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Abstract

We count the asymptotic number of triangles in uniform random graphs where the degree
distribution follows a power law with degree exponent τ ∈ (2, 3). We also analyze the local
clustering coefficient c(k), the probability that two random neighbors of a vertex of degree k
are connected. We find that the number of triangles, as well as the local clustering coefficient,
scale similarly as in the erased configuration model, where all self-loops and multiple edges
of the configuration model are removed. Interestingly, uniform random graphs contain more
triangles than erased configuration models with the same degree sequence. The number
of triangles in uniform random graphs is closely related to that in a version of the rank-1
inhomogeneous random graph, where all vertices are equipped with weights, and the edge
probabilities are moderated by asymptotically linear functions of the products of these vertex
weights.

1 Introduction

Many real-world networks were found to have degree distributions that can be well approximated
by a power-law distribution, so that the fraction of vertices of degree k scales as k−τ for some
τ > 1. The degree exponent τ of several networks was found to satisfy τ ∈ (2, 3) [26]. These
power-law real-world networks are often modeled by random graphs. One very natural null model
for real-world networks is the uniform random graph with prescribed degrees, that samples a
simple graph uniformly from all graphs with the same degree sequence as the original network.
By definition, the resulting graph has the same degree sequence as the original network, but
whether other properties behave similarly in real-world networks and uniform random graphs is
an interesting question. In this paper, we focus on the property of triangle counts. Triangle counts
measure the tendency of two neighbors of a vertex to be connected as well, allowing to analyze
clustering properties of real-world networks.

Uniform random graphs with specified degree sequences are among the most commonly studied
random graphs models [28, 24, 16]. Compared with the classical Erdős-Rényi graphs, analyzing
uniform random graphs with specified degree sequences is much more challenging. The proba-
bilities of simple events, such as two given vertices being adjacent, are highly non-trivial to be
estimated to a desired accuracy. The most commonly used method for studying these random
graphs is to use the configuration model introduced by Bollobás [4] (see also [11, Chapter 7]). The
configuration model constructs a random multigraph with a specified degree sequence. Condition-
ing on the resulting graph being simple, the distribution is uniform. Estimating edge probabilities
in the configuration model is easy and thus we may analyze the configuration model and then
translate the result to uniform random graphs. Such a translation is possible only if the proba-
bility of producing a simple graph by the configuration model is not too small. However, with a
power-law degree sequence with exponent τ < 3, this probability vanishes [17, 6]. Thus, analyzing
the configuration model does not help in analyzing uniform random graphs when τ ∈ (2, 3).
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Other methods for analyzing uniform random graphs rely on asymptotic enumeration of
graphs with specified degree sequences. The switching method is useful in enumerating sparse
graphs [20], whereas enumerating dense graphs uses multidimensional complex Cauchy integrals
and the Laplace method [22]. Studies of subgraphs of uniform graphs with specified degree se-
quences are based on afore-mentioned enumeration results and techniques [21, 10].

As a compromise, a commonly used practice for τ ∈ (2, 3) is to use the erased configuration
model [7, 2, 25]. Instead of conditioning on simple graphs, the erased configuration model generates
a random multigraph using the configuration model, and then removes all loops and replaces
multiple edges by simple edges. Graphs in the erased configuration model are not uniformly
distributed. It was believed that many properties can be translated between random graphs in
the erased configuration model and the uniform model, although theoretically this is hard to verify.
However, with power-law exponent τ < 3, there are edge probabilities which differ significantly in
the erased configuration model and in the uniform graph model (see Remark 1).

Another method to generate graphs with approximately the given degree sequence is to use
rank-1 inhomogeneous random graphs [8, 3]. In rank-1 inhomogeneous random graphs, each vertex
i is equipped with a weight wi, and pairs of vertices are connected independently with probability
p(wi, wj) for some function p(wi, wj). Under suitable choices for p(wi, wj), the expected degree of
a vertex with weight wi is approximately, or equals wi. Thus, on average, every vertex has degree
equal to its targeted degree. However, in general the degree sequence of the inhomogeneous
random graph does not equal the targeted degree sequence. In particular, the inhomogeneous
random graph typically contains a linear number of isolated vertices.

One version of the rank-1 inhomogeneous random graph is the generalized random graph [7],
where p(wi, wj) = wiwj/(wiwj +

∑
s ws). While this model has significantly different properties

than the uniform random graph, as described above, we show that the number of triangles in the
generalized random graph and the uniform random graph behaves similarly.

In this paper, we focus on counting triangles in sparse uniform random graphs when τ ∈ (2, 3).
When the maximum degree is bounded, or grows slowly, the number of triangles as well as other
short cycles in uniform random graphs are asymptotically Poisson distributed [5, 27, 23]. However,
when the degree exponent satisfies τ ∈ (2, 3), the maximum degree grows as fast as n1/(τ−1), so
that the Poisson limit for the number of triangles no longer holds. We count the number of
triangles in two steps. First we show that the main contribution to the number of triangles is
from vertices with degrees proportional to

√
n. Thus, even though the maximal degree may be

much higher than
√
n, vertices with these high degrees are so rare that they can be neglected

when counting triangles. From there, we can use a switching method to count the number of
triangles between vertices of degrees proportional to

√
n, resulting in an asymptotic expression for

the number of triangles in a uniform random graph with power-law degree exponent τ ∈ (2, 3).
We then proceed to count triangles where one vertex is constrained to have degree k. This

allows us to investigate the local clustering coefficient c(k), the probability that two random
neighbors of a randomly chosen vertex of degree k are connected. Again, we show that the
contribution to c(k) from vertices with degrees outside a specific range is small, and use a switching
argument to count the number of constrained triangles from vertices with degrees inside the
specified ranges. We show that the k 7→ c(k) curve consists of three regimes. First, the curve
remains flat, then it starts to decay logarithmically in k, and finally it decays as a power of k.
This decay of c(k) as a power of k was also observed in several real-world networks [26, 19, 18].

Notation. We use
P−→ for convergence in probability. We write [n] = {1, . . . , n}. We say

that a sequence of events (En)n≥1 happens with high probability (w.h.p.) if limn→∞ P (En) = 1.
Furthermore, we write f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0, and f(n) = O(g(n)) if f(n)/g(n)
is uniformly bounded, where (g(n))n≥1 is nonnegative. We say that Xn = OP(g(n)) for a sequence
of random variables (Xn)n≥1 if for any ε > 0 there exists Mε > 0 such that P (|Xn|/g(n) > Mε) <

ε, and Xn = oP(g(n)) if Xn/g(n)
P−→ 0.
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1.1 Uniform random graphs

Given a positive integer n and a degree sequence, i.e., a sequence of n positive integers d =
(d1, d2, . . . , dn), where

∑n
i=1 di ≡ 0 (mod 2), the uniform random graph is a simple graph, uni-

formly sampled from the set of all simple graphs with degree sequence (di)i∈[n]. Here we always
assume that d is a realizable degree sequence, meaning that there exists a simple graph with
degree sequence d. Let G(d) denote the ensemble of all simple graphs on degree sequence d, and
let dmax = maxi∈[n] di and Ln =

∑n
i=1 di. We denote the empirical degree distribution by

Fn(j) =
1

n

∑
i∈[n]

1{di≤j}. (1.1)

We study the setting where the variance of d diverges when n grows large. In particular, we
assume that the degree sequence satisfies the following assumption:

Assumption 1 (Degree sequence).

