wγ) = 0 in mx(ᾱ, γ),(3.7)

(adwγ)
−〈ᾱ,γ〉+1(wᾱ) = 0 in mx(ᾱ, γ).(3.8)

Denote by R(ᾱ, γ) := ϕ{ᾱ,γ}(G0) · ([v′ᾱ], [v
′
γ ]) ⊂ H

ᾱ
x ×H

γ
x. Then R(ᾱ, γ) is a closed G0-orbit, and the two

projections R(ᾱ, γ)→ Hᾱx and R(ᾱ, γ)→ Hγx are surjective. In particular, for the previously chosen element

0 6= vᾱ ∈ Ĉᾱx there exists 0 6= vγ ∈ Ĉγx such that ([vᾱ], [vγ ]) ∈ R(ᾱ, γ). Furthermore,

R(ᾱ, γ) = ϕ{ᾱ,γ}(G0) · ([v
′
ᾱ], [v

′
γ ]) = ϕ{ᾱ,γ}(G0) · ([vᾱ], [vγ ]) ⊂ H

ᾱ
x ×H

γ
x.

Since θ := θ(ᾱ; β̄, γ) is an automorphism of G0, we know that

τ{ᾱ,γ}(G0) = ϕ{ᾱ,γ}(θ
−1(G0)) = ϕ{ᾱ,γ}(G0),

where τ{ᾱ,γ}(G0) := (τ(ᾱ), τ(γ)). It follows that

τ{ᾱ,γ}(G0) · ([vᾱ], [vγ ]) = ϕ{ᾱ,γ}(G0) · ([vᾱ], [vγ ]) = R(ᾱ, γ).

Hence for all (wᾱ, wγ) ∈ τ{ᾱ,γ}(G0) · (vᾱ, vγ) ⊂ Ĉᾱx ×Ĉ
γ
x the formulae (3.7) and (3.8) hold. Then the inclusion

Dᾱ,γ ⊂ D := DI implies that for all (wᾱ, wγ) ∈ τ{ᾱ,γ}(G0) · (vᾱ, vγ) ⊂ Ĉᾱx × Ĉ
γ
x ,

(adwᾱ)
−〈γ,ᾱ〉+1(wγ) = 0 in mx(I),

(adwγ)
−〈ᾱ,γ〉+1(wᾱ) = 0 in mx(I).

Now we have obtained G0-representations on Dαx and chosen 0 6= vα ∈ Ĉα for all α ∈ I(1) ∪ I(2) such
that (3.6) holds for J-connected pair α′, α′′ ∈ I(1) ∪ I(2). Repeat the argument above, we can obtain

τα : G0 → Auto(Ĉαx ,D
α
x ) ⊂ GL(Dαx ) and choose 0 6= vα ∈ Ĉαx for all α ∈ I =

⋃
j≥1

I(j) such that (3.6) holds

for all J-connected pair (α′, α′′) ∈ I × I.

Now take any pair α 6= β ∈ I × I which is not J-connected. By Lemma-Definition 3.21, Fα,βy = Fαy × F
β
y

at any y ∈
⋃
t6=0

Xt. By Proposition 3.24,

Fα,βx = Fαx × F
β
x at any x ∈ X0.(3.9)

Now for x ∈ X0 general, Dαx , D
β
x and Dx are well-extended. By (3.9) the Levi bracket of vector fields satisfies

[Dαx ,D
β
x ] ⊂ D

α
x +Dβx ⊂ Dx,

which implies that for any (wα, wβ) ∈ Ĉαx × Ĉ
β
x ⊂ D

α
x ×D

β
x

[wα, wβ ] = 0 in mx(I).

In summary, (3.6) holds for all pairs (α′, α′′) ∈ I × I with α′ 6= α′′. �

Now we are ready to complete the proof of Theorem 3.22

Proof of Theorem 3.22. Take a general point x ∈ X0. By Lemma 3.28 and Lemma 3.31, the symbol algebra
mx(I) satisfies conditions (i) and (ii) in Proposition 2.16. Then by Proposition 2.16 the symbol algebra mx(I)
is a quotient algebra of g−(I). By Proposition 3.10, dimmx(I) = dim g−(I), which implies mx(I) ∼= g−(I).
Then the conclusion follows from Proposition 3.19. �
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4. Rigidity and degeneration under Fano deformation

4.1. Proof of Main results. Now we will prove Theorems 1.4 and 1.10 by assuming Propositions 1.8 and
1.9. It is devoted to the proof of Proposition 1.8 from next subsection until the end of the paper.

Proof of Theorem 1.4. By assumption we can write the rational homogeneous space to be S := G/PR\{β0},

where β0 is a root in R. When ρ(S) ≤ 3, S is biholomorphic to P2, F(1, 2,P3), F(1, 2, Q6) or F(0, 2, Q6).
It remains to check the Fano deformation rigidity of F(0, 2, Q6) = D4/PI with I = {α1, α3, α4}. Take any

two different roots β1, β2 ∈ I. The manifold Sβ1,β2 is biholomorphic to P(TP3), which is rigid under Fano
deformation by Theorem 1.2. By Corollary 3.23 F(0, 2, Q6) is rigid under Fano deformation.

Now we will apply Corollary 3.23 to S with ρ(G/PR\{β0}) ≥ 4. Take any J-connected pair (β1, β2) ∈ I×I.
By our assumption, one of the followings hold:

(i) the Dynkin diagram Γβ0,β1,β2 = Γβ0 ∪ Γβ1,β2 is of type A1 ×A2;
(ii) the Dynkin diagram Γβ0,...,β3 is of type A4 for some β3 ∈ I \ {β1, β2};
(iii) the Dynkin diagram Γβ0,...,β4 is of type D5 for some β3, β4 ∈ I \ {β1, β2}.

By Theorem 1.3 and Proposition 1.8, the manifolds Sβ1,β2 , Sβ1,β2,β3 and Sβ1,...,β4 corresponding to (i),
(ii) and (iii) respectively are rigid under Fano deformation. Then so is G/PR\{β0} by Corollary 3.23. �

Proof of Theorem 1.10. In this situation for any J-connected pair (α, β) ∈ I × I, the unique connected
component of the Dynkin diagram ΓJ∪{α,β} containing both α and β is one of the following types:

(i) (Am, {α1, αm}) with m ≥ 2;
(ii) (Am, {α1, α2}) with m ≥ 3.
By our assumption, in case (ii) there exists γ ∈ I\{α, β} such that the unique connected component of the

Dynkin diagram ΓJ∪{α,β,γ} containing all of α, β and γ is of type (Am+1, {α1, α2, αm+1}) up to symmetry.
Then the conclusion follows from Corollary 3.23. �

Indeed by a careful analysis of Dynkin diagrams we can apply the same proof to deduce the following
rigidity result.

Theorem 4.1. Let G be a simple algebraic group of type ADE, I ⊂ R be a subset and J := R \ I. Write I
as the disjoint union ∪Ii, where each ΓIi is a connected component of ΓI . Suppose that

(1) the end nodes of Dynkin diagram of G is contained in I,
(2) each Ii satisfies that either Ii ∩ ∂R 6= ∅ or its cardinality |Ii| ≥ 3,
(3) in case G is of type D or E, there exists at most one β ∈ J such that 〈β, ᾱ〉 6= 0, where ᾱ is the node

in Dynkin diagram of G with three branches.
Then the rational homogeneous space G/PI is rigid under Fano deformation.

Remark 4.2. As a direct consequence of Proposition 3.24, we can know that S is rigid under Fano deformation
if S = S1 × · · · × Sk and each Si is as in the statement of one of Theorems 1.3, 1.4, 1.10 or 4.1.

4.2. Rigidity of Am/P{α1,α2,αm}. The aim of this subsection is to show the following rigidity property.

Theorem 4.3. The flag manifold Am/P{α1,α2,αm} is rigid under Fano deformation.

In other words, we want to prove X0
∼= Am/P{α1,α2,αm} in Setting 1.11 under additional assumption that

S = Am/P{α1,α2,αm}. Firstly, we have the following rigidity result on fibers.

Proposition 4.4. Suppose S = Am/P{α1,α2,αm} in Setting 1.11. Then the followings hold for x ∈ X0

general:

Fα1
x
∼= P1, Fα2

x
∼= Pm−2, Fαm

x
∼= Pm−2;(4.1)

Fα1,αm
x

∼= Fα1
x × F

αm
x
∼= P1 × Pm−2;(4.2)

Fα2,αm
x

∼= Pα1/P{α1,α2,αm}.(4.3)

Proof. The conclusions (4.1) and (4.3) follows from Fano deformation rigidity of projective spaces and
Ak/P{α1,αk} respectively, see Theorem 1.2. The conclusion (4.2) follows from (4.1) and Proposition 3.24. �
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As a direct consequence of Proposition 4.4, we have the following result.

Corollary 4.5. Suppose S = Am/P{α1,α2,αm} in Setting 1.11. Then the followings hold for x ∈ X0 general.
(1) The symbol algebras mx(α1),mx(α2) and mx(αm) are standard. More precisely, they are abelian

algebras of dimension 1,m− 2 and m− 2 respectively.
(2) The symbol algebras mx(α1, αm) and mx(α2, αm) are standard. More precisely,

(i) there is a decomposition of abelian algebra mx(α1, αm) = mx(α1)⊕mx(αm);
(ii) dimm−2(α2, αm) = 1 and the bilinear map

mx(α2)×mx(αm)→ (mx(α2, αm))−2

(x, y) 7→ [x, y]

induces an isomorphism of vector spaces mx(α2) ∼= Hom(mx(αm), (mx(α2, αm))−2).

Proposition 4.6. Suppose S ∼= Am/P{α1,α2,αm} in Setting 1.11. Then Fα1,α2 ∼= PI\{α1,α2}/PI for x ∈ X0

general.

Proof. Take x ∈ X0 general. We claim that

the symbol algebra mx(α1, α2) is standard.(4.4)

For the simplicity of discussion, we omit the subscript x in the notations of symbol algebras such asmx(α1, α2)
and mx(αm).

Now suppose that m(α1, α2) is not standard. Then there exists 0 6= v2 ∈ m(α2) such that [m(α1), v2] = 0.
Since m(α2, αm) is standard, there exists 0 6= v3 ∈ m(αm) such that v4 := [v2, v3] 6= 0 and m−2(α2, αm) =
Cv4. In particular, there is a decomposition of vector spaces

m(α2, αm) = m(α2)⊕m(αm)⊕ Cv4.

Take 0 6= v1 ∈ m(α1). Then we have

[v1, v4] = [v1, [v2, v3]] = [[v1, v2], v3] + [v2, [v1, v3]] = 0.(4.5)

In other words, [m(α1),Cv4] = 0. Let A(α1, α2, αm) be the vector subspace of m(α1, α2, αm) generated by
m(α1, α2), m(αm) and Cv4. Denote by

m(1;α1, α2) := m(α1)⊕m(α2),

m(k;α1, α2) := [m(1;α1, α2),m(k − 1;α1, α2)] for each k ≥ 2.

Thus m(α1, α2) =
∞∑
k=1

m(k;α1, α2). We claim that (when (4.4) fails),

A(α1, α2, αm) is a Lie subalgebra of m(α1, α2, αm).(4.6)

Indeed by Corollary 4.5 we already know that

A(α1, α2, αm) = m(α1, α2) +m(α1, αm) +m(α2, αm).

It follows that

[m(αm) + Cv4,m(αm) + Cv4] ⊂ m(α2, αm) ⊂ A(α1, α2, αm).

Hence to prove the claim (4.6) it remains to show that

[m(k;α1, α2),m(αm) + Cv4] ⊂ A(α1, α2, αm) for all k ≥ 1.(4.7)

Now let us prove (4.7) by induction on k. The case k = 1 of (4.7) follows from

[m(α1),m(αm) + Cv4] = 0,(4.8)

[m(α2),m(αm) + Cv4] ⊂ m(α2, αm) ⊂ A(α1, α2, αm),(4.9)

where in the first equality we apply Corollary 4.5 and (4.5).
Now we assume that k ≥ 2 and

[m(i;α1, α2),m(αm) + Cv4] ⊂ A(α1, α2, αm) for all 1 ≤ i ≤ k − 1.
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Then by the definition of m(k;α1, α2) we have

[m(k;α1, α2),m(αm) + Cv4](4.10)

⊂
∑

j=1,2

[[m(αj),m(k − 1;α1, α2)],m(αm) + Cv4]

⊂
∑

j=1,2

(
[[m(αj),m(αm) + Cv4],m(k − 1;α1, α2)]

+[m(αj), [m(k − 1;α1, α2),m(αm) + Cv4]]
)
.

