
IMPLODED CROSS-SECTIONS

LISA JEFFREY AND SINA ZABANFAHM

Abstract. In this survey article, we describe imploded cross-sections, which were devel-
oped in order to solve the problem that the cross-section of a Hamiltonian K-space is usually
not symplectic. In some specific examples we contrast the intersection homology of some
imploded cross-sections with their homology intersection spaces. Moreover, we compute the
homology of intersection spaces associated to the open cone of a simply connected, smooth,
oriented manifold and the suspension of such a manifold.
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1. Introduction

Let (M,ω) be a Hamiltonian K-manifold, where K is a compact Lie group with maximal
torus T . In other words, we assume M is equipped with a symplectic structure and with
the action of a group K which preserves the symplectic structure and is generated by the
Hamiltonian flow of a collection of functions (the moment maps for the group action). Denote
the Lie algebras of K and T by k and t respectively. Let the moment map be denoted
Φ : M → k∗.

The preimage Φ−1(t∗) is in general not a manifold, and even where it is a manifold it is
usually not symplectic. The purpose of the imploded cross-section construction [18] was to
construct a Hamiltonian T space Mimpl whose symplectic quotients (with respect to the T
action) correspond to the symplectic quotients of M with respect to its K action.

In this survey article, we outline the construction of imploded cross-sections, focusing on
the universal imploded cross-section, which is the imploded cross section of the cotangent
bundle of K. The universal imploded cross-section could be seen as an analogue of the
symplectic realization of k∗. The universal imploded cross-section plays as important a role
in the context of symplectic manifolds as k∗ plays among Poisson manifolds.

The imploded cross-section can be studied using intersection cohomology. We can also
study it using the homology intersection space construction [5]. We examine differences
between these constructions, focusing on the universal implosion.

The layout of this article is as follow. In Section 2 we give general definitions and motiva-
tion for this construction. In Section 3 we describe the uses of the imploded cross-section.
In Section 3.2 we characterize the universal imploded cross-section. In Section 4 we describe
the work of Dancer, Kirwan and Swann (see for example [9]) on hyperkähler implosions. We
discuss the work of Safronov [44] relating imploded cross sections with derived geometry.
We also describe the work of Martens-Thaddeus [40] on the universal nonabelian symplectic
cut. Next we review the work of Howard, Manon and Millson [22] about bending flows, and
show how this work can be described in terms of imploded cross-sections. We outline the
work of Hilgert-Manon-Martens [22] on symplectic contraction, and related work of Jeremy
Lane [34]. Finally we review recent work of Hoffman and Lane on toric degenerations and
integrable systems [25] which was described in [24] and [36].

In Section 5 we review intersection homology and describe the intersection homology
of a universal imploded cross-section of SU(3) (joint work of the first author with Nan-
Kuo Ho [23]). In subsection 5.1 we contrast intersection homology (IH) with the homology
intersection spaces (HI) of Banagl and Hunsicker [5]. In subsection 5.2 we outline intersection
homology. In subsection 5.3 we outline the construction of homology intersection spaces. In
subsection 5.4 we outline the construction of the universal imploded cross-section of SU(3),
while in subsection 5.5 we describe the intersection homology of a cone. In subsection 5.6 we
give a computation of the HI of the universal imploded cross-section studied above. Finally,
in the Appendix A we compute the HI of suspensions, by methods similar to those from
subsection 5.6.

The authors thank Markus Banagl for guidance on Section 5 of the paper, and thank Reyer
Sjamaar for suggestions regarding Section 4. They would also like to thank Ben Hoffman
and Jeremy Lane for providing the detailed description of their work that appears in Section
4.6 below.
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2. Imploded cross-sections

In this section and the next, we follow [18].
We fix K to be a compact connected Lie group. Let (M,ω) be a Hamiltonian K-manifold

with equivariant moment map Φ : M → k. Here k denotes the Lie algebra of the group
K. Moreover, we assume that T is a maximal torus of K and t∗+ is is a chosen fundamental
Weyl chamber in t∗. Here t denotes the Lie algebra of the maximal torus T of K.

Symplectic manifolds with HamiltonianK actions are parametrizations of systems equipped
with a symmetry group K. It is desirable to divide out by the symmetry group to obtain a
simpler system. However, in general the new system will not be symplectic.

If 0 is a regular value of the moment map, and K acts freely on Φ−1(0), then the symplectic
quotient Φ−1(0)/K is a smooth manifold. If 0 is a regular value of the moment map, then
K acts with finite stabilizers at all points of Φ−1(0) and Φ−1(0)/K is an orbifold, in other
words a topological space that is locally homeomorphic to the quotient space of an open
subset of a smooth manifold by a finite group action.

If we instead want a space that parametrizes not the symplectic quotient at 0, but rather
symplectic quotients at other orbits in k∗, then it makes sense to look at Φ−1(Oλ)/K for a
general orbit Oλ of the coadjoint action in k. If we take the preimage of one such orbit of
the coadjoint action under the moment map and then take the quotient by the action of K,
in general we recover an orbifold, or in good situations a smooth manifold. For example,
for K = SO(3), the Lie algebra k∗ is identified with R3 and the coadjoint action of K on
it is the rotation action. In this case, the orbits Oλ are 2-spheres with center 0 through the
points 0 6= λ ∈ t∗.

2.1. Symplectic cross-section theorem. In general there is an open subset U of t∗ for
which Φ−1(U)/T is foliated by the symplectic quotients Φ−1(λ)/T for λ ∈ U . Moreover,
for each λ ∈ t∗, we have Φ−1(λ)/T ∼= Φ−1(Oλ)/K. The symplectic cross-section theorem of
Guillemin and Sternberg ([19], Section 41) states the following.