(i) There exist τ ∈ (2, 3) and a constant K > 0 such that for every n ≥ 1 and every 0 ≤ j ≤
dmax,

1− Fn(j) ≤ Kj1−τ . (1.2)

(ii) There exist τ ∈ (2, 3) and a constant C > 0 such that, for all j = O(
√
n),

1− Fn(j) = Cj1−τ (1 + o(1)). (1.3)

It follows from (1.2) that

dmax < Mn1/(τ−1), for some sufficiently large constant M > 0. (1.4)

Assumption 1(ii) is more detailed than Assumption 1(i). Assumption 1(i) states that for
all j the inverse cumulative distribution function is bounded from above by some power law.
Assumption 1(ii) then states that a pure power-law degree distribution holds for a smaller range
of degrees. If we denote by Dn a uniformly chosen degree in d, then Assumption 1(ii) implies that

Dn
d−→ D, where

D is the random variable with inverse cumulative distribution function 1− F (j) = Cj1−τ .

Note that Var (D) = ∞ if τ ∈ (2, 3). Moreover, it is easy to see that Assumption 1(i) and (ii)
imply E [Dn]→ E [D] and thus

Ln = (1 + oP(1))µn, where µ = E [D].

To prove our results on the number of triangles, Assumption 1 is sufficient. To investigate
the local clustering coefficient c(k) over the entire range of k, a more detailed assumption on the
degree sequence is necessary:

Assumption 2 (Degree sequence, stronger assumption). Assumption 1(i) holds, and furthermore

(ii)’ There exist τ ∈ (2, 3) and constants C, c > 0 such that for all j ≤ cn1/(τ−1)/ log(n),

1− Fn(j) = Cj1−τ (1 + o(1)). (1.5)

Note that an i.i.d. sample from a power-law distribution with exponent τ satisfies Assump-
tion 1(i) and Assumption 2(ii)’ with high probability.
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1.2 Outline

We first describe our main results on triangle counts as well as the local clustering coefficient in
Section 2. We then use a switching argument in Section 3 to obtain the connection probabilities
between two vertices conditionally on a finite number of edges being present. We prove our result
for the number of triangles in Section 4 and for c(k) in Section 5. Finally, we provide a conclusion
in Section 6.

2 Main results

We now describe the results for the number of triangles as well as the local clustering coefficient
in graphs sampled uniformly from G(d).

2.1 Number of triangles

Let T (G) denote the number of triangles in graph G. Then, the following result holds for T (G):

Theorem 1 (Number of triangles). Let τ ∈ (2, 3) and dn be a degree sequence on n vertices
satisfying Assumption 1. Let Gn be a random graph in G(dn), µ = E [D] and C be the constant
in (1.3). Then,

T (Gn)

n
3
2 (3−τ)

P−→ 1

6
(C(τ − 1))3µ−

3
2 (τ−1)

∫ ∞
0

∫ ∞
0

∫ ∞
0

(xyz)2−τ

(1 + xy)(1 + yz)(1 + xz)
dxdydz <∞. (2.1)

Comparison with the erased configuration model. The result on the number of triangles is very
similar to the number of triangles in the erased configuration model [13], where all multiple edges
of the configuration model are merged and all self-loops are removed. In the erased configuration
model instead,

T (Gn)

n
3
2 (3−τ)

P−→

1

6
(C(τ − 1))3µ−

3
2 (τ−1)

∫ ∞
0

∫ ∞
0

∫ ∞
0

(xyz)−τ (1− e−xy)(1− e−yz)(1− e−xz)dxdydz <∞. (2.2)

Note that 1−e−x ≥ x/(1+x) for all x > 0. Interestingly, this implies that the erased configuration
model contains more triangles than the uniform random graph with the same degree sequence,
even though edges are removed in the erased configuration model, due to the presence of multiple
edges and loops in the configuration model, which was empirically observed in [1]. This is because
the large-degree vertices in the uniform random graph model have more low-degree neighbours
than in the erased configuration model. These low-degree vertices barely participate in triangles.

Similarity to generalized random graphs. In generalized random graphs [7], every vertex i is
equipped with a weight wi, where the weight sequence is an i.i.d. sample of (1.3). A pair of
vertices i and j is then connected with probability

P
(
i ∼ j | (ws)s∈[n]

)
=

wiwj∑
s∈[n] ws + wiwj

, (2.3)

independently for all pairs of vertices. The probability that a triangle between vertices i, j and k
is present can then be written as

P
(
4i,j,k | (ws)s∈[n]

)
=

wiwj∑
s∈[n] ws + wiwj

wiwk∑
s∈[n] ws + wiwj

wjwk∑
s∈[n] ws + wiwj

. (2.4)

Conditionally on the degree sequence of the generalized random graph, the resulting graph is a
uniform random graph on that degree sequence. Thus, to prove that Theorem 1 also holds for
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generalized random graphs, one only needs to show that the degree sequence obtained by the
generalized random graph satisfies Assumption 1 with high probability, which is shown in [11,
Chapter 7].

√
n degrees. In the proof of Theorem 1, we show that the main contribution to the number

of triangles is from vertices of degrees proportional to
√
n. By a switching argument, we show

that the probability of a triangle being present between vertices of degrees proportional to
√
n

is asymptotically bounded away from 0 and 1. We show that the probability that a triangle is
present between vertices of degrees much lower than

√
n tends to zero in the large-network limit,

which intuitively explains why vertices of degree scaling smaller than
√
n have a low contribu-

tion to the number of triangles. Because of the power-law distribution, vertices of degree much
higher than

√
n are more rare, and therefore do not contribute much to triangle counts. The main

contribution of
√
n vertices also explains why we need the pure power-law degree distribution of

Assumption 1(ii) to hold only for vertices of degrees at most proportional to
√
n. Indeed, we show

that vertices with higher degrees barely contribute to the triangle count using only the power-law
upper bound of Assumption 1(i), so that the pure power-law assumption is not necessary for high-
degree vertices.

Counting other subgraphs. While our results are for triangle counts, our method easily extends
to counting several other types of subgraphs. To prove our theorem on the number of triangles,
we mainly use that the main contribution to the number of triangles is from vertices of degrees
proportional to

√
n. In [14], it was shown that in the erased configuration model, the class of

subgraphs where the main contribution is from vertices of degrees proportional to
√
n is wider,

containing for example also all complete graphs of larger sizes. It is easy to show that this class
of subgraphs is the same for uniform random graphs, enabling to analyze these subgraph counts
in a very similar manner as triangle counts. We do not elaborate on such results and refer to [14,
Theorem 2.1] which apply here too with the change that 1−e−x should be replaced with x/(1+x)
in all results.

2.2 Local clustering coefficient

We now investigate the triangle structure in uniform random graphs in more detail. Let4k denote
the number of triangles attached to vertices of degree k in the uniform random graph, and when
a triangle contains three degree-k vertices it is counted three times. When a triangle consists of
two vertices of degree k, it is counted twice in 4k. Let Nk denote the number of vertices of degree
k. Then, the local clustering coefficient of vertices with degree k equals

c(k) =
1

Nk

24k
k(k − 1)

, (2.5)

for all k with Nk ≥ 1. Note that c(k) is not defined if Nk = 0. The local clustering coefficient
can be interpreted as the probability that two randomly chosen neighbors of a vertex of degree k
connect to one another. Typically, c(k) is a decreasing function of k.

The next theorem shows the behavior of c(k) in uniform random graphs:

Theorem 2 (Local clustering.). Let τ ∈ (2, 3) and dn be a degree sequence on n vertices satisfying
Assumption 2. Let Gn be a uniformly sampled graph from G(dn). Define A = π/ sin(πτ) > 0 for
τ ∈ (2, 3), µ = E [D] and let C be the constant in (1.5) and c(k) the local clustering coefficient of
Gn. Then, as n→∞,

(Range I.) for 1� k = o(n(τ−2)/(τ−1)) where Nk ≥ 1,

c(k)

n2−τ log(n)

P−→ 3− τ
τ − 1

µ−τ (C(τ − 1))2A, (2.6)
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c(k)

nβ(τ)
n

1
2 n

1
τ−1

I II IV

Figure 1: Illustration of the k 7→ c(k) curve
of Theorem 2.

