
COAP manuscript No.
(will be inserted by the editor)

Proximal extrapolated gradient methods with prediction and correction
for monotone variational inequalities

Xiaokai Chang1,2 · Sanyang Liu1 · Jianchao Bai3 ·
Jun Yang4

Received: date / Accepted: date

Abstract An efficient proximal-gradient-based method, called proximal extrapolated gradient
method, is designed for solving monotone variational inequality in Hilbert space. The proposed
method extends the acceptable range of parameters to obtain larger step sizes. The step size is
predicted based a local information of the operator and corrected by linesearch procedures to sat-
isfy a very weak condition, which is even weaker than the boundedness of sequence generated and
always holds when the operator is the gradient of a convex function. We establish its convergence
and ergodic convergence rate in theory under the larger range of parameters. Furthermore, we im-
prove numerical efficiency by employing the proposed method with non-monotonic step size, and
obtain the upper bound of the parameter relating to step size by an extremely simple example.
Related numerical experiments illustrate the improvements in efficiency from the larger step size.

Keywords Variational inequalities · proximal gradient method · convex optimization · nonmono-
tonic step size
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1 Introduction

Let H be a real Hilbert space equipped with inner product 〈·, ·〉 and its induced norm ‖ · ‖. We
consider the variational inequality problem:

find x∗ ∈ H s.t. 〈F (x∗), y − x∗〉+ g(y)− g(x∗) ≥ 0, ∀y ∈ H, (1)

where F : H → H is an operator and g : H →]−∞,+∞] is a proper lower semicontinuous convex
function. We use dom g to represent the domain of g, defined by dom g := {x ∈ H : g(x) < +∞}.
For a continuously differentiable and convex function f : H →]−∞,+∞[ with its gradient denoted
by ∇f = F , then problem (1) is equivalent to

min
x∈H

f(x) + g(x). (2)
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Let C be a closed and convex subset of H. Let lC be the indicator function of the set C, that is,
lC(x) = 0 if x ∈ C and ∞ otherwise. When g(x) = lC(x), variational inequality (1) reduces to

find x∗ ∈ C s.t. 〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ H. (3)

Problem (1) and its special cases (2) and (3) have wide applications in disciplines including me-
chanics, signal and image processing, and economics [3–5,14,15,32], to cite a few. Throughout the
paper, the solution set S of problem (1) is assumed to be nonempty, and the following assumptions
hold:

(A1) F is monotone, i.e.,

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ H;

(A2) F is L-Lipschitz continuous (L > 0), that is,

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ H;

(A3) g|dom g is a continuous function.
Many efficient methods have been proposed for solving the problem (1) and its special cases, for

instance, alternating direction method of multipliers (ADMM) [5, 8, 9, 17], extragradient method
[1,20,21,27], proximal (projected) gradient method [11,18,23,26,38,41] and its accelerated version
[25,33]. Here, we would concentrate on the most simple case of these approaches: forward-backward
splitting (FBS) method. Under the assumption that F is L-Lipschitz continuous, the iterative
scheme of the classical FBS method for problem (1) reads

xn+1 = proxλg(xn − λF (xn)), (4)

where λ is some positive number and can be viewed as a step size of the forward step, and the
proximal operator proxλg : H → H is defined in Section 2.

To establish convergence of the iteration (4), it often requires the restrictive assumptions that
F is L-Lipschitz continuous, strongly (or inverse strongly) monotone with λ ∈]0, 2

L [. To overcome
this drawback, Korpelevich [21] and Antipin [1] proposed the following extragradient method for
(3) with two-step projection procedures

yn = PC(xn − λnF (xn)), xn+1 = PC(xn − λnF (yn)),

where PC : H → C denotes the (metric) projection onto C, λn is any positive sequence verifying
λn ∈ [l, u] for some values l, u ∈]0, 1

L [. The extragradient method has received great attentions and
has been improved in various ways [10,13,16,24,28], including linesearch procedures or/and avoiding
Lipschitz-continuity assumption, decreasing a number of metric projections, etc. For instance,
Censor, Gibali and Reich [10] introduced

yn = PC(xn − λF (xn)),
Tn = {w ∈ H|〈xn − λF (xn)− yn, w − yn〉 ≤ 0},
xn+1 = PTn

(xn − λF (yn)),

 (5)

where the step size satisfies λ ∈]0, 1
L [. Since the second projection PTn in (5) can be found in a

closed form, this method is more applicable when a projection onto the closed convex set C is
a nontrivial problem. For a more general problem (1), Tseng [41] modified the iteration (4) and
proposed the following forward-backward-forward (FBF) method involving one proximal operator
and two values of F per iteration:

