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Abstract

In this paper, the Harnack inequalities for G-SDEs with degenerate noise are derived
by method of coupling by change of measure. Moreover, the gradient estimate for the
associated nonlinear semigroup P̄t

|∇P̄tf | ≤ c(p, t)(P̄t|f |
p)

1
p , p > 1, t > 0

is also obtained for bounded and continuous function f . As an application of Harnack
inequality, we prove the weak existence of degenerate G-SDEs under some integrable
conditions. Finally, an example is presented. All of the above results extends the
existed results in the linear expectation setting.

AMS subject Classification: 60H10, 60H15.
Keywords: Harnack inequality, Degenerate noise, G-SDEs, Gradient estimate, Weak solu-
tion, Invariant expectation.

1 Introduction

Since Peng [10, 11, 12] established the fundamental theory of G-Brownian motion and SDEs
driven by it (G-SDEs, in short), the study of G-expectation has received much attention, see
a summary paper [13] and references within for details. The G-expectation has been applied
in many areas, for instance, stochastic optimization [4, 5], financial markets with volatility
uncertainty [2] and the Feyman-Kac formula [6].

∗Supported in part by NNSFC (11801406).
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Recently, using method of coupling by change of measure introduced by Wang [15, Chap-
ter 1], Song [14] studied the gradient estimates for nonlinear diffusion semigroups, where the
noise is assumed to be non-degenerate. Quite recently, under the nonlinear expectation
framework, Yang [20] obtained the dimensional-free Harnack inequality for G-SDEs with
non-degenerate noise.

On the other hand, the stochastic Hamiltonian system in the linear probability space, a
typical model of degenerate diffusion system, has been investigated in [3, 16, 19].

In this paper, we intend to investigate Harnack inequalities and gradient estimate for G-
SDEs with degenerate noise, i.e. the stochastic Hamiltonian system driven by G-Brownian
motion. The method is also coupling by change of measure, in which the Girsanov transform
in [6] palys a crucial role. Due to the lack of additivity of nonlinear expectation, the Bismut
formula [15, (1.8), (1.14)], which is an important technique to get gradient estimate, can
not be proved either by coupling by change of measure or Malliavin calculus in the G-SDEs.
Instead, we directly estimate the local Lipschitz constant defined below. Moreover, as an
application of Harnack inequality, we will prove the existence of weak solution for degenerate
G-SDEs perturbed by a drift which only satisfies some integrable condition with respect to
a reference nonlinear expectation.

Since the quadratic variation process of G-Brownian motion is a stochastic process, the
G-SDEs generally contain two drift terms: dt and quadratic variation process. Moreover,
the Girsanov transform is different from the one in the linear expectation case, see Theorem
2.2 below for more details.

2 Preparations

2.1 G-Expectation and G-Brownian motion

Before moving on, we recall some basic facts on G-expectation and G-Brownian motion.
Let Ω = C0([0,∞);Rd), the Rd-valued and continuous functions on [0,∞) vanishing at zero,
equipped with metric

ρ(ω1, ω2) =
∞
∑

n=1

1

2n

[

max
t∈[0,n]

|ω1
t − ω2

t | ∧ 1

]

, ω1, ω2 ∈ Ω.

For any T > 0, set

Lip(ΩT ) = {ω → ϕ(ωt1 , · · ·, ωtn) : n ∈ N
+, t1, · · ·, tn ∈ [0, T ], ϕ ∈ Cb,lip(R

d ⊗ R
n)},

and
Lip(Ω) =

⋃

T>0

Lip(ΩT ),

where Cb,lip(R
d ⊗ R

n) denotes the set of bounded and Lipschitz continuous functions on
Rd ⊗ Rn. Let Sd be the collection of all d × d symmetric matrices and Sd

+ ⊂ Sd denote all
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d× d positive definite and symmetric matrices. Fix σ, σ ∈ Sd
+ with σ < σ and define

(2.1) G(A) :=
1

2
sup

γ∈[σ,σ̄]

trace(γ2A), A ∈ S
d.

Then it is not difficult to see

(2.2) G(A)−G(Ā) ≥
λ0(σ

2)

2
trace[A− Ā], A ≥ Ā, A, Ā ∈ S

d,

where λ0(σ
2) > 0 is the minimal eigenvalue of σ2.

Let ĒG be the nonlinear expectation on Ω such that coordinate process B = (Bt)t≥0, i.e.
Bt(ω) = ωt, ω ∈ Ω, is a d-dimensional G-Brownian motion on (Ω, L1

G(Ω), Ē
G), where L1

G(Ω)
is the completion of Lip(Ω) under the norm (ĒG| · |). See [14] for details on the construction

of ĒG. For any p ≥ 1, let L
p
G(Ω) be the completion of Lip(Ω) under the norm (ĒG| · |p)

1
p .

