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THE PROBLEM OF DIFFERENTIATION

OF HYPERELLIPTIC FUNCTIONS

ELENA YU. BUNKOVA

Abstract. In this work we describe a construction that leads to an explicit solution of
the problem of differentiation of hyperelliptic functions. A classical genus g = 1 example
of such a solution is the result of F. G. Frobenius and L. Stickelberger [1].

Our method follows the works [2] and [3] that led to constructions of explicit solutions
of the problem for genus g = 2 and g = 3.

1. Introduction

We consider meromorphic functions f in Cg. A vector ω ∈ Cg is called a period for f if
f(z+ω) = f(z) for any z ∈ Cg. If the periods of f form a lattice Γ of rank 2g in Cg, then f
is called an Abelian function. We say that an Abelian function is a meromorphic function
on the complex torus T g = Cg/Γ. We denote the coordinates in Cg by (z1, z3, . . . , z2g−1).

Let us consider hyperelliptic curves of genus g in the model

Vλ = {(X, Y ) ∈ C
2 : Y 2 = X2g+1 + λ4X

2g−1 + λ6X
2g−2 + . . .+ λ4gX + λ4g+2}. (1)

Such a curve depends on the parameters λ = (λ4, λ6, . . . , λ4g, λ4g+2) ∈ C2g.
Denote by B ⊂ C2g the subspace of parameters such that Vλ is non-singular for λ ∈ B.

We have B = C2g\Σ where Σ is the discriminant curve.
A hyperelliptic function of genus g (see [2, 4]) is a meromorphic function in Cg × B,

such that for each λ ∈ B it’s restriction to C
g × λ is Abelian with T g the Jacobian Jλ

of Vλ. We denote the field of hyperelliptic functions of genus g by F . See [4] for it’s
properties.

Let U be the space of the fiber bundle π : U → B with fiber over λ ∈ B the Jacobian Jλ

of the curve Vλ. Thus, a hyperelliptic function is a meromorphic function in U . According
to Dubrovin–Novikov theorem [5], there is a birational isomorphism between U and the
complex linear space C3g.

Problem 1.1 ([4]). For each g describe the Lie algebra DerF of differentiations of F ,

that is find 3g independent differential operators L such that LF ⊂ F .

In case g = 1 the solution of this problem is classical [1]. A method for solving this
problem in a general case was presented in [6, 7]. A good overview of this approach is
given in [4]. It turned out that it is hard to follow this method to obtain explicit answers.

Explicit solutions to this problem for g = 2 and g = 3 were first found in [2] and [3].
This works allow us to present a general method that is useful for any genus. Here we
describe the general construction of this method.

We use the theory of hyperelliptic Kleinian functions (see [8, 9, 10, 11], and [12] for
elliptic functions). Take the coordinates (z, λ) = (z1, z3, . . . , z2g−1, λ4, λ6, . . . , λ4g, λ4g+2)
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in Cg×B ⊂ C3g. Let σ(z, λ) be the hyperelliptic sigma function (or elliptic sigma function
in genus g = 1 case). We denote ∂k = ∂

∂zk
. Following [2, 3, 4], we use the notation

ζk = ∂k ln σ(z, λ), ℘i;k1,...,kn = −∂i
1∂k1 · · ·∂kn ln σ(z, λ), (2)

where n > 0, i + n > 2, ks ∈ {1, 3, . . . , 2g − 1}. In the case n = 0 we will skip the
semicolon. Note that our notation for the variables zk differs from the one in [9, 10, 11] as
ui = z2g+1−2i. The functions ℘i;k1,...,kn provide us with examples of hyperelliptic functions.

A key to our approach to the problem is the following theorem:

Theorem 1.2 ([9]). For i, k ∈ {1, 3, . . . , 2g − 1} we have the relations

℘3;i =6℘2℘1;i + 6℘1;i+2 − 2℘0;3,i + 2λ4δi,1, (3)

℘2;i℘2;k =4 (℘2℘1;i℘1;k + ℘1;k℘1;i+2 + ℘1;i℘1;k+2 + ℘0;k+2,i+2)−

− 2(℘1;i℘0;3,k + ℘1;k℘0;3,i + ℘0;k,i+4 + ℘0;i,k+4)+ (4)

+ 2λ4(δi,1℘1;k + δk,1℘1;i) + 2λi+k+4(2δi,k + δk,i−2 + δi,k−2).

Proof. In [9] we have formulas (4.1) and (4.8). Using the notation (2) we get (3) from (4.1)
and (4) from (4.8). �

2. The problem for polynomial vector fields

The work [13] constructs the theory of polynomial Lie algebras. Here we describe its
connection with Problem 1.1.

Consider the complex space C3g with coordinates x = (xi,j), where i ∈ {1, 2, 3},
j ∈ {1, 3, . . . , 2g − 1}. We define the map ϕ : U 99K C

3g by

ϕ : (z, λ) 7→ (xi,j) = (℘i;j(z, λ)).