We analyse term by term. By (4.8) we have

[[m(α1),m(αm) + Cv4],m(k − 1;α1, α2)] = 0.(4.11)

On one hand, we have

[m(α1), [m(k − 1;α1, α2),m(αm) + Cv4]](4.12)

⊂ [m(α1),A(α1, α2, αm)]

= [m(α1),m(α1, α2)] + [m(α1),m(αm)] + [m(α1),Cv4]

⊂ m(α1, α2)

⊂ A(α1, α2, αm).

By Corollary 4.5 we have

[m(α2),m(αm) + Cv4] ⊂ m(α2) +m(αm) + Cv4,

which implies that

[[m(α2),m(αm) + Cv4],m(k − 1;α1, α2)](4.13)

⊂ [m(α2),m(k − 1;α1, α2)] + [m(αm) + Cv4,m(k − 1;α1, α2)]

⊂ m(k;α1, α2) +A(α1, α2, αm)

= A(α1, α2, αm).

Meanwhile by induction we have

[m(k − 1;α1, α2),m(αm) + Cv4]

⊂ A(α1, α2, αm)

= m(α1, α2) +m(αm) + Cv4,

which implies that

[m(α2), [m(k − 1;α1, α2),m(αm) + Cv4]](4.14)

⊂ [m(α2),m(α1, α2)] + [m(α2),m(αm) + Cv4] + [m(α2),Cv4]

⊂ m(α1, α2) +m(α2, αm)

⊂ A(α1, α2, αm).

By (4.10)–(4.14) we have [m(k;α1, α2),m(αm)+Cv4] ⊂ A(α1, α2, αm). In other words (4.7) holds. Then the
claim (4.6) holds.

Now A(α1, α2, αm) is a Lie subalgebra of m(α1, α2, αm) that contains m(α1) + m(α2) + m(αm). Recall
that m(α1, α2, αm) is a Lie algebra generated by m(α1) + m(α2) + m(αm). Then we have A(α1, α2, αm) =
m(α1, α2, αm). This contradicts the fact that

dimA(α1, α2, αm) = 3m− 4 = dimm(α1, α2, αm)− 1,

where the dimension of m(α1, α2, αm) is obtained by Proposition 3.10. Hence we conclude that mx(α1, α2) is
standard for x ∈ X0 general, verifying the claim 4.4. Then the conclusion follows from Proposition 3.20. �

Now we are ready to prove Theorem 4.3.
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Proof of Theorem 4.3. Suppose S ∼= Am/P{α1,α2,αm} in Setting 1.11. By Proposition 4.4 and Proposition

4.6, Fα,βx
∼= PI\{α,β}/PI for all α 6= β ∈ I and general points x ∈ X0. Then by Theorem 3.22 X0

∼=
Am/P{α1,α2,αm}. In other words, the manifold Am/P{α1,α2,αm} is rigid under Fano deformation. �

4.3. Fano degeneration of A3/P{α1,α2}. The aim of this section is to prove Theorem 1.6, namely the

manifold F d(1, 2;C4) in Construction 1.5 is the unique Fano degeneration of A3/P{α1,α2}. Throughout
Section 4.3, we always discuss under the following assumption.

Assumption 4.7. Let π : X → ∆ ∋ 0 be a holomorphic map such that Xt ∼= A3/P{α1,α2} for t 6= 0, X0 is a
connected Fano manifold, and X0 ≇ A3/P{α1,α2}.

By definition F d(1, 2;C4) := P(Lσ ⊕ Lω). Then the restriction of the P2-bundle F d(1, 2;C4) → P3 gives
a biholomorphic map P(Lσ) ∼= P3. Moreover the hyperplane bundle P(Lω) is biholomorphic to the complete
flag manifold C2/B.

The outline to show X0
∼= F d(1, 2;C4) is as follows. Firstly, the Mori contraction πα2

0 : X0 → X
α2
0 is a

P2-bundle over P3. We know that at a general point x ∈ X0, the family Kα1
x (X0) consists a single element,

denoted by [Cx]. An irreducible component of the locus {x ∈ X0 | dimKα1
x (X0) ≥ 1} gives a meromorphic

section σ : P3
99K X0. Let H be an effective divisor on X0 which is a general element in a linear system

satisfying (H · Kα1) = 0 and (H · Kα2) = 1. The restriction of πα2
0 on H is a fibration over P3, whose

general fiber is a line in P2. Then we show that σ is a holomorphic section, H → P3 is a P1-bundle and
H ∩ σ(P3) = ∅. Finally we show H ∼= C2/B and X0

∼= F d(1, 2;C4).
Now we sketch how to show H ∼= C2/B, which is the key point of the argument in this section. Denote

by Kα1(X0/P3) the closure in the Chow scheme of P3 of the set of those πα2
0 (Cx), where x ∈ X0 general

and Kα1
x (X0) = {[Cx]}. By considering the symbol algebra of D = Dα1 + Dα2 on X0, we obtain that a

meromorphic distribution E of rank two on P3 satisfying that Kα1(X0/P3) is the family of lines on P3 that
are tangent to E . This gives an antisymmetric form ω on C4 – which is shown to be a symplectic form later
– such that E coincides with the induced contact form Lω on P3 = P(C4).

This section is organized as follows. In the part 4.3.1, by studying splitting types of various meromorphic
vector bundles along a general element in Kα2(X0), we obtain the symbol algebra of D = Dα1 +Dα2 on X0.
In the part 4.3.2, we obtain the meromorphic section σ by studying splitting types of various meromorphic
vector bundles along a general element in Kα1(X0). In the part 4.3.3, we study the property of the family
Kα1(X0/P3). In the part 4.3.4, we complete the proof of Theorem 1.6 by studying the property of divisor H
explained above. In the part 4.3.5, we summarize some properties of the manifold F d(1, 2;C4), which will
be useful in Subsections 4.4 and 4.5.

4.3.1. Type of symbol algebra.

Convention 4.8. In Section 4.3, we denote by Dαi , D and D−i the restriction of Dαi , D and D−i on X0

respectively, where the latter is defined in Notation 3.9.

Lemma 4.9. Under Assumption 4.7, there exists a unique meromorphic line bundle N ⊂ T π
α2
X0 such that

[N ,D ] ⊂ D , where D := T π
α1
0 + T π

α2
0 = D|X0 . Moreover rankD−2 = 4 and D

−3 = TX0.

Proof. The restriction of the Frobenius bracket of D induces a homomorphism F : D
α1 ⊗ D

α2 → TX0/D .
The image of F is D−2/D on X0, whose rank is at most two. By Proposition 3.10, rank(D−2/D) ≥ 1. If
rank(D−2/D) = 2, then mx(α1, α2) ∼= g−(α1, α2) for x ∈ X0. Then by Proposition 3.20 X0

∼= A3/P{α1,α2},

contradicting Assumption 4.7. Hence rank(D−2/D) = 1. By Proposition 3.10 rank(D−3/D−2) ≥ 1, implying
that D−3 = TX0. �

Lemma 4.10. Under Assumption 4.7, there exists a unique meromorphic vector subbundle W ⊂ D−1 of
rank two such that [W ,D−2] ⊂ D

−2. Furthermore, N ⊂ W.

Proof. The conclusion follows from the two facts that rankD−3 = rankD−2+1 and that [N ,D−1] ⊂ D
−1. �

The following result is important to the proof of Theorem 1.6.
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Proposition 4.11. We have W = Dα2 .

In summary of the description of symbol algebras Symb(D)x studied in Lemma 4.9, Lemma 4.10 and
Proposition 4.11, we have the following result.

Corollary 4.12. The symbol algebra mx(α1, α2) := Symb(D)x at general point x ∈ X0 is isomorphic to
g−(C2×A1), where g−(C2×A1) is defined in Definition 2.2. More precisely, there exists a nonempty Zariski
open subset Ω of X0 such that

(i) there is an isomorphism on Ω:

D ∼= D
α1 ⊕D

α2 ;(4.15)

(ii) the Frobenius bracket of D induces a surjective homomorphism on Ω:

∧2D−1 → D
α1 ⊗ (Dα2/N ) ∼= (D−2/D−1),(4.16)

where D−1 := D by definition;
(iii) the restriction of the Frobenius bracket of D−2 induces a surjective homomorphism on Ω:

D
−1 ⊗ (D−2/D−1)→ D

α1 ⊗ (D−2/D−1) ∼= (D−3/D−2),(4.17)

(iv) the derivative D−3 of is the whole tangent bundle of X0, i.e. D−3 = TX0.

Remark 4.13. (i) The isomorphisms in (4.15) (4.16) and (4.17) hold on Ω instead of on the whole holomorphic
loci of corresponding meromorphic vector bundles. Meanwhile as meromorphic vector bundles over X0, we
have injective homomorphisms

D
α1 ⊕D

α2 →֒ D ,

D
α1 ⊗ (Dα2/N ) →֒ D

−2/D−1,

D
α1 ⊗ (D−2/D−1) →֒ D

−3/D−2.

(ii) The Lie algebra Symb(D)x ∼= g−(C2 × A1) can be descried explicitly as the following graded Lie
algebra m− :=

⊕
k≥1

m−k:

m−1 := Cv1 ⊕ Cv2 ⊕ Cv3,

m−2 := Cv12,

m−3 := Cv121,

m−k := 0, for all k ≥ 4.

where v12 := [v1, v2] and v121 := [v12, v1]. In the identification Symb(D)x = m−, we have

mx(α1) = D
α1
x = Cv1,

Nx = Cv3 ⊂ D
α2
x ,

mx(α2) = D
α2
x = Cv2 ⊕ Cv3.

The rest of the part 4.3.1 is devoted to the proof of Proposition 4.11. Firstly, the following conclusion is
straight-forward.

Lemma 4.14. There exists a closed variety Y1 ⊂ X0 such that codimX0(Y1) ≥ 2, Dα1 , Dα2 , N , W and
D are holomorphic vector bundles over X0\Y1. Moreover, for [C1] ∈ Kα1(X0) general and [C2] ∈ Kα2(X0)
general, C1 ∩ Y1 = ∅ and C2 ∩ Y1 = ∅.

To continue, we need a useful result in [1] due to L. Bonavero, C. Casagrande and S. Druel.

Proposition 4.15. [1, Proposition 1] Let Y be a normal Q-factorial projective variety, and F be a quasi-
unsplit covering family of 1-cycles on Y . Denote by EF ⊂ Y the union of all F-equivalence classes of
dimension larger than m, where m is the dimension of a general F-equivalence class. Then

(i) EF is a Zariski closed subset of Y , and dimEF ≤ dimY − 2;
(ii) there exists a normal variety Z and a surjective morphism ϕ : Y \EF → Z such that fibers ϕ−1(z),

z ∈ Z are F-equivalence classes on Y .
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Remark 4.16. (i) In the setting of Proposition 4.15, the meaning of F being a quasi-unsplit family is that
all irreducible components of the cycles parameterized by F are numerically proportional.

(ii) In the setting of Proposition 4.15, two points in Y are defined to be F -equivalent if they are connected
by a chain of elements in F .

(iii) In our situation of Assumption 4.7, both Kα1(X0) and Kα2(X0) are unsplit (hence quasi-unsplit)
covering family of rational curves on the complex projective manifold X0. In particular, the conditions in
Proposition 4.15 is satisfied by both families Kα1(X0) and Kα2(X0).

Applying Proposition 4.15 to X0, we obtain the following result immediately.

Corollary 4.17. Denote by

Ψα1
0 : X0\E

α1
0 → Z

α1
0 , Ψα2

0 : X0\E
α2
0 → Z

α2
0 .

morphisms in Proposition 4.15 corresponding to Kα1 (X0) and Kα2(X0) respectively. We can take Y2 ⊂ X0

to be Y1 ∪ sing(Ψα1
0 ) ∪ sing(Ψα2

0 ) ∪ Eα1
0 ∪ E

α2
0 where Y1 is as in Lemma 4.14, and sing(Ψαi

0 ) ⊂ X0\E
αi

0 is the
singular locus of the morphism Ψαi

0 . Then dimY2 ≤ dimX0 − 2 = 3.

