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FUJITA’S CONJECTURE ON ITERATED

ACCUMULATION POINTS OF PSEUDO-EFFECTIVE

THRESHOLDS

ZHAN LI

Abstract. We show that k-th iterated accumulation points of pseudo-
effective thresholds of n-dimensional varieties are bounded by n− k+1.
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1. Introduction

We work over complex numbers. The purpose of this paper is to establish
a version of Fujita’s log spectrum conjecture on iterated accumulation points
of pseudo-effective thresholds. For all triples (X,∆,M), where (X,∆) is an
n-dimensional log smooth variety with ∆ a reduced divisor and M an ample
Cartier divisor, let PETn be the set of the pseudo-effective threshold of M
with respect to (X,∆) (see Definition 2.1). For a subset S ⊆ R, let lim1 S
denote the set of accumulation points of S, and let the set of the k-th iterated
accumulation points of S be limk S := lim1(limk−1 S) for any k ∈ N.

Conjecture 1.1 (Fujita’s log spectrum conjecture [Fuj96, (3.7)]). We have

limk(PETn) ≤ n− k for any positive integer k ≤ n .

Here limk(PETn) ≤ n− k means that each element in limk(PETn) is less
or equal to n−k. In this paper, we obtain an upper bound which is 1 bigger
than the conjectured one.

Theorem 1.2. We have limk(PETn) ≤ n − k + 1 for any positive integer
k ≤ n.
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2 ZHAN LI

In fact, the above result is a direct consequence of the following more
general statement which allows the coefficients of the boundary divisor ∆ to
vary in a DCC set (not just 1).

Theorem 1.3. Let I ⊆ [0, 1] be a DCC set such that 1 is the only possible

accumulation point of I, then limk(PETn(I)) ≤ n − k + 1 for any positive
integer k ≤ n.

For the meaning of the DCC set see Section 2, and for the definition of
PETn(I) see (2.1). Under the above conditions, the upper bound is sharp
and the assumption that 1 is the only possible accumulation point of I
cannot be removed. In fact, for i ∈ N, consider Xi = P1 and KXi

+ Bi +
ciMi ≡ 0. Suppose that Mi is a closed point and Bi is a closed point with
coefficient i−1

i , then ci =
i+1
i whose accumulation point is 1. On the other

hand, if we choose the coefficient of Bi to be i−1
2i (hence 1

2 is an accumulation

point of I), then ci =
3i+1
2i and the accumulation point of ci is

3
2 > 1. This

example can be generalized to any n and 0 < k ≤ n (see Example 3.6).
Previously, such result is only known for k = n − 1, n ( [HL18, Proposition
1.3]) which more or less corresponds to the surface case.

Finally, we say a few words about the history of Fujita’s log spectrum
conjecture, in particular those are pertinent to the current work. Fujita
proposed two conjectures on the behavior of pseudo-effective thresholds
(see [Fuj92] and [Fuj96, (3.2) (3.7)]) which are analogies to the Shokurov’s
conjecture on log canonical thresholds. One conjecture predicts that the set
of pseudo-effective thresholds is ACC, the other conjecture is Conjecture 1.1.
The first conjecture has been settled affirmatively in [DC16,DC17]. Besides,
there is a series of related works from adjunction theory (see [Fuj90,BS95]).

In [HL17], we view the first conjecture from the perspective of generalized
polarized pairs and establish a result for a wider class of varieties. In some
sense, such result is optimal. The advantage of this new perspective is that
it automatically takes care of the singularities introduced by the testing
divisors. Towards Conjecture 1.1, the same perspective is adopted in [HL18]
combining with the observation that there is a striking similarity between
pseudo-effective thresholds and log canonical thresholds. Hence, there is no
surprise that the induction result in [HL18] is established parallelly to that
in [HMX14]. However, in order to get the full statement as Theorem 1.3,
there is a difficulty in the fibration case. [HL18] was submitted on May 2018
without going to the arXiv. The new idea of the current work is to use
Nakayama’s subadditivity on numerical dimensions to tackle the fibration
case (see Theorem 2.6). Combining with a modified induction result of
[HL18], we are eventually able to establish Theorem 1.2 and Theorem 1.3.

