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Abstract

The global approach to control systems which we have been pur-

suing in other work favours the study of dynamics achievable through

control. It employs certain globally defined geometric objects and at-

tempts to describe them in the general case. In this work, we define

the singular set and examine some of its general properties. We then

briefly examine its role in the global design of control dynamics.

1 Introduction

Linear control design is by its nature local; hence the main interest is in
obtaining a single stable equilibrium for the resulting control dynamics. In
global control, the dynamics considered can include a number of equilibrium
points of different stability types (index) and perhaps other, more compli-
cated invariant sets, such as limit cycles. It is therefore relevant to consider
the set of all points which can be turned into equilibria through some choice
of control. Choosing the term control indicatrix at a given state for the sub-
set of the tangent space containing all possible control vectors, the set we
just described is the subset of the state space where the control indicatrix
contains the zero vector. It is the singular set of this work. As a simple
example, for a single-input linear control system in its controller-canonical
form, the singular set is a line (one-dimensional subspace) in the direction of
the first state component.

We shall give results about the generic dimension of the singular set,
distinguishing between the control-affine case and the more general context
of a control fibration (details later). Since the state spaces we consider are
manifolds, we must allow for singularities in the control distribution, in other
words for subsets where the rank of the the span of the control vector fields
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drops. The special category of drift-free control systems is not our main
consideration since, in this case, and assuming a control indicatrix containing
a neighbourhood of zero, the singular set is the whole of the state space
manifold.

In all the other cases, the dimension of the singular set is generically the
same as the dimension of control. This is convenient for the global control
methodology we have in mind, which uses submanifolds transverse to the
control distribution (or fibration) and of complementary dimension. On such
manifolds, we have natural dynamics defined (independent of control), which
we have called control-transverse dynamics in [14]. Taking advantage of the
transversality of the control, such a manifold can then be made invariant for
the control dynamics and, moreover, we can fully control the dynamics in
the transverse directions. If the control-transverse manifold is also transverse
to the singular set, we obtain isolated equilibria, whose stability type we
have some control over by the choice of the geometric object, the transverse
manifold. We indicate the main lines of this global control design method in
the last section.

2 The singular set in some common control

settings

In this work, the singular set is defined as the subset of state space of points
where we have available the zero vector. We shall denote it by Σ. By way
of motivation, we first examine the form it takes in each of the three cases
we consider and describe the expected dimension and geometry. More precise
results will be stated and proved in the next section.

2.1 Linear control systems

For a linear control system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm,

writing Wm = span(B) = span(b1, . . . ,bm) for the constant control distribu-
tion (assumed of full rank m of course), the singular set is defined as

Σ = {x ∈ Rm : Ax ∈ span(B)}.

Since the bi are linearly independent, let us take complete to a basis of Rn,
(e1, . . . , en−m, b1, . . . bm) and write Rn = Un−m ⊕Wm for the resulting direct



sum decomposition. If x1, x2 are the corresponding components of the state
and we partition the matrix A in blocks in the same way,

A =

[

A11 A12

A21 A22

]

,

we see that x ∈ Σ if and only if

A11x1 + A12x2 = 0.

Generically, we expect that this system of (n −m) equations in n variables
will have as solution an m-dimensional subspace, which is the singular set in
this case.

If the system is controllable and is given in controller-canonical form,
this is seen very easily. We do the single-input case, the general Brunovsky
canonical form being similar. Since the state matrix is

A =















0 1 · · · · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 · · · 0 1
−a1 −a2 · · · · · · −an















and b = en, the singular set is the line x2 = 0, . . . , xn = 0, i.e. the x1 axis. In
the general case, it is an m-dimensional subspace.

2.2 Control-affine systems in Rn

We are interested in control-affine systems in Rn

ẋ = f(x) +
m
∑

i=1

uigi(x)

where the ”drift” vector field is general (not the zero vector field). Assuming
unlimited control action, the control indicatrix at each point is an affine
subspace of dimension equal to dim span(g1(x), . . . , gm(x)). We expect this
dimension to be m on an open and dense subset of state space.

The singular set is again

Σ = {x ∈ Rn : f(x) ∈ span(g1(x), . . . , gm(x))}.

Reasoning as above, we can make a local argument: near a point where
the rank is maximal, consider a basis of the form (e1, . . . , en−m, g1, . . . , gm)



(all are functions of the state, defined in some neighbourhood.) Decom-
posing the state in the new variables into x1 ∈ span(e1, . . . , en−m) and
x2 ∈ span(g1, . . . , gm), the control system takes the form

[

ẋ1

ẋ2

]

=

[

f1(x1, x2)
f2(x1, x2)

]

+

[

0
Im

]

u.