Proof. The existence of Ψα1
0 and Ψα2

0 follows from Proposition 4.15. The rest follows from the generic
smoothness and the equi-dimensionality of Ψαi

0 , i = 1, 2. �

Proposition 4.18. Take [C2] ∈ Kα2(X0) general. Then Dα1 |C2
∼= OP1(−1), Dα2 |C2

∼= OP1(2)⊕OP1(1).

Proof. The curve C2 is a line in a general fiber Fα2
x
∼= P2 of the elementary Mori contraction πα2

0 , where x
is a general point in C2. Thus,

D
α2 |C2 = TFα2

C2
|C2 = OP1(2)⊕OP1(1).

Now take a general local section of Kα2(X )→ ∆ passing through [C2] ∈ K
α2(X0) ⊂ K

α2(X ). We obtain a
holomorphic family {At}t∈∆ (by shrinking ∆ if necessary) such that S :=

⋃
t∈∆

At ⊂ X is a complex manifold

of dimension two, and A0 = C2 ⊂ X0, A
t ⊂ Xt. Moreover, S ∩ Y2 = C2 ∩ Y2 = ∅ by Corollary 4.17. Thus

for any x ∈ S, there exists a unique [lx] ∈ Kα1(X ) such that x ∈ lx. Furthermore, x is a smooth point of lx.
Denote by L :=

⋃
x∈S

Txlx which is a holomorphic line bundle over S. By Proposition 2.14 we know that for

any t 6= 0,

L|At = T π
α1
t |At ∼= OP1(〈α1, α2〉) = OP1(−1).

It follows that L|C2
∼= OP1(−1). Thus Dα1 |C2

∼= L|C2
∼= OP1(−1). �

Proposition 4.19. Take [C2] ∈ Kα2 (X0) general. Then Dα1 ,Dα2 ,D ,D−2,D−3,N ,W are holomorphic in
an open neighborhood of C2 ⊂ X0, and

N|C2 = O(1),

D
α2/N|C2 = O(2),

D
−2/D |C2 = O(1),

D
−3/D−2|C2 = O,

D |C2 = D
α1 |C1 ⊕D

α2 |C1 = O(2)⊕O(1)⊕O(−1),

D
−2|C2 = O(2)⊕O(1)⊕O2,

D
−3|C2 = TX0|C2 = O(2)⊕O(1)⊕O3.

Proof. By the generality of [C2] ∈ Kα2(X0), TX0|C2 = O(2)⊕O(1)⊕O3. Then by Proposition 4.18 and the
injectivity of Dα1 ⊕Dα2 → D ⊂ TX0 in an open neighborhood of C2 ⊂ X0, either

D |C2 = O(2)⊕O(1)⊕O, D/Dα2 |C2 = O, or

D |C2 = O(2)⊕O(1)⊕O(−1), D/Dα2 |C2 = O(−1),
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By Lemma 4.9, [N ,D ] ⊂ D , [Dα1 ,Dα2 ] ⊂ Dα2 ⊂ D and [D ,D ] * D . Then the Frobenius bracket
Λ2D → TX0/D induces an nonzero homomorphism:

f :
(
D/Dα2

)
⊗
(
Dα2/N

)
→ TX0/D .(4.18)

Note that deg(D/Dα2)|C2 ≥ −1, deg(D
α2/N )|C2 ≥ 2 and that the degree of each factor of TX0/D |C2 is at

most one. Since f in (4.18) is a nonzero morphism, D/Dα2 |C2 = O(−1), Dα2/N|C2 = O(2) and D−2/D |C2 =
O(1). It follows that N|C2 = O(1), and D |C2 = O(2)⊕O(1)⊕O(−1). Since D−2/Dα2 |C2 ⊂ TX0/D

α2 = O3,
and deg(D−2/Dα2 |C2) = deg(D−2/D |C2) + deg(D/Dα2 |C2) = 0, we have D

−2|C2 = O(2)⊕O(1)⊕O2, and
D−3/D−2|C2 = O. �

Now we can complete the proof of Proposition 4.11.

Proof of Proposition 4.11. By definition of D−2, we have [Dα2 ,D−1] ⊂ D−2. Then the Frobenius bracket
Λ2D−2 → TX0/D

−2 induces a homomorphism of meromorphic vector bundles over X0 as follows:

ψ : D
α2 ⊗ (D−2/D)→ TX0/D

−2.

Recall that Dα2 ,D−2/D , TX0/D
−2 are holomorphic in an open neighborhood of C2 ⊂ X0, where [C2] ∈

Kα2(X0) is a general element. By Proposition 4.18 and Proposition 4.19, Dα2 |C2 = O(2)⊕O(1), (D−2/D−1)|C2 =
O(1) and (TX0/D

−2)|C2 = O. Thus, ψ|C2 = 0. By the general choice of C2, ψ = 0. In other words,
[Dα2 ,D−1] ⊂ D−2. By the uniqueness of W in Lemma 4.10, we have W = Dα2 . �

4.3.2. The meromorphic section σ. Let us firstly recall a result of A. Weber and J. A. Wísniewski in [16], in
which paper they studied Fano deformation rigidity of complete flag manifolds.

Proposition 4.20. [16, Corollary 1.4, Corollary 3.3] In the setting 1.11 let α be an element of I such that
Φα : G/PI → G/PI\{α} is a Pk-bundle for some k ≥ 1. Suppose either

(i) H∗(G/PI\{α},Q) is generated by H2(G/PI\{α},Q); or
(ii) Xα0 is smooth.
Then πα0 : X0 → Xα0 is also a Pk-bundle.

As a consequence of Proposition 4.20, we have the following result.

Proposition 4.21. There exists a unique vector bundle of rank 3 over P3, denoted by V, such that
(i) X0 is biholomorphic to P(V) and Xα2

0 is biholomorphic to P3;
(ii) πα2

0 : X0 → X
α2
0 coincides with the projective bundle φ : P(V)→ P3;

(iii) the distribution Dα2 = T φ, which is holomorphic on X0;
(iv) φ(C1) is a line in P3 for each [C1] ∈ Kα1(X0).
(v) along any line l in P3, 4 ≤ deg(V|l) ≤ 6.

Proof. By Proposition 4.20, there exists a vector bundle V on P3 satisfying the properties (i) and (ii). Hence
Dα2 = T φ, verifying (iii). By Proposition 3.6, φ(C1) is a line in P3, verifying (iv). Since deg(V ⊗O(k))|l =
deg(V|l) + 3k, we obtain the uniqueness of V with property (v). �

Notation 4.22. In the rest of Section 4.3, we fix the vector bundle V as in Proposition 4.21. We use
φ : P(V)→ P3 to represent πα2

0 : X0 → X
α2
0 . For t ∈ P3 general, we denote by P2

t := φ−1(t).

Now let us check the splitting types of various meromorphic vector bundles along general elements in
Kα1(X0).
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Proposition 4.23. Take [C1] ∈ Kα1(X0) general. Then Dα1 ,Dα2 ,D ,D−2,D−3,N are holomorphic in an
open neighborhood of C1 ⊂ X0, and

N|C1 = O,

D
α1 |C1 = O(2),

D
α2 |C1 = O(−2)⊕O,

D
α2/N|C1 = O(−2),

D
−2/D |C1 = O,

D
−3/D−2|C1 = O(2),

D |C1 = D
α1 |C1 ⊕ D

α2 |C1 = O(2)⊕O(−2)⊕O,

D
−3|C1 = TX0|C1 = O(2)⊕O4.

Proof. The restriction Dα2 |C1 = TC1 = O(2). Choose a holomorphic family [lt] ∈ Kα1(Xt), t ∈ ∆ satisfying
[l0] = [C1] ∈ Kα1(X0). By Proposition 4.21(ii),

deg(Dα2 |C1) = deg(T π
α2
0 |l0) = deg(T π

α2
t |lt) for all t ∈ ∆.

By Proposition 2.14, we have

deg(T π
α2
t |lt) = 〈α2, α1〉+ 〈α2 + α3, α1〉 = −2 for t 6= 0.

It follows that deg(Dα2 |C1) = −2. Then can write Dα2 |C1 = O(a1) ⊕ O(a2), where a1 + a2 = −2. Since
D−3|C1 = TX0|C1 = O(2)⊕O4 and Dα1 |C1 = O(2), we know that a1 ≤ 0, a2 ≤ 0. Hence

either D
α2 |C1 = O(−1)2, or D

α2 |C1 = O(−2)⊕O.(4.19)

It follows that
(
D
α2/N

)
|C1 = OP1(a), where a ≥ −2.(4.20)

The injectivity of the homomorphism Dα1 ⊗
(
Dα2/N

)
→ D−2/D ⊂ TX0/D in an open neighborhood of

C1 ⊂ X0 implies that

D
−2/D |C1 = OP1(b), where b ≥ a+ 2.(4.21)

The injectivity of Dα1 ⊗
(
D−2/D

)
→ TX0/D

−2 in an open neighborhood of C1 ⊂ X0 implies that

D
−3/D−2|C1 = TX0/D

−2|C1 = OP1(c), where c ≥ b+ 2.(4.22)

On the other hand, the injectivity of Dα2 → D/Dα1 ⊂ TX0/D
α1 in an open neighborhood of C1 ⊂ X0

implies that

deg(D/Dα1)|C1 ≥ deg(Dα2 |C1) = −2.(4.23)

We also have

deg(TX0|C1)− deg(Dα1)|C1 − deg(D−1/Dα1)|C1(4.24)

= deg(D−2/D)|C1 + deg(D−3/D−2)|C1 .

By (4.20)–(4.24), we have

2 ≥ − deg(D/Dα1)|C1 = deg(D−2/D)|C1 + deg(D−3/D−2)|C1

= b+ c ≥ 2b+ 2 ≥ 2a+ 6 ≥ 2.

Hence deg(D/Dα1)|C1 = −2, a = −2, b = 0 and c = 2. By (4.19) and the fact

deg(Dα2/N )|C1 = a = −2 = deg(D/Dα1)|C1 ,

we know that Dα2 |C1 = O(−2)⊕O ∼= (D/Dα1)|C1 . The rest of the conclusion follows immediately. �

Proposition 4.24. In setting of Proposition 4.21, V|πα2
0 (C1)

= O(2)2 ⊕O for [C1] ∈ Kα1(X0) general.
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Proof. Take [C1] ∈ Kα1(X0) general. Denote by L(C1) the line subbundle of V over the line πα2
0 (C1) ⊂ P3

such that C1 = P(L(C1)) ⊂ P(V) = X0. Then the relative tangent bundle T π
α2
0 |C1 = L(C1)

∗⊗
(
V|C1/L(C1)

)
.

By Proposition 4.21(iii) and Proposition 4.23, T π
α2
0 |C1 = Dα2 |C1 = O(−2)⊕O. Then V|πα2

0 (C1)
= O(k)2 ⊕

O(k − 2), where k := degL(C1). By Proposition 4.21(v), k = 2 and the conclusion follows. �

Proposition 4.25. Let V be as in Proposition 4.21. Then the following holds.
(i) Over any line l ⊂ P3, either V|l = O(2)⊕O(1)2 or V|l = O(2)2 ⊕O.
(ii) Take any [C1] ∈ Kα1(X0). Then L(C1) = OP1(2), where L(C1) is the unique line subbundle of

V|πα2
0 (C1) such that C1 = P(L(C1)) ⊂ P(V) = X0.