Similarly, we can define L
p
G(ΩT ) for any T > 0.

Let

M
p,0
G ([0, T ]) =

{

ηt :=

N−1
∑

j=0

ξjI[tj ,tj+1)(t); ξj ∈ L
p
G(Ωtj ), N ∈ N

+, 0 = t0 < t1 < · · · < tN = T
}

,

and M
p
G([0, T ]) be the completion of Mp,0

G ([0, T ]) under the norm

‖η‖Mp
G
([0,T ]) :=

(

Ē
G

∫ T

0

|ηt|
pdt

)

1
p

.

Moreover, let

M2
G([0, T ])

d =
{

X = (X1, X2, · · · , Xd), X i ∈ M2
G([0, T ]), 1 ≤ i ≤ d

}

.

Let M be the collection of all probability measures on (Ω,B(Ω)). According to [1, 8], there
exists a weakly compact subset P ⊂ M such that

Ē
G[X ] = sup

P∈P
EP [X ], X ∈ L1

G(Ω),(2.3)

where EP is the linear expectation under probability measure P ∈ P. P is called a set that
represents ĒG. In fact, let W 0 be a d-dimensional Brownian motion on a complete filtration
probability space (Ω, {Ft}t≥0,P), and H be the set of all progressively measurable stochastic
processes valued in [σ, σ̄]. For any θ ∈ H, define Pθ as the law of

∫ ·

0
θsdW

0
s . Then by [1, 8],

we can take P = {Pθ, θ ∈ H}, i.e.

Ē
G[X ] = sup

θ∈H
EPθ

[X ], X ∈ L1
G(Ω).(2.4)

The associated Choquet capacity to ĒG is defined by

C(A) = sup
P∈P

P (A), A ∈ B(Ω).
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A set A ⊂ Ω is called polar if C(A) = 0, and we say that a property holds C-quasi-surely
(C-q.s.) if it holds outside a polar set, see [1] for more details on capacity.

Finally, letting 〈B〉 be the quadratic variation process of B, then by (2.2) and [12, Chapter
III, Corollary 5.7], we have C-q.s.

σ2 <
d

dt
〈B〉t ≤ σ̄2.(2.5)

2.2 Girsanov’s Transform

The following Girsanov’s transform comes from [9, Proposition 5.10].

Theorem 2.1. Let {gt}t≤T ∈ M2
G([0, T ])

d. If there exists a constant δ > 0 such that

Ē
G exp

{(

1

2
+ δ

)
∫ T

0

〈gu, d〈B〉ugu〉

}

< ∞.

Then

B̄ := B +

∫ ·

0

d〈B〉ugu

is a G-Brownian motion on [0, T ] under Ẽ[·] = ĒG[R̃T (·)], where

R̃T = exp

[

−

∫ T

0

〈gu, dBu〉 −
1

2

∫ T

0

〈gu, d〈B〉ugu〉

]

.

According to [6, Remark 5.3], letting Ω̂ = C0([0,∞),R2d), we can construct an auxiliary

Ĝ-expectation space (Ω̂, L1
Ĝ
(Ω̂), ÊĜ) with

Ĝ(A) :=
1

2
sup

γ∈[σ,σ̄]

trace

[

A

(

γ2 1
1 γ−2

)]

, A ∈ S
2d,

and a d-dimensional process B′ such that

(

B

B′

)

is a 2d-dimensional Ĝ-Brownian motion

and 〈B,B′〉t = tId×d under ÊĜ. In addition, the distribution of B under ĒG is equal to that

of B under ÊĜ. Moreover, letting

(2.6) G̃(A) =
1

2
sup

γ∈[σ,σ̄]

trace
[

Aγ−2
]

, A ∈ S
d,

then B′ is a G̃-Brownian motion under Ê
Ĝ. Letting Ĉ be the associated Choquet capacity

to ÊĜ, then we have Ĉ-q.s.

σ−2 ≤
d〈B′〉t
dt

≤ σ−2.(2.7)

As a corollary of Theorem 2.1, we have the following Girsanov’s transform, which will be
used in the sequel.
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Theorem 2.2. Let {git}t≤T ∈ M2
G([0, T ])

d, i = 1, 2. If

Ê
Ĝ exp

{(

1

2
+ δ

)
∫ T

0

(

〈g1s , d〈B
′〉sg

1
s〉+ 〈g2s , d〈B〉sg

2
s〉+ 2〈g1s , g

2
s〉ds

)

}

< ∞.(2.8)

Then

B̆ := B +

∫ ·

0

g1udu+

∫ ·

0

g2ud〈B〉u

is a G-Brownian motion on [0, T ] under Ĕ[·] = ÊĜ[R̆T (·)], where

R̆T = exp

[

−

∫ T

0

〈(

g1u
g2u

)

, d

(

B′
u,

Bu

)〉

−
1

2

∫ T

0

(

〈g1s , d〈B
′〉sg

1
s〉+ 〈g2s , d〈B〉sg

2
s〉+ 2〈g1s , g

2
s〉ds

)

]

.