Hence x ∈ Σ exactly when f1(x1, x2) = 0, again a (nonlinear) system of
(n − m) equations in n variables, and we expect that the singular set has
dimension m.

As an important special case, consider the form assumed in the back-
stepping method, the strict-feedback form:

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3

· · · · · ·

ẋn−1 = fn−1(x1, . . . , xn−1) + gn−1(x1, . . . , xn−1)xn

ẋn = fn(x) + g(x)u

This is meant to be a local expression, and the assumption made, that the
gi are non-zero, means that the singular set is simply the solution set of the
system of (n− 1) equations

0 = f1(x1) + g1(x1)x2

0 = f2(x1, x2) + g2(x1, x2)x3

· · · · · ·

0 = fn−1(x1, . . . , xn−1) + gn−1(x1, . . . , xn−1)xn,

which, by the implicit function theorem (given the assumptions made), is
(locally) a line (a one-dimensional manifold, in fact a graph.) This structure
is exploited in the back-stepping methodology, which is a Lyapunov function-
based control design (see, e.g.. [16], section 14.3.)

2.3 Control fibrations

We now change gear and define a general control system on a smooth state
space manifold Mn, using the notion of a fibration. The use of the notion of
fibration is not new in control theory (see for example [7]), though here we
try and make the assumptions as realistic as possible, and also suitable for
application of the transversality results to follow.



Definition 1. A subset C of the tangent bundle TM is a control fibration

if

C TM

M

i

p
π

with i an inclusion map such that p = π ◦ i is onto and (C, p,M) is a weak
(or Serre) fibration. Each fibre is assumed to be a compact, convex subset of
the corresponding tangent bundle.

The choice of this definition is in recognition of the fact that we never
have, in practice, unlimited control action and, moreover, by using gener-
alized controls, we can assume that we have available any direction in the
convex span of any finite set of control directions. For the purposes of this
paper, it allows us to obtain results about genericity which exploit the com-
pactness in a crucial way. Having a convex fibre does not, of course, imply
that the fibration is trivial: take as a simple example the usual Möbius band
as a fibre bundle with fibre the unit interval or, even more simply, the unit
disk bundle of the sphere, with fibre the vectors of length less than one, with
respect to some Riemannian metric.

3 Genericity results

3.1 Linear control systems

Proposition 1. For linear control systems

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, m ≤ n,

provided the matrix B is of full rank m, the set of all state matrices A such
that the singular set is an m-dimensional subspace is open and dense in the
space of all square matrices.

The proof is a familiar elementary argument.

Proof. As explained above, the singular set is the set of solutions of a system
of (n−m) linear equations in n variables. Provided the (n−m)× n matrix
[A11A12] is of full rank, the solution set is an m-dimensional subspace. But
this happens provided at least one of the (n − m) × (n − m) sub-matrices
has non-zero determinant, an algebraic inequality in its elements. The set of
such matrices is thus a union of open, dense subsets.



3.2 Control-affine systems on a manifold

The obvious way of generalizing a control-affine system in a vector space
to one in a manifold is to suppose given n + 1 smooth vector fields on a
smooth manifold Mn. The first is to play the role of the ”drift” and the
remaining n vector fields span a distribution D ⊂ TM , which is smooth by
construction, but may not have constant rank (see [11]). This leads to the
posing of problems such as that of feedback equivalence (see [12]), which
have been well developed within nonlinear control theory. At its core, this
is just a manifestation of affine geometry: there is no natural selection of
a drift vector field, since any choice of feedback control changes it. This is
just saying that an affine subspace of a vector space does not have a natural
affine basis.

There is a simple algebraic way of making everything invariant: we con-
sider instead of the control distribution, the quotient bundle TM/D. An
affine control system (with unbounded control) is then simply a section of
this bundle. When the rank of D is constant and equal to to m, the quotient
bundle is a vector bundle of fibre dimension (n−m). For any vector bundle
(E, π,M), where π : E → M is the projection, and the fibre is isomorphic to
Rk, there is the obvious zero section z : M → E, z(p) = (p, 0) ∈ Ep, which
allows us to identify a copy of M in the total space E with the image of
the zero section. We denote it by Z. It is a submanifold of E of dimension
n = dimM . The smooth sections of any vector bundle E → B are denoted
by Γ(E). Thus, a control-affine system is an element of Γ(TM/D). The zeros
of such a section correspond to points of the singular set.