Proof. Since X0
∼= P(V) by Proposition 4.21, any [C1] ∈ Kα1 (X0) must be a section over the line πα2

0 (C1) ⊂ P3

with largest degree. The degree of this section over the line πα2
0 (C1), is independent of the choice of

[C1] ∈ Kα1(X0). Then the assertion (ii) follows from proposition 4.24.
Take any line l ⊂ P3. Then by Proposition 4.21, V|l is a deformation of V|πα2

0 (C1)
= OP1(2)2⊕OP1 . Thus

we can write V|l = O(a1)⊕O(a2)⊕O(a3), where

a1 + a2 + a3 = 4, and a1 ≥ a2 ≥ a3.(4.25)

By the maximality of degL(C1) among sections of V over lines in P3, we have

a1 ≤ degL(C1) = 2.(4.26)

The assertion (i) follows from (4.25) and (4.26). �

Corollary 4.26. Let V be as in Proposition 4.21. Then there exists a nonempty Zariski open subset U ⊂ P3

and a section of πα2
0 : X0 = P(V)→ P3 over U , denoted by σ : U → X0, such that for any x ∈ (πα2

0 )−1(U) \
σ(U),

(i) N is holomorphic at x;
(ii)Nx = Txlx, where lx := 〈x, σ(πα2

0 (x))〉 is the line in (πα2
0 )−1(πα2

0 (x)) ∼= P2 joining x and σ(πα2
0 (x));

(iii) the leaf of N at x is the affine line lx \ {σ(π
α2
0 (x))}.

Proof. Take [C1] ∈ Kα1(X0) general. Then πα2
0 (C1) is a line in P3 and V|πα2

0 (C1)
= O(2)2 ⊕ O. The

curve C1 is identified with P(L(C1)) ⊂ P(V|πα2
0 (C1)

) = (πα2
0 )−1(πα2

0 (C1)), where L(C1) ∼= OP1(2) ⊂

V|πα2
0 (C1)

is as in Proposition 4.25(ii). We know N ⊂ Dα2 , N|C1 = OP1 and O(−2) ⊕ O = Dα2 |C1
∼=

L(C1)
∗ ⊗ (V|πα2

0 (C1)/L(C1)). It follows that N|C1 =
⋃

x∈C1

TxP(V|+πα2
0 (x)

), where V|+
π
α2
0 (C1)

= O(2)2 ⊂

V|πα2
0 (C1)

= O(2)2 ⊕ O and TC1P(V|
+
π
α2
0 (C1)

) is the relative tangent bundle of P(V|+
π
α2
0 (C1)

) → πα2
0 (C1)

along C1 ⊂ P(V|+
π
α2
0 (C1)

). In other words, at any point x ∈ C1, Nx = TxP(Oπα2
0 (C1)

(2)2|πα2
0 (x)), where

Oπα2
0 (C1)

(2)2|πα2
0 (x) ⊂ Vπα2

0 (x) is the fiber of O(2)2 ⊂ V|πα2
0 (C1)

at the point πα2
0 (x) ∈ πα2

0 (C1).

Note that Pπα2
0 (C1)

(O(2)2) ∼= P1 × πα2
0 (C1) ∼= P1. It follows that given any x ∈ C1 and any y ∈

P(Oπα2
0 (C1)(2)

2|πα2
0 (x)) lying in the regular locus of N , there exists [Cy] ∈ K

α1
y (X0) such that πα2

0 (Cy) =

πα2
0 (C1) and Ny = TyP(Oπα2

0 (C1)
(2)2|πα2

0 (x)). Hence, the closure of the leaf at x ∈ C1 ⊂ X0 is the line

lx = P(Oπα2
0 (C1)

(2)2
π
α2
0 (x)

).

Take t ∈ P3 general and denote by P2
t := (πα2

0 )−1(t) ∼= P2 ⊂ X0. Let A ⊂ (P2
t )

∗ be the closure of the family
of lines lx := P(Oπα2

0 (Cx)
(2)2|πα2

0 (x)), where x runs over the set of general points on P2
t such that Kα1

x (X0)

consists of a unique element [Cx] and N is holomorphic at x. For a general point x ∈ P2
t , Ex := {[l] ∈ (P2

t )
∗}

is a line in (P2
t )

∗ and Ex ∩A consist of a single point, namely [lx], in (P2
t )

∗. Since Ex could be a general line
in (P2

t )
∗, the intersection number (Ex · A) = 1. It follows that A is a line in (P2

t )
∗ and there exists a unique

point σ(t) ∈ P2
t such that A = {[l] ∈ (P2

t )
∗ | σ(t) ∈ l}.

It turns out that N is well-defined on P2
t \ {σ(t)}, and at any x ∈ P2

t \ {σ(t)}, the line 〈x, σ(t)〉 is the leaf
closure of N at x. The conclusion follows. �
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4.3.3. A subset of family of lines on P3.

Notation 4.27. For t ∈ P3 general, denote by Kα1
t (X0/P3) the Zariski closure of

{[πα2
0 (Cx)] ∈ G(1,P3) | x ∈ (πα2

0 )−1(t) general ,Kα1
x (X0) = {[Cx]}}

in G(1,P3), and set

Cα1
t (X0/P3) :=

⋃

[l]∈K
α1
t (X0/P3)

P(Ttl) ⊂ P(TtP3).

Here G(1,P3) is the family of lines in P3. Denote by

Kα1(X0/P3) := Zariski closure of
⋃

t∈P3 general

Kα1
t (X0/P3) in G(1,P3),

Cα1(X0/P3) := Zariski closure of
⋃

t∈P3 general

Cα1
t (X0/P3) in P(TP3).

Let Uα1(X0/P3) be the inverse image of Kα1(X0/P3) under the natural morphism F (1, 2;C4)→ G(1,P3) ⊃
Kα1(X0/P3).

Lemma 4.28. Take t ∈ P3 general. Then Kα1
t (X0/P3) is an irreducible rational curve. Take any [l] ∈

Kα1
t (X0/P3). There exists [C] ∈ Kα1

σ(t)(X0) such that πα2
0 (C) = l.

Proof. Take t ∈ P3 general and x ∈ P2
t := (πα2

0 )−1(t) general. Then Kα1
x consists of a single element,

written as [Cx]. Furthermore, Cx ∼= P1 and πα2
0 sends Cx biholomorphically onto a line in P3. Since

V|πα2
0 (Cx)

= O(2)2 ⊕O and the line 〈x, σ(t)〉 in P2
t coincides with the fiber P(Oπα2

0 (Cx)
(2)2|t), there exists a

unique [Ct,x] ∈ K
α1

σ(t)(X0) such that πα2
0 (Ct,x) = πα2

0 (Cx). Take y ∈ P2
t \ 〈x, σ(x)〉 general. Then the fact

P(Oπα2
0 (Cx)

(2)2|t) ∩ P(Oπα2
0 (Cy)

(2)2|t) = 〈x, σ(t)〉 ∩ 〈y, σ(t)〉 = {σ(t)}

implies that πα2
0 (Cx) 6= πα2

0 (Cy) (and hence Ct,x 6= Ct,y). This induces injective rational maps (hence
injective morphisms)

ξ : P1 ∼= {[l] ∈ (P2
t )

∗ | σ(t) ∈ l} 99K Kα1

σ(t)(X0)

〈x, σ(t)〉 7→ [Ct,x],

η : P1 ∼= {[l] ∈ (P2
t )

∗ | σ(t) ∈ l} 99K Kα1
t (X0/P3)

〈x, σ(t)〉 7→ [πα2

0 (Cx)].

By definition Kα1
t (X0/P3) is the closure of the image of η. Then the conclusion follows immediately from

these morphisms ξ and η. �

The following can also be deduced from the proof of Lemma 4.28.

Lemma 4.29. Take t ∈ P3 general. Denote by P2
t := (πα2

0 )−1(t) ⊂ X0. Define

ψ : P2
t 99K K

α1
t (X0/P3) ⊂ G(1,P3)

x 7−→ [πα2
0 (Cx)],

where x ∈ P2
t general and [Cx] is the unique element of Kα1

x (X0). Then ψ coincides with the linear projection
of P2

t with center σ(t). In other words, for x, y ∈ Dom(ψ), ψ(x) = ψ(y) if and only if 〈x, σ(t)〉 = 〈y, σ(t)〉.

Construction 4.30. Take x ∈ X0 general. Recall two elementary Mori contractions:

πα1
0 : X0 → X

α1
0 , and

πα2
0 : X0 = P(V)→ Xα2

0 = P3

Set Σ0(x) := {x}. For each k ≥ 0 let Σ2k+1(x) be the unique irreducible component of (πα2

0 )−1(πα2

0 (Σ2k(x)))
dominating πα2

0 (Σ2k(x)), and Σ2k+2(x) be the unique irreducible component of (πα1
0 )−1(πα1

0 (Σ2k+1(x)))
dominating πα1

0 (Σ2k+1(x)).
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Lemma 4.31. In setting of Construction 4.30, we have

dimΣk(x) = k + 1, where 1 ≤ k ≤ 4.

In particular, Σ4(x) = X0.

Proof. By construction, Σ1(x) = (πα2
0 )−1(πα2

0 (x)) ∼= P2, which has dimension 2. Now we claim that for each
k ≥ 1, either Σk(x) = X0 or dimΣk+1(x) ≥ dimΣk(x) + 1.

Suppose dimΣk+1(x) = dimΣk(x) for some k ≥ 1. Then Σk+1(x) = Σk(x). By construction of Σk(x) and
Σk+1(x), C

1
y ⊂ Σk(x) and C

2
y ⊂ Σk(x) for y ∈ Σk(x) general, [C1

y ] ∈ K
α1
y (X0) and [C2

y ] ∈ K
α2
y (X0) general.

By Proposition 3.7, we have Σk(x) = X0, and the claim holds.
By general choice of x ∈ X0 and the construction of Σk(x), for each i ≥ 1 we have

dimΣ2i+1(x) ≤ dimπα2
0 (Σ2i(x)) + 2 ≤ dimΣ2i(x) + 2,

dimΣ2i(x) ≤ dimπα1
0 (Σ2i−1(x)) + 1 ≤ dimΣ2i−1(x) + 1.

Note that πα2
0 (Σ2(x)) =

⋃
[l]∈K

α1

π
α2
0

(x)
(X0/P3)

l, which has dimension 2 by Lemma 4.28. Then the conclusion

follows from the inequalities above. �

Lemma 4.32. Take t ∈ P3 general, and set

Λ1(t) :=
⋃

[l]∈K
α1
t (X0/P3)

l ⊂ P3,

Λ2(t) := Zariski closure of
⋃

[l]∈Kg

Λ1(t)

l in P3,

where we define

KgΛ1(t)
:=

⋃

z∈Λ1(t) general

Kα1
z (X0/P3).

Then Λ2(t) = P3.

Proof. Take x ∈ P2
t := (πα2

0 )−1(t) general, then by construction we have

πα2(Σ2k(x)) = Λk(t), k = 1, 2,

where Σ2k(x) is as in Construction 4.30. By Lemma 4.31, Σ4(x) = X0, which implies the conclusion. �

Lemma 4.33. Let Lσ ⊂ V be the meromorphic line subbundle of V over P3 defining the meromorphic section
σ of πα2

0 : X0 = P(V) → P3, and Sσ be the singular locus of σ. Then dimSσ ≤ 1 and there exist nonempty
Zariski open subsets U ′′ ⊂ U ′ ⊂ P3 \ Sσ such that

(i) C1 ⊂ P(Lσ) for any t ∈ U ′ and any [C1] ∈ K
α1

σ(t)(X0);

(ii) given any t ∈ U ′′ we have M2(t) = P(Lσ), where

M1(t) :=
⋃

[C]∈K
α1
σ(t)

(X0)

C ⊂ P(Lσ),

M2(t) := Zariski closure of
⋃

[C]∈K
α1
M1(t)∩σ(U′)

C ⊂ P(Lσ),

where we define

Kα1

M1(t)∩σ(U ′) :=
⋃

x∈M1(t)∩σ(U ′)

Kα1
x (X0).
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Proof. Being the singular locus of a meromorphic section, the dimension of Sσ is less or equal to dimP3−2 =
1. By Lemma 4.28, dimKα1

σ(t)(X0) ≥ 1 for t ∈ P3 general. By semicontinuity of the dimension function,

dimKα1
x (X0) ≥ 1 for all x ∈ P(Lσ). Hence P(Lσ) ⊂ E(Kα1 ), where E(Kα1) ⊂ X0 is the union of Kα1(X0)-

equivalence classes that are of dimension at least two. By Proposition 4.15, E(Kα1) is a Zariski closed subset
of X0 and dimE(Kα1 ) ≤ dimX0−2 = 3. By dimension reason the variety P(Lσ) is an irreducible component
of E(Kα1).