Proof. Letting W =

(

B

B′

)

, we have

〈W 〉t =

(

〈B〉t tId×d

tId×d 〈B′〉t

)

and
∫ T

0

〈(

g2

g1

)

, d〈W 〉

(

g2

g1

)〉

=

∫ T

0

(

〈g1s , d〈B
′〉sg

1
s〉+ 〈g2s , d〈B〉sg

2
s〉+ 2〈g1s , g

2
s〉ds

)

.

Let

W̃ = W +

∫ ·

0

d〈W 〉

(

g2

g1

)

.

In view of (2.8) and applying Theorem 2.1 for

(

W,

(

g2

g1

))

replacing (B, g), we conclude

that W̃ is a 2d-dimensional Ĝ-Brownian motion on [0, T ] under Ĕ defined in Theorem 2.2.
In particular,

B̆ := B +

∫ ·

0

g1udu+

∫ ·

0

g2ud〈B〉u

is a G-Brownian motion on [0, T ] under Ĕ.

Remark 2.3. Theorem 2.2 extends the result in [6, Theorem 5.2], where g1 and g2 are
assumed to be bounded processes.

Throughout the paper, the letter C or c will denote a positive constant, and C(θ) or
c(θ) stands for a constant depending on θ. The value of the constants may change from one
appearance to another.
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3 Harnack and Gradient Estimate

Consider the following G-SDE on Rm+d:

(3.1)

{

dXt = {AXt +MYt}dt,

dYt = b1(Xt, Yt)dt + d〈B〉tb2(Xt, Yt) +QdBt,

where Bt is a d-dimensional G-Brownian motion defined in Section 1, A is an m×m matrix,
M is an m× d matrix, Q is a d× d matrix, b1, b2 : R

m+d → Rd.
In this paper, we only consider m = d = 1, and the result can be extended to general

m ≥ 1 and d ≥ 1. In this case, σ and σ in (2.1) are two positive constants satisfying σ < σ,
and the corresponding generating function is given by

G(a) =
1

2
σ2a+ −

1

2
σ2a−, a ∈ R

1.

In this section, we study the Harnack inequalities and gradient estimate for (3.1). To this
end, we make the following assumptions:

(A1) QM 6= 0.

(A2) There exists K > 0 such that

|b1(z)− b1(z̄)|+ |b2(z)− b2(z̄)| ≤ K|z − z̄|, z, z̄ ∈ R
2.(3.2)

Remark 3.1. According to [12, Theorem 1.2], (A2) implies that (3.1) has a unique non-
explosive strong solution (Xz

t , Y
z
t ) in M2

G([0, T ])
2 for any T > 0 and (X0, Y0) = z ∈ R2.

Denote by Cb(R
2) (C+

b (R
2)) the bounded (non-negative bounded) and continuous function

on R2. Let P̄t be the associated nonlinear semigroup to (Xz
t , Y

z
t ), i.e.

P̄tf(z) = Ē
Gf(Xz

t , Y
z
t ), f ∈ Cb(R

2).

For a real-valued functtion f defined on a metric sapce (H, ρ), define

|∇f(z)| = lim sup
ρ(x,z)→0

|f(x)− f(z)|

ρ(x, z)
, z ∈ H.(3.3)

Then |∇f(z)| is called the local Lipschitz constant of f at point z ∈ H .

Theorem 3.2. Assume (A1)-(A2) and let T > 0. Then there exists some constant C > 0
depending on A, K and |Q−1| such that the following assertions hold.

(1) For any z = (z1, z2), h = (h1, h2) ∈ R2, p > 1, the Harnack inequality

(P̄Tf)
p(z + h) ≤P̄Tf

p(z) exp

[

C
p

2(p− 1)
Σ(T )|h|2

]

, f ∈ C+
b (R

2)(3.4)

holds with

Σ(T ) := σ−2T

(

1

T
+

1

T 2
+ 1 + T

)2

+ σ2T (1 + T )2 .(3.5)
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(2) The gradient estimate, i.e.

‖∇P̄Tf‖∞ ≤ C‖f‖∞
√

Σ(T ), f ∈ C+
b (R

2)(3.6)

holds for some constant C > 0.