Let M be a Hamiltonian K-manifold, where K is a compact connected Lie group. Let T
be a maximal torus of K with Lie algebra t. Denote the moment map for the K action on
M by Φ : M → k∗.

Let α be a point in t∗. Let p be a point in M with α = Φ(p). Let Bε(α) be a ball of radius
ε in t∗ around α. By [19] Theorem 26.7, there is a T -invariant neighbourhood U of Φ−1(α)
in M such that

W = Φ−1
(
Bε(α)

)
∩ U

is a symplectic submanifold of M , where Bε(α) is a ball in k∗ with center α and radius ε.
Then W is T -invariant and the action of T on W is Hamiltonian and the moment map is
just the restriction of Φ : W → t∗. The space W is called a slice for the G action at p.

Every K-orbit in M that intersects W intersects it in a single T -orbit ([19], Proposition
41.2)

Finally W can be reconstructed from α and the isotropy representation of T on TWp, as
a Hamiltonian T space ([19], Theorem 41.2).

2.2. Examples.

Example 2.1. (1) The space CP 1, equivalently S2, is a coadjoint orbit of the rotation
group SO(3). The moment map is the inclusion map into R3. We may choose a
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maximal torus of SO(3) so that the dual of the Lie algebra of the maximal torus is
identified with the vertical axis {(0, 0, s)|s ∈ R} in the dual of Lie algebra of SO(3),
which is identified with R3. The preimage of the Lie algebra of t∗ under Φ consists
of two points, the north and south poles.

(2) The group U(n + 1) acts on the space CP n by right multiplication. The moment
map for this action is

φ([z0 : · · · : zn])ij =

√
−1ziz̄j

2π
∑n

k=0 |zk|2
.

The preimage of t∗ is the subspace where the image of the moment map is a diagonal
matrix with entries in

√
−1R.

This means ziz̄j = 0 if i 6= j, and hence that at least one of zi or zj is 0. This is
only possible if all but one of zi are 0. These points of CP n are the fixed points of
the action of the maximal torus by right multiplication. In this case the preimage of
t∗ under the moment map consists of isolated points.

(3) We now consider the product of a collection of spheres. Let K = SU(2) act diagonally
on a space M which is the product of N copies of the sphere CP 1. The moment map
is the sum

Φ : (u1, . . . , uN) 7→
N∑
i=1

uj.

Here, each uj is regarded as a point of k∗ ∼= R3 (so the sum
∑

j uj makes sense).

Each uj satisfies |uj| = 1 for each j since each uj is a member of S2.
In this case the condition that the moment map takes values in t∗ is that the sum∑
j uj is in t∗, in other words that this sum is on a chosen axis in R3, for example

the vertical axis.
Notice that the space of products of spheres has a subspace of Φ−1(t∗) for which the

restriction of the symplectic form from the product of spheres is not everywhere symplectic.
This restriction is of course closed, but it may be degenerate. Fix a point x ∈ Φ−1(t∗) ⊂M .

Taking a basis for the tangent space to Φ−1(k∗) at x, denote by ι : Φ−1(t∗)→ Φ−1(k∗) the
inclusion map, and its adjoint π := ι∗ is the projection from the tangent space to Φ−1(k∗) at
x to the tangent space to Φ−1(t∗) at x using the chosen invariant inner product. Denote by
Ax the matrix that represents the symplectic form in this basis. Then the condition that the
restriction of the symplectic form is degenerate at x is that the matrix π◦Ax◦ι is degenerate,
in other words that the determinant of π ◦Ax ◦ ι is 0. This means that one particular minor
of this matrix is 0. This minor is the determinant of a square submatrix of real codimension
dim(K)− dim(T ) := `. In appropriate coordinates on the tangent space to M at x, it is the
determinant of the first 2N − ` rows and the first 2N − ` columns of the matrix.

Example 2.2 (Actions on coadjoint orbits). [35]
Jeremy Lane has studied the action of SU(n− 1) on a coadjoint orbit of SU(n) where the

action arisis from the inclusion of SU(n − 1) in SU(n) and the coadjoint action of SU(n)
on the orbit. He finds that there are loci where the symplectic form on the orbit becomes
degenerate when restricting to the dual of the Lie algebra of the maximal torus of SU(n−1).
For example, Lane finds that for n = 3, the symplectic cross-section of such an orbit is a
Lagrangian submanifold of dimension 3.
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When taking a symplectic quotient at a value of the moment map which is not a regular
value, the symplectic quotient is a stratified symplectic space [45]. In other words, the
symplectic quotient is not a smooth manifold, but decomposes into strata each of which is
a smooth manifold and has a symplectic structure. The preimage of the Lie algebra of the
maximal torus under the moment map (called the symplectic cross-section) is also a stratified
space, but the strata are not necessarily symplectic. The imploded cross-section is designed
to repair this so that each stratum of the preimage of the maximal torus under the moment
map has a symplectic structure.

Define a relation ∼ on Φ−1(t∗+) as follows:

Definition 2.3. Let K act on k∗ by the coadjoint action. Then m1 ∼ m2 if there exists
k ∈ [KΦ(m1), KΦ(m2)] such that k ·m1 = m2, where k ·m denotes the image of the action of
k on m.

It turns out that this defines an equivalence relation on Φ−1(t∗). Indeed, by equivariance
of the moment map Φ, m1 ∼ m2 implies that KΦ(m1) = KΦ(m2) and therefore this equivalence
relation is transitive.

Definition 2.4. The symplectic implosion M , denoted by Mimpl, is defined as

Mimpl = M/ ∼,

where ∼ is the above equivalence relation. This space is equipped with the quotient space
topology.