2 2.2 2.4 2.6 2.8 3
100

101

102

τ

A
−Γ(2 − τ)

Figure 2: The constant A = π/ sin(πτ) of
Theorem 2 and −Γ(2− τ).

(Range II.) for k = ω(n(τ−2)/(τ−1)) and k = o(
√
n) where Nk ≥ 1,

c(k)

n2−τ log(n/k2)

P−→ µ−τ (C(τ − 1))2A, (2.7)

(Range III.) for k = dB√ne where Nk ≥ 1 and B > 0 is a constant,

c(k)

n2−τ
P−→ µ2−2τ (C(τ − 1))2

∫ ∞
0

∫ ∞
0

(t1t2)2−τ

(1 + t1B)(1 + t2B)(µ−1 + t1t2)
dt1dt2 (2.8)

(Range IV.) for k = ω(
√
n) and k ≤ dmax where Nk ≥ 1,

c(k)

n5−2τk2τ−6

P−→ µ3−2τ (C(τ − 1))2A2. (2.9)

Figure 1 illustrates the behavior of c(k) in the uniform random graph. For small values of k,
c(k) is independent of k. Then, a range of slow decay in k follows. When k � √n, c(k) starts to
decay as a power of k. A Taylor expansion of the behavior of c(k) in the third range for B small
and B large shows that the behavior of the scaling limit of k 7→ c(k) between Ranges II and IV is
smooth (see also [15, Theorem 3])

Main contributions. As in the case of triangle counts, we show that the constrained triangle
counts are dominated by triangle counts between vertices of degrees in specific ranges. Because
the triangles are constrained to contain one vertex of degree k, these ranges describe the degrees
of the two other vertices involved in the triangle. When k is in Range I, the largest contribution to
the number of constrained triangles is from vertices i and j such that didj scales as n. Note that
the most contributing vertices here do not depend on k, explaining the independence of c(k) of k
in the initial range. When k is in Range II, the largest contribution to the number of constrained
triangles is from vertices i and j such that didj scales as n and additionally di, dj ≤ n/k. This
extra constraint causes the mild dependence on k in the second range. In the fourth range, the
vertices that contribute most to c(k) satisfy that di and dj scale as n/k. In this last regime, the
degrees of the other two vertices involved in the triangle clearly depend on k.

Comparison with the erased configuration model. The result for c(k) is also very similar in the
erased configuration model and the uniform random graph. In fact, a similar theorem as Theo-
rem 2 holds for the erased configuration model, when the constant A is replaced by −Γ(2 − τ),
where Γ denotes the Gamma function. Note that −Γ(2− τ) > π/(sin(πτ)) = A for τ ∈ (2, 3), as
Figure 2 shows. Thus, the local clustering coefficient of the erased configuration model is higher
than the local clustering coefficient of a uniform random graph of the same degree sequence, sim-
ilarly to triangle counts.

6



Assumption on the degree sequence. To prove Theorem 1, we assume a pure power-law degree
distribution for vertices with degrees at most

√
n (Assumption 1), since these vertices form the

main contribution to the number of triangles. For Theorem 2, we assume a pure power-law degree
distribution all the way up to n1/(τ−1)/ log(n). However, this strong assumption is only necessary
in Range I, because there the most contributing triangles containing a vertex of degree k may
have degrees as high as n1/(τ−1)/ log(n). In Ranges II, III and IV, the main contributing triangles
with a vertex of degree k have degrees at most n/k, so that it suffices to assume the pure power
law (1.5) only for j = O(n/k). However, for ease of notation we use Assumption 2(ii)’ throughout
the rest of this paper.

3 Connection probability estimates

In this section, we estimate the connection probability between vertices of specific degrees in a
uniform random graph, which is the key ingredient for proving Theorems 1 and 2. Recall that
Ln =

∑n
i=1 di. Furthermore, let {u ∼ v} denote the event that vertex u is connected to v.

Our key lemma is as follows, where the probability space refers to the uniformly random simple
graphs with degree sequence d:

Lemma 3. Assume that τ ∈ (2, 3) is fixed and d satisfies Assumption 1(i) with τ ∈ (2, 3). Assume
further that Ln/n 9 0. Let U denote a set of unordered pairs of vertices and let EU denote the
event that {x, y} is an edge for every {x, y} ∈ U . Then, assuming that |U | = O(1), for every
{u, v} /∈ U ,

P (u ∼ v | EU ) = (1 + o(1))
(du − |Uu|)(dv − |Uv|)

Ln + (du − |Uu|)(dv − |Uv|)
, (3.1)

where Ux denote the set of pairs in U that contain x.

Remark 1. Lemma 3 shows that when dudv � Ln, then

1− P (u ∼ v) = (1 + o(1))
Ln
dudv

. (3.2)

In the erased configuration model on the other hand [12],

1− P (u ∼ v) ≤ e−dudv/Ln . (3.3)

Thus, the probability that two high-degree vertices are not connected decreases at an exponential
rate in Ln/dudv, whereas this rate is polynomial in the uniform random graph model. Thus, even
though the results on clustering are similar in the two models, there are edge probabilities that
behave significantly differently.

We now proceed to prove Lemma 3. As a preparation, we first prove a lemma about the
number of 2-paths starting from a specified vertex.

Lemma 4. Assume that d satisfies Assumption 1(i) with fixed exponent τ ∈ (2, 3). For any graph
G whose degree sequence is d, the number of 2-paths starting from any specified vertex is o(n).

Proof. Without loss of generality we may assume that d1 ≥ d2 ≥ · · · ≥ dn. For every 1 ≤ i ≤ n,
the number of vertices with degree at least di is at least i. By Assumption 1(i), we then have

Knd1−τ
i ≥ i for every 1 ≤ i ≤ n. It follows then that di ≤ (Kn/i)

1
τ−1 . Then the number of

2-paths from any specified vertex is bounded by
∑d1
i=1 di, which is at most

d1∑
i≥1

(
Kn

i

)1/(τ−1)

= (Kn)
1/(τ−1)

d1∑
i=1

i−1/(τ−1) = O
(
n1/(τ−1)

)
d
τ−2
τ−1

1 = O
(
n

2τ−3

(τ−1)2

)
,

since d1 ≤ (Kn)1/(τ−1). Since τ ∈ (2, 3) the above is o(n).

7
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Figure 3: Forward and backward switchings

Proof of Lemma 3. To estimate P (u ∼ v|EU ), we will switch between two classes of graphs S and
S̄. S consists of graphs where all edges in {u, v} ∪U are present, whereas S̄ consists of all graphs
where every {x, y} ∈ U represents an edge whereas {u, v} is not an edge. Note that

P (u ∼ v|EU ) =
|S|

|S|+ |S̄| =
1

1 + |S̄|/|S| . (3.4)

In order to estimate the ratio |S̄|/|S|, we will define an operation called a forward switching which
converts a graph in G ∈ S to a graph G′ ∈ S̄. The reverse operation converting G′ to G is called a
backward switching. Then we estimate |S̄|/|S| by counting the number of forward switchings that
can be applied to a graph G ∈ S, and the number of backward switchings that can be applied to
a graph G′ ∈ S̄.