(3) For any p > 1, there exists a constant c(p) > 0 such that

|∇P̄Tf(z)| ≤ c(p)
(

P̄T |f |
p(z)

)
1
p

√

Σ(T ), z ∈ R
2, f ∈ C+

b (R
2).(3.7)

Remark 3.3. With (2.3) in hand, it seems that (3.4) can be derived by taking a supremum
in the following Harnack inequality for the linear expectation EP :

(

EPf(X
z+h
t , Y z+h

t )
)p

≤ (EPf
p(Xz

t , Y
z
t )) exp{Φ(t, h, p)}.(3.8)

However, the method of coupling by change of measure is available for the SDEs driven by
Brownian motion. So, it is difficult to get (3.8) since Bt is only a martingale under EP .
Therefore, the results in Theorem 3.2 are non-trivial.

Remark 3.4. Compared to the SDEs in [14], the SDE (3.1) is allowed to contain drift
d〈B〉tb2.

Now, we are in the position to prove Theorem 3.2.

Proof. (1) For any η ∈ R
2, let (Xη

t , Y
η
t ) solve (3.1) with (X0, Y0) = η. For h = (h1, h2) ∈

R2, define
γ1(s) = v1(s)h2 + α1(s), s ∈ [0, T ]

with

v1(s) =
T − s

T
,

α1(s) = −
s(T − s)

T 2
Me−sAΛ1(T )

−1

(

h1 +

∫ T

0

T − u

T
e−uAMh2du

)

, s ∈ [0, T ],

where

Λ1(T ) :=

∫ T

0

s(T − s)

T 2
e−2sAM2ds.

It is clear that

(3.9) |Λ1(T )
−1| ≤ cT−1

holds for some constant c > 0.

Let (X̃t, Ỹt) solve the equation

(3.10)

{

dX̃t = {AX̃t +MỸt}dt,

dỸt = b1(X
z
t , Y

z
t )dt + b2(X

z
t , Y

z
t )d〈B〉t + QdBt + γ′

1(t)dt

7



with (X̃0, Ỹ0) = z + h. Then the solution to (3.10) is non-explosive as well.

Set

Θ1(s) =

(

eAsh1 +

∫ s

0

e(s−u)AMγ1(u)du, γ1(s)

)

, s ∈ [0, T ].

Then there exists a constant C > 0 such that for any s ∈ [0, T ],

|γ′
1(s)| ≤ C

(

1

T
+

1

T 2

)

|h|,

|Θ1(s)| ≤ C
(

1 + T
)

|h|.

(3.11)

Note that

(3.12) (X̃s, Ỹs) = (Xz
s , Y

z
s ) + Θ1(s), s ∈ [0, T ],

and in particular, (X̃T , ỸT ) = (Xz
T , Y

z
T ). Let

Φ1(s) = Q−1{b1(X
z
s , Y

z
s )− b1(X̃s, Ỹs) + γ′

1(s)},

Φ2(s) = Q−1{b2(X
z
s , Y

z
s )− b2(X̃s, Ỹs)}, s ∈ [0, T ],

and B′ be in Section 2.2. (2.5), (2.7), (3.11) and (3.12) together with (A1)-(A2) imply
Ĉ-q.s.

∫ T

0

|Φ1(s)|
2d〈B′〉s +

∫ T

0

|Φ2(s)|
2d〈B〉s + 2

∫ T

0

Φ1(s)Φ2(s)ds

≤

∫ T

0

σ−2|Φ1(s)|
2ds+

∫ T

0

σ2|Φ2(s)|
2ds+ 2

∫ T

0

Φ1(s)Φ2(s)ds

≤ 2

∫ T

0

σ−2|Φ1(s)|
2ds+ 2

∫ T

0

σ2|Φ2(s)|
2ds

≤ Cσ−2

∫ T

0

(|Θ1(s)|+ |γ′
1(s)|)

2
ds+ Cσ2

∫ T

0

|Θ1(s)|
2ds

≤ Cσ−2T

(

1

T
+

1

T 2
+ 1 + T

)2

|h|2 + Cσ2T (1 + T )2 |h|2

= CΣ(T )|h|2

(3.13)

for some constant C > 0 depending on A, K in (A2) and |Q−1|.

Applying Theorem 2.2, we conclude that

B̃ := B +

∫ ·

0

Φ1(u)du+

∫ ·

0

Φ2(u)d〈B〉u

is a G-Brownian motion on [0, T ] under E1(·) = ÊĜ(R1(T )(·)), where

R1(T ) = exp

[

−

∫ T

0

〈(

Φ1(u)
Φ2(u)

)

, d

(

B′
u

Bu

)〉

8



−
1

2

∫ T

0

(

|Φ1(s)|
2d〈B′〉s + |Φ2(s)|

2d〈B〉s + 2Φ1(s)Φ2(s)ds
)

]

.

Since 〈B̃〉 = 〈B〉, (3.10) reduces to

(3.14)

{

dX̃t = {AX̃t +MỸt}dt,

dỸt = b1(X̃t, Ỹt)dt + d〈B̃〉tb2(X̃t, Ỹt) + QdB̃t.