One can lift the left action of K on itself to a Hamiltonian action on the cotangent bundle
T ∗K. The implosion of the cotangent bundle, (T ∗K)impl, is called the universal imploded
cross-section of K. The following theorem explains why this space is called “universal”:

Theorem 2.5. ([18], Theorem 4.9) For any Hamiltonian K-manifold M , there exists an
isomorphism

Mimpl
∼= (M × (T ∗K)impl) �0 K,

where �0 denotes the symplectic quotient and the symplectic quotient is with respect to the
diagonal action of K.

The above theorem tells us that the imploded cross-section of M is the same as the
symplectic quotient at 0 of the product of M with the imploded cross-section of the cotangent
bundle of K (in other words the universal imploded cross-section of K).

3. Universal imploded cross-section

3.1. Introduction. Let K be a compact connected Lie group. The symplectic quotient
of a symplectic manifold equipped with a Hamiltonian K action is a stratified symplectic
space (in other words each stratum is equipped with a symplectic structure [45]), but the
preimage of the dual of the Lie algebra of the maximal torus T under the moment map is
not necessarily symplectic. The imploded cross-section of such a manifold has the property
that the intersection of each stratum with the preimage of the Lie algebra of the dual of the
maximal torus under the moment map is symplectic.
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3.2. Universal implosion. The universal imploded cross-section is the imploded cross-
section of the cotangent bundle of a Lie group. It has the property that the symplectic
quotient at 0 of the product of a Hamiltonian K-manifold M with the universal imploded
cross-section of T ∗K is the imploded cross-section of M . The definition of the universal
imploded cross-section was stated in [18].

3.2.1. Universal imploded cross-section of SU(2). The universal imploded cross-section of
K = SU(2) is a copy of C2, as shown in Example 4.7 of [18]. One way to describe this
correspondence is that the cotangent bundle of K may be identified with K × k∗, with the
moment map given by projection on k∗. Hence the preimage of t∗ is K×t∗. The implosion is
obtained by collapsing the fiber above the identity element e by the action of the commutator
subgroup [K,K]. But [K,K] = K so this action collapses K × {0} to a point. Hence the
imploded cross-section is K ×R/ ∼. Here the equivalence relation identifies (x, 0) ∼ (y, 0).
If s 6= 0 and t 6= 0, then (x, t) ∼ (y, s) implies t = s and x = y. This identifies the imploded
cross-section as the cone on S3, in other words C2.

3.2.2. Universal imploded cross-section of SU(3). As described in Example 6.16 in [18], the
universal imploded cross-section of SU(3) has a structure of an irreducible affine complex
variety which is given by

{(z, w) ∈ C3 × C3 | z · w = 0}.
This space has an isolated singularity at (0, 0). It turns out that this space is homeomorphic
to the open cone over the compact connected Riemannian manifold

Y = {(z, w) ∈ C3 × C3 | z · w = 0, |z|2 + |w|2 = 1}.

We show in [23] (Theorem 4.2) that the space Y decomposes as the union of two spaces
W and X, where the disjoint union of two copies of S5 is a deformation retraction of W ,
while SU(3) is a deformation retraction of X and the disjoint union of two copies of SU(3)
is a deformation retraction of W ∩X. A Mayer-Vietoris sequence enables us to compute the
homology of Y , which completes the computation of the intersection homology of X.

3.2.3. Quasi-Hamiltonian analogue for SU(2). Quasi-HamiltonianK-spaces were introduced
by Alekseev, Malkin and Meinrenken [1]. A quasi-Hamiltonian K-space is a manifold
equipped with a K-action and equipped with a 2-form ω. The form ω is neither closed nor
nondegenerate, but satisfies three key properties with respect to the K action ([1], Definition
2.2) which are analogous to certain properties of a Hamiltonian K-manifold (namely that
it is equipped with a 2-form which is closed and nondegenerate, and there is an equivariant
moment map µ : M → k∗).

The space K × K is the quasi-Hamiltonian analogue of the cotangent bundle T ∗K, and
has a group valued moment map (the commutator map Φ : K×K → K). It is then possible
to define an imploded cross-section for quasi-Hamiltonian K-spaces in a manner analogous
to the definition of imploded cross-sections for Hamiltonian K-spaces.

We now specialize to K = SU(2) for the remainder of this section. Under this definition,
the imploded cross-section of the quasi-Hamiltonian space K ×K (the double for the group
K) is isomorphic to S4 (Proposition 2.29 of [27]).

This is true because the strata of K are σ0 (the stratum consisting of all elements of K
whose stabilizer is conjugate to T under the adjoint action) and σ± = ±I (the stratum
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consisting of the elements of the center of K). We have

Φ−1(σ0) ∼= K × (0, π).

Of course Φ−1(σ±) is a copy of K and Φ−1(σ±)/K is a point. These fit together to form the
suspension of K = SU(2) = S3, which is S4. So the imploded cross-section of K ×K is S4.

4. Further work on symplectic implosion

In this section we describe some other examples of work on symplectic implosion.

4.1. Hyperkähler implosion: the work of Dancer, Kirwan and Swann. Dancer, Kir-
wan, Swann and their collaborators defined hyperkähler analogues of symplectic implosion.
In [9] these authors define a hyperkähler reduction of the universal example for SU(n) in
terms of quiver varieties. For example, the hyperkähler reduction of the universal example
is also a quiver variety. For the general definition of a quiver variety, see for example King
[31] or Ginzburg [17].

In [10] these authors extend this treatment to the orthogonal and symplectic groups. They
discuss some of the ways in which these cases are different from SU(n). In [12] the authors
show that the universal hyperkähler imploded cross-section contains a hypertoric variety
(in other words a submanifold with a hyperkähler structure which is preserved by a torus
action). The last section of this paper outlines an alternative description involving gauge
theory and Nahm’s equations.