The paper is organized as follows. In Section 2, we give background
materials. Theorem 1.2 and Theorem 1.3 are proven in Section 3.
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2. Preliminaries

Throughout the paper, Z and N denote the set of integers and the set of
positive integers respectively.

2.1. Pseudo-effective thresholds, ACC/DCC sets.

Definition 2.1 (Pseudo-effective threshold). If M is an R-Cartier divisor,
we define the pseudo-effective threshold of M with respect to (X,∆) to be

pet(X,∆;M) := inf{t ∈ R≥0 | KX +∆+ tM is effective}.

By convention, pet(X,∆;M) = +∞ ifKX+∆+tM is not pseudo-effective
for any t ∈ R≥0.

A set of real numbers is ACC (resp. DCC) if it satisfies the ascending
chain condition (resp. descending chain condition). Let I ⊆ [0, 1], we define

PETn(I) := {pet(X,∆;M) | (X,∆) is lc, coefficients of ∆ are in I,

M is an ample Cartier divisor,dimX = n}.
(2.1)

Remark 2.2. In the definition of PETn(I) in [HL18], we only require that
M is a nef and big Cartier divisor. Here we need ampleness of M to
exploit the fibration defined by M . Nevertheless, it is still curious to know
if Theorem 1.3 still holds in the nef and big setting.

2.2. Generalized polarized pairs.

Definition 2.3 (Generalized polarized pair, [BZ16, Definition 1.4]). A gen-
eralized polarized pair (X ′/Z,B′ + M ′) consists of a normal variety X ′

equipped with projective morphisms

X
f
−→ X ′ → Z,

where f is birational and X is normal, an R-boundary B′ ≥ 0, and an R-
Cartier divisor M on X which is nef/Z such that KX′+B′+M ′ is R-Cartier,
where M ′ := f∗M . We call B′ the boundary part and M the nef part.

From the definition, we see that X could be replaced with any log resolu-
tion over X, and M could be replaced with the pullback of M accordingly.
We can define the generalized log discrepancy of a divisor E over X ′ by
considering a high enough model X which contains E (say a resolution as
above). Let

KX +B +M = f∗(KX′ +B′ +M ′),

then the generalized log discrepancy of E is defined as ( [BZ16, Definition
4.1])

a(E,X ′, B′ +M ′) = 1−multEB. (2.2)
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We say that (X ′, B′ + M ′) is generalized log canonical (resp. generalized
kawamata log terminal) if the generalized log discrepancy of any prime di-
visor is ≥ 0 (resp. > 0). For simplicity, we write g-lc (resp. g-klt) for
generalized log canonical (resp. generalized kawamata log terminal).

2.3. The sets Nn(I, c),Kn(I, c) and Nn(I),Kn(I). Let I ⊆ [0, 1], we define

I+ := {
∑

niai ≤ 1 | ai ∈ I, ni ∈ N}. (2.3)

For a divisor ∆, we write ∆ ∈ I if the coefficients of ∆ lie in I. Because the
coefficient set I may change after adjunctions, for c ∈ R≥0, we define

D(I) := {
m− 1 + f

m
≤ 1 | m ∈ N, f ∈ I+}, and

Dc(I) := {
m− 1 + f + kc

m
≤ 1 | m,k ∈ N, f ∈ I+}.

(2.4)

Suppose that (X ′, B′+M ′) is a generalized polarized pair with data X
f
−→

X ′ → SpecC and M the nef part (M may not be effective), where f∗M =
M ′. Let c ∈ R≥0, then (X ′, B′ + cM ′) is said to satisfy condition (†) if the
following properties hold:

(†)

(1) (X ′, B′ + cM ′) is g-lc,
(2) KX′ +B′ + cM ′ ≡ 0, and B′ ∈ D(I) ∪Dc(I),
(3) M ′ = f∗M with M semi-ample and Cartier, and M ′

Q-Cartier,
(4) suppose that φM : X → Z is the fibration defined by a

sufficiently divisible multiple of M , then M = φ∗
MMZ is

a pullback of an ample Cartier divisor MZ , and
(5) if M ≡ 0, then at least one coefficient of B′ lies in Dc(I).