yn = proxλg(xn − λF (xn)), xn+1 = yn + λ(F (xn)− F (yn)),

where λ ∈]0, 1
L [. Since then, Tseng’s method has attracted a lot of interests due to its simplicity

and generality, see [6, 7, 31] for more details.
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In the literature, the inertial extrapolation has been conducted to accelerated proximal gradient
methods in the spirit of Nesterov’s extrapolation techniques [33,34], whose basic idea is to make full
use of historical information at each iteration. A typical scheme of the proximal gradient method
with extrapolation for solving (1) is

xn+1 = Proxλg(xn − λF (yn)), yn+1 = xn+1 + δn(xn+1 − xn), (6)

where δn > 0. Recently, using a fixed parameter δ = 1 in (6), Malitsky [28] introduced the iteration

xn+1 = PC(xn − λF (2xn − xn−1)), λ ∈]0, (
√

2− 1)/L[,

for solving (3). However, the step size (λ or λn) requires the information of the Lipschitz constant L,
which is a main drawback of the algorithms introduced above. In fact, these algorithms with a large
value of L can lead to very small step size, which may give rise to a slow convergent algorithm [30].
To obtain a proper step size, Armijo-type line search and outer approximation techniques were
involved in [19,20,22,40]. Due to the extra proximal operator as well as the evaluations of F , these
algorithms will be computationally expensive when proximal operator or F is hard to compute
and somewhat expensive.

For getting a proper step without using the Lipschitz constant L, Malitsky [28] introduced an
efficient method whose main updates are

Choose x0 = y0 ∈ H, λ0 > 0, α ∈]0,
√

2− 1[
Choose λn s.t. λn ‖ Fyn − Fyn−1 ‖≤ α ‖ yn − yn−1 ‖
xn+1 = PC(xn − λnF (yn))
yn+1 = 2xn+1 − xn.

(7)

By updating the step size λn given by a specific procedure according the progress of algorithm,
a weak convergence result was proved, but this process involves the computation of additional
projections onto C. Later, Mainge and Gobinddass [30] introduced a more general framework:

θn =
λn

δλn−1
, yn = xn + θn(xn − xn−1), xn+1 = PC(xn − λnF (yn)),

where the step size λn needs to satisfy many inequality constraints and can be obtained by line-
search procedure, see [30, Section 3.1 and Section 3.2.2]. Based on the scheme (7), local information
of the operator and some linesearch procedures, Malitsky [29] proposed simpler schemes which do
not require Lipschitz continuity of the operator. Furthermore, the involved linesearch procedure
doesn’t need extra prox or projection and it can be applied to a more general problem (1). By
overcoming the estimation of L and linesearch procedure for the scheme (7), Yang and Liu [42]
proposed an extragradient method with lower computational complexity but nonincreasing step

sizes. The important parameter α relating to the step size λn was restricted on α ∈]0,
√
2−1
δ [ with

δ ∈]1,+∞[ in [42] and α ∈]0,
√

2− 1[ with variable δn from linesearch in [28] for guaranteeing the
convergence.

The aim of this paper is to propose a proximal gradient algorithm with larger step size, extend
the range of δ to that is less than or equal to 1, and then improve the range of α. Our proposed
methods do not require Lipschitz constant, and its step size is predicted by using two previous
iterates, and corrected by linesearch to satisfy a very weak condition, which always holds when
F = ∇f for a convex function f . Specifically, by the aid of the vital inequalities in convergence’s
proof we first introduce a function κ(δ) defined as

κ(δ) := max
ε1>0,ε2>0

min

{
ε1

δ(ε21 + ε2 + 1)
,

(δ2 + δ − 1)ε1ε2
δ3(1 + ε2)

}
(8)

for any δ ∈]
√
5−1
2 ,+∞[ to ensure some convergence properties. Then we get max

δ∈]
√

5−1
2 ,+∞[

κ(δ) =

κ(
√

3 − 1) = 1
2 , and use α ∈]0, κ(δ)[ to control the step size. Our range of α is larger than that
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presented in [28, 42], see Lemma 2 for more explanations. Secondly, the region of δ is partitioned
as

δ ∈
]
(
√

5− 1)/2,+∞
[

=
]
(
√

5− 1)/2, 1
[
∪ [1,+∞[

to explore convergence of the proposed method, and the O(1/n) ergodic convergence rate is es-
tablished. Finally, we obtain the upper bound of α by an extremely simple example, and improve
numerical efficiency by introducing nonmonotonic step size λn but λn

λn−1
→ 1. In fact, the proposed

nonmonotonic step size can break away from overdependence on the initial point, but it would
have to be monotonic in the end for getting convergence.