The forward switching is defined by choosing two edges and specifying their ends as {x, a} and
{y, b}. The choice must satisfy the following constraints:

(i) None of {u, x}, {v, y}, or {a, b} is an edge;

(ii) {x, a}, {y, b} /∈ U ;

(iii) All of u, v, x, y, a, and b must be distinct except that x = y is permitted.

Given a valid choice, the forward switching replaces the three edges {u, v}, {x, a}, and {y, b} by
{u, x}, {v, y}, and {a, b}. Note that the forward switching preserves the degree sequence, and
converts a graph in S to a graph in S̄. The inverse operation of a forward switching is called a
backward switching. See Figure 3 for an illustration.

Next, we estimate the number of ways to perform a forward switching to a graph G in S,
denoted by f(G), and the number of ways to perform a backward switching to a graph G′ in
S̄, denoted by b(G). The number of total switchings between S and S̄ is equal to |S|E [f(G)] =
|S̄|E [b(G′)], where the expectation is over a uniformly random G ∈ S and G′ ∈ S̄ respectively.
Consequently,

|S̄|
|S| =

E [f(G)]

E [b(G′)]
. (3.5)

Given an arbitrary graph G ∈ S, the number of ways of carrying out a forward switching is at
most L2

n, since there are at most Ln ways to choose {x, a}, and at most Ln ways to choose {y, b}.
Note that choosing {x, a} for the first edge and {y, b} for the second edge results in a different
switching than vice versa. To find a lower bound on the number of ways of performing a forward
switching, we subtract from L2

n an upper bound on the number of invalid choices for {x, a} and
{y, b}. These can be summarized as follows:

(a) At least one of {u, x}, {a, b}, {v, y} is an edge,

(b) At least one of {x, a} or {y, b} is in U ,

(c) Any vertex overlap other than x = y (i.e. if one of a or b is equal to one of x or y, or if
a = b, or if one of u or v are one of {a, b, x, y}).

8



To find an upper bound for (a), note that any choice in case (a) must involve a single edge, and a
2-path starting from a specified vertex. By Lemma 4, the number of choices for (a) then is upper
bounded by 3 · o(Ln) · Ln = o(L2

n). The number of choices for case (b) is O(Ln) as |U | = O(1),
and there are at most Ln ways to choose the other edge which is not restricted to be in U . To
bound the number of choices for (c), we investigate each case:

(C1) a or b is equal to x or y; or a = b. In this case, x, y, a, b forms a 2-path. Thus, there are at
most 5 ·n ·o(Ln) = o(L2

n) choices (noting that n = O(Ln)), where n is the number of ways to
choose a vertex, and o(Ln) bounds the number of 2-paths starting from this specified vertex;

(C2) one of u and v is one of {a, b, x, y}. In this case, there is one 2-path starting from u or v, and
a single edge. Thus, there are at most 8 · Lndmax = o(L2

n) choices, where dmax bounds the
number of ways to choose a vertex adjacent to u or v and Ln bounds the number of ways to
choose a single edge.

Thus, the number of invalid choices for {x, a} and {y, b} is o(L2
n), so that the number of forward

switchings which can be applied to any G ∈ S is (1 + o(1))L2
n. Thus,

E [f(G)] = L2
n(1 + o(1)). (3.6)

Given a graph G′ ∈ S̄, consider the backward switchings that can be applied to G′. There
are at most Ln(du − |Uu|)(dv − |Uv|) ways to do the backward switching, since we are choosing
an edge which is adjacent to u but not in U , an edge which is adjacent to v but not in U , and
another “oriented” edge {a, b} (oriented in the sense that each edge has two ways to specify its
end vertices as a and b). For a lower bound, we consider the following forbidden choices:

(a′) at least one of {x, a} or {y, b} is an edge,

(b′) {a, b} ∈ U ,

(c′) any vertices overlap other than x = y (i.e. if {a, b} ∩ {u, v, x, y} 6= ∅).

For (a′), suppose that {x, a} is present, giving the two-path {x, a}, {a, b} in G′. There are at most
(du − |Uu|)(dv − |Uv|) ways to choose x and y. Given any choice for x and y, there are at most
o(Ln) ways to choose a 2-path starting from x, and hence o(Ln) ways to choose a, b. Thus, the
total number of choices is at most o((du − |Uu|)(dv − |Uv|)Ln). The case that {y, b} is an edge is
symmetric.

For (b′), there are O(1) choices for choosing {a, b} since |U | = O(1), and at most (du−|Uu|)(dv−
|Uv|) choices x and y. Thus, the number of choices for case (b′) is O((du − |Uu|)(dv − |Uv|)) =
o((du − |Uu|)(dv − |Uv|)Ln).

For (c′), the case that a or b is equal to x or y corresponds to a 2-path starting from u or
v together with a single edge from u or v. Since o(Ln) bounds the number of 2-paths starting
from u or v and du − |Uu| + dv − |Uv| bounds the number of ways to choose the single edge,
there are o(Ln(dv − |Uv|)) + o(Ln(du − |Uu|)) total choices. If a or b is equal to u or v, there are
(du−|Uu|)(dv−|Uv|) ways to choose x and y, and at most du+dv ways to choose the last vertex as a
neighbor of u or v. Thus, there are O((du−|Uu|)(dv−|Uv|)dmax) = o((du−|Uu|)(dv−|Uv|)Ln) total
choices, since dmax = O(n1/(τ−1)) = o(n) = o(Ln). This concludes that the number of backward
switchings that can be applied to any graph G′ ∈ S′ is (du − |Uu|)(dv − |Uv|)Ln(1 + o(1)), so that
also

E [b(G′)] = (du − |Uu|)(dv − |Uv|)Ln(1 + o(1)). (3.7)

Combining (3.5), (3.6) and (3.7) results in

|S̄|/|S| = (1 + o(1))
L2
n

(du − |Uu|)(dv − |Uv|)Ln
,

and thus (3.4) yields

P (u ∼ v | EU ) =
1

1 + |S̄|/|S| = (1 + o(1))
(du − |Uu|)(dv − |Uv|)

Ln + (du − |Uu|)(dv − |Uv|)
.
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4 Proof of Theorem 1

In this section, we use Lemma 3 to prove Theorem 1. Let

Bn(ε) = {u : du ∈ [ε
√
µn,
√
µn/ε]} (4.1)

for some fixed ε > 0. Define Xuvw = 1{u∼v,v∼w,u∼w} and

4G(Bn(ε)) =
∑

u,v,w∈Bn(ε)

Xuvw, 4G(B̄n(ε)) =
∑

u/∈Bn(ε)

∑
v,w∈[n]

Xuvw.

Thus, 4G(Bn(ε)) denotes the number of triangles in a graph G where all degrees of the vertices
in the triangle are in Bn(ε) and 4G(B̄n(ε)) denotes the number of triangles where at least one of
the vertices does not have its degree in Bn(ε). Then, the following lemma bounds 4G(B̄n(ε)):

Lemma 5. Let τ ∈ (2, 3) and dn be a degree sequence on n vertices satisfying Assumption 1. Let
Gn be a uniformly sampled graph from G(dn). Then,

lim
ε↓0

lim sup
n→∞

E
[
4Gn(B̄n(ε))

]
n

3
2 (3−τ)

= 0. (4.2)

Proof. Let F = [0,∞)3 \ [ε
√
µn,
√
µn/ε]3, so that F denotes the area where one of the three

degrees is not in Bn(ε). By (1.2), for some K1 > 0

E
[
4Gn(B̄n(ε))

]
=

∑
1≤u<v<w≤n

P (u ∼ v, v ∼ w, u ∼ w)1{u,v or w/∈Bn(ε)}

≤ K1

∑
1≤u<v<w≤n

min

(
dudv
Ln

, 1

)
min

(
dudw
Ln

, 1

)
min

(
dvdw
Ln

, 1

)
1{u,v or w/∈Bn(ε)}

= K1n
3

∫ ∫ ∫
F

min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dFn(x)dFn(y)dFn(z), (4.3)

where the factor n3 arises from replacing the sum over all sets of three vertices by the average
over three uniformly chosen vertices.