Remark 2.4. In [HL18], we only require M to be nef in (3), and (4) is a
newly added assumption in order to guarantee the induction argument.

Recall the following sets defined in [HL18] under the above modified def-
inition of condition (†).

Nn(I, c) ={(X ′, B′ + cM ′) | dimX = n,

and (X ′, B′ + cM ′) satisfies condition (†)}.
(2.5)

Notice that when M ≡ 0 (or equivalently M ′ ≡ 0), this generalized
polarized pair is just the lc pair Nn(I, c) defined in [HMX14] Page 559.
In the same fashion, we define

Kn(I, c) ={(X ′, B′ + cM ′) | (X ′, B′ + cM ′) ∈ Nn(I, c)

is g-klt, and ρ(X ′) = 1}.
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The corresponding subsets of real numbers are

Nn(I) ={c ∈ R | Nm(I, c) 6= ∅,m ≤ n},

Kn(I) ={c ∈ R | Km(I, c) 6= ∅,m ≤ n}.
(2.6)

Notice that in Nn(I) and Kn(I), we also consider varieties of dimensions
less than n.

2.4. Subadditivity of numerical dimensions. Let D be an R-divisor,
recall that κσ(D) is the Nakayama’s numerical dimension of D ( [Nak04, §V
Definition 2.5]) which is defined by

κσ(D) := max{σ(D;A) | A is a divisor},

where σ(D;A) = −∞ if H0(X,A+⌊mD⌋) 6= 0 only for finitely many m ∈ N,
otherwise

σ(D;A) := max{k ∈ Z≥0 | limm→∞m−kh0(X,A+ ⌊mD⌋) > 0)}.

Besides, one defines

κσ(D;X/Y ) := κσ(D|Xz )

on the fiber Xz, where z ∈ Z is a general point. Here we assume that
X → Z has connected fibers. In general, one considers a general fiber of its
Stein factorization (see [Nak04, §V Notation 2.24]). The following lemma is
well-known.

Lemma 2.5. Suppose that X is a smooth projective variety and D is an
R-Cartier divisor. Then κσ(D) = −∞ iff D is not pseudo-effective.

Proof. In [Nak04, §V Remark 2.6], it is shown that κ−σ (D) = −∞ iff D is
not pseudo-effective (see [Nak04, §V Definition 2.5] for κ−σ (D)). Moreover,
κσ(D) = −∞ iff for any A, H0(X,A + ⌊mD⌋) 6= 0 only for finitely many
m ∈ N. By definition, this is equivalent to κ−σ (D) = −∞. �

Theorem 2.6 ( [Nak04, §V Theorem 4.1(1)], [Fuj19, (3.3) and (3.4)]). Let
g : Y → Z be a fiber space (with connected fibers) from a normal projective
variety into a non-singular projective variety, ∆ an effective R-divisor of
Y such that KY + ∆ is R-Cartier and (Y,∆) is lc over a non-empty open
subset of Z. Let D be an R-Cartier divisor of Y such that D− (KY/Z +∆)
is nef. Then for any R-divisor Q of Z,

κσ(D + f∗Q) ≥ κσ(D;Y/Z) + κ(Q) and (2.7)

κσ(D + f∗Q) ≥ κ(D;Y/Z) + κσ(Q), (2.8)

where κ(−) denotes the Kodaira dimension of the divisor.

Remark 2.7. See [Fuj17, Remark 3.8] and [Fuj19] for further discussions
on this result.
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3. Proofs of Theorems

First, we need the following induction characterization of k-th iterated
accumulation points of PETn(I). This is a modified version of the main
result of [HL18] under current settings.

Theorem 3.1 ( [HL18, Theorem 1.2]). Let I ⊆ [0, 1] be a DCC set such
that I = I+. Assume that 1 ∈ I with 1 the only possible accumulation point,
then for any 1 ≤ k ≤ n− 1, limk(PETn(I)) ⊆ Kn−k(I).