The rank of the control distribution D is not constant, in fact cannot be
constant on a general manifold, for topological reasons at least (any vector
field on an even sphere must have zeros, for example.) The singularities of
such distributions, generated by m vector fields, have been studied from a
local point of view ([12], [19], [20], [21]), motivated by control theory con-
siderations. Local normal forms have been obtained, though, very quickly,
as we increase (co)dimension, moduli appear. On the other hand, it is a
classical topic in singularity theory to consider the stratification of the jet
space associated with a smooth map between manifolds according to rank of
the derivative of a map (see for example [3] or [9].) Since we are interested
in global aspects, and since we are only considering control-affine systems
(with general non-zero drift term), we only need the global genericity results
of singularity theory, adapted to the context of the distribution D. This
means that we use local charts to identify the m-tuple of vector fields with
the n ×m matrix they define. As in the case of the jet space J1(M,N), we
have first a stratification of the space of n×m matrices according to corank



([9], Prop.5.3, p.60) and then by transversality we deduce the existence of
submanifolds of M where the control distribution has this corank. The low-
est stratum, which we shall call M0, consists of points where the matrix has
full rank m. The higher strata have higher codimension (so lower dimension)
and are described in the references sited. The submanifold M0 is an open
and dense subset of M (it has zero codimension in M .) Throughout, we con-
sider the Whitney topology on the space of smooth maps between manifolds
(see [9] for details.)

Theorem 1. For a dense subset of the set of m-tuples of vector fields, the
subset M0 of M where the rank of D is m is the open, dense submanifold of
M and the singular set is an m-dimensional submanifold of M0.

Proof. The first part follows from the singularity theory considerations above.
We shall obtain the singular set as the intersection of the section of the
quotient bundle with the n-dimensional submanifold Z, the zero section of
TM/D. In a suitable local chart (U, φ), the bundle is a product bundle,
(TM/D)|Ui

≃ U × Rn−m. Cover M0 by a countable collection of charts
(Ui, φi), with the closure of each Ui compact. By transversality theory, the
set of maps s : Ui → (TM/D)|Ui

which are transverse to the n-dimensional
submanifold Z ∩ (TM/D)|Ui

is open and dense in the relevant Whitney
topology. But this means that the inverse image of the intersection is a
submanifold of Ui of the same codimension as the codimension of Z in
(TM/D)|Ui

≃ Ui × Rn−m. This codimension is clearly n − m so the sub-
manifold we want is of dimension n− (n−m) = m. This is the piece of the
singular set in Ui. Patching these together and using the fact that we have
a countable cover, we conclude that the singular set is an m-dimensional
submanifold for a dense subset of the set of sections of the quotient bundle,
which is the same as the set of control-affine systems.

3.3 Control fibrations

In section 2.3, we gave a definition of a general control system with bounded
control action and a convexity assumption, motivated by considerations of
generalized controls and we shall use this definition without further comment.
We now make a further assumption on the control fibration C → M , to reflect
the fact that the control indicatrix comes usually as a subset of some affine
subspace of the tangent space.

First, then, we assume that a (singular) distribution D ⊂ TM is given,
of generic dimension m. We have, again, an open and dense submanifold
M0 on which the distribution is regular, of rank m. The control fibration
is now further restricted to having each fibre a compact, convex subset of



some element of TpM0/Dp, in other words an affine subspace, and we take
it to have non-empty interior (if not, then we argue it should belong to a
stratum of lower dimension.) We shall say that the fibration is adapted to
the distribution X ∈ Γ(TM0/D).

The statement of the theorem to follow includes a final extra assumption
on C. In order to obtain a genericity statement, we shall consider control
fibrations which, over the submanifold M0 are actually smooth manifolds
with boundary: a control fibration C adapted to the affine control distribution
will now be taken to be a smooth immersion of anm-manifold with boundary,
i : C → TM , so the compact fibres are the intersections of the image of the
manifold C with each X(p). Thus, in our fibration diagram

C TM

M

i

p
π

the space C is now a manifold and the map i is the immersion.
We consider the usual topology on the space of such immersions, as is

done in Differential Topology.

Theorem 2. For a dense, open subset of the space of immersions adapted
to D, the singular set is an m-dimensional manifold.

Proof. We shall need the form of the Thom transversality theorem for man-
ifolds with boundary (see for example [10], Chapter 2.)

The setting is again that we have the n-dimensional submanifold Z ⊂
TM , the zero section and a smooth map of a manifold with boundary into
the vector bundle TM/D. By composing with the projection, we get the
map p = π ◦ i. Applying the transversality theorem we get that for a dense
subset of the set of such maps, we get a transverse intersection with the zero
section Z. The inverse image is a submanifold of C. Since the projection map
π is open and the fibres of C are compact, it follows that we have a proper
map. This allows us to conclude the openness of the set of fibrations giving
a singular set which is an m-manifold, in addition to the density. The details
are omitted.