This means that the distribution of (X̃t, Ỹt) under E1 coincides with that of (Xz+h
t ,

Y z+h
t ) under ÊĜ (or ĒG). Thus, Hölder inequality implies for any f ∈ C+

b (R
2) and

p > 1,

P̄Tf(z + h) = E1f(X̃T , ỸT )

= Ê
Ĝ [R1(T )f(X

z
T , Y

z
T )](3.15)

≤ (P̄Tf
p(z))

1
p{ÊĜR1(T )

p

p−1}
p−1
p ,

here we used the fact that the distribution of B under ĒG is equal to that of B under
ÊĜ. It follows from the definition of R1(T ) and (3.13) that

Ê
ĜR1(T )

p

p−1

= Ê
Ĝ

{

exp

[

−
p

p− 1

∫ T

0

〈(

Φ1(u)
Φ2(u)

)

, d

(

B′
u

Bu

)〉

−
1

2

p2

(p− 1)2

∫ T

0

(

|Φ1(s)|
2d〈B′〉s + |Φ2(s)|

2d〈B〉s + 2Φ1(s)Φ2(s)ds
)

]

× exp

[

p

2(p− 1)2

∫ T

0

(

|Φ1(s)|
2d〈B′〉s + |Φ2(s)|

2d〈B〉s + 2Φ1(s)Φ2(s)ds
)

}

≤ exp

[

C
p

2(p− 1)2
Σ(T )|h|2

]

.

Combining this with (3.15), we derive the Harnack inequality (3.4).

(2) Now, we prove the gradient estimate (3.6). Since the distribution of B under ĒG is

equal to that of B under ÊĜ, we have

P̄Tf(z) = Ē
Gf(Xz

T , Y
z
T ) = Ê

Ĝf(Xz
T , Y

z
T ).

This and (3.15) yield

|P̄Tf(z + h)− P̄Tf(z)| = |ÊĜ [R1(T )f(X
z
T , Y

z
T )]− Ê

Ĝf(Xz
T , Y

z
T )|

≤ Ê
Ĝ (|f(Xz

T , Y
z
T )||R1(T )− 1|) .

(3.16)

9



Noting that |x− 1| ≤ (x+ 1)| log x| for any x > 0, we have

|P̄Tf(z + h)− P̄Tf(z)|

≤ ‖f‖∞Ê
ĜR1(T )| logR1(T )|+ ‖f‖∞Ê

Ĝ| logR1(T )|

= ‖f‖∞

(

E1| logR1(T )|+ Ê
Ĝ| logR1(T )|

)

.

(3.17)

Let

B̃′ = B′ +

∫ ·

0

Φ1(u)d〈B
′〉u +

∫ ·

0

Φ2(u)du.

From Theorem 2.2, we know that B̃′ is a G̃-Brownian motion under E1. Applying
B-D-G inequality and noting 〈B̃′〉 = 〈B′〉 and 〈B̃〉 = 〈B〉, we obtain

E1| logR1(T )|

= E1

∣

∣

∣

∣

−

∫ T

0

〈(

Φ1(u)
Φ2(u)

)

, d

(

B′
u

Bu

)〉

−
1

2

∫ T

0

(

|Φ1(s)|
2d〈B′〉s + |Φ2(s)|

2d〈B〉s + 2Φ1(s)Φ2(s)ds
)

∣

∣

∣

∣

≤ E1

∣

∣

∣

∣

∣

∫ T

0

〈(

Φ1(u)
Φ2(u)

)

, d

(

B̃′
u

B̃u

)〉

∣

∣

∣

∣

∣

+
1

2
E1

∣

∣

∣

∣

∣

∫ T

0

(

|Φ1(s)|
2d〈B̃′〉s + |Φ2(s)|

2d〈B̃〉s + 2Φ1(s)Φ2(s)ds
)

∣

∣

∣

∣

∣

≤ E1

(
∫ T

0

(

|Φ1(s)|
2d〈B̃′〉s + |Φ2(s)|

2d〈B̃〉s + 2Φ1(s)Φ2(s)ds
)

)

1
2

+
1

2
E1

∣

∣

∣

∣

∣

∫ T

0

(

|Φ1(s)|
2d〈B̃′〉s + |Φ2(s)|

2d〈B̃〉s + 2Φ1(s)Φ2(s)ds
)

∣

∣

∣

∣

∣

.

This together with (3.13) implies

E1| logR1(T )| ≤ C
(

Σ(T )|h|2 +
√

Σ(T )|h|
)

,

here, Σ(T ) is defined in (3.5). Similarly, we get

Ê
Ĝ| logR1(T )| ≤ C

(

Σ(T )|h|2 +
√

Σ(T )|h|
)

.