Sketch of Proof. The differences between [HL18, Theorem 1.2] and the above
result lie in the different meanings of PETn(I) and Kn−k(I). Under our
assumptions, M in the definition of PETn(I) (see (2.1)) is an ample Cartier
divisor instead of just nef and big, and M in the definition of Kn−k(I) (see
(2.6)) satisfies additional assumptions (3) and (4) in the condition (†). That
is, M is a semi-ample Cartier divisor and for the morphism φM defined by
M , M = φ∗

MMZ for an ample Cartier divisor MZ .

However, the argument for [HL18, Theorem 1.2] works without any essen-
tial changes. The reason is that M in Kn−k(I) is obtained by combinations
of the following three actions:

(a) pullback an ample Cartier divisor A,
(b) restriction on a general fiber F of some fibration, and
(c) restriction on a divisor S.

Suppose that M ′ = f∗A is a pullback of an ample Cartier divisor A on
Z ′ through f : X → Z ′. In case (b), if F is the fiber, then Z of (†)(4)
is the target of the morphism φM ′|F defined by M ′|F , which is just the
normalization of f(F ). Hence M := M ′|F = (φM ′|F )

∗(A|Z) is semi-ample
and Cartier, and MZ = A|Z is ample and Cartier. In case (c), Z of (†)(4)
is the target of the morphism φM ′|S defined by M ′|S , which is just the
normalization of f(S). Hence M := M ′|S = (φM ′|S )

∗(A|Z) is semi-ample
and Cartier, and MZ = A|Z is ample and Cartier. Hence the additional
requirements on M and MZ preserve under the above three actions.

For the readers’ convenience, we sketch the proof of [HL18, Theorem 1.2],
leaving technical details to the original argument.

First, we claim that Nn(K) = Kn(I) (see [HL18, Lemma 3.3]).

Proof of the Claim. Only “⊆” is non-trivial. For (X ′, B′ + cM ′) ∈ Nn(I, c),
if M ′ ≡ 0, this is just [HMX14, Lemma 11.4], hence we can assume that
M ′ 6≡ 0. After taking a generalized dlt modification, we can assume that it
is Q-factorial and (X ′, 0) is klt. Run a (KX′ +B′)-MMP, then it terminates
to a Mori fiber space f : X ′′ → Z ′′. If ⌊B′⌋ = 0, we restrict to a general fiber
of f and get a g-klt pair. If dimZ ′′ > 0, we obtain the result by induction on
dimensions. Otherwise, we get a Picard number 1 variety and c ∈ Kn(I) by
definition. We emphasize that in the above process, we only use actions (a)
(taking a higher log resolution W dominating X ′ and X ′′, and pullback to



FUJITA’S LOG SPECTRUM CONJECTURE 7

W ) and (b), and hence the induction hypothesis is preserved. If ⌊B′⌋ 6= 0,
we do the same thing when dimZ ′′ > 0. When dimZ ′′ = 0, if ⌊B′⌋ is not
contracted in the above MMP, we do adjunction on an irreducible component
of ⌊B′⌋ and obtain the claim by induction on dimensions. This step uses
action (c). If a component S′ of ⌊B′⌋ is contracted in the above MMP, one
can show that M ′|S′ 6≡ 0 at this step, and the adjunction on S′ gives the
desired claim by induction again. This step also uses action (c). �

Next, we claim that lim1 PETn(I) ⊆ lim1 Nn(I) (see [HL18, Proposition
3.4]).

Proof of the Claim. Suppose that there exists a sequence of lc pairs (Xi,∆i)
and ample Cartier divisors Mi such that ci = pet(Xi,∆i;Mi) with lim ci = c
the accumulation point. After taking a dlt modification, we choose 0 < ǫi ≪
1 and Ai an ample divisor, such that (Xi, ∆̃i) is klt where ∆̃i ∼R ∆i + ǫiAi.