The paper is organized as follows. In Section 2, we provide some useful facts and notations.
In Section 3, we introduce our algorithm and explore the properties of the function κ(δ). A weak
convergence theorem of our method is proved in Section 3.1. In Section 3.2, we establish the ergodic
convergence rate of the proposed algorithms, and we improve the algorithms in Section 3.3 to avoid
the adverse effects of the nonincreasing step size. In Section 4, we show by an example that any value
of α ∈] 2

2δ+1 ,+∞[ with δ ∈]0,+∞[ does not guarantee convergence of our algorithm. Numerical
experiments on solving some problems tested in the literatures are provided and analyzed in Section
5. We finally conclude our paper in Section 6.

2 Preliminaries

In this section, we introduce some notations and facts on the well-known properties of the proxi-
mal operator, Opial condition and Young’s inequality, which are used for the sequel convergence
analyses.

The proximal operator proxλg : H → H with proxλg(x) = (I + λ∂g)−1(x), λ > 0, x ∈ H, is
defined by

proxλg(x) := argmin
y∈H

{
g(y) +

1

2λ
‖x− y‖2

}
, ∀x ∈ H, λ > 0.

Setting

Φ(x, y) := 〈F (x), y − x〉+ g(y)− g(x), (9)

it is clear that problem (1) is equivalent to finding x∗ ∈ H such that Φ(x∗, y) ≥ 0 for all y ∈ H.

Fact 1 [2] Let g : H → (−∞,+∞] be a convex function, λ > 0 and x ∈ H. Then p = proxλg(x)
if and only if

〈p− x, y − p〉 ≥ λ[g(p)− g(y)], ∀y ∈ H.

Fact 2 [36] (Opial 1967) Let S be a nonempty set of H and {xn}k∈N be a sequence in H such
that the following two conditions hold:
(1) for every x∗ ∈ S, lim

n→+∞
‖xn − x∗‖ exists;

(2) every sequential weak cluster point of {xn}k∈N is in S.
Then {xn}k∈N converges weakly to a point in S.

Fact 3 Let {an}, {bn} be two nonnegative real sequences and ∃N > 0 such that

an+1 ≤ an − bn, ∀n > N.

Then {an} is convergent and lim
n→∞

bn = 0.

Fact 4 (Young’s inequality) For all a, b ≥ 0 and ε > 0, we have

ab ≤ a2

2ε
+
εb2

2
.
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The following identity (cosine rule) appears in many times and we will use it for simplicity of
convergence analyses. For all x, y, z ∈ H,

〈x− y, x− z〉 =
1

2
‖x− y‖2 +

1

2
‖x− z‖2 − 1

2
‖y − z‖2. (10)

3 Proximal Extrapolated Gradient Method with Prediction and Correction

In this section, we state our proximal extrapolated gradient method with prediction and correction
(PEG), by using the step size function κ(δ) defined in (8).

Algorithm 1 (PEG for solving (1))

Step 0. Take δ ∈]
√
5−1
2 ,+∞[, choose x0 ∈ H, λ0 > 0, γ ∈ (0, 1), α ∈]0, κ(δ)[ and a bounded

sequence {ζn > 0}. Set y0 = x0, x1 = proxλ0g(x0 − λ0F (x0)) and n = 1.
Step 1. Prediction:

1.a. Compute

yn = xn + δ(xn − xn−1), (11)

λn = min

{
λn−1,

α‖yn − yn−1‖
‖F (yn)− F (yn−1)‖

}
. (12)

1.b. Compute

xn+1 = proxλng(xn − λnF (yn)),

if xn+1 = xn = yn, then stop: xn+1 is a solution.
Step 2. Correction when δ < 1:

Check

‖xn+1 − xn‖ ≤ ζn,

if not hold, set λn ← γλn and return to Step 1.b.
Step 3. Set n← n+ 1 and return to Step 1.

The aim of Correction step is to bound {‖xn−xn−1‖} by the given sequence {ζn} when δ < 1,
as convergence analysis requires ‖xn+1−xn‖ < +∞. In practice, we don’t need to give the sequence
{ζn}, but generate adaptively by

ζn = max{ζmin, min{µ‖xn − xn−1‖, ν‖x1 − x0‖}}, (13)

for given 1 < µ ≤ ν and small ζmin (e.g., ζmin = 10−6), then ζn ≤ ν‖x1 − x0‖ for all n ≥ 1 and
ζn ≥ ζmin. Moreover, we observe ‖xn+1 − xn‖ ≤ µ‖xn − xn−1‖ for bounding more tightly due to
‖xn+1 − xn‖ → 0.