Denote by U the nonempty Zariski open subset of P(Lσ) such that at any x ∈ U , P(Lσ) is the unique
irreducible component of E(Kα1 ) containing x. Set U ′ := πα2

0 (U) \Sσ, then the assertion (i) of Lemma 4.33
holds.

By Lemma 4.28, πα2
0 (Mk(t)) = Λk(t) for k = 1, 2. Then by Lemma 4.32 φ(M2(t)) = P3, implying that

dimM2(t) ≥ 3. Since M2(t) ⊂ P(Lσ) by the assertion (i), we have M2(t) = P(Lσ), verifying the assertion
(ii). �

Lemma 4.34. For t ∈ P3 general, Cα1
t (X0/P3) is a line in P(TtP3). Furthermore, Kα1(X0/P3) is a hyper-

plane section of G(1,P3) ⊂ P5.

Proof. By Proposition 4.11, [Dα2 ,D−2] ⊂ D−2, where D−2 is the weak derivative of D = Dα1 + Dα2 . It
follows that E := dπα2

0 (D−2) is a meromorphic distribution E on P3 of rank 2, where dπα2
0 : T (X0)→ T (P3)

is the tangent map of πα2
0 . Take a general element [C1] ∈ Kα1(X0). Then T (C1) = Dα1 |C1 ⊂ D−2, which

implies that T (πα2
0 (C1)) ⊂ E|πα2

0 (C1)
. Hence at a general point t ∈ P3, we have Cα1

t (X0/P3) ⊂ P(Et). Since

Kα1(X0/P3) is a set of lines on P3, we have Cα1
t (X0/P3) ∼= Kα1

t (X0/P3), which is an irreducible rational curve
by Lemma 4.28. Hence Cα1

t (X0/P3) = P(Et) is a line in P(TtP3). Moreover,

dimKα1(X0/P3) = dimP3 + dimKα1
t (X0/P3)− 1 = 3.

Thus the variety Kα1(X0/P3) is an effective divisor on G(1,P3). Consider

Uα1(X0/P3) //

��

Kα1(X0/P3)

��
P(TP3) //

��

G(1,P3)

P3.

(4.27)

Since for t ∈ P3 general,

Cα1
t (X0/P3) = Uα1(X0/P3) ∩ P(TtP3)

is a line in P(TtP3), we can conclude that Kα1(X0/P3) ∈ |ι∗OP5(1)|, where ι : G(1,P3) → P5 is the Plüker
embedding. Since G(1,P3) ⊂ P5 is linearly normal, Kα1(X0/P3) is a hyperplane section of (1,P3) ⊂ P5. �

4.3.4. Hyperplane bundles of P(V) over P3.

Notation 4.35. Let Lαi

0 be the Cartier divisor on X0 such that the intersection number (Lαi

0 · Cj) = δij ,
where [Cj ] ∈ K

αj (X0) and 1 ≤ i, j ≤ 2. In other words, Lαi

0 := Lαi , where Lαi is as in Proposition-Definition
3.6. Denote by |Lαi

0 | the corresponding linear system of effective Weil divisors on X0.

Lemma 4.36. We have dim |Lα1
0 | = 3 and dim |Lα2

0 | ≥ 5.

Proof. Since Xα2
0 = P3, we have Lα1

0 = (πα2
0 )∗OP3(1) and dim |Lα1

0 | = dimP3 = 3. There exists a holomor-
phic line bundle Lα2 on X such that Lα2

0
∼= Lα2 |X0 and for 0 6= t ∈ ∆, the linear system |Lα2

t | induces the
morphism

Xt ∼= F (1, 2;C4)→ Gr(2,C4) ⊂ P5,

where Lα2
t := Lα2 |Xt

By semicontinuity, we have dim |Lα2
0 | ≥ 5. �
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Notation 4.37. Take any W ∈ |Lα2
0 |. Then for t ∈ P3 general, we denote by

Kα1
t (W/P3) := ψ(Wt) ⊂ K

α1
t (X0/P3),

where ψ is as in Lemma 4.29. Set

Kα1 (W/P3) := Zariski closure of
⋃

t∈P3 general

Kα1
t (W/P3) in Kα1(X0/P3).

Lemma 4.38. In setting of Notation 4.37, there is an injective map

θ : {W ∈ |Lα2

0 | | P(Lσ) ⊂W} → {hyperplane sections of Kα1 (X0/P3)}

W 7−→ Kα1(W/P3).

Proof. Take t ∈ P3 general. Then the fact σ(t) ∈ W implies that Wt is a line in P2
t := (πα2

0 )−1(t) passing
through σ(t). By Lemma 4.29, Kα1

t (W/P3) consists of a single element. Then Kα1(W/P3) is an effective
divisor on Kα1(X0/P3). Similarly with the analysis for diagram (4.27), we know that Kα1(W/P3) is a
hyperplane section of Kα1(X0/P3). �

Lemma 4.39. Take W ∈ |Lα2
0 | general. Then σ(t) /∈W for t ∈ P3 general.

Proof. By Lemma 4.34 and Lemma 4.38, the space {W ∈ |Lα2
0 | | P(Lσ) ⊂W} has dimension at most 4. On

the other hand, dim |Lα2
0 | ≥ 5 by Lemma 4.36. Then the conclusion follows. �

Lemma 4.40. Take W ∈ |Lα2
0 | general, and denote by

S(W ) := {t ∈ P3 | (πα2
0 )−1(t) ⊂W}.(4.28)

Then dimS(W ) ≤ 1 and W |P3\S(W ) → P3 \ S(W ) is a P1-bundle.

Proof. As a Cartier divisor we have OX0(W )|P2
t

∼= OP2
t
(1) for any t ∈ P3, where P2

t := (πα2
0 )−1(t). Thus

for any t ∈ P3 \ S(W ), the scheme-theoretic intersection of W with P2
t is a line. By dimension counting

dimS(W ) ≤ dimW −2 = 2. If dimS(W ) = 2, then the intersection number (W ·C1) > 0 for [C1] ∈ Kα1(X0),
contradicting our definition of Lα2

0 in Notation 4.35. �

Lemma 4.41. Take W ∈ |Lα2
0 | general, and denote by SW := πα2

0 (P(Lσ) ∩W ) ⊂ P3. Then dimSW ≤ 1.

Proof. Now suppose dimSW ≥ 2. By Lemma 4.39, SW 6= P3. Choose any irreducible component S̃W of SW
such that dim S̃W = 2.

We claim that for t̃ ∈ S̃W general, there exists t ∈ U ′′ and [l] ∈ Kα1
t (X0/P3) such that t̃ ∈ l, where U ′′ is

as in Lemma 4.33 (ii).
Suppose the claim holds. By Lemma 4.28 there exists [C] ∈ Kα1

σ(t)(X0) such that πα2
0 (C) = l. By Lemma

4.33, dimSσ ≤ 1, where Sσ ⊂ P3 is the singular locus of the section σ. Then the general choice of t̃ in the

divisor S̃W ⊂ P3 implies that t̃ /∈ Sσ. In particular, P(Lσ)t̃ = σ(t̃) ∈ C ∩W . Since the intersection number
(W · C) = 0, we have C ⊂ W , implying that σ(t) ∈ W . By Lemma 4.33(ii) and the fact (W · C1) = 0 for
any [C1] ∈ Kα1 (X0), we have P(Lσ) ⊂W . This contradicts Lemma 4.39. Hence we obtain the conclusion of
Lemma 4.41.

Now we turn to prove the claim. Suppose it fails. Let A be the Zariski closure of the union
⋃
(l ∩ S̃W ) in

S̃W , where [l] runs over the set
⋃

t∈P3 general
Kα1
t (X0/P3). By assumption, dimA ≤ dim S̃W − 1 = 1.

Since every element in Kα1(X0/P3) has a nonempty intersection with S̃W , there is an irreducible compo-

nent Ã of A such that

dimKα1
s (X0/P3) ≥ dimKα1(X0/P3)− dim Ã ≥ 2 for each s ∈ Ã.

Since Kα1
s (X0/P3) ∼= Cα1

s (X0/P3) ⊂ P(TsP3), we know that

dim Ã = 1, Kα1
s (X0/P3) ∼= Cα1

s (X0/P3) = P(TsP3)

and [〈t, s〉] ∈ Kα1
t (X0/P3) for all s ∈ Ã and all t ∈ P3 \ {s}.
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Take t ∈ P3 general. By Lemma 4.34 and the conclusions above, Kα1
t (X0/P3) = {[〈t, s〉] | s ∈ Ã},

and the join variety J(t, Ã) :=
⋃
s∈Ã

〈t, s〉 is a plane in P3. Thus in the notations of Lemma 4.32, we have

Λ1(t) = J(t, Ã). For t′ ∈ Λ1(t) general, the same reason implies that Λ1(t
′) = J(t′, Ã) = J(t, Ã) = Λ1(t). It

follows that Λ2(t) = Λ1(t) $ P3, contradicting Lemma 4.32. Hence, the claim holds. �

Lemma 4.42. There exists a meromorphic vector subbundle LW ⊂ V of rank two over P3 and a closed
subvariety SW ⊂ P3 such that

(i) dimSW ≤ 1;
(ii) both Lσ and LW are holomorphic vector bundles on P3 \ SW , where Lσ is as in Lemma 4.33;
(iii) there is a direct sum decomposition V|P3\SW

= Lσ|P3\SW
⊕ LW |P3\SW

;
(iv) P(LW ) ∈ |Lα2

0 | is a chosen general divisor.

Proof. It is a direct consequence of Lemma 4.40, Lemma 4.41 and the fact dimSσ ≤ 1, where Sσ is the
singular locus of the section P(Lσ). �

To continue, we need to collect a result of decomposition of vector bundles, which can be found on page
409 in [8]. See also [13, Proposition 5] for an explicit statement with a brief proof.

Proposition 4.43. [8, page 409] Let E be a vector bundle over a connected complex manifold Y . Suppose
there is a complex subvariety A ⊂ Y and vector bundles E1 and E2 over Y \A such that dimA ≤ dimY − 2
and E|Y \A = E1 ⊕ E2. Then E1 and E2 can be extended uniquely as vector bundles E ′1 and E ′2 over Y such
that E = E ′1 ⊕ E

′
2.

As a direct consequence of Lemma 4.42 and Proposition 4.43, we have the following result.

Proposition 4.44. In setting of Lemma 4.42, both Lσ and LW are holomorphic vector bundles on P3, and
V = Lσ ⊕ LW .

Lemma 4.45. In setting of Proposition 4.44, the followings hold.
(i) For any [l] ∈ Kα1(X0/P3), Lσ|l = O(2) and LW |l = O(2)⊕O.
(ii) For any [l] ∈ Kα1(X0/P3), there exists a unique [Cl] ∈ Kα1(X0) such that Cl ⊂ W and πα2

0 (Cl) = l.
Moreover, this curve Cl ∼= P1.

(iii) For any x ∈ W , Kα1
x (X0) consists of a single element, denoted by [Cx]. Moreover, this curve Cx ⊂W

and Cx ∼= P1.

Proof. By Proposition 4.24,

V|l = O(2)
2 ⊕O, for [l] ∈ Kα1(X0/P3) general.(4.29)

By Proposition 4.25(i), the restriction of V on any line of P3 is either O(2)2 ⊕O or O(2)⊕O(1)2. Then by
(4.29), we conclude that

V|l = O(2)
2 ⊕O, for any [l] ∈ Kα1 (X0/P3) = Kα1(W/P3).(4.30)

This is because a positive dimensional family of vector bundles over P1 of type O(2)2 ⊕ O can not have a
limit of type O(2)⊕O(1)2.

Now take any [l] ∈ Kα1(X0/P3), we have Lσ|l = O(2) by Proposition 4.25(ii). Thus by (4.30) and
Proposition 4.44, LW |l = O(2) ⊕ O, verifying the assertion (i). It follows that there exists a unique [Cl] ∈
Kα1(X0) such that Cl ⊂W = P(LW ), and πα2

0 (Cl) = l. In fact Cl = P(O(2)|l) ⊂ P((O(2)⊕O)|l) = P(LW |l).
Moreover Cl ∼= P1, verifying the assertion (ii).