The new c′i = pet(Xi, ∆̃i;Mi) has the same accumulation point c. We run

an MMP for the g-klt pair (Xi, ∆̃i + c′iMi). The resulting model gives a
fibration Yi → Zi. If dimZi > 0, we take a general fiber Fi. Consider
τi = pet(Fi,∆Yi

|Fi
;MYi

|Fi
) and the generalized log canonical threshold τ ′i of

MYi
|Fi

with respect to (Fi,∆Yi
|Fi

). If τ ′i ≥ τi, we are done by induction on
dimensions because lim τi = c. Otherwise, there exists a generalized lc place
Si. We can first extract Si and then do adjunction on Si and finally restrict
to the general fiber of Si mapping to the normalization of its generalized lc
center. An induction on dimensions establishes the claim. Notice that even
though the pseudo-effective thresholds may change in each step, its limit
is the same. Moreover, we emphasize that the above process only uses the
actions (a) (b) and (c). If dimZi = 0, then we run a (KYi

+∆Yi
)-MMP, and

it terminates to a Mori fiber space Wi → Z ′
i. A similar argument as above

shows the claim. �

Finally, we claim that if {ci | ci ∈ Nn(I)} has an accumulation point c,
then c ∈ Nn−1(I) (see [HL18, Proposition 3.6]).

Proof of the Claim. By the first claim, we can assume that there exists Fano
varieties X ′

i such that KX′

i
+∆′

i + ciM
′
i ≡ 0 satisfying condition (†). After

several reduction steps, we come to the main observation that {X ′
i} cannot

be ǫ-lc for any ǫ > 0. Otherwise, the BAB conjecture proved by Birkar
[Bir16] would imply the boundedness of {X ′

i} and thus {ci} cannot have an
accumulation point. Then we can extract a divisor A′

i whose generalized log
discrepancy is at most ǫ, and assume KX′

i
+ A′

i + ∆′
i + ciM

′
i ≡ 0. Run a

(KX′

i
+ ∆′

i + ciM
′
i)-MMP, we get a Mori fiber space and by the induction

on dimensions, we can assume that the base is a point. Hence we can still
assume that ρ(X ′

i) = 1. If ⌊A′
i⌋ 6= 0, we do adjunction on an irreducible

component of ⌊A′
i⌋ and finish the proof by induction on dimensions again.

Otherwise, set T ′
i = SuppA′

i. By ACC for generalized lc thresholds ( [BZ16,
Theorem 1.5]), we can assume that (X ′

i, T
′
i + ∆′

i + cM ′
i) is g-lc. Let c′i
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be the generalized log canonical threshold of M ′
i with respect to (X ′

i, T
′
i +

∆′
i). If c′i < ci, then there exists a generalized lc place S′

i which intersects
the preimage of M ′

i non-trivially. Then do adjunction on S′
i and restrict

to a general fiber over the normalization of its generalized lc center, we
finish the proof by induction on dimensions. Hence, we can assume that
(X ′

i, T
′
i +∆′

i + ciM
′
i) is g-lc. If KX′

i
+ T ′

i +∆′
i + cM ′

i ≡ 0, we do adjunction

on an irreducible component of T ′
i and obtain the result by induction on

dimensions. OtherwiseKX′

i
+T ′

i+∆′
i+cM ′

i can only be anti-ample for infinite

i (the ample case would contradict the global ACC for generalized lc pairs
( [BZ16, Theorem 1.6])). Suppose that c′′i satisfies KX′

i
+T ′

i+∆′
i+c′′iM

′
i ≡ 0,

then c < c′′i ≤ ci and lim c′′i = c. By adjunction on an irreducible component
of T ′

i , we complete the proof. Notice that the above process only uses actions
(a) (b) and (c). �

Put the above together and use the third claim repetitively, we have

lim k PETn(I) ⊆ lim kNn(I) ⊆ Nn−k(I) = Kn−k(I).