This map has the following property, proposed by V. M. Buchstaber (see [2]):

Theorem 2.1. The functions ϕ∗(xi,j) give a set of generators of F .

Proof. We show that the functions ℘i;j(z, λ), where i ∈ {1, 2, 3}, j ∈ {1, 3, . . . , 2g − 1},
give a set of generators of F .

We use a fundamental result from the theory of hyperelliptic Abelian functions (see [11,
Chapter 5]): Any hyperelliptic function can be presented as a rational function in ℘1;k

and ℘2;k, where k ∈ {1, 3, . . . , 2g − 1}. Theorem 1.2 gives a set of relations between the
derivatives of this functions.

Now by [3, Corollary 5.2], the functions (ϕ∗(xi,j), ϕ
∗(wk,l), ϕ

∗(λs)) in the notation of
this Corollary give a set of generators of F . By [3, Theorem 5.3] we obtain the claim of
Theorem 2.1. �

Another property of ϕ follows form [3, Corollary 5.5]. For each g a there is polynomial
map p : C3g → C

2g, such that we get the diagram

U

π

��

ϕ
//❴❴❴ C3g

p

��

B �

�

// C
2g

(5)

Here B ⊂ C2g is the inclusion like in section 1, with coordinates λ in C2g.
We note that the proof of [3, Theorem 5.3] gives a construction to obtain the polynomial

maps p explicitly. Examples of this maps for g = 1, 2, 3 are given in [3]. The work [4,
Theorem 3.2] claims that this polynomial maps are of degree at most 3.
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We refer the reader to [13] for the theory of polynomial Lie algebras. Denote the ring
of polynomials in λ ∈ C2g by P. Let us consider the polynomial map p : C3g → C2g. A
vector field L in C3g will be called projectable for p if there exists a vector field L in C2g

such that

L(p∗f) = p∗L(f) for any f ∈ P.

The vector field L will be called the pushforward of L. A corollary of this definition is
that for a projectable vector field L we have L(p∗P) ⊂ p∗P.

Problem 2.2 ([3, Problem 6.1]). Find 3g polynomial vector fields in C3g projectable for

p : C3g → C2g and independent at any point in p−1(B). Construct their polynomial Lie

algebra.

The connection of this problem to Problem 1.1 is straightforward. Given a solution
to Problem 2.2 for each of the 3g vector fields Lk with pushforwards Lk we will restore
the vector fields Lk projectable for π with pushforwards Lk and such that Lk(ϕ

∗xi,j) =
ϕ∗Lk(xi,j) for the coordinate functions xi,j in C

3g. As ϕ∗xi,j are the generators of F and
Lk(xi,j) is a polynomial in xi,j, this gives Lk(ϕ

∗xi,j) ∈ F and Lk ∈ DerF .
The plan to solve Problem 2.2 is the following. For each g:

• Find the “odd polynomial vector fields”, i.e. the g independant polynomial vector
fields L1,L3, . . . ,L2g−1 projectable for p with zero pushforward.

• Define 2g independant polynomial vector fields L0, L2, L4, . . . , L4g−2 in B.
• Find the “even polynomial vector fields”, i.e. the 2g polynomial vector fields
L0,L2,L4, . . . ,L4g−2 projectable for p with pushforwards L0, L2, L4, . . . , L4g−2 .

• Construct their polynomial Lie algebra.

We will do this steps in the following sections. In the last section we give the explicit
solutions for problem 1.1 that can be constucted by this method (see [3]).

3. Odd polynomial vector fields

Lemma 3.1 ([3, Lemma 6.2 and Lemma 6.3]). We have

L1 =
∑

j

x2,j

∂

∂x1,j

+ x3,j

∂

∂x2,j

+ 4(2x2x2,j + x3x1,j + x2,j+2)
∂

∂x3,j

(6)

where x2,2g+1 = 0. For s = 3, 5, . . . , 2g − 1 we have

Ls = x2,s

∂

∂x2

+ x3,s

∂

∂x3

+ L1(x3,s)
∂

∂x4

+

+

g−1
∑

k=1

z1,s,2k+1

∂

∂x1,2k+1

+ L1(z1,s,2k+1)
∂

∂x2,2k+1

+ L1(L1(z1,s,2k+1))
∂

∂x3,2k+1

. (7)

for some y1,s,2k+1 = Ls(x1,2k+1).

This lemma determines the odd polynomial vector fields given the value Ls(x1,2k+1).
For this value we use the construction of Korteweg–de Vries hierarchy [10, Section 4.4].
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The Korteweg–de Vries equation

ut = 6uux − uxxx

for x = z1, −4t = z3, Φ2 =
1

2
u, Φ4 = −3

2
Φ2

2 +
1

4
∂1Φ2 takes the form

∂3Φ2 = ∂1Φ4.