4 The singular set and global control design

Once we have established that, for a generic control system, the singular set
is a manifold of the same dimension as the control (at least on some dense
subset of state space), we have available the two m dimensional geometric



objects, the regular control distribution and the singular manifold Σm. The
global control dynamics methodology which we have developed in a series
of works (e.g. [13], [14], [15]), has as its main tool the following geometric
object:

Definition 2. A control-transverse manifold is a smooth submanifold
W of Mn of complementary dimension to the control distribution, namely
(n−m), and which is everywhere transverse to D:

∀p ∈ W : TpW ⊕Dp = TpM.

The local existence of such transverse manifolds is easy to establish, given
the local trivializations of any vector bundle.

The importance of these geometric objects is that on them are defined,
in a completely natural and invariant way, dynamics, which we call control-
transverse dynamics. Let us explain this, in the case of a control-affine
system: starting with the quotient vector space construction, we then have
a short exact sequence of vector bundles

0 → D → TM → TM/D → 0.

Note that there is no natural selection of a complement to the vector subspace
Dp of TpM (there is certainly no need for a metric yet.) The control transverse
submanifold W provides exactly such a complement, as we saw, along W :

0 → D|W → TM |W → TW → 0.

In fact, we can generalize to the notion of a control-transverse foliation,
which is taken to be a regular foliation everywhere transverse to D and of
complementary dimension. Again, the local existence is not difficult, but we
are by no means implying that it exists globally.

Now we can lift the short exact sequence at the level of sections

0 → Γ(D) → Γ(TM) → Γ(TM/D) → 0,

and, restricting to W , we get

0 → Γ(D|W ) → Γ(TM |W ) → Γ(TW ) → 0.

This sequence is split, so that a vector field decomposes into a section of the
control distribution and a section of the tangent bundle TW , in other words
a dynamical system (vector field) on W .

A first crucial remark is that the control-transverse manifolds are ‘soft’,
in the sense that, being transverse, they can be deformed quite freely. The



second crucial point is that the geometry of the chose control-transverse man-
ifold determines the dynamics! The final point is that in the directions
transverse to the chosen W , we have available the control directions, and we
can therefore design any dynamics we wish –for example, we can make the
control-transverse manifold invariant, and asymptotically stable.

As an illustration, let us go back to a single-input linear control system,
in controller-canonical form. We explained in section 2.1 that the singular
set is the x1 axis. Since D = span(en), every graph of a linear function xn =
∑n−1

i=1
kixi will give a control-transverse manifold, here a vector subspace of

dimension (n−1) (a hyper-plane). The control-transverse dynamics are easily
seen to be

ẋ1 = x2

ẋ2 = x3

· · · · · ·

ẋn−1 = xn =

n−1
∑

i=1

kixi,

which of course can be made to have arbitrary poles, depending on the choice
of the coefficients ki. So here different hyper-planes (geometry) give different
stability properties (dynamics). Note that we get the same by consider-
ing linear feedback control u(x) =

∑n

i=1
kixi and considering the set where

u(x) = 0. The fact that the coefficient of xn is non-zero (so we get control-
transverse object) makes sense since, otherwise, the last column of the feed-
back matrix A+ bkt is zero.

Now we also see the role of the singular set: we had better make the
chosen hyper-plane transverse to the singular set as well, since, otherwise,
we get a non-isolated equilibrium point! (since in that case the first column
would be zero.)

The general case proceeds in a similar way. We take into account the
singular set in selecting control-transverse submanifolds that are transverse to
it, so we get isolated equilibrium points, and we control the overall dynamics
in two stages: first, by picking the geometry of W to obtain desirable control-
transverse dynamics and then use the control directions to design the overall
dynamics. The deformations of W may lead to bifurcations of the control-
transverse dynamics. When we say bifurcations, of course, we mean that
the setting is similar to that of the classical bifurcation theory for vector
fields. A more precise definition would use the notion of a parametrized family
of transverse manifolds, W (µ), with each manifold in the family staying
transverse to D – but not necessarily to the singular set! An example of such
a bifurcation is given in [13].



In fact, it is easy to verify, in many cases, the conditions for having
a particular bifurcation (say the saddle-node one), since we have complete
freedom in selecting the transverse W , locally (as we just saw in the special
case of linear systems).

The full development of this theory for obtaining global controlled dy-
namics is yet to be completed. It seems unavoidable that we shall need to
take into account the stratification of the control fibration if we are to have a
truly global theory. There is in recent years a significant amount of research
in other areas of mathematics and physics attempting to deal with these
same issues (e.g. in Poisson geometry and the notion of Lefschetz fibrations
[2], [1].)
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