Take any [C] ∈ Kα1(X0). Since (W ·C) = 0, either C ⊂W or C ∩W = ∅. Then the assertion (iii) follows
from (i) and (ii). �

Lemma 4.46. In setting of Proposition 4.44, the variety Kα1(X0/P3) is a smooth hyperplane section of
G(1,P3) ⊂ P5, andW ∼= C2/(Pβ1∩Pβ2), where β1 and β2 are the short and long simple root of C2 respectively.
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Proof. By Lemma 4.34, Kα1(X0/P3) is a hyperplane section of G(1,P3) ⊂ P5. By Proposition 4.15 and
Lemma 4.45, there is a P1-fibration ϕ : W → Kα1(W ) = Kα1(X0/P3), where Kα1(W ) is the set of [C] ∈
Kα1(X0) such that C ⊂ W . The variety Kα1(X0/P3) is smooth because so is W . Then there exists a
nondegenerate form ω ∈ ∧2(C4)∗ such that Xα2

0 = P3 = P(C4),

Kα1(X0/P3) = {[A] ∈ Gr(2,C4) | ω(A,A) = 0},(4.31)

and πα2
0 |W : W → P3 is the evaluation morphism of the family Kα1(X0/P3). Then the conclusion follows. �

Now we can complete the proof of Theorem 1.6.

Proof of Theorem 1.6. By Proposition 4.21 and Proposition 4.44, X0
∼= P(V), and V ∼= Lσ ⊕ LW . By

Proposition 4.25(ii), Lσ ∼= O(2). By Lemma 4.46, LW ∼= Lω ⊗ O(k) for some k ∈ Z, where ω is the
symplectic form on C4 satisfying (4.31). Take any line l ⊂ P3. We have

deg(LW |l) = deg(V|l)− deg(Lσ|l) = 2,

deg(Lω|l) = deg(TP3|l)− deg(O(2)|l) = 2.

Then k = 0 and LW ∼= Lω . Hence V ∼= O(2)⊕ Lω and X0
∼= F d(1, 2;C4). �

4.3.5. Properties of F d(1, 2;C4). For the convenience of discussion later, we give several basic properties of
the manifold F d(1, 2;C4) in Construction 1.5. All these properties are straight-forward from the construction.
They have also been proved in a more involved way in the previous arguments in subsection 4.3 by realizing
F d(1, 2;C4) as the a priori unclear Fano degeneration of A3/P{α1,α2}, see Lemma 4.10, Corollary 4.12,
Corollary 4.26, Lemma 4.29 for the corresponding statements of them.

Notation 4.47. In setting of Construction 1.5, denote by φ : F d(1, 2;C4) → P3 the P2-bundle, and let
σ : P3 → P(Lσ) ⊂ F d(1, 2;C4) be the holomorphic section. Given a point x ∈ F d(1, 2;C4) \ P(Lσ), denote
by lx the line 〈x, σ(φ(x))〉 in the projective plane φ−1(φ(x)) ∼= P2. By abuse of notations (to be compatible
with those in Section 4.3), we denote by Dα1 the meromorphic distribution of rank one on F d(1, 2;C4)
whose general leaves are minimal rational curves biholomorphically sent to isotropic lines in P3, and by
Kα1(F d(1, 2;C4)) the closure this family of minimal rational curves. Set Dα2 := T φ and D := Dα1 + Dα2 .
Denote by Kα2(F d(1, 2;C4)) the family of minimal rational curves which are lines in the fibers of φ.

The following two propositions are immediate from the constructions.

Proposition 4.48. At any point x ∈ F d(1, 2;C4)\P(Lσ), Kα1
x (X0) consists of a unique element, denoted by

[Cx]. Two points y, z ∈ P2
t \ {σ(t)} satisfy φ(Cy) = φ(Cz) if and only if the two lines 〈y, σ(t)〉 and 〈z, σ(t)〉

in P2
t coincide, where t ∈ Xα2

0 is an arbitrary point and P2
t := φ−1(t).

Proposition 4.49. In setting of Construction 1.5 the surjective homomorphism Lσ ⊕ Lω → Lσ induces a
rational map F d(1, 2;C4) 99K P(Lω) ∼= C2/B over P3. It is a linear projection from P2

t := φ−1(t) with center
σ(t) over each t ∈ P3.

Proposition 4.50. In setting of Notation 4.47, define a meromorphic distribution N on F d(1, 2;C4) such
that Nx = Tx(lx) at any point x ∈ F d(1, 2;C4) \ P(Lσ). Then N is the unique meromorphic line subbundle
of D on F d(1, 2;C4) such that [N ,D ] ⊂ D . Moreover, [N ,Dα1 ] ⊂ N + Dα1 .

Proof. The leaf of N passing through a point x ∈ F d(1, 2;C4) \ P(Lσ) is lox := lx \ {σ(t)}, where t := φ(x)
and lx := 〈x, σ(t)〉. The the leaf of Dα1 passing through a point y ∈ lox is Cy, where [Cy] is the unique

element of Kα1
y (X0). Since

⋃
y∈lox

Cy ∼= φ(Cx)× lx, we have [N ,Dα1 ] ⊂ N + Dα1 . Since Dα2 is integrable and

N ⊂ Dα2 , we have [N ,Dα2 ] ⊂ Dα2 . It follows that [N ,D ] ⊂ D .
If the uniqueness of N fails, then the rank three distribution D has to be integrable. However one can

easily check the F d(1, 2;C4) is chained-connected by the family
⋃

i=1,2

Kαi(F d(1, 2; C4)). It is a contradiction.

Hence N is unique. �
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Proposition 4.51. At each point x ∈ F d(1, 2;C4)\P(Lσ), the symbol algebra Symbx(D) ∼= g−(C2)⊕g−(A1).
Moreover, this isomorphism is induced by the identification g−(A1) = Nx, Dα2

x = g−(α2) + g−(A1) and
Dα1
x = g−(α1), where α1 and α2 is the long and short simple root of C2 respectively.

Proof. It follows from Proposition 4.50 and Construction 1.5 directly. �

4.4. Proof of Proposition 1.8. The main aim of this subsection is to show the following proposition, from
which we can complete the proof of Proposition 1.8.

Proposition 4.52. The manifold A4/P{α2,α3,α4} is rigid under Fano deformation.

Proof of Proposition 1.8. (i) Consider the Fano deformation rigidity of A4/PI with |I| = 3. The set of simple
roots is R = {α1, . . . , α4}. The manifolds A4/PR\{α1} and A4/PR\{α4} are biholomorphic to each other,
which are rigid under Fano deformation by Proposition 4.52. The manifolds A4/PR\{α2} and A4/PR\{α3}

are biholomorphic to each other, which are rigid under Fano deformation by Proposition 1.9.
(ii) Consider the Fano deformation rigidity of S := D5/PI with |I| = 4. Set J := R \ I = {αi} for some

i, where R is the set of simple roots. Take any J-connected pair β1 6= β2 ∈ I. There exists β3 ∈ I \ {β1, β2}
such that the manifold Sβ1,β2,β3 is biholomorphic to A4/PI′ with |I ′| = 3 or 4. The latter is rigid under Fano
deformation by (i) as well as Theorem 1.3. By Corollary 3.23, D5/PI is rigid under Fano deformation . �

To prove Proposition 4.52, it suffices to deduce a contradiction in the following setting.

Setting 4.53. Let π : X → ∆ be a holomorphic map such that Xt ∼= S for all t 6= 0, X0 is a connected Fano
manifold and X0 ≇ S, where S := A4/P{α2,α3,α4}.

Remark 4.54. Let us firstly explain the idea to prove Proposition 4.52 in the following, while the rigorous proof
is not no so immediate from this idea. In Setting 4.53, X0 has to be a compactification of the total space of the
normal bundle NU/S, where U is the inverse image of some hyperplane section of A4/Pα2 = Gr(2,C5) ⊂ P9

under the natural morphism S→ A4/Pα2 . On the other hand, we can show that any Fano deformation of S
must be a P2-bundle over A4/P{α3,α4} = F (3, 4;C5), while the compactification X0 of NU/S does not have
such a projective bundle structure.

Proposition 4.55. In Setting 4.53, take a general point x ∈ X0. Then Fα2
x
∼= P2, Fα3

x
∼= P1, Fα4

x
∼= P1,

Fα2,α4
x

∼= P2 × P1 and Fα3,α4
x

∼= P(TP2) = F (1, 2;C3) respectively.

Proof. The assertions for Fαi
x , Fα2,α4

x and Fα3,α4
x follow from the rigidity of projective spaces, Proposition

3.24 and Theorem 1.3 respectively. �

Proposition 4.56. In Setting 4.53, take a general point x ∈ X0. Then Fα2,α3 ∼= F d(1, 2;C4), where
F d(1, 2;C4) is as in Construction 1.5.

Proof. By Theorem 1.6, either Fα2,α3 ∼= F (1, 2;C4) or Fα2,α3 ∼= F d(1, 2;C4). In the former case, X0
∼=

A4/P{α2,α3,α4} by Theorem 3.22 and Proposition 4.55. This contradicts our assumption in Setting 4.53. �

Proposition 4.57. In Setting 4.53, the morphism πα2
0 : X0 → X

α2
0 is a P2-bundle. In particular, the variety

Xα2
0 is smooth.

Proof. By formula (3.4) in [16], the cohomology ringH∗(An/P{α1,α2},Q) is generated byH2(An/P{α1,α2},Q).
Then the conclusion of Proposition 4.57 follows from Proposition 4.20 immediately. �

Convention 4.58. In Subsection 4.4, we denote by Dαi , Dαi,αj D and D−k the restriction of Dαi , Dαi,αj ,
D and D−k on X0 respectively, where the latter is defined in Notation 3.9.

Now let us turn to analysis the symbol algebra Symb(D) on X0.

Lemma 4.59. In Setting 4.53, there exists a unique meromorphic distribution N ⊂ Dα2 of rank one over
X0 such that the Levi bracket of vector fields [N ,D ] ⊂ D .
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Proof. By Proposition 4.56, Fα2,α3
x

∼= F d(1, 2;C4) for x ∈ X0 general. Then by Proposition 4.50 there exists
a unique meromorphic line subbundle N ⊂ Dα2 over X0 such that [N ,Dα3 ] ⊂ N + Dα3 . By Proposition
4.55, Fα2,α4

x
∼= Fα2

x × F
α4
x for x ∈ X0 general. Then [Dα2 ,Dα4 ] ⊂ Dα2 + Dα4 , implying the conclusion. �

Notation 4.60. We construct a graded nilpotent Lie algebra m− :=
⊕
k≥1

m−k as follows:

m−1 =
⊕

1≤i≤4

Cvi,

m−2 = Cv23 ⊕ Cv34,

m−3 = Cv233 ⊕ Cv234,

m−4 = Cv2334,

m−k = 0, k ≥ 5,

where vi1...im := [vi1...im−1 , vim ]. The Lie algebra structure on m− is defined uniquely by the following rules:

[m−i,m−j ] ⊂ m−i−j , [v1,m−] = 0, [v23, v34] =
1

2
v2334,

and there is a table of Lie brackets

v23 v34 v233 v234
v2 0 v234 0 0
v3 −v233 0 0 − 1

2v2334
v4 −v234 0 −v2334 0

(4.32)

In the table above, we compute the Lie bracket of left end entry with top end entry. For example, [v4, v23] =
−v234 and [v3, v234] = −

1
2v2334.

Lemma 4.61. In Setting 4.53, the symbol algebra of D at a general point x ∈ X0 is isomorphic to m− in
Notation 4.60, where we have identifications Nx = Cv1, Dα2

x = Cv1 + Cv2, Dα3
x = Cv3 and Dα4

x = Cv4.

Proof. By Proposition 4.55, Proposition 4.56 and Proposition 4.51 (see also Remark 4.13(ii)), we have the
description of m(αi) and m(αi, αj) for 2 ≤ i 6= j ≤ 4. In particular, in mx(α2, α3, α4) := Symbx(D) we have

[v1, vi] = 0, i = 2, 3, 4, (adv2)
2(v3) = 0, (adv3)

3(v2) = 0,

[v2, v4] = 0, (adv3)
2(v4) = 0, (adv4)

2(v3) = 0.