It is the first equation of the Korteweg–de Vries hierarchy, which is an infinite system of
differential equations

∂2k−1Φ2 = ∂1Φ2k, k = 2, 3, 4, . . .

where

∂1Φ2k+2 = R∂1Φ2k and R =
1

4
∂2
1 − 2Φ2 − Φ′

2∂
−1
1

Theorem 3.2 ([10, Theorem 4.12]). The function u = 2℘2(z) is a g-gap solution of

the Korteweg–de Vries system.

This gives us a system of equations

Ls(x2) = L1Φs(x2)

with differential polynomials Φs. Thus in Lemma 3.1 we have

Ls(x1,2k+1) = Ls(Φ2k(x2)).

This determines y1,s,2k+1.

4. Even polynomial vector fields

First we define the polynomial vector fields in B. Recall B = C2g\Σ where Σ is the
discriminant curve.

For the vector fields L0, L2, L4, . . . , L4g−2 in B we take the vector fields tangent to Σ,
that are obtained from the convolution of invariants of the group Aµ, see the construction
by D.B.Fuchs in [14, Section 4]. See also [13] and [15].

We consider C
2g with coordinates (λ4, λ6, . . . , λ4g, λ4g+2) and set λs = 0 for every

s /∈ {4, 6, . . . , 4g, 4g + 2}. For k,m ∈ {1, 2, . . . , 2g}, k 6 m set

T2k,2m = 2(k +m)λ2k+2m +
k−1
∑

s=2

2(k +m− 2s)λ2sλ2k+2m−2s −
2k(2g −m+ 1)

2g + 1
λ2kλ2m,

and for k > m set T2k,2m = T2m,2k. For k = 0, 1, 2, . . . , 2g − 1 we have the vector fields

L2k =

2g+1
∑

s=2

T2k+2,2s−2

∂

∂λ2s

. (8)

The expressions (8) give polynomial vector fields tangent to the discriminant curve.
Now we need to find polynomial vector fields L2k projectable for p with pushfor-

wards L2k. The vector field L0 is the Euler vector field on C3g, we have

L0 =
∑

j

(j + 1)x1,j

∂

∂x1,j

+ (j + 2)x2,j

∂

∂x2,j

+ (j + 3)x3,j

∂

∂x3,j

. (9)
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All the other vector fields are determined using the condition on the polynomial Lie
algebra





















[L1,L0]
[L1,L2]
[L1,L4]
[L1,L6]

...
[L1,L4g−4]
[L1,L4g−2]





















=





















−1 0 0 . . . 0
x1,1 −1 0 . . . 0
x1,3 x1,1 −1 . . . 0
x1,5 x1,3 x1,1 . . . 0
. . .

. . .
. . .

. . .
. . .

0 0 . . . x1,2g−1 x1,2g−3

0 0 . . . 0 x1,2g−1





























L1

L3

...
L2g−1









. (10)

A demonstration of this method for genus g = 4 will follow in our upcoming works.

5. Explicit solutions of the Problem of Differentiation

of Hyperelliptic Functions

5.1. Genus 1. See [1]. The generators of the F -module DerF are

L0 = L0 − z1∂1, L1 = ∂1, L2 = L2 − ζ1∂1,

Their Lie algebra is [L0,L1] = L1, [L0,L2] = 2L2, [L1,L2] = ℘2L1.

5.2. Genus 2. The generators of the F -module DerF are (see [2, Theorem 29]):

L0 = L0 − z1∂1 − 3z3∂3, L2 = L2 +

(

−ζ1 +
4

5
λ4z3

)

∂1 − z1∂3,

L1 = ∂1, L4 = L4 +

(

−ζ3 +
6

5
λ6z3

)

∂1 − (ζ1 + λ4z3) ∂3,

L3 = ∂3, L6 = L6 +
3

5
λ8z3∂1 − ζ3∂3.

Their Lie algebra can be found in [2, Theorem 32].

5.3. Genus 3. The generators of the F -module DerF are (see [3, Theorem 10.1]):

L1 = ∂1, L3 = ∂3, L5 = ∂5,

L0 = L0 − z1∂1 − 3z3∂3 − 5z5∂5,

L2 = L2 −

(

ζ1 −
8

7
λ4z3

)

∂1 −

(

z1 −
4

7
λ4z5

)

∂3 − 3z3∂5,

L4 = L4 −

(

ζ3 −
12

7
λ6z3

)

∂1 −

(

ζ1 + λ4z3 −
6

7
λ6z5

)

∂3 − (z1 + 3λ4z5)∂5,

L6 = L6 −

(

ζ5 −
9

7
λ8z3

)

∂1 −

(

ζ3 −
8

7
λ8z5

)

∂3 − (ζ1 + λ4z3 + 2λ6z5) ∂5,

L8 = L8 +

(

6

7
λ10z3 − λ12z5

)

∂1 −

(

ζ5 −
10

7
λ10z5

)

∂3 − (ζ3 + λ8z5) ∂5,

L10 = L10 +

(

3

7
λ12z3 − 2λ14z5

)

∂1 +
5

7
λ12z5∂3 − ζ5∂5.

Their Lie algebra can be found in [3, Corollary 10.2].
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