In [14], the hyperkähler quotient of a space with a group-valued moment map is defined.
In [13], these authors relate hyperkähler implosion to Nahm’s equations. In [11] the authors
study the twistor space (see for example [41]) associated to the hyperkähler implosion of a
Hamiltonian K-space, where K = SU(n).

4.2. Derived geometry and implosion: the work of Safronov. Let G be a reduc-
tive Lie group. In [44], Safronov shows that the universal implosion is equivalent to the
hyperkähler implosion of a stacky quotient. The idea of shifted symplectic geometry was
developed for a stack by Pantev et al. [43]. Safronov interprets symplectic implosion in this
context. Symplectic implosion replaces a Hamiltonian G-space by a Hamiltonian H-space
(where H is the maximal torus of G) so that the symplectic quotients at all level sets of the
moment map are the same. Group-valued implosions are defined.

Safronov gives a characterization of the universal symplectic implosion in terms of stacks
(using a compact Lie group K and its complexification G, with Borel subgroup B with Lie
algebra b and nilpotent subgroup N with Lie algebra n, so that n = [b, b]). Safronov obtains
that the universal symplectic implosion of G is the stack G×N b.

Safronov also provides an adjoint map for implosion, which maps H-spaces to G-spaces.
This could be thought of as a one-sided inverse map.

Safronov shows in Theorem 3.11 [44] that quasi-Hamiltonian reductions of imploded cross-
sections with respect to a group K are the same as covers of quasi-Hamiltonian reductions
with respect to the maximal torus H along a coadjoint orbit.

4.3. Symplectic cuts: the work of Martens and Thaddeus. The work of Martens and
Thaddeus [40] defines a “universal nonabelian symplectic cut”, the “nonabelian symplectic
cut” of the cotangent bundle of a compact Lie group K. The nonabelian symplectic cut of a
Hamiltonian K-manifold M is then defined as the symplectic quotient of the product of M
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and the universal nonabelian symplectic cut. The universal nonabelian symplectic cut has a
symplectic description as the symplectic cut of T ∗K according to a polytope P (see equation
(12) of [40] for the definition). There is also an algebraic-geometric characterization of the
universal nonabelian symplectic cut (see equation (14) of [40]).

4.4. The work of Howard-Manon-Millson. In [26], these authors consider the space of
polygonal linkages in R3, in other words m-sided polygons in R3 with fixed side lengths. In
this paper, the authors restrict to the group K = SU(2) whose Lie algebra is R3. This space
can be identified with the symplectic quotient of the Grassmannian of two-planes in Cm by
the action of Tm, where T is the maximal torus of K.

This space is equipped with a torus action (“bending flows”). The torus action fixes one
part of a polygon (the part on one side of a diagonal) and rotates the rest around that
diagonal. The difficulty is that there is a set of measure zero where the torus action fails to
be defined, the set where some diagonal has length 0.

The space of m-gon linkages was originally described in [30] and was given a symplectic
structure. In the paper [26], the authors identify the space of polygonal linkages in R3 with
the symplectic quotient of a Grassmannian by a torus action (as described above).

They show in Section 3 of their paper that this topological space may be given an alterna-
tive description as an imploded cross-section. One may use the homeomorphism between the
Grassmannian of 2-planes in Cm and the symplectic quotient of the imploded cross-section
of cotangent bundle of Km by the left diagonal action of K.

4.5. Symplectic contractions: the work of Hilgert-Manon-Martens and Lane.
Hilgert, Manon and Martens [22] define a symplectic contraction from one Hamiltonian
space to another, which is a continuous surjective map to a new Hamiltonian space whose
restriction to an open dense subset is a symplectomorphism. They give an explicit formula
for the symplectic contraction map. They are able to show that the symplectic contraction
map Φ maps a dense subset of M symplectomorphically onto a dense subset of the image of
Φ. They interpret the Gelfand-Zeitlin system on a coadjoint orbit in this language. Their
construction uses symplectic reduction and symplectic implosion.

Jeremy Lane [34] gives an alternative definition of a symplectic contraction M sc of a
symplectic manifold M . He shows that his definition is equivalent to the definition given by
Hilgert, Manon and Martens. He exhibits the symplectic contraction map Φ : M →M sc as a
surjective Poisson map, a property that is not immediately obvious from the definition given
in [22]. Lane also shows that the symplectic contraction is equipped with a Poisson algebra of
smooth functions. He identifies the symplectic contraction with the quotient space obtained
by subdividing M into suitable coisotropic submanifolds and quotienting each coisotropic
submanifold by the null foliation of the restriction of the symplectic form to it.

Lane proves that the symplectic contraction map sends M to M sc in a way that is a
homeomorphism which preserves strata. This enables him to define a smooth structure on
the symplectic contraction (the quotient space), so he is able to define a smooth structure
on a singular space.

The Poisson structure on the symplectic contraction pulls back from the Poisson struc-
ture on the original manifold. Lane uses symplectic contractions to study Gelfand-Zeitlin
systems: these are symplectic manifolds equipped with a multiplicity-free Hamiltonian U(n)
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action. Gelfand-Zeitlin systems have many similarities with toric manifolds but are not al-
ways equipped with the Hamiltonian action of a torus of half the dimension of the manifold.

4.6. Canonical bases and collective integrable systems: the work of Hoffman and
Lane. [25, 24, 36]

Let K be a compact connected Lie group and let (M,ω, µ) be a Hamiltonian K-manifold.
A classical problem in symplectic geometry asks: Beginning with the action of K, can one
construct a Hamiltonian action of the compact torus T = (S1)m × T on M (with as small a
kernel as possible)? Here m is half the dimension of a regular coadjoint orbit of K and T is
the maximal torus of K.