Then it follows from (3.17) that

|P̄Tf(z + h)− P̄Tf(z)| ≤ C‖f‖∞

(

Σ(T )|h|2 +
√

Σ(T )|h|
)

.(3.18)

This together with (3.3) yields

|∇P̄Tf(z)| ≤ C‖f‖∞
√

Σ(T ),(3.19)

which implies (3.6).
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(3) In order to get (3.7), let

R̃1(T ) = exp

[

−
p

p− 1

∫ T

0

〈(

Φ1(u)
Φ2(u)

)

, d

(

B′
u

Bu

)〉

−
1

2

p2

(p− 1)2

∫ T

0

(

|Φ1(s)|
2d〈B′〉s + |Φ2(s)|

2d〈B〉s + 2Φ1(s)Φ2(s)ds
)

]

,

and

B̂′ = B′ +

∫ ·

0

p

p− 1
Φ1(u)d〈B

′〉u +

∫ ·

0

p

p− 1
Φ2(u)du,

B̂ = B +

∫ ·

0

p

p− 1
Φ1(u)du+

∫ ·

0

p

p− 1
Φ2(u)d〈B〉u.

(3.20)

Again by Theorem 2.2, B̂′ is also a G̃-Brownian motion under Ẽ2(·) = ÊĜ(R̃1(T )(·)).
Using the inequality |x− 1| ≤ (x+ 1)| log x| for any x > 0 and (3.13), we have

Ê
Ĝ|R1(T )− 1|

p

p−1

≤ Ê
Ĝ|R1(T ) + 1|

p

p−1 | logR1(T )|
p

p−1

≤ c(p)ÊĜR1(T )
p

p−1 | logR1(T )|
p

p−1 + c(p)ÊĜ| logR1(T )|
p

p−1

≤ c(p) exp

[

C
p

2(p− 1)2
Σ(T )|h|2

]

Ê
Ĝ
(

R̃1(T )| logR1(T )|
p

p−1

)

+ c(p)ÊĜ| logR1(T )|
p

p−1

(3.21)

for some constants C, c(p) > 0. Combining (3.20) and B-D-G inequality and noting
〈B̂′〉 = 〈B′〉 and 〈B̂〉 = 〈B〉, we obtain

Ê
Ĝ
(

R̃1(T )| logR1(T )|
p

p−1

)

= Ẽ2

∣

∣

∣

∣

−

∫ T

0

〈(

Φ1(u)
Φ2(u)

)

, d

(

B′
u

Bu

)〉

−
1

2

∫ T

0

(

|Φ1(s)|
2d〈B′〉s + |Φ2(s)|

2d〈B〉s + 2Φ1(s)Φ2(s)ds
)

∣

∣

∣

∣

p

p−1

= Ẽ2

∣

∣

∣

∣

−

∫ T

0

〈(

Φ1(u)
Φ2(u)

)

, d

(

B̂′
u

B̂u

)〉

+

(

p

p− 1
−

1

2

)
∫ T

0

(

|Φ1(s)|
2d〈B̂′〉s + |Φ2(s)|

2d〈B̂〉s + 2Φ1(s)Φ2(s)ds
)

∣

∣

∣

∣

p
p−1

≤ c(p)Ẽ2

∣

∣

∣

∣

∫ T

0

〈(

Φ1(u)
Φ2(u)

)

, d

(

B̂′
u

B̂u

)〉
∣

∣

∣

∣

p

p−1

+ c(p)Ẽ2

∣

∣

∣

∣

(

p

p− 1
−

1

2

)
∫ T

0

(

|Φ1(s)|
2d〈B̂′〉s + |Φ2(s)|

2d〈B̂〉s + 2Φ1(s)Φ2(s)ds
)

∣

∣

∣

∣

p

p−1
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≤ c(p)Ẽ2

∣

∣

∣

∣

∫ T

0

(

|Φ1(s)|
2d〈B̂′〉s + |Φ2(s)|

2d〈B̂〉s + 2Φ1(s)Φ2(s)ds
)

∣

∣

∣

∣

p
2(p−1)

+ c(p)Ẽ2

∣

∣

∣

∣

(

p

p− 1
−

1

2

)
∫ T

0

(

|Φ1(s)|
2d〈B̂′〉s + |Φ2(s)|

2d〈B̂〉s + 2Φ1(s)Φ2(s)ds
)

∣

∣

∣

∣

p

p−1

=: I1 + I2.

Let C̃ be the Choquet capacity associated to Ẽ2. Noting that B̂′ is a G̃-Brownian
motion under Ẽ2, then C̃-q.s. (3.13) holds with (B,B′) replacing by (B̂, B̂′). Thus, we
get

I1 ≤ c(p)
(

Σ(T )|h|2
)

p
2(p−1) ,

and
I2 ≤ c(p)

(

Σ(T )|h|2
)

p
p−1 .