We first investigate the contribution to the integral from the area where the first entry is in
[0, ε
√
µn]. We use that for a bounded, absolutely continuous function g(x) such that g(0) = 0,∫ ∞

0

g(x)dFn(x) =

∫ ∞
0

g′(x)(1− Fn(x))dx ≤ K
∫ ∞

0

g′(x)x1−τdx

= K

∫ ∞
0

(τ − 1)g(x)x−τdx+K
[
g(x)x1−τ ]∞

0

= K(τ − 1)

∫ ∞
0

g(x)x−τdx, (4.4)

where g′(x) denotes a function such that
∫ x

0
g′(y)dy = g(x), and where we used Assumption 1(i).

Thus, for some K2 > 0, the integral in (4.3) can be bounded by

K2

∫ ε
√
µn

0

∫ ∞
0

∫ ∞
0

(xy)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdydFn(z) (4.5)

(4.6)

Furthermore, for all non-decreasing g that are bounded on [0, ε
√
µn] and once differentiable,∫ ε

√
µn

0

g(x)dFn(x) =

∫ ε
√
µn

0

∫ x

0

g′(y)dydFn(x)
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=

∫ ε
√
µn

0

(Fn(ε
√
µn)− Fn(y))g′(y)dy

≤ K
∫ ε
√
µn

0

y1−τg′(y)dy

= K(τ − 1)

∫ ε
√
µn

0

y−τg(y)dy + g(y)y1−τ ]ε√µn
0

≤ K(τ − 1)

∫ ε
√
µn

0

y−τg(y)dy + g(ε
√
µn)(ε

√
µn)1−τ (4.7)

In this case we take

gn(z) = g(z) =

∫ ∞
0

∫ ∞
0

(xy)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdy (4.8)

Thus, using that g(ε
√
µn) = O(n1−τε2τ−2),∫ ε

√
µn

0

∫ ∞
0

∫ ∞
0

(xy)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdydFn(z)

≤ K3

∫ ε
√
µn

0

∫ ∞
0

∫ ∞
0

(xyz)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdydz

+O(n
3
2 (1−τ))ετ−1

= h(ε)O
(
n

3
2 (1−τ)

)
, (4.9)

for some function h(ε) such that limε↓0 h(ε) = 0 and some K3 > 0. The last equality follows
from [13, Lemma 4.2]. Multiplying by n3 as in (4.3) then proves that the contribution to (4.3)
where at least one of the vertices has degree smaller than ε

√
n is small.

We next investigate the contribution to (4.3) where the first entry is in [
√
µn/ε,∞). Again

using (4.4), we can write for some K2 > 0∫ ∞
√
µn/ε

∫ ∞
0

∫ ∞
0

min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dFn(x)dFn(y)dFn(z)

≤ K2

∫ ∞
√
µn/ε

∫ ∞
0

∫ ∞
0

(xy)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdydFn(z)

= K2E
[
gn(Dn)1{Dn>√µn/ε}

]
, (4.10)

where gn is as in (4.8) and Dn ∼ Fn. Since gn is non-decreasing, we get

E
[
gn(Dn)1{Dn>√µn/ε}

]
≤ E

[
gn(D̄)1{D̄>√µn/ε}

]
, (4.11)

where P
(
D̄ > x

)
= min(Kx1−τ , 1, as in Assumption 2(ii)’. Thus, the contribution in (4.10) can

be bounded by∫ ∞
√
µn/ε

∫ ∞
0

∫ ∞
0

(xyz)−τ min

(
xy

Ln
, 1

)
min

(
xz

Ln
, 1

)
min

(
yz

Ln
, 1

)
dxdydz + ετ−1O(n

3
2 (1−τ))

= h(ε)O(n
3
2 (1−τ)) + ετ−1O(n

3
2 (1−τ)), (4.12)

for some function h(ε) such that limε↓0 h(ε) = 0, where the last equality follows from [13, Lemma
4.2]. Again, multiplying by n3 then shows that the contribution to (4.3) from the situation where
at least one of the vertices has degree larger than

√
n/ε is sufficiently small.

We now investigate the expected value of 4Gn(Bn(ε)):

11



Lemma 6. Let τ ∈ (2, 3) and dn be a degree sequence on n vertices satisfying Assumption 1. Let
Gn be a uniformly sampled graph from G(dn). Then,

E [4Gn(Bn(ε))]

n
3
2 (3−τ)µ−

3
2 (τ−1)

→ 1

6
(C(τ − 1))3

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

(xyz)−τ
xy

1 + xy

xz

1 + xz

yz

1 + yz
dxdydz. (4.13)

Proof. Let 4i,j,k denote the event that a triangle is present between vertices i, j and k. Then,

P (4i,j,k) = P (i ∼ j)P (j ∼ k | i ∼ j)P (i ∼ k | i ∼ j, j ∼ k) . (4.14)

Let

g(di, dj , dk) =
didj

didj + µn

didk
didk + µn

djdk
djdk + µn

. (4.15)

When i, j, k ∈ Bn(ε), di, dj , dk � 1 and also didj , didk, djdk = O(n), so that we can use (3.1) in
Lemma 3 to conclude

P (4i,j,k) =
didj

didj + Ln

(di − 1)dk
didk + Ln

(dj − 1)(dk − 1)

djdk + Ln
(1 + o(1)) = g(di, dj , dj)(1 + o(1)). (4.16)

We then use that

E [4Gn(Bn(ε))] =
1

6

∑′

i,j,k

P (4i,j,k)1{i,j,k∈Bn(ε)}

= (1 + o(1))
1

6

∑′

i,j,k

g(di, dj , dk)1{i,j,k∈Bn(ε)}, (4.17)

where
∑′

denotes the sum over distinct indices.

We then define the measure

M (n)([a, b]) = µ(τ−1)/2n(τ−3)/2
∑
i∈[n]

1{di∈[a,b]
√
µn}. (4.18)

By Assumption 1(ii),

n−1
∑
i∈[n]

1{di∈[a,b]
√
µn} = C

√
µn

1−τ
(a1−τ − b1−τ )(1 + o(1))

= C(τ − 1)
√
µn

1−τ
∫ b

a

t−τdt(1 + o(1)), (4.19)

so that

M (n)([a, b])→ C(τ − 1)

∫ b

a

t−τdt =: λ([a, b]). (4.20)

Furthermore, we can write∑
1≤i<j<k≤n g(di, dj , dk)1{i,j,k∈Bn(ε)}

n
3
2 (3−τ)µ−

3
2 (τ−1)

=
1

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

g(t1, t2, t3)dM (n)(t1)dM (n)(t2)dM (n)(t3) (4.21)

Because the function g(t1, t2, t3) is a bounded, continuous function on [ε, 1/ε]3,∑
1≤i<j<k≤n g(di, dj , dk)1{i,j,k∈Bn(ε)}

n
3
2 (3−τ)µ−

3
2 (τ−1)

→1

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

g(t1, t2, t3)dλ(t1)dλ(t2)dλ(t3)

=
(C(τ − 1))3

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

(xyz)−τ
xy

1 + xy

xz

1 + xz

yz

1 + yz
dxdydz. (4.22)

Combining this with (4.17) proves the lemma.
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We proceed to investigate the variance of 4(Bn(ε)). The next lemma shows that the variance
of 4(Bn(ε)) is with high probability small compared to the square of its expectation.