�

Remark 3.2. One may wonder where do the conditions (†)(2) and (5) come
from. In fact, these are the results of an adjunction on an irreducible com-
ponent S′ of ⌊B′⌋ for the g-lc pair (X ′, B′+ cM ′). Suppose that f : X → X ′

is a sufficiently high log resolution, viewing it as a generalized polarized
pair with data f and M , and S is the strict transform of S′. Assume that
B ∈ I, if M ′|S′ 6≡ 0, but M |S ≡ 0, then in the (generalized) adjunction
(KX′ + B′ + cM ′)|S′ = KS′ + BS′ + cMS′ , at least one coefficient of BS′

lies in Dc(I). Indeed, we have f∗M ′ = M +E with E ≥ 0 an f -exceptional
divisor. Then f∗

S(M
′|S′) = (f∗M ′)|S = M |S + E|S and M |S ≡ 0 imply that

0 6≡ M ′|S′ ≡ fS∗(E|S). Because BS′ := fS∗((B − S)|S + cE|S), we have the
claim. For details, see [HL18, Lemma 3.2].

The proof of the following proposition essentially uses the same idea of
[Sho85, Corollary 1.6]. Such result should be well-known in the literature in
variant forms (cf. [Hör10]).

Proposition 3.3. Let (X ′, B′+M ′) be a generalized polarized pair such that
B′ is the boundary part. Suppose that M ′ is the push-forward of a nef and
big Cartier divisor M and let τ = pet(KX′ +B′,M ′), then τ ≤ dimX + 1.

Proof. By taking a sufficiently high log resolution of (X ′, B′ + M ′) and
replacing M with its pullback. We can assume that there exists a bira-
tional morphism f : X → X ′ from a smooth variety X, and M on X is
a nef and big Cartier divisor. Let dimX = n, then the Euler character
χ(kM) =

∑n
i=0(−1)ihi(X, kM) is a polynomial in k ∈ Z with leading term

Mn

n! k
n. In particular, χ(kM) 6= 0.

Suppose that τ > n+ 1. For k ∈ Z<0 and i < n, we have

H i(X, kM) = Hn−i(X,KX − kM)∨ = 0 (3.1)



FUJITA’S LOG SPECTRUM CONJECTURE 9

by Kawamata-Viehweg vanishing theorem. When i = n, Hn(X, kM) =
H0(X,KX − kM)∨. If KX − kM is pseudo-effective, so are f∗(KX − kM) =
KX′ − kM ′ and KX′ +B′− kM ′ by B′ ≥ 0. Hence KX − kM is not pseudo-
effective for −k < τ . In particular, Hn(X, kM) = 0 for k ≥ −(n+1) > −τ .
This shows that χ(kM) = 0 for n + 1 integers k = −(n + 1), . . . ,−1. This
is a contradiction to χ(kM) 6= 0. �

Remark 3.4. The above result does not need (X ′, B′ + τM ′) to be g-lc.

Recall that a proper morphism between normal varieties g : Y → Z is
called a fibration if f∗OY = OZ .

Proposition 3.5. Suppose that Y,Z are normal projective varieties with
dimZ > 0 and g : Y → Z is a fibration. Let MZ be a big R-Cartier divisor
on Z and M = g∗MZ . Suppose that (Y,B) is a klt pair such that for a
general point z ∈ Z, (KY +B)|Yz is pseudo-effective. If τ := pet(Y,B;M) >

0, then pet(Z̃, 0; M̃Z) ≥ τ , where Z̃ → Z is any resolution of Z and MZ̃ is
the pullback of MZ.

Proof. Let p : Z̃ → Z be any resolution and q : Ỹ → Y be a log resolution of
(Y,B) such that g̃ : Ỹ → Z̃ is a morphism satisfying g ◦q = p◦ g̃. Because Z
and Z̃ are isomorphism over a non-empty open set, g̃ has connected fibers
over the generic point of Z̃. Let Ỹ → ỸStein → Z̃ be the Stein factorization.
Then ỸStein → Z̃ is a finite morphism which is an isomorphism over the
generic point. As Z̃ is normal, Z̃ = ỸStein. Hence Ỹ → Z̃ is a fibration.