Therefore, we have

(

Ê
Ĝ
(

R̃1(T )| logR1(T )|
p

p−1

))
p−1
p

≤ c(p)
(

Σ(T )|h|2 +
√

Σ(T )|h|
)

.(3.22)

Similarly by B-D-G inequality and (3.13), we arrive at

(

Ê
Ĝ| logR1(T )|

p
p−1

)
p−1
p

≤ c(p)
(

Σ(T )|h|2 +
√

Σ(T )|h|
)

.

This together with (3.16), (3.21), (3.22) and Hölder inequality yields

|∇P̄Tf(z)| = lim sup
h→0

|P̄Tf(z + h)− P̄Tf(z)|

|h|

≤
(

P̄T |f |
p(z)

)
1
p lim sup

h→0

(

ÊĜ|R1(T )− 1|
p

p−1

)
p−1
p

|h|

≤ c(p)
(

P̄T |f |
p(z)

)
1
p

√

Σ(T ), z ∈ R
2.

This completes the proof.

4 Applications of Harnack inequality

As an application of Harnack inequality, in this section, we will prove the weak existence of
SDEs perturbed by an integrable drifts with respect to an invariant nonlinear expectation of
a regular G-SDE. To this end, we assume that the Harnack inequality holds for the regular
G-SDE. The main idea is to prove Novikov’s condition by Harnack inequality. We should
point out that the following procedure can also be applied for non-degenerate G-SDEs.
However, to make the framework consistent, we only consider the stochastic Hamiltonian

12



system. One can refer to [17] and [18] for the linear expectation case. Let A,M,Q, b1, b2
and Bt be introduced in Section 3 and b̄1, b̄2 : Rm+d → Rd. For simplicity, we still consider
m = d = 1. Consider the stochastic Hamiltonian system:

(4.1)











dXt = {AXt +MYt}dt,

dYt = b̄1(Xt, Yt)dt+ b̄2(Xt, Yt)d〈B〉t

+b1(Xt, Yt)dt+ b2(Xt, Yt)d〈B〉t +QdBt.

The referenced SDE is

(4.2)

{

dXt = {AXt +MYt}dt,

dYt = b1(Xt, Yt)dt + b2(Xt, Yt)d〈B〉t +QdBt.

Assume that (4.2) has a unique non-explosive strong solution (Xz
t , Y

z
t ) in M2

G([0, T ])
2 for

any T > 0 and (X0, Y0) = z ∈ R2. Let P 0
t be the associated nonlinear semigroup to (4.2)

defined by
P 0
t f(z) = Ē

Gf(Xz
t , Y

z
t ), f ∈ Cb(R

2).

Before moving on, we first introduce the definition of weak solution for the SDE (4.1).

Definition 4.1. ((X̃, Ỹ ), B̃) is called a weak solution to (4.1) with initial value (x, y), if B̃
is a G-Brownian motion on some nonlinear space (Ω, Ẽ) and

(4.3)











X̃s = x+
∫ s

0
{AX̃t +MỸt}dt,

Ỹs = y +
∫ s

0
b̄1(X̃t, Ỹt)dt +

∫ s

0
b̄2(X̃t, Ỹt)d〈B̃〉t

+
∫ s

0
b1(X̃t, Ỹt)ds+

∫ s

0
b2(X̃t, Ỹt)d〈B̃〉t +QdB̃t, s ≥ 0.

In the following, we recall the definition of invariant nonlinear expectation, see [7] for
more details.

Definition 4.2. A sublinear expectation E0 : C1
b (R

d) → R
1 is said to be an invariant

expectation of P 0
t , if

E0(P
0
t f) = E0f, f ∈ C1

b (R
d), t ≥ 0.

Theorem 4.1. Assume that P 0
t has a unique invariant nonlinear expectation and satisfies

the Harnack inequality:

(P 0
t |f |)

p(z) ≤ (P 0
t |f |

p)(z̄)eΦp(t,z,z̄), f ∈ Cb(R
2), z, z̄ ∈ R

2, t > 0(4.4)

with
∫ t

0

ds

{E0e−Φp(s,z,·)}
1
p

< ∞, t > 0, z ∈ R
2(4.5)

for each p > 1. If b̄1 and b̄2 are continuous and there exists a constant ε > 0 such that

E0e
ε(|b̄1|2+|b̄2|2) < ∞.

Then for any z ∈ R
2, the stochastic Hamiltonian system (4.1) has a weak solution with

initial value z.
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Proof. Let (Xt, Yt) be the solution to (4.2) with initial value z. Define

B̄s = Bs −

∫ s

0

Q−1[(b̄1(Xt, Yt)dt + b̄2(Xt, Yt)d〈B〉t)].

Then (4.2) can be rewritten as

(4.6)











dXt = {AXt +MYt}dt,

dYt = b̄1(Xt, Yt)dt+ b̄2(Xt, Yt)d〈B〉t

+b1(Xt, Yt)dt+ b2(Xt, Yt)d〈B〉t +QdB̄t.