Lemma 7. Let τ ∈ (2, 3) and dn be a degree sequence on n vertices satisfying Assumption 1. Let
Gn be a uniformly sampled graph from G(dn). Then,

Var (4Gn(Bn(ε)))

E [4Gn(Bn(ε))]
2 → 0 (4.23)

Proof. By Lemma 6, E [4Gn(Bn(ε))] = Θ(n
3
2 (3−τ)). Thus, we need to show that the variance

scales as oP(n
9−3τ ). We write

Var (4Gn(Bn(ε)))=
∑′

i,j,k

∑′

u,v,w

(P (4i,j,k4u,v,w)− P (4i,j,k)P (4u,v,w))1{i,j,k,u,v,w∈Bn(ε)}, (4.24)

where
∑′

denotes a sum over distinct indices. The value of the summand depends on the overlap

of the indices i, j, k and u, v, w. We denote the contribution to the variance where r indices are
distinct by V (r). When all 6 indices are different, we obtain similarly to (4.16) that

P (4i,j,k4u,v,w) = g(di, dj , dk)g(du, dv, dw)(1 + o(1)). (4.25)

Thus, the contribution to the variance when all 6 indices are different can be bounded by

V (6) =
∑′

i,j,k

∑′

u,v,w

o(g(di, dj , dk)g(du, dv, dw))1{i,j,k,u,v,w∈Bn(ε)}

= o(E [4Gn(Bn(ε))]
2
). (4.26)

When i = u, but all other indices are different, we bound the contribution to the variance using
Assumption 1(i) as

V (5) ≤
∑′

i,j,k,v,w

1{i,j,k,v,w∈Bn(ε)} ≤
( ∑
i∈[n]

1{di>ε√n}
)5

≤ K5ε5−5τn
5
2 (3−τ) = o(n9−3τ ), (4.27)

and the other contributions can be bounded similarly.

We now prove Theorem 1 using the above lemmas:

Proof of Theorem 1. Fix ε > 0. Applying the Markov inequality together with Lemma 5 yields
that for all δ > 0

P
(
4Gn(B̄n(ε)) > δn

3
2 (3−τ)

)
= O

(
h(ε)

δ

)
, (4.28)

for some h(ε)→ 0 as ε ↓ 0 so that

4Gn(B̄n(ε)) = h(ε)OP

(
n

3
2 (3−τ)

)
. (4.29)

We now focus on 4Gn(Bn(ε)). Using Lemma 7 together with the Chebyshev inequality results in

4Gn(Bn(ε))

E [4Gn(Bn(ε))]

P−→ 1. (4.30)

Combining this with Lemma 6 shows that

4Gn(Bn(ε))

n
3
2 (3−τ)

= (1 + oP(1))µ−
3
2 (τ−1) (C(τ − 1))3

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

(xyz)−τ

× xy

1 + xy

xz

1 + xz

yz

1 + yz
dxdydz. (4.31)
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Thus,

T (Gn)

n
3
2 (3−τ)

=
4Gn(Bn(ε)) +4Gn(B̄n(ε))

n
3
2 (3−τ)

= (1 + oP(1))µ−
3
2 (τ−1) (C(τ − 1))3

6

∫ 1/ε

ε

∫ 1/ε

ε

∫ 1/ε

ε

(xyz)−τ
xy

1 + xy

xz

1 + xz

yz

1 + yz
dxdydz

+ o(h(ε)). (4.32)

Taking the limit of ε ↓ 0 then proves the convergence in probability statement of Theorem 1.
To prove that the resulting integral is finite, we use that∫ ∞

0

∫ ∞
0

∫ ∞
0

(xyz)−τ
xy

1 + xy

xz

1 + xz

yz

1 + yz
dxdydz

≤
∫ ∞

0

∫ ∞
0

∫ ∞
0

(xyz)−τ (1− e−xy)(1− e−xz)(1− e−yz)dxdydz. (4.33)

By [13, Lemma 12], the latter integral is finite, concluding the proof of the theorem.

5 Proof of Theorem 2

The proof of Theorem 2 follows similar lines as the proof of Theorem 1 and again consists of
several steps. We first prove Theorem 2 for Ranges I, II and IV, and then we show how to adapt
the proof for k = dB√ne. Let 4k denote the number of triangles where at least one of the vertices
has degree k. We specify a set W ⊆ [n]× [n] of ordered pairs of vertices such that the contribution
to 4k from triangles where the other two vertices in the triangle fall outside of W is small. We
then focus on the number of triangles where one vertex has degree k and the other two vertices
are in W . We compute the expected number of such triangles, and then use a second moment
method to show that the number of such triangles concentrates around its expectation.

More specifically, let

W k
n (ε) =


{(u, v) : dudv ∈ [εn, n/ε]} k ≤ n(τ−2)/(τ−1),

{(u, v) : dudv ∈ [εn, n/ε], du, dv ≤ n/k} k > n(τ−2)/(τ−1), k ≤ √n,
{(u, v) : du, dv ∈ [εn/k, n/(εk)]} k >

√
n.

(5.1)

Recall that Nk =
∑
i∈[n] 1{di=k} and Xuvw = 1{4u,v,w}. Define

c(W k
n (ε)) =

2

Nkk(k − 1)

∑
(u,v)∈Wk

n (ε)

∑
w:dw=k

Xuvw, (5.2)

c(W̄ k
n (ε)) =

2

Nkk(k − 1)

∑
(u,v)/∈Wk

n (ε)

∑
w:dw=k

Xuvw. (5.3)

Thus, c(W k
n (ε)) denotes the contribution to c(k) from triangles with one vertex of degree k and

the other two vertices in W k
n (ε), and c(W̄ k

n (ε)) denotes the contribution from all other triangles
containing a vertex of degree k.

Denote

f(n, k) =


n2−τ log(n) k ≤ n(τ−2)/(τ−1),

n2−τ log(n/k2) k > n(τ−2)/(τ−1), k ≤ √n,
n5−2τk2τ−6 k >

√
n,

(5.4)

which is the scaling of c(k) predicted by Theorem 2. We first bound c(W̄ k
n (ε)), the contribution

to c(k) from triangles with degrees outside the ranges in (5.1):
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Lemma 8. When dn satisfies Assumption 2 for some τ ∈ (2, 3), then in Ranges I, II and IV,

lim
ε↓0

lim sup
n→∞

E
[
c(W̄ k

n (ε))
]

f(n, k)
= 0. (5.5)

Proof. Using (3.1), we can write for some K1 > 0,

E
[
c(W̄ k

n (ε))
]

=
1

Nk

∑
i:di=k

∑
(u,v)/∈Wk

n (ε)

P (4i,u,v)
k(k − 1)

≤ K1

Nkk(k − 1)

∑
i:di=k

∑
(u,v)/∈Wk

n (ε)

min
(kdu
µn

, 1
)

min
(kdv
µn

, 1
)

min
(dudv
µn

, 1
)

=
K1

k(k − 1)

∑
(u,v)/∈Wk

n (ε)

min
(kdu
µn

, 1
)

min
(kdv
µn

, 1
)

min
(dudv
µn

, 1
)

= K1(n/k)2

∫ ∫
Hn(k)

min
( kx
µn

, 1
)

min
( ky
µn

, 1
)

min
( xy
µn

, 1
)

dFn(x)dFn(y), (5.6)

where Hn(k) ⊆ R2 denotes the region where (x, y) does not satisfy the degree constraints of W k
n (ε).