As M̃Z is big, τ0 := pet(Z̃, 0; M̃Z) ≥ 0. Hence, if τ0 < τ , there exists
τ ′0 > 0, such that 0 ≤ τ0 < τ ′0 < τ . Then KY + B + τ ′0M is not pseudo-
effective. Set

KỸ + B̃Ỹ + τ ′0MỸ = q∗(KY +B + τ ′0M) + E, (3.2)

where MỸ = q∗M , and E ≥ 0 is a q-exceptional divisor which does not

contain any component of B̃Ỹ . Thus (Ỹ , B̃Ỹ ) is also klt. Besides, KỸ +

B̃Ỹ + τ ′0MỸ is not pseudo-effective, otherwise,

q∗(q
∗(KY +B + τ ′0M) + E) = KY +B + τ ′0M

is also pseudo-effective. Apply (2.7) in Theorem 2.6 to g̃ : Ỹ → Z̃ with

∆ = B̃Ỹ , D = KỸ /Z̃ + B̃Ỹ and Q = KZ̃ + τ ′0MZ̃ = KZ̃ + τ ′0p
∗MZ . We have

κσ(KỸ + B̃Ỹ + τ ′0MỸ ) ≥ κσ((KỸ + B̃Ỹ )|F̃ ) + κ(KZ̃ + τ ′0MZ̃), (3.3)

where F̃ = Ỹz is a general fiber.

As F = Yz is also a general fiber of g : Y → Z, and by (3.2), we have

(KỸ + B̃Ỹ )|F̃ = q∗F ((KY +B)|F ) + E|F̃ ,

where qF : F̃ → F is the restriction of q to F̃ . By assumption, (KY +B)|F
is pseudo-effective, and by above, (KỸ + B̃Ỹ )|F̃ is also pseudo-effective. By

Lemma 2.5, we have κσ(KỸ +B̃Ỹ +τ ′0MM̃ ) = −∞ and κσ((KỸ +B̃Ỹ )|F̃ ) ≥ 0.
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Hence κ(KZ̃+τ ′0MZ̃) = −∞ by (3.3). This is a contradiction because MZ̃ is

big and thus κ(KZ̃+τ ′0MZ̃) = κ(KZ̃+τ0MZ̃+(τ ′0−τ0)MZ̃) = dim Z̃ > 0. �

Proof of Theorem 1.3. We divide the argument in several steps.

Step 1. By adding 1 to I, we can assume that 1 ∈ I. Next, we claim
that after replacing I by I+ (see (2.3)), we can assume that I = I+. In
particular, the assumptions of Theorem 3.1 is satisfied. Notice that this can
only enlarge the upper bound.

Proof of the Claim. If I ⊆ [0, 1] is DCC, then I+ is also DCC. Moreover,
(I+)+ = I+. If 1 is the only possible accumulation point of I, we claim
that 1 is also the only possible accumulation point of I+. Otherwise, there
exists a sequence {ci+}i∈N of I+ approaching c+ < 1. Each ci+ =

∑ni

j aij,

where aij ∈ I (repetition is allowed). We claim that ni is bounded above.
Otherwise there exists a subsequence {akijki} which decreases to 0. By

passing to a subsequence, we can assume that ni = n is a fixed number. For
each ci+, we can associate it with an n-tuple (ai1, . . . , ain) (the order does
not matter). By passing to a subsequence again, we can assume that for
each k, {aik}i∈N is an increasing sequence. Hence for some k, there exists an
accumulation point limi aik = ak, and 0 < ak < 1. This is a contradiction
because 1 is the only possible accumulation point in I. �

If k = n, then limn(PETn(I)) ≤ 1 by [HL18, Proposition 3.1]. Hence, we

can assume 0 < k < n. By Theorem 3.1, we have limk(PETn(I)) ⊆ Kn−k(I).
Hence it is enough to give an upper bound for Kn−k(I). Suppose that
0 < τ ∈ Kn−k(I), then by definition (2.6), there exists X ′ with ρ(X ′) = 1,
dimX ′ ≤ n − k, and B′,M ′ such that (X ′, B′ + τM ′) is g-klt satisfying
condition (†). In this situation, we will show τ ≤ dimX ′ +1. There are two
cases to consider: either M ′ ≡ 0 or M ′ 6≡ 0.