Then by Proposition 2.15, Symbx(D) is a quotient algebra of g− := g−(C3) ⊕ g−(A1). More precisely,
g− :=

⊕
k≥1

g−k as follows:

g−1 =
⊕

1≤i≤4

Cvi,

g−2 = Cv23 ⊕ Cv34,

g−3 = Cv233 ⊕ Cv234,

g−4 = Cv2334,

g−5 = Cv23344,

g−k = 0, k ≥ 6.

Denote by q the ideal of g− such that Symbx(D) = g−/q as graded nilpotent Lie algebra. By Proposition
3.10, dim Symbx(D) = dimTxX0 = 9, which implies that dim q = dim g− − dimSymbx(D) = 1.

To complete the proof of Lemma 4.61, it suffices to show the claim that q = Cv0, where v0 := v23344+λv1
for some λ ∈ C. Note that the graded Lie algebra structure on g−/Cw0 is independent of the choice of
λ ∈ C.

Suppose the claim fails. Then there exists 1 ≤ k0 ≤ 4 such that q = Cv0 and v0 = λv1 + v′0 + v′′0 , where
v′′0 ∈

⊕
k≥k0+1

g−k, 0 6= v′0 ∈ g−k0 if k0 ≥ 2, and 0 6= v′0 ∈
⊕

2≤i≤4

Cvi if k0 = 1. Then there exists 2 ≤ j ≤ 4
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such that [vj , v
′
0] 6= 0, see table (4.32). Then 0 6= [vj , v0] ∈

⊕
k≥k0+1

g−k. Since q is an ideal of g−, we have

0 6= [vj , v0] ∈ q = Cv0. In particular, [vj , v0] has a nonzero component in g−k0 . It is a contradiction. Hence
the claim holds. �

Lemma 4.62. In Setting 4.53 the Frobenius bracket of (T π
α2,α3

+ T π
α2,α4

)|X0 induces a homomorphism of
meromorphic vector bundles over X0:

(T π
α2,α3

/T π
α2
)|X0 ⊗ (T π

α2,α4
/T π

α2
)|X0 → TX0/(T

πα2,α3
+ T π

α2,α3
)|X0 ,

which is a surjective homomorphism over a nonempty Zariski open subset of X0.

Proof. It is a direct consequence of Lemma 4.61. More precisely, the weak derivatives of Dα2 , Dα2 + Dα3

and Dα2 + Dα4 induces symbol algebras at a general point x ∈ X0 as follows:

gr(T π
α2
) = Cv1 ⊕ Cv2,

gr(T π
α2,α3

) = Cv1 ⊕ Cv2 ⊕ Cv3 ⊕ Cv23 ⊕ Cv233,

gr(T π
α2,α4

) = Cv1 ⊕ Cv2 ⊕ Cv4.

Then it is straight-forward to deduce the conclusion from the Lie algebra structure of m− in Notation
4.60. �

Proposition 4.63. In Setting 4.53 the variety Xα2
0 is biholomorphic to F (3, 4;C5).

Proof. By Proposition 4.57, the variety Xα2
0 is smooth. Being the smooth deformation of F (3, 4;C5) ∼= Xα2

t

with t 6= 0, Xα2
0 is of Picard number two. The relative Mori contraction πα2,αk : X → Xα2,αk induces a

relative Mori contraction ψαk : Xα2 → Xα2,αk extending Ψαk : A4/P{α3,α4} → A4/Pαi
, where i 6= k ∈ {3, 4}.

The existence of two elementary contractions of fiber types implies that Xα2
0 is a Fano manifold.

For each k ∈ {3, 4}, the relative tangent sheaf Tψ
αk is a meromorphic distribution on Xα2 , whose singular

locus is a proper closed subvariety of Xα2
0 . Denote by Eαk := Tψ

αk |Xα2
0

, and E := Eα3 + Eα4 ⊂ TXα2
0 . The

Frobenius bracket of the meromorphic distribution E on Xα2
0 induces F : Eα3 ⊗ Eα4 → TXα2

0 /E , which is a
homomorphism of meromorphic vector bundles over Xα2

0 .
It is easy to see that E = dπα2

0 (T π
α2,α3

+ T π
α2,α4

) and Eαk = dπα2
0 (T π

α2,αk ) for k = 3, 4, where dπα2
0 is

the tangent map of πα2
0 . By Lemma 4.62, F is surjective at general points of Xα2

0 . The conclusion follows
from Proposition 3.20. �

Corollary 4.64. In Setting 4.53 the varieties Xα2,α3

0 and Xα2,α4

0 are biholomorphic to A4/Pα4 and A4/Pα3

respectively. The morphisms πα2,α3

0 : X0 → X
α2,α3

0 and πα2,α4

0 : X0 → X
α2,α4

0 are F d(1, 2;C4)-bundle and
(P2 × P1)-bundle respectively.

Proof. By Proposition 4.63, Xα2
0
∼= A4/P{α3,α4}. Hence Xα2,α3

0
∼= A4/Pα4 and Xα2,α4

0
∼= A4/Pα3 . Further-

more, the two elementary Mori contractions ψα3
0 : Xα2

0 → Xα2,α3

0 and ψα4
0 : Xα2

0 → Xα2,α4

0 are P3-bundle
and P1-bundle respectively. Then by Proposition 4.57 πα2,α3 : X0 → P4 (resp. πα2,α4 : X0 → Gr(3,C5)) is
a smooth morphism such that each fiber is a Fano manifold admitting a P2-bundle structure over P3 (resp.
over P1). By rigidity of projective space and Proposition 3.24, the morphism πα2,α4

0 is a (P2 × P1)-bundle.
By Theorem 1.6, each fiber of πα2,α3

0 is biholomorphic to either F (2, 3;C4) or F d(1, 2;C4). By the local
rigidity of F (2, 3;C4) and Proposition 4.56, the morphism πα2,α3

0 is an F d(1, 2;C4)-bundle. �

Now we are ready to complete the proof of Proposition 4.52. As a trivial analogue with Construction 1.5,
we can define F d(2, 3;C4) by using the contact distribution on A3/Pα3 instead of that on A3/Pα1 . Although
F d(2, 3;C4) ∼= F (1, 2;C4), we use F d(2, 3,C4) in the following to make our discussion compatible with the
involved simple roots of A4.

Proof of Proposition 4.52. We discuss in Setting 4.53. It suffices to deduce a contradiction. In summary of
Proposition 4.57, Proposition 4.63 and Corollary 4.64, πα2 : X0 → X

α2
0 = F (3, 4;C5) is a P2-bundle and

πα2,α3

0 : X0 → X
α2,α3

0 = P4 is a F d(2, 3;C4)-bundle. By Proposition 4.48 there exists a holomorphic section
σ : Xα2

0 = F (3, 4;C5)→ X0 of πα2
0 such that
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(i) at any point x ∈ X0 \ σ(X
α2
0 ), Kα3

x (X0) consists of a unique element, denoted by [Cx];
(ii) at any point x ∈ X0 \ σ(X

α2
0 ), Cx ∼= P1 and πα2

0 sends Cx biholomorphically to a line in a fiber of
ψα3 : Xα2

0 = F (3, 4;C5)→ Xα2,α3

0 = A4/Pα4 ;
(iii) two points x, y ∈ P2

t \ {σ(t)} satisfy πα2
0 (Cx) = πα2

0 (Cy) if and only if the two lines 〈x, σ(t)〉 and
〈x, σ(t)〉 in P2

t coincide, where t ∈ Xα2
0 is an arbitrary point and P2

t := (πα2
0 )−1(t).

Set Kα3(X0/X
α2
0 ) :=

⋃
t∈X

α2
0

[πα2
0 (Cx)] ⊂ A4/P{α2,α4} = Kα3(Xα2

0 ). Denote by Xα2
0 ← Uα3(X0/X

α2
0 ) →

Kα3(X0/X
α2
0 ) the restriction of the universal family Xα2

0 = A4/P{α3,α4} ← A4/P{α2,α3,α4} → K
α3(Xα2

0 ) =
A4/P{α2,α4}.

Since πα2,α3

0 : X0 → X
α2,α3

0 = P4 is a F d(2, 3;C4)-bundle, we can apply Proposition 4.49 to obtain a
commutative diagram over Xα2

0 as follows:

X0
θ //❴❴❴❴

π
α2
0

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼ Uα3(X0/X
α2
0 )

γ

��

�

�

// A4/P{α2,α3,α4}

uu❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

��
Xα2

0 = F (3, 4;C5) Gr(2,C5),

(4.33)

where at any point t ∈ Xα2
0 the horizontal rational map θt is the linear projection from P2

t := (πα2
0 )−1(t)

with center σ(t).In particular,
(iv) γ : Uα3(X0/X

α2
0 )→ Xα2

0 is a P1-bundle.
Now we claim that
(v) under the natural surjective morphismA4/P{α2,α3,α4} → A4/Pα2 = Gr(2,C5), the variety Uα3(X0/X

α2
0 ) ⊂

A4/P{α2,α3,α4} is the inverse image of a hyperplane section of Gr(2,C5).
To verify the claim (v), it suffices to show that as a divisor on S := A4/P{α2,α3,α4}, D := Uα3(X0/X

α2
0 )

satisfies

(D · Ci) = δi2, [Ci] ∈ K
αi(S), 2 ≤ i ≤ 4.(4.34)

Take a point [A4] ∈ X
α2,α4

0 = A4/Pα4 , where A4 is the corresponding 4-dimensional linear subspace of C5.
The restriction Uα3(X0/X

α2
0 ) ⊂ A4/P{α2,α3,α4} → Gr(2,C5) on the fiber (πα2,α3

0 )−1([A4]) ∼= F d(2, 3;A4) is

C2/B ⊂ A3/P{α2,α3} → Gr(2,C4). Hence (4.34) holds for i = 2 and 3.
Now consider a part of (4.33), which is a commutative diagram as follows:

X0
//❴❴❴❴❴❴

��

Uα3(X0/X
α2
0 )

vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

��
Xα2

0 = F (3, 4;C5) Soo

Take any [l4] ∈ Kα4(Xα2
0 ). Restricting on l4 ⊂ X

α2
0 , we obtain a commutative diagram:

P2 × l4
ϕ1 //❴❴❴

��

P1 × l4

zztt
tt
tt
tt
tt
t

ϕ2

��
l4 P2 × l4oo

where the horizontal rational map ϕ1 : P2 × l4 99K P1 × l4 is the linear projection from P2 × {t}, t ∈ l4
with center σ(t) ∈ P2

t := P2 × {t}, and the vertical morphism ϕ2 : P1 × l4 → P2 × l4 is a hyperplane bundle
over l4. By this diagram we can choose [C4] ∈ Kα4(S) such that C4 ⊂ P2 × l4 ⊂ S is a section of l4 and
C4 ∩ Uα3(X0/X

α2
0 ) = ∅. In particular, (D · C4) = 0, verifying (4.34) and claim (v) too.

Denote by 0 6= ω ∈ ∧2(C5)∗ the antisymmetric form on C5 such that

Grω(2,C5) := {[A] ∈ Gr(2,C5) | ω(A,A) = 0}

is the hyperplane section of Gr(2,C5) ⊂ P9 mentioned in claim (v). The assertion ω 6= 0 follows from the
fact Uα3(X0/X

α2
0 ) $ S.
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Then we can conclude that
(vi) at any point t = ([A3], [A4]) ∈ X

α2
0 = F (3, 4;C5) the fiber Uα3

t (X0/X
α2
0 ) is identified with the space

Mt := {[A2] ∈ Grω(2,C5) | A2 ⊂ A3}.
Denote by ω′ ∈ ∧2A∗

4 the restriction of ω on A4 = C4 ⊂ C5. If the point t = ([A3], [A4]) is general in
Xα2

0 = F (3, 4;C5), then

A
⊥ω′

3 := {v ∈ A4 | ω
′(v,A3) = 0} ⊂ A4

is a linear subspace of dimension one and Mt is exact

{[A2] ∈ Gr(2,C5) | A
⊥ω′

3 ⊂ A2 ⊂ A3},

which is isomorphic to P1.
However by dimension reason, Null(ω) 6= 0, where

Null(ω) := {v ∈ C5 | ω(v,C5) = 0}.