We first show that the contribution to the integral from degrees larger than cn1/τ−1/ log(n) is
sufficiently small in Range I. By (1.4), dmax ≤ Mn1/(τ−1) for some M > 0. Therefore, in Range
I, min(kx/(µn), 1) = kx/(µn) for x ∈ (0, dmax), and similarly min(ky/Ln, 1) = ky/(µn) for
y ∈ (0, dmax). We then write the integral as

k2

(µn)3

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

∫ n/x

0

x2y2dFn(y)dFn(x)

+
k2

(µn)2

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

∫ Mn1/(τ−1)

n/x

xydFn(y)dFn(x). (5.7)

We first investigate the contribution of the first integral. By Assumption 1(i),∫ n/x

0

y2dFn(y) = −y2
[
(1− Fn(y))

]n/x
0

+

∫ n/x

0

2y[1− Fn(y)]dy ≤ K
∫ n/x

0

2y2−τdy, (5.8)

so that

k2

(µn)3

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

∫ n/x

0

x2y2dFn(y)dFn(x) ≤ 2K
k2

n3

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

∫ n/x

0

x2y2−τdydFn(x)

=
2Kk2

(3− τ)nτ

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

xτ−1dFn(x). (5.9)

Similarly to (5.8),

k2n−τ
∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

xτ−1dFn(x)

= −k2n−τxτ−1[1− Fn(x)]Mn1/(τ−1)

cn1/(τ−1)/ log(n)+ (τ − 1)k2n−τ
∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

x−1[1− Fn(x)]dx

≤ k2n−τ
[
K
(cn1/(τ−1)

log(n)

)τ−1(cn1/(τ−1)

log(n)

)1−τ]
+K(τ − 1)k2n−τ

∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

x−1dx

= K(τ − 1)k2n−τ
∫ Mn1/(τ−1)

cn1/(τ−1)/ log(n)

x−1dx+O(k2n−τ )
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= (τ − 1)k2n−τ log(M log(n)/c) +O(k2n−τ ). (5.10)

Multiplying by n2k−2 then shows that the contribution of this integral to (5.6) is smaller than
n2−τ log(n), as required. A similar computation shows that the contribution from the second
integral in (5.7) is O(n2−τ log(log(n))) as well. To show that the contribution to (5.6) from
vertices with degrees larger than n1/(τ−1)/ log(n) is sufficiently small in Ranges II, III and IV, we
use similar computations.

Let H ′n(k) ⊆ Hn(k) denote the region where (x, y) does not satisfy the degree constraints of
W k
n (ε), while also x, y ≤ cn1/(τ−1)/ log(n). By our previous arguments, we only need to show that

the integral in (5.6) over H ′n(k) is sufficiently small. Note that the integrand is always a power of
x,y and z, where the power depends on the range of the integral. Furthermore, Assumption 2(ii)’
holds over the entire range of the integral. By Assumption 2(ii)’, for a � b ≤ cn1/(τ−1) log(n),
aγ(1 − Fn(a)) − bγ(1 − Fn(b)) ≤ 0 for n sufficiently large and γ > 1 − τ . Then, for n sufficiently
large and γ > 1− τ ,∫ b

a

xγdFn(x) =
[
− xγ(1− Fn(x))

]b
a

+ γ

∫ b

a

xγ−1(1− Fn(x))dx

≤ γK
∫ b

a

xγ−τdx. (5.11)

Following the computations in [15, Lemma 10], we can see that indeed the integral over H ′n(k)
splits into integrals over ranges [a, b] such that a� b and where the integrand equals xγ for some
γ > τ − 1. Therefore, we can bound the integral over H ′n(k) for n sufficiently large as∫ ∫

H′n(k)

min
( kx
µn

, 1
)

min
( ky
µn

, 1
)

min
( xy
µn

, 1
)

dFn(x)dFn(y)

≤ K3

∫ ∫
H′n(k)

(xy)−τ min
( kx
µn

, 1
)

min
( ky
µn

, 1
)

min
( xy
µn

, 1
)

dxdy (5.12)

for some K3 > 0. This is the same upper bound used in [15, Lemma 10], so that we can follow
the proof of [15, Lemma 10] to prove the lemma.

We now investigate the expected contribution of vertices in W k
n (ε) to c(k):

Lemma 9. Let dn satisfy Assumption 2 for some τ ∈ (2, 3). Let

A(ε) =

∫ 1/ε

ε

t2−τ

1 + t
dt. (5.13)

Then,

E
[
c(W k

n (ε))
]

f(n, k)
→


(C(τ − 1))2µ−τ 3−τ

τ−1A(ε) for k in Range I,

(C(τ − 1))2µ−τA(ε) for k in Range II,

(C(τ − 1))2µ3−2τ 3−τ
τ−1A(ε)2 for k in Range IV.

(5.14)

Proof. Let v be a uniformly chosen vertex of degree k. We first investigate the case where k is
in Range I. When i, j ∈ W k

n (ε), didj = O(n) and di, dj � 1. Furthermore, by Assumption 1(i),
dmax = O(n1/(τ−1)), so that also kdi = o(n) and kdj = o(n) in Range I. Thus, we may use (3.1),
so that we can approximate the probability that triangle i, j, k is present as in (4.16). We then
obtain

E
[
c(W k

n (ε))
]

=
1

k2

∑
(i,j)∈Wk

n (ε)

P (4i,j,v)

=
1

k2

∑
(i,j)∈Wk

n (ε)

didj
didj + Ln

dik

dik + Ln

djk

djk + Ln
(1 + o(1)). (5.15)
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In Range I, when (i, j) ∈ W k
n (ε), dik/Ln = o(1) so that dik/(dik + Ln) = dik(1 + o(1)) and

similarly djk/(djk + Ln) = djk/Ln(1 + o(1)). Thus, in Range I,

E
[
c(W k

n (ε))
]

=
∑

(i,j)∈Wk
n (ε)

1

L2
n

d2
i d

2
j

didj + Ln
(1 + o(1)). (5.16)

We now analyze the convergence of this expression similarly as in the proof of [15, Lemma 6].
The only differences with the expression in [15, Lemma 6] are that [15, Lemma 6] contains the
term 1 − e−didj/Ln , whereas (5.16) contains the term didj/(didj + Ln) instead, which is also
a bounded, continuous function. Furthermore, in [15, Lemma 6] the degree sequence satisfies
Assumption 1(ii) with high probability, changing convergence in probability of [15, Lemma 6] to a
deterministic limit, similarly as in (4.20). Thus, a similar analysis as in [15, Lemma 6] then results
in

E
[
c(W k

n (ε))
]

f(n, k)
→ (C(τ − 1))2µ−τ

3− τ
τ − 1

A(ε), (5.17)

which concludes the proof for Range I.
Similarly, in Range II we analyze (5.15) using [15, Lemma 7], again replacing the function

1− e−xy/Ln by xy/(Ln + xy) and convergence in probability by convergence. Then applying [15,
Lemma 7] with this replaced function proves the lemma for Range II.

Finally, in Range IV, when (i, j) ∈W k
n (ε), didj = o(n) so that didj/(didj+Ln) = didj/L

−1
n (1+

o(1)). Thus, (5.15) becomes

E
[
c(W k

n (ε))
]

=
1

k2Ln

∑
(i,j)∈Wk

n (ε)

d2
i k

dik + Ln

d2
jk

djk + Ln
(1 + o(1)). (5.18)

Now applying [15, Lemma 8], replacing the function 1−e−xy/Ln by xy/(Ln+xy) and convergence
in probability by convergence again proves the lemma, now for Range IV.