This question was first answered by Guillemin and Sternberg [20] in the case when K is
a unitary group U(n) or an orthogonal group O(n). Their solution involved the construc-
tion of the now-famous Gelfand-Zeitlin integrable system on k∗; they show that there is a

Hamiltonian T action on M whose moment map is the composition of M
µ−→ k∗ with the mo-

ment map k∗
Ψ−→ Lie(T)∗ for the Gelfand-Zeitlin system. A second approach, involving toric

degenerations, was used by Harada-Kaveh [21] in the case that M is a smooth projective
variety and ω is the Fubini-Study form.

The following result of Hoffman and Lane shows how to solve this problem in the general
case.

Theorem 4.1. [25] Let K be a compact connected Lie group. There exists a continuous map
Ψ: k∗ → Lie(T)∗ so that, for any Hamiltonian K-manifold (M,ω, µ), there is a commuting
diagram

(1)

M X

k∗ Lie(T)∗.

µ

φ

Ψ

Here,

• X is a singular Hamiltonian T-space and the vertical arrow on the right is its moment
map.
• φ is a continuous, proper, T -equivariant, surjective map that is a symplectomorphism

from a dense subset of M onto its image.

Moreover:

• The map Ψ ◦ µ generates a Hamiltonian T-action on a dense subset of M .
• If M is multiplicity-free, then the action of T on a dense subset of M is completely

integrable.
• If M is compact and connected, then its image in Lie(T)∗ is a convex polytope.

Although we do not go into details of their construction here, the proof of this result
uses symplectic implosion in a fundamental way. The key ingredient is the identification
of the universal symplectic implosion of T ∗K with the geometric invariant theory quotient
G � N , where G is the complexification of K and N is a maximal unipotent subgroup of
G [18]. It is known that the affine variety G �N admits toric degenerations. Hoffman and
Lane show that it is possible to integrate gradient-Hamiltonian flows of these degenerations
and thus obtain completely integrable Hamiltonian torus actions on the universal symplectic
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implosion of T ∗K. In contrast with previous works [42, 21] on gradient-Hamiltonian flows
and toric degenerations, the variety G�N is neither smooth nor projective. In order to prove
their result, Hoffman and Lane develop new techniques for controlling gradient-Hamiltonian
vector fields in this setting.

The degenerations of G � N used in the construction are degenerations to specific affine
toric varieties XC , as in [8]. Each XC is associated with the semigroup of integral points in
a convex rational polyhedral cone C ⊂ Lie(T)∗ described by Berenstein-Zelevinsky and Lit-
telmann [7, 38]. The lattice points of C are in bijection with the elements of the Kashiwara-
Lusztig dual canonical basis [29, 39] of C[G�N ]. Under the map Ψ constructed by Hoffman
and Lane, the image Ψ(k∗) is equal to C. The cone C comes with a natural linear projection
to the positive Weyl chamber t∗+. This projection fits into a commuting diagram:

(2)

k∗ Lie(T)∗

t+ t+.

Ψ

/K

=

Combining this diagram with the one in the theorem above, one readily observes that when
M is compact and connected, the image Ψ ◦µ(M) is precisely the intersection of C with the
pre-image of the Kirwan polytope of M under the projection Lie(T)∗ → t∗+.

5. Topological invariants of the universal imploded cross-section

In this section we describe some invariants of imploded cross-sections. We specialize to
the universal imploded cross-section, because general symplectic quotients of imploded cross-
sections can be obtained as symplectic quotients of the direct product of an arbitrary Hamil-
tonian K-manifold and the universal imploded cross-section of K. Because the examples are
easier to compute, we specialize to the universal imploded cross-section of K = SU(3). We
compare intersection homology (IH) with homology intersection spaces (HI).

This section is subdivided as follows. In subsection 5.1 we describe the conifold transition.
In subsection 5.2 we survey intersection homology and perversities. In subsection 5.3 we
summarize homology intersection spaces. In subsection 5.4 we compute the intersection ho-
mology of the universal example for SU(3). In subsection 5.5 we summarize the intersection
homology of a cone.

5.1. Conifold transition and blow-up manifold. In this section we define the conifold
transition and the blow-up spaces, following Banagl [3].

These spaces provide an approach to studying Poincaré duality on singular spaces. An
object called a perversity will be defined below in Definition (5.5). Given a perversity
p, one may associate a CW complex IpX to a certain class of singular spaces X . For
our purposes, we only need to understand this construction in the case that X is a Thom-
Mather pseudomanifold of depth 1 with a trivial link bundle. The definition of Thom-Mather
stratified spaces is given with more generality in [2]. The following definition appeared in
[4]:

Definition 5.1. A depth one pseudomanifold X with singularity Σ is a pair (X,Σ), where

(1) Σ is understood to be a closed subspace and a smooth manifold of codimension at least
2.
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(2) X \ Σ is a smooth manifold which is dense in X.
(3) Σ possesses control data consisting of a tube T ⊂ X around Σ which is an open set

in X together with two maps:

π : T −→ Σ

ρ : T −→ [0,∞)

such that π is a continuous retraction and ρ is a continuous distance function such
that ρ−1(0) = Σ. Moreover, it is required that (π, ρ) : T \ Σ −→ Σ × (0,∞) is a
smooth submersion.

Definition 5.2. Let L be a simply connected, smooth manifold. Let c◦(L) be the open cone
on L.