Hence, there exists [Ã3] ∈ Gr(3,C5) such that Null(ω) ∩ Ã3 6= 0 and Ã3 ⊂ Ã⊥ω

3 ⊂ C5, where Ã⊥ω

3 := {v ∈

C5 | ω(v, Ã3) = 0}. Choose t̃ := ([Ã3], [Ã4]) ∈ X
α2
0 . Then by definition we have

Mt̃ = {[A2] ∈ Gr(2,C5) | A2 ⊂ Ã3} ∼= P2.

It contradicts with the assertion (vi). This completes the proof of Proposition 4.52. �

4.5. Fano deformation of D4/P{α2,α3,α4}.

4.5.1. Possible degenerations. The aim in this section is to show the following

Proposition 4.65. Suppose in Setting 1.11 that Xt ∼= D4/P{α2,α3,α4} for t 6= 0 and X0 ≇ D4/P{α2,α3,α4}.

Then at a general point x ∈ X0, the fibers Fα2
x
∼= P1, Fα3

x
∼= P1, Fα4

x
∼= P1, Fα3,α4

x
∼= P1 × P1, Fα2,α3

x
∼=

F d(1, 2;C4) and Fα2,α4
x

∼= F d(1, 2;C4).

Throughout the Subsection 4.5, we discuss in the following setting.

Setting 4.66. Let π : X → ∆ ∋ 0 be a holomorphic family of connected Fano manifolds such that Xt ∼=
D4/P{α2,α3,α4} for t 6= 0.

Firstly we have four possibilities as follows.

Proposition 4.67. In Setting 4.66, take x ∈ X0 general. Then Fα2
x
∼= P1, Fα3

x
∼= P1, Fα4

x
∼= P1 and

Fα3,α4
x

∼= P1 × P1. Moreover, one of the following cases occur:
(A) Fα2,α3

x
∼= F (2, 3;C4) and Fα2,α4

x
∼= F (2, 3;C4);

(B) Fα2,α3
x

∼= F d(1, 2;C4) and Fα2,α4
x

∼= F d(1, 2;C4);
(C) Fα2,α3

x
∼= F (2, 3;C4) and Fα2,α4

x
∼= F d(1, 2;C4);

(D) Fα2,α3
x

∼= F d(1, 2;C4) and Fα2,α4
x

∼= F (2, 3;C4).

Proof. The description of Fαi
x and Fα3,α4 follows from the Fano deformation rigidity of projective spaces

and Proposition 3.24. The description of Fα2,α3
x and Fα2,α4

x follows from Theorem 1.6. �

Remark 4.68. The positive roots of D4 are as follows:

α1, α2, α3, α4; α1 + α2, α2 + α3, α2 + α4;

α1 + α2 + α3, α1 + α2 + α4, α2 + α3 + α4;

α1 + α2 + α3 + α4; α1 + 2α2 + α3 + α4.
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Take G = D4 and I = {α2, α3, α4} in Definition 2.2, then g−(I) =
⊕
k≥1

g−k(I) is as follows:

g−1(I) = g−α1−α2 ⊕ g−α2 ⊕ g−α3 ⊕ g−α4 ,

g−2(I) = g−α1−α2−α3 ⊕ g−α2−α3 ⊕ g−α1−α2−α4 ⊕ g−α2−α4 ,

g−3(I) = g−α1−α2−α3−α4 ⊕ g−α2−α3−α4 ,(4.35)

g−4(I) = g−α1−2α2−α3−α4 ,

g−k(I) = 0 for k ≥ 5.

Now we fix nonzero vectors w1 ∈ g−α1−α2 , w2 ∈ g−α2 , w3 ∈ g−α3 , and w4 ∈ g−α4 respectively. Then (4.35)
can be written explicitly as follows:

g−1(I) = Cw1 ⊕ Cw2 ⊕ Cw3 ⊕ Cw4,

g−2(I) = Cw13 ⊕ Cw23 ⊕ Cw14 ⊕ Cw24,

g−3(I) = Cw134 ⊕ Cw234,(4.36)

g−4(I) = Cw1342,

g−k(I) = 0 for k ≥ 5,

where wi1...im := [wi1...im−1 , wim ] by inductive definition.
Take G = D4 and I = {α2, α3} in Definition 2.2, then g−(I) =

⊕
k≥1

g−k(I) is as follows:

g−1(I
′) = g−α1−α2 ⊕ g−α2 ⊕ g−α1−α2−α4 ⊕ g−α2−α4 ⊕ g−α3 ,

g−2(I
′) = g−α1−α2−α3 ⊕ g−α2−α3 ⊕ g−α1−α2−α3−α4 ⊕ g−α2−α3−α4 ,(4.37)

g−3(I
′) = g−α1−2α2−α3−α4 ,

g−k(I
′) = 0 for k ≥ 4.

The choice of wi is kept unchanged. Then (4.37) can be written explicitly as follows:

g−1(I
′) = Cw1 ⊕ Cw2 ⊕ Cw14 ⊕ Cw24 ⊕ Cw3,

g−2(I
′) = Cw13 ⊕ Cw23 ⊕ Cw134 ⊕ Cw234,(4.38)

g−3(I
′) = Cw1342,

g−k(I
′) = 0 for k ≥ 4.

Convention 4.69. In Subsection 4.5, we denote by D
αi , D and D

−i the restriction of Dαi , D and D−i on
X0 respectively, where the latter is defined in Notation 3.9. For simplicity we write (m−)x := mx(α2, α3, α4)
and (m−k)x := (m−k(α2, α3, α4))x, where k ≥ 1 and x ∈ X0 is general.

Lemma 4.70. At x ∈ X0 general dim(m−)x = dimX0 = 11.

Proof. It is a special case of Proposition 3.10. �

4.5.2. Exclude possibility of case (C). Throughout part 4.5.2, we suppose case (C) of Proposition 4.67 occurs,
and aim at deducing a contradiction.

Lemma 4.71. In case (C) of Proposition 4.67, there exists a unique meromorphic line subbundle N of D
α2

such that [N ,Dα4 ] ⊂ N + Dα4 . Consequently, [N ,Dα2 + Dα4 ] ⊂ Dα2 + Dα4 ⊂ D .

Proof. It follows from Proposition 4.51 and the assumption in case (C) directly. �

Construction 4.72. In setting of Lemma 4.71, take x ∈ X0 general. Choose a local section ṽ1 (resp. ṽ3,
ṽ4) of N (resp. Dα3 , Dα4), which is nonzero in an open neighborhood of x in X0. Take a local section ṽ2
of Dα2 such that (ṽ2)y /∈ C(ṽ1)y at any point y in an open neighborhood of x in X0. Define by induction
k ≥ 1 that ṽi1···ik+1

:= [ṽi1···ik , ṽik+1
] as local vector field in an open neighborhood of x in X0. Take a subset

A ⊂ I := {α2, α3, α4}. When all ṽij are local sections of DA :=
∑
β∈A

Dβ we denote by vAi1···ik the class of

ṽi1···ik in Symb(DA). When A = I we omit the superscript I, i.e. denote by vi1···ik ∈ Symb(D) of class
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of ṽi1···ik . For simplicity we also use vAi1···ik and vAi1···ik to represent the corresponding class in the symbol

algebras Symbx(D
A) and Symbx(D) at a chosen general point x.

Proposition 4.73. In setting of Construction 4.72, the symbol algebra of D at a general point x ∈ X0 is a
quotient algebra of g−(B4), denoted by g−(B4)/q. More precisely, under the isomorphism (m−)x ∼= g−(B4)/q
the elements v1, v2, v3, v4 have weights −β1,−β3,−β2,−β4 respectively, where β1, . . . , β3 are the three long
simple roots of B4, and β4 is the short one. The ideal q is generated by g−β1−β2−β3 in g−(B4). We can write
explicitly (m−)x as follows:

(m−1)x = Cv1 ⊕ Cv3 ⊕ Cv2 ⊕ Cv4,

(m−2)x = Cv13 ⊕ Cv32 ⊕ Cv24,

(m−3)x = Cv324 ⊕ Cv244,(4.39)

(m−4)x = Cv3244,

(m−5)x = Cv32442,

(m−k)x = 0 for k ≥ 6,

where dim(m−k)x = 4, 3, 2, 1, 1 for k = 1, . . . , 5 respectively.

Proof. In case (C) of Proposition 4.67, both (m−(α2, α3))x and (m−(α3, α4))x are standard. Thus by Remark
4.68 we have

adv1(v2) = 0, adv3(v4) = 0, (advi)
2(v3) = 0, (adv3)

2(vi) = 0 in (m−)x,

where i = 1, 2. Since Fα2,α4
x

∼= F d(1, 2;C4), we know from Lemma 4.71 and Proposition 4.51 that

adv1(v2) = 0, adv1(v4) = 0, (adv2)
2(v4) = 0, (adv4)

3(v2) = 0 in (m−)x.

In summary (m−)x is a quotient algebra of g−(B4), where we write the four simple roots of B4 to be β1, . . . , β4
in order with β4 being the short simple root, and the elements v1, v2, v3, v4 have weights −β1,−β3,−β2,−β4
respectively. Since (m−k(α2, α3))x = 0 for all k ≥ 3, [v13, v2] = 0 in (m−)x. It follows that (m−)x is
a quotient algebra of g−(B4)/q, where q is the ideal in g−(B4) generated by g−β1−β2−β3 . It is straight-
forward to see that g−(B4)/q is isomorphic to the graded Lie algebra described in (4.39). By Lemma 4.70,
dim(m−)x = dim g−(B4)/q = 11. Hence (m−)x ∼= g−(B4)/q. �

Proposition 4.74. Case (C) of Proposition 4.67 does not occur.

Proof. Suppose we are in case (C) of Proposition 4.67. Denote by E the meromorphic distribution on Xα4

such that E|Xα4
t

coincides with g−1(D4/P{α2,α3}) under the identification X
α4
t
∼= D4/P{α2,α3} for each t 6= 0.

Then the singular locus on Xα4 of E is a proper closed algebraic subset of Xα4
0 . By Remark 4.68 and

Proposition 4.73, E = dπα4(D + T π
α2,α4

), where dπα4 : TX → TXα4 is the tangent map of πα4 : X → Xα4 .
Take x ∈ X0 general. Denote by E := E|Xα4

0
, and y := πα4(x) ∈ Xα4

0 . We claim that Symby(E ) ∼=
g−(α2, α3), where g−(α2, α3) ⊂ g = Lie(D4) is as in Definition 2.2. Note that g−(α2, α3) has been explicitly
described in (4.37) and (4.38).

By abuse of notation, we denote by vi1···ik ∈ Symby(E ) the class of the local vector field dπα4(ṽi1...ik)
on Xα4

0 . Now v1, v2, v3, v24, and v244 form a basis of Ey. There is a unique linear isomorphism ψ : Ey →
g−1(α2, α3) such that

ψ(v1) = w1, ψ(v2) = w2, ψ(v3) = w3,

ψ(v24) = w24, ψ(v244) = w14,

where wi, wij ∈ g−1(α2, α3) are as in Remark 4.68. By direct calculation ψ induces an isomorphism Ψ :
Symb(E )y → (g−(D4/P{α2,α3}))q satisfying

Ψ(v13) = w123, Ψ(v32) = −w23, Ψ(v324) = −w234,

Ψ(v3244) = −w134, Ψ(v32332) = −w1342.

By Proposition 3.19 the variety Xα4
0
∼= D4/P{α2,α3}. Thus π

α4
0 : X0 → X

α4
0 is a P1-fibration by Proposition

4.20.
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On the other hand, by assumption Fα2,α4
x

∼= F d(1, 2;C4). The restriction of πα4
0 on Fα2,α4

x coincides with
the morphism F d(1, 2;C4)→ cone(pt,Q3). In particular, a fiber of πα4

0 is biholomorphic to P3, contracting
the assertion that πα4

0 is a P1-fibration. Hence case (C) of Proposition 4.67 does not occur. �

Now we can complete the proof of Proposition 4.65

Proof of Proposition 4.65. By Proposition 4.67, there are four possibilities (A)− (D). By Proposition 4.74,
case (C) does not occur. By symmetry of Dynkin diagram, case (D) is also impossible. If case (A) occur,
then by Theorem 3.22 the manifold X0

∼= D4/P{α2,α3,α4}, contradicting to our assumption. Hence only case
(B) is possible, verifying the conclusion. �
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