Step 2. If M ′ ≡ 0, then some coefficient of B′ lies in Dτ (I). This coefficient
is of the form

m− 1 + f + kτ

m
, m, k ∈ N and f ∈ I+.

By generalized klt assumption, all the coefficients of B′ are less than 1, hence
kτ < 1, and thus τ < 1. The claim holds automatically.

Step 3. If M ′ 6≡ 0, then M ′ is ample and Q-Cartier. By the definition of
Kn(I, c), there exists a log resolution f : X → X ′ and a semi-ample Cartier
divisor M , such that f∗(M) = M ′. Hence f∗M ′ = M + E with E ≥ 0 an
f -exceptional divisor by the negativity lemma. Because M ′ = f∗M 6≡ 0,
M is not numerically trivial. Hence some positive multiple of M induces a
fibration φM : X → Z such that M = φ∗

MMZ and dimZ > 0. By condition
(†) (4), MZ is an ample Cartier divisor. If φM is a birational morphism,
that is, M is nef and big, by Proposition 3.3, we have c ≤ n− k + 1. Thus,
we can assume that 0 < dimZ < dimX.
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We can write

KX + B̃ + τM = f∗(KX′ +B′ + τM ′) + E, (3.4)

where

B̃ = f−1
∗ B′ +

∑

a(F,X′,B′+M ′)<1

(1− a(F,X ′, B′ +M ′))F

is a summation of the birational transform of B′ and f -exceptional divisors
whose generalized log discrepancies are less than 1. Thus E ≥ 0 is an f -
exceptional divisor such that B̃, E have no common components. Because

(X ′, B′ + τM ′) is g-klt, (X, B̃ + τM) is also g-klt with data X
id
−→ X →

SpecC, where B̃ is the boundary part and τM is the nef part. In particular,
(X, B̃) is klt. By KX′ +B′ + τM ′ ≡ 0, we have

KX + B̃ + τM ≡ E ≥ 0. (3.5)

We have τ = pet(X, B̃;M). In fact, if τ > τ0 = pet(X, B̃;M), then by

f∗B̃ = B′, f∗(KX + B̃+ τ0M) = KX′ +B′+ τ0M
′ is pseudo-effective, which

is a contradiction. Let Xz be a general fiber of X → Z, then

(KX + B̃)|Xz ≡ (KX + B̃ + τM)|Xz ≡ E|Xz

is also pseudo-effective. By Proposition 3.5, we have τ ≤ pet(Z̃, 0;MZ̃),

where Z̃ → Z is a resolution of Z and MZ̃ is the pullback of MZ . Because
MZ̃ is a nef and big Cartier divisor, by Proposition 3.3, we have

τ ≤ pet(Z̃, 0;MZ̃) ≤ dim Z̃ + 1 ≤ dimX ′ ≤ n− k.

This completes the proof. �

Proof of Theorem 1.2. By choosing I = {1} in Theorem 1.3, we get Theorem
1.2. �

We show by the following example that the upper bound in Theorem 1.3
is sharp for any n and 0 < k ≤ n.

Example 3.6. Let I = { l−1
l | l ∈ N}. For i ∈ N, consider the lc pair

(Pn, ai0H0 + · · · + ainHn),

where aij =
lij−1

lij
∈ I and Hj ∈ |OPn(1)| is a general divisor. Let M ∈

|OPn(1)| be a Cartier divisor. Then

pet(Pn, ai0H0 + · · ·+ ainHn;M) =
n∑

j=0

1

lij
.

We have

{
n−k∑

j=0

1

lij
| lij ∈ N} ⊆ lim k PET(I),

and hence the upper bound n− k + 1 is sharp.
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Remark 3.7. Even though the bound in Theorem 1.3 is sharp (i.e. for
coefficients in a DCC set), we do not know whether the bound in Theorem
1.2 is sharp or not.
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