Remark 5.3. Notice that, when L is a smooth manifold, the cone c◦(L) on L is a depth 1
Thom-Mather pseudomanifold, with v (the vertex of the cone) as its singularity. The link
bundle of a depth 1 pseudomanifold is defined in Proposition 8.2 in [4]. In the case that
X = c◦(L), the link bundle is as follows:

L→ v.

Carefully following [5], we write down the construction of the conifold transition and the
blow-up manifold associated to (X,Σ).

Take a tubular neighborhood N around the singularity Σ and fix a diffeomorphism

θ : N \ Σ ∼= L× Σ× (0, 1).

Define the blow-up manifold to be:

M = (X \ Σ) ∪θ (L× Σ× [0, 1)).

Define the conifold transition to be:

CT (X) =
(X \ Σ) ∪θ (L× Σ× [0, 1))

(z, y, 0) ∼ (z, y′, 0)
(3)

for all z ∈ L, and for all y, y′ ∈ Σ.

Remark 5.4. Following this construction, one can see that when the singularity Σ is a
point, CT (X) = M is a manifold with boundary L. In particular, when X is c◦(L) for some
smooth manifold L, we have

CT (X) = M ∼= L× [0, 1).

5.2. Intersection homology and perversities. In this section we outline intersection
homology, which reduces to ordinary homology for smooth manifolds. See the books [15]
(Chapter 2) and [33] for general background information on intersection homology.

Taking the quotient of a smooth manifold by a group action produces singularities unless
the group acts freely. The resulting topological spaces fail to satisfy standard topological
properties such as Poincaré duality. Intersection homology and intersection cohomology were
introduced by Goresky and MacPherson [16] in an effort to preserve some of the topological
properties that are familiar in the setting of smooth manifolds. Intersection homology satis-
fies the “Kähler package”, which includes Poincaré duality, the hard Lefschetz theorem and
the Lefschetz hyperplane theorem. This is the most we can hope to retain when we leave
the the setting of smooth manifolds.
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Since imploded cross-sections are singular, it is reasonable to investigate their topological
properties using tools like intersection homology which are adapted to singular spaces, rather
than to try to study the ordinary homology of these spaces.

Definition 5.5. A perversity is a map

p : {2, 3, . . . , } → {0, 1, . . . }
satisfying

(4) p(2) = 0

and

(5) p(k) ≤ p(k + 1) ≤ p(k) + 1

for all k ≥ 2.

Throughout this article p, q are considered to be extended perversities, which are just
sequences of integers (see [5], Section 3).

Definition 5.6. The intersection homology of X is the homology of the chain complex of
p-allowable chains of X, where p is a perversity. Here a j-simplex σ is p-allowable if

(6) dim(σ ∩Xn−k) ≤ j − k + p(k)

for all k ≥ 2.

5.3. Homology intersection spaces. The definition of intersection spaces was given in [3].
In this subsection we will describe how to construct IpX, the perversity p intersection space
associated to X when (X,Σ) is a depth 1 pseudomanifold where the link L of the singular
stratum Σ is simply connected and the link bundle is the product bundle L × Σ → Σ (as
defined in the first section of [5]). The definition of the intersection space is given below in
equation (5.8).

Let l := dimL and set k := l − p(l + 1). 1

Definition 5.7. Let L<k be the union of all strata of L of degree less than k.

Assume f : L<k −→ L is a stage k Moore approximation of L (see [5], Definition 3.1 for
the definition). In other words, the homology groups Hi(L<k) are 0 for i ≥ k and

f∗ : Hi(L<k) −→ Hi(L)

is an isomorphism for i < k. Define the map g : L<k × Σ −→M to be the composition:

(7) L<k × Σ
f×idΣ−−−→ L× Σ = ∂M ↪→M.

Definition 5.8. In the notation introduced above, the perversity p intersection space IpX is
defined to be:

IpX = cone(g) = M ∪g c(L<k × Σ).(8)

1Note that by the dimension of a manifold we always mean the real dimension.
12



The notation IpX stands for the perversity p intersection space associated to X (as intro-
duced in [3]). See the definition given by equation (5.8) above.

Definition 5.9. (Homology intersection space) [5] The homology H̃Ipi (X) is defined by

H̃Ipi (X) = H̃i(I
pX;R)

where by H̃∗(X) we mean the reduced (singular) homology of X.

Remark 5.10. When X is a stratified pseudomanifold of dimension n with an isolated
singularity, the following formulas are available for the homology of the intersection space

H̃Ip(X) ([6], p. 221):

HIp∗ (X) =

{
Hj(M,∂M) j < k

Hj(M) j > k
(9)

where k := n−1−p(n) and M is the blow-up manifold associated to the space X (as defined
in subsection 5.1). For the dimension k homology, the following diagram with exact rows
and columns exists:

0

0 - ker
(
H̃k(M )→ H̃k(M , ∂M )

)
- H̃k(M)

?

- IH̃k(X) - 0

H̃Ik(X)

?

im
(
H̃k(M , ∂M

)
→ Hk−1 (∂M ))

?

0
?

�

Remark 5.10 provides a proof of Theorem 5.13. When X = co(L), the blow-up manifold
M associated to X is equal to L× [0, 1) (as explained in Remark 5.4). In particular, notice
that

H̃∗(M) = H̃∗(L),

and
H̃∗(M,∂M) = H̃∗(M/∂M) = H̃∗(c

o(L)) = 0.

5.4. Universal imploded cross-section for SU(3). The universal imploded cross-section
(T ∗SU(3))impl of SU(3) was described in Section 3.2.2 above. The middle perversity inter-
section homology of the universal imploded cross-section (T ∗SU(3))impl is calculated in [23]
and it is given by:

IH̃m
j ((T ∗SU(3))impl) =

{
R j = 4

0 otherwise.
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This was done in [23] by first computing the homology of Y by a Mayer-Vietoris argument,
and then applying at result to compute the interseection homology.