By the Markov property, it is sufficient to find out a constant t0 > 0 such that {B̄}s∈[0,t0] is

a G-Brownian motion under Ẽ[·] = Ê
Ĝ[R̃(t0)(·)], where

R̃(t0) = exp

[
∫ t0

0

〈(

b̄1(Xu, Yu)
b̄2(Xu, Yu)

)

, d

(

B′
u

Bu

)〉

−
1

2

∫ t0

0

(

|b̄1(Xu, Yu)|
2d〈B′〉u + |b̄2(Xu, Yu)|

2d〈B〉u + 2b̄1(Xu, Yu)b̄2(Xu, Yu)du
)

]

.

According to Theorem 2.2, we only need to prove

Ê
Ĝ exp

{(

1

2
+ δ

)(
∫ t0

0

(

|b̄1(Xt, Yt)|
2d〈B′〉t + |b̄2(Xt, Yt)|

2d〈B〉t + 2(b̄1b̄2)(Xt, Yt)dt
)

)}

≤ Ê
Ĝ exp

{

(1 + 2δ)

(
∫ t0

0

σ−2|b̄1(Xt, Yt)|
2dt+

∫ t0

0

σ2|b̄2(Xt, Yt)|
2dt

)}

≤ Ē
G exp

{

(1 + 2δ)(σ−2 + σ2)

∫ t0

0

(

|b̄1(Xt, Yt)|
2 + |b̄2(Xt, Yt)|

2
)

dt

}

< ∞

for some δ, t0 > 0. Firstly, the Harnack inequality (4.4) implies

E0e
−Φp(t,z,·)

(

P 0
t e

ε(|b̄1|
2+|b̄2|

2)
p

)p

(z) ≤ E0e
ε(|b̄1|2+|b̄2|2).

So for any s ∈ (0, 1) and λs =
ε
ps
, by Jensen’s inequality and (4.5), we arrive at

Ē
G exp

{

λs

∫ s

0

(

|b̄1(Xt, Yt)|
2 + |b̄2(Xt, Yt)|

2
)

dt

}

≤
1

s

∫ s

0

Ē
G exp

{

ε

p

(

|b̄1(Xt, Yt)|
2 + |b̄2(Xt, Yt)|

2
)

}

dt

=
1

s

∫ s

0

P 0
t e

ε(|b̄1|
2+|b̄2|

2)
p (z)dt

≤
1

s

∫ s

0

dt

{E0e−Φp(t,z,·)}
1
p

(

E0e
ε(|b̄1|2+|b̄2|2)

)
1
p

< ∞, z ∈ R
2.

Thus, taking t0 satisfying
ε
pt0

> (σ−2+σ2) and δ =
ε

pt0

2(σ−2+σ2)
− 1

2
, the proof is completed.
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Next, we give an example in which (4.4) and (4.5) hold.

Example 4.2. In (4.1), let A = 0, M = Q = 1, b2 = 0 and b1(x, y) = −x − y. Then (4.2)
reduces to

(4.7)

{

dXt = Ytdt,

dYt = (−Xt − Yt)dt + dBt.

Firstly, by Theorem 3.2 (1), (4.4) holds for

Φp(T, z, z̄) =

[

C
p

p− 1

(

σ−2T

(

1

T
+

1

T 2
+ 1 + T

)2

+ σ2T (1 + T )2
)]

|z − z̄|2

= c
|z − z̄|2

T 3
, T ∈ (0, 1)

for some constant c > 0.
Next, by [7, Theorem 3.12], (4.7) has a unique invariant nonlinear expectation E0. Let

θ0s = σ, s ≥ 0 and Pθ0 be the corresponding probability as represented in (2.4). Then

(4.8) Ē
Gf(Xt, Yt) ≥ EP

θ0
f(Xt, Yt), f ∈ C1

b (R
2).

On the other hand, by [16, Theorem 3.1(1)], under the probability Pθ0, (4.7) has a unique
invariant measure µ0:

µ0(dx, dy) =
1

2πσ2
e
− |x|2+|y|2

2σ2 dxdy.

By [7, Theorem 3.3, Theorem 3.12], letting t go to infinity in (4.8), we arrive at

E0f ≥ µ0(f), f ∈ C1
b (R

2).

Thus, according to [17, Example 4.3], we have

E0

(

e−Φp(t,z,·)
)

≥ µ0

(

e−Φp(t,z,·)
)

≥ e−cµ0(B(z, 1 ∧ t
3
2 )) ≥ α(z)(1 ∧ t)

3
2 , t > 0, z ∈ R

2

for some α ∈ C(R2). Thus, (4.5) holds for p > 3
2
.
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