Finally, we show that the variance of c(k) is small in the major contributing regime:

Lemma 10. When dn satisfies Assumption 2 for some τ ∈ (2, 3), then in Ranges I, II and IV,

Var
(
c(W k

n (ε))
)

E [c(W k
n (ε))]

2

P−→ 0. (5.19)

Proof. We can write the variance as

Var
(
c(W k

n (ε))
)

=
1

k4N2
k

∑
i,j:di,dj=k

∑
(u,v),(w,z)∈Wk

n (ε)

P (4i,u,v4j,w,z)− P (4i,u,v)P (4j,w,z) . (5.20)

Again, the contribution of the summand depends on the size of {i, j, u, v, w, z}. We first investigate
the case where all 6 indices are different and we denote the contribution by this term as V (6). Let
g(x, y, z) be the function defined in (4.15). Since kdi, kdj and didj are all O(n) when (i, j) ∈W k

n (ε)
as well as di, dj � 1, we may apply (3.1) to obtain

P (4i,u,v)P (4j,w,z) = g(k, du, dv)g(k, dw, dz)(1 + o(1)) (5.21)

P (4i,u,v4j,w,z) = g(k, du, dv)g(k, dw, dz)(1 + o(1)). (5.22)

Note that when di = dj = k and (u,w), (v, z) ∈ W k
n (ε), g(di, du, dv) ∈ [ε2f̃(n, k), f̃(n, k)/ε2] for

some function f̃(n, k) depending on the range of k. Therefore, the o(1) terms are uniform in i, j
with di = dj = k and (u, v), (w, z) ∈W k

n (ε). We then obtain

V (6) =
1

k4N2
k

∑
i,j:di,dj=k

∑
(u,v),(w,z)∈Wk

n (ε)

o (g(k, du, dv)g(k, dw, dz)) = o
(
E
[
c(W k

n (ε))
]2)

, (5.23)
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where the last equality follows from (5.15).
When {i, j, u, v, w, z} = 5, there are no overlapping edges of the two triangles involved. Thus,

we can use the same estimates as in (5.21) and (5.22) to show that this contribution is small. We
now bound the contributions to (5.20) from {i, j, u, v, w, z} ≤ 4. By Lemma 9 we have to show
that these contributions are o(f(n, k)2). We use that, by (1.2),

P (4i,u,v4j,w,z)− P (4i,u,v)P (4j,w,z) ≤ P (4i,u,v4j,w,z)

≤ K1 min

(
duk

Ln
, 1

)
min

(
dvk

Ln
, 1

)
min

(
dudv
Ln

, 1

)
×min

(
dzk

Ln
, 1

)
min

(
dwk

Ln
, 1

)
min

(
dwdz
Ln

, 1

)
, (5.24)

for some K1 > 0. This is the same bound as in [15, Eq. (5.61)], where it is shown that these
contributions are o(f(n, k)2) by using a first moment method. The only difference with our setting
is that [15, Eq. (5.61)] considers i.i.d. degrees sampled from (1.5), whereas we assume that the
empirical degree distribution converges to (1.5). This does not influence the expected value, so
that we can follow the proof of [15, Lemma 9] to show that these contributions are o(f(n, k)2), as
required.

We now use the above lemmas to prove Theorem 2:

Proof of Theorem 2. Fix ε > 0. By Lemmas 9 and 10,

c(W k
n (ε))

f(n, k)

P−→


(C(τ − 1))2µ−τ 3−τ

τ−1A(ε) for k in Range I,

(C(τ − 1))2µ−τA(ε) for k in Range II,

(C(τ − 1))2µ3−2τ 3−τ
τ−1A(ε)2 for k in Range IV.

(5.25)

Combining this with Lemma 8 results in

c(k)

f(n, k)
=
c(W k

n (ε)) + c(W̄ k
n (ε))

f(n, k)

P−→


(C(τ − 1))2µ−τ 3−τ

τ−1A(ε) +O(h(ε)) for k in Range I,

(C(τ − 1))2µ−τA(ε) +O(h(ε)) for k in Range II,

(C(τ − 1))2µ3−2τ 3−τ
τ−1A(ε)2 +O(h(ε)) for k in Range IV.

(5.26)

We then take the limit of ε ↓ 0. By [9, Eq. 3.194.3]

lim
ε↓0

A(ε) =

∫ ∞
0

t2−τ

1 + t
dt = − π

sin(π(2− τ))
=

π

sin(πτ)
, (5.27)

which is equal to the constant A of Theorem 2. Therefore, taking the limit of ε ↓ 0 in (5.26)
results in

c(k)

f(n, k)

P−→


(C(τ − 1))2µ−τ 3−τ

τ−1A for k in Range I,

(C(τ − 1))2µ−τA for k in Range II,

(C(τ − 1))2µ3−2τ 3−τ
τ−1A

2 for k in Range IV,

(5.28)

which proves the theorem for Ranges I,II and IV
We now analyze c(k) for Range III where k = dB√ne. Note that Lemmas 5 and 10 also hold

for k = dB√ne, following the proofs for c(k) in Range IV. We therefore only need to analyze

E
[
c(W

B
√
n

n (ε))
]
. Using (5.15) yields

E
[
c(WB

√
n

n (ε))
]

= (1 + o(1))
1

B2n

∑
(i,j)∈Wk

n (ε)

didj
didj + µn

diB
√
n

diB
√
n+ µn

djB
√
n

djB
√
n+ µn

. (5.29)
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Define the measure

N (n)([a, b]) =
(µ
√
n)τ−1

n

∑
i∈[n]

1{di∈µ/√n[a,b]}. (5.30)

Then,

E
[
c(WB

√
n

n (ε))
]

= (1 + o(1))
µ2−2τn3−τ

B2n

∫ 1/ε

ε

∫ 1/ε

ε

xy

xy + µ−1

xB

xB + 1

yB

yB + 1
dN (n)(x)dN (n)(y)

= (1 + o(1))µ2−2τn2−τ
∫ 1/ε

ε

∫ 1/ε

ε

xy

xy + µ−1

x

xB + 1

y

yB + 1
dN (n)(x)dN (n)(y).

(5.31)

Using similar techniques as in (4.22), we can prove that

E
[
c(W

B
√
n

n (ε))
]

µ2−2τn2−τ → (C(τ − 1))2

∫ 1/ε

ε

∫ 1/ε

ε

(t1t2)2−τ

t1t2 + µ−1

1

t1B + 1

1

t2B + 1
dt1dt2. (5.32)

Combining this with Lemmas 5 and 10 and taking the limit of ε ↓ 0 then proves the theorem for
k = dB√ne.

6 Conclusion

In this paper, we have studied the number of triangles in uniform random graphs with given
degrees, when the degree sequence follows a power-law distribution with degree-exponent τ ∈ (2, 3).
We have shown that the rescaled number of triangles converges in probability to a constant. We
have further shown that most triangles occur on vertices of degrees proportional to

√
n. Another

interesting conclusion is that uniform random graphs asymptotically contain less triangles than
the erased configuration model which is often used to approximate uniform random graphs with
a given degree sequence.

We have also shown that the local clustering coefficient c(k) of uniform random graphs with
scale-free degrees behaves differently in three ranges. For small values of k, c(k) is independent of
k. In the second range, c(k) starts to decay slowly in k, and in the fourth range c(k) decays as a
power of k.

The triangle is an interesting subgraph since it allows one to analyze clustering properties, but
counting other subgraphs in uniform graphs with scale-free degrees would also be interesting. We
believe that our results easily extend to a wider class of subgraphs, as for the erased configuration
model in [14, Theorem 2.2]. In this class of subgraphs, most subgraphs are also supported on
vertices of degree proportional to

√
n. This class of subgraphs contains for example cliques of

any fixed order that is at least three. Extending the results to count subgraphs outside this class
would also be an interesting question for further research.
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