Comparing this with the result of Corollary 5.15 below, we observe that the homology
theories HIm and IHm do not agree on (T ∗SU(3))impl.

5.5. Intersection homology of a cone. In this section we describe the intersection ho-
mology for a cone.

Definition 5.11. By c◦(X), the open cone over a topological space X, we mean the quotient
space

(10) c◦(X) =
(0, 1]×X

(1, x) ∼ (1, x′)
.

On the other hand, by c(X) we mean the closed cone over X.

Given any smooth manifold L and perversity function p, the perversity p intersection
homology groups of c◦(L) are given by ([33], p. 58):

IH̃p
j (c◦(L)) =

{
H̃j(L) j < l − p(l + 1)

0 otherwise.

By comparing this with the result of Theorem 5.13 below, we see that the homology theories

H̃Ip and IH̃p usually do not agree on open cones over simply connected, smooth oriented
manifolds.

First we are going to prove two general results.

Definition 5.12. Let X be as defined above. In terms of the notation L introduced above,
the intersection space of X is

IpX =
L× [0, 1) t c(L<k)
(f(x), 0) ∼ (x, 0)

where f : L<k −→ L is a stage k = l−p(l+ 1) Moore approximation of L. Here the spaces L
and c◦(L) were defined in Definition 5.2 above, and the space L<k was defined in Definition
5.7.

Theorem 5.13. Let L be a simply connected smooth manifold of dimension l, and let

X = c◦(L)

denote the open cone on L, where L is as in Definition 5.12. Assume that p is an (extended)
perversity. Then the homology intersection space associated to X and p is

H̃Ipj (X) =

{
0 0 < j < l − p(l + 1)

H̃j(L) otherwise.

In the following Lemma we compute the homology of the middle perversity intersection
space associated to the universal imploded cross-section of SU(3), denoted by (T ∗SU(3))impl.

Lemma 5.14. As shown in [23], the imploded cross-section (T ∗SU(3))impl is homeomorphic
to the open cone c◦(Y ) where

Y = {(z, w) ∈ C3 × C3 | z · w = 0, |z|2 + |w|2 = 1}(11)
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is a compact Riemannian manifold of dimR(Y ) = 9. (Here z · w denotes the usual inner
product on C3.) Moreover, the reduced homology groups of Y are given by:

H̃j(Y ) =

{
R j = 4, 5, 9

0 otherwise.
(12)

Using the Lemma 5.14, the corollary below is thus a direct consequence of Theorem 5.13.2

Corollary 5.15. The homology intersection space of the imploded cross-section of SU(3) is

H̃Imj ((T ∗SU(3))impl) =

{
R j = 5, 9

0 otherwise.

Remark 5.16. Observe that homology of intersection spaces is a homotopy invariant, whereas
intersection homology is not.

5.6. Proof of Theorem 5.13. In this section we give the proof of Theorem 5.13, which
gives the intersection homology of cones of smooth oriented manifolds L.

Proof. Following Remark 5.4, we have

IpX = L× [0, 1) t c(L<k)/ ∼

where k = l − p(l + 1) and the equivalence relation is given by:

(x, 0) ∼
(
f(x), 0

)
, ∀x ∈ L<k.

Here f : L<k −→ L is a stage k Moore approximation of L (see for example [4]). Define two
open sets A and B as follows:

A =
L× [0, 1) t L<k × [0, 1

2
+ ε)

(f(x), 0) ∼ (x, 0)
,(13)

B = C(L<k) \
(
L<k × [0,

1

2
− ε)

)
.(14)

We observe that B is contractible, as it is the preimage of [1, 1/2 + ε) in c(L<k) under the
cone map sending (x, y) ∈ [0, 1]×L<k to [0, 1]. Hence it is homeomorphic to the cone on L<k,
so it is contractible. The set A is homotopy equivalent to L, because the identification map
f identifies each point in L<k to a point in L. Moreover, we observe that A∩B deformation
retracts to L<k, as A ∩B is homeomorphic to L<k × (1/2− ε, 1/2 + ε).
Writing the Mayer-Vietoris sequence, we have the following:

Case I : j − 1 ≥ k

In this case, the Mayer-Vietoris sequence gives 0 → H̃j(L) → H̃j(I
p̄(X)) → 0 (because

H̃j(L<k) = H̃j−1(L<k) = 0). Hence I p̄(X) ∼= H̃j(L<k) = 0.
Case II : j = k
The Mayer-Vietoris sequence gives

2Throughout this paper, the letter m denotes the lower middle perversity – see for example [33].
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. . . - 0 = H̃k(L<k)
f∗- H̃k(L)

αk - H̃k(I
p̄(X))

βk -

. . . - H̃k−1(L<k)
f∗- H̃k−1(L)

αk−1- H̃k−1(I p̄(X))
βk−1 -

. . . - H̃k−2(L<k)
f∗- H̃k−2(L)

αk−2- H̃k−2(I p̄(X))
βk−2- . . .

The maps f∗ : H̃j(L<k)→ H̃j(L) are isomorphisms for j ≤ k − 1. This implies αj = βj = 0

for j ≤ k − 1. Also βk = 0, so H̃k(I
p̄(X)) ∼= H̃k(L).

Case III : j < k

Since f∗ : H̃j(L<k)→ H̃j(L ) is an isomorphism for j < k, αj = βj = 0 in this range. This
implies the Mayer-Vietoris sequence gives

0→ H̃j(I
p̄X)→ 0

which implies H̃j(I
p̄(X)) = 0 for j ≤ k − 1. This completes the proof of the theorem. �

Remark 5.17. When X = c◦(L), IpX deformation retracts to Cone(f) where by Cone(f)
we mean the mapping cone of f : L<k −→ L. Therefore Theorem 5.13 gives the homology
groups of Cone(f).

Appendix A. Intersection space associated to a suspension

The authors are not aware of examples of imploded cross-sections which are suspensions.
The material below is included nonetheless because the homology of intersection spaces of
suspensions can be treated using the same techniques as are used to characterize intersection
homology and cohomology of intersection spaces of the universal example for SU(3).

In this Appendix we will prove a theorem related to the suspension over a smooth manifold.

Theorem A.1. Let L be a smooth, simply connected, oriented manifold of dimension l and
let p denote an extended perversity. Then:

H̃Ipj
(
susp(L)

)
=


H̃j−1(L), 0 < i < l − p(l + 1)

H̃j(L)⊕ H̃j−1(L), j = l − p(l + 1)

H̃j(L), otherwise,

where by susp(L) we mean the suspension over L.

Remark A.2. Note that the suspension of a smooth manifold M is not normally a smooth
manifold itself (the suspension of M is only a smooth manifold only if M is a sphere), so
we would not expect the ordinary cohomology of the suspension of M to satisfy Poincaré
duality.

Let L be a smooth, simply connected manifold of dimension L. By X := susp(L) we mean
the quotient space obtained from L× [−1, 1] by collapsing L×{1} to one point (denote this
point by v), and L× {−1} to another point (denoted by u). We observe that (X, {u, v}) is
a depth 1 Thom-Mather pseudomanifold with trivial link bundle

L× {u, v} pr2−−→ {u, v}.

Following the construction given in subsection 5.6, we have M = CT (X) ∼= [−1, 1]× L.
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Fix a perversity p and set k := l − p(l + 1), then

IpX = L× [−1, 1] ∪g c(L<k × {u, v}),(15)

where the map g is defined to be the composition

L<k × {u, v} → L× {u, v}
∼=−→ L× {−1} t L× {1} ↪→ L× [−1, 1](16)

where f : L<k → L is a stage k Moore approximation of L.

A.1. Proof of Theorem A.1. Throughout this section, X = susp(L) where L is a smooth
manifold satisfying the conditions given in Theorem A.1. Moreover, we set k = l− p(l + 1).

First we are going to prove the following lemma:

Lemma A.3. For i > k we have

H̃Ipi (X) = H̃i(L).

Proof. The proof of this lemma is very similar to the proof of Theorem 5.13. Define two
open sets A and B as follows. The space A is defined by

A = L× [−1, 1] t L<k × {u, v} × [0, 1/2 + ε)/ ∼
where the equivalence relation is given by:

(l, u, 0) ∼ (f(l),−1)

(l, v, 0) ∼ (f(l), 1).

On the other hand, the space B is defined by

B = c(L<k × {u, v}) \ L<k × {u, v} × [0, 1/2− ε).
By similar reasoning as in the proof of Theorem 5.13, we see that A deformation retracts to
L, B is contractible and A ∩B is homotopy equivalent to L<k t L<k.

For j > k the Mayer-Vietoris sequence gives

0→ H̃j(L)→ H̃j(I
p̄(X))→ 0

as H̃(L<k)⊕ H̃(L<k) = 0 for j ≥ k. �

We now require the following lemma:

Lemma A.4. For i < k

H̃i(I
pX) = H̃i−1(L).

Proof. This time we cover IpX with two different open sets C,D as follows:

C = L tg c(L<k × {u, v}) \ L<k × {u} × [1/2− ε, 1/2 + ε, ]

D = L tg c(L<k × {u, v}) \ L<k × {v} × [1/2− ε, 1/2 + ε.]

Now we have that C and D deformation retract to Cone(f). Moreover, C ∩D is homotopy
equivalent to L. For i < k the Mayer-Vietoris sequence with respect to the cover {C,D}
gives

0→ H̃j(I
pX)→ H̃j−1(L)→ 0

as H̃j(Cone(f))⊕ H̃j(Cone(f)) = 0 for j < k. �
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Conclusion of proof of Theorem A.1: In order to complete the proof of Theorem A.1, we need
to calculate Hk(I

pX). Once again we consider the Mayer-Vietoris sequence with respect to
the cover IpX = A ∪B given in the proof of Lemma A.3.

(17)
. . . - 0 = H̃k(L<k)⊕ H̃k(L<k)

γk - H̃k(L)
αk - H̃k(I

p̄(X))
βk -

. . . - H̃k−1(L<k)⊕ H̃k−1(L<k)
γk−1- H̃k−1(L)

αk−1- H̃k−1(I p̄(X))
βk−1- . . .

Using this diagram, we observe that αk is injective, as the top line of the diagram gives

0
γk−→ H̃k(L)

αk−→ H̃k(I
pX)→ . . .

The map γi is given by

γi :H̃i(L<k)⊕ H̃i(L<k)→ H̃i(L), (ω, η) 7→ f∗(ω) + f∗(η).

For i < k, f∗ : H̃i(L<k) −→ H̃i(L) is an isomorphism. This implies that γi is a surjective
map with

ker(γi) = {(ω,−ω)| ω ∈ H̃i(L<k)} ∼= H̃i(L<k) = H̃i(L).

In particular we get ker(γk−1) ∼= H̃k−1(L). Now we can calculate H̃k(I
pX).

H̃k(I
pX) = Im(βk)⊕ ker(βk) = ker(γk−1)⊕ Im(αk) = H̃k−1(L)⊕ H̃k(L).

�
This completes the proof of Theorem A.1.
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