For a convex function f , if F = ∇f we observe ‖xn+1−xn‖ < +∞, see (28), so Correction step is
not necessary. However for other cases, one needs to apply linesearch to ensure ‖xn+1−xn‖ < +∞.
Interestingly, for all the tested problems shown in Section 5, the linesearch in Correction step
does not start to arrive termination conditions, when using (13) with µ = ν = 10. Namely, the
predicted step is good enough for obtaining a convergent sequence for the tested problems, though
the convergence without prediction is unknown in general.

The following lemma shows that the correction procedure described in Algorithm 1 is well-
defined.
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Lemma 1 The correction procedure always terminates. i.e., {λn} is well defined when δ ∈]
√
5−1
2 , 1[.

Proof. Denote

A := ∂g and xn+1(λ) := proxλg(xn − λF (yn)).

From [2, Theorem 23.47], we have that proxλg[xn+1(0)] → PdomA[xn+1(0)] as λ → 0 (domA
denotes the closures of domA), which together with the nonexpansivity of proxλg yields

‖xn+1(λ)− PdomA[xn+1(0)]‖
≤ ‖xn+1(λ)− proxλg[xn+1(0)]‖+ ‖proxλg[xn+1(0)]− PdomA[xn+1(0)]‖
≤ λ‖F (yn)‖+ ‖proxλg[xn+1(0)]− PdomA[xn+1(0)]‖.

By taking the limit as λ→ 0, we deduce that xn+1(λ)→ PdomA[xn+1(0)]. Notice that xn+1(0) =
xn, we observe PdomA[xn+1(0)] = xn.

By a contradiction, suppose that the correction procedure in Algorithm 1 fails to terminate at
the n-th iteration. Then, for all λ = γiλn with i = 0, 1, · · · , we have ‖xn+1(λ) − xn‖ > ζn. Since
γi → 0 as i→∞, so λ→ 0, this gives a contradiction 0 ≥ ζn, which completes the proof. �

Remark 1 Note that the sequence {λn} is monotonically decreasing. Since F is a L-Lipschitz
continuous mapping (L > 0), we have

α‖yn − yn−1‖
‖F (yn)− F (yn−1)‖

≥ α‖yn − yn−1‖
L‖yn − yn−1‖

=
α

L

for F (yn) 6= F (yn−1). Thus the predicted step sequence {λn}n∈N has a lower bound τ := min{αL , λ0},
then when δ ≥ 1 its limit exists and lim

n→∞
λn ≥ τ > 0. If δ < 1, {λn} is well defined from Lemma

1, and has a lower bound τ := min{γ
i0α
L , λ0} for some i0 ≥ 0, which implies lim

n→∞
λn > 0 as well.

Below, we derive the analytical expression of κ(δ).

Lemma 2 For the function κ(δ) defined in (8), we have κ(δ) =
√
a+1

δ(a+1+
√
a+1)

with a = δ2

δ2+δ−1 for

δ ∈]
√
5−1
2 ,+∞[.

Proof. Fix δ ∈]
√
5−1
2 ,+∞[, then δ2 + δ − 1 > 0. Noting that the structure of (8) and κ(δ) is a

maximum value, so ε1
δ(ε21+ε2+1)

= (δ2+δ−1)ε1ε2
δ3(1+ε2)

, which together with a = δ2

δ2+δ−1 and ε1 =
√
a+ 1

shows

κ(δ) = max
ε2>0

√
aε2 + (a− 1)ε22 − ε32

δ(a+ aε2)
. (14)

By the first-order optimality condition of the optimization problem (14), we have ε2 =
√
a+ 1−1.

Substituting it into (14), the result can be deduced. �

By Lemma 2 and Fig. 1, the maximum value of κ(δ) is 1
2 when δ ∈]

√
5−1
2 ,+∞[, and in fact,

max
δ∈]
√

5−1
2 ,+∞[

κ(δ) = κ(
√

3− 1) =
1

2
.

In this case, we have a = 2, ε1 =
√

3 and ε2 =
√

3− 1.

Remark 2 It can be noticed that the method proposed in [42] is a special case of Algorithm 1,

when g(x) = lC(x) and δ ∈]1,+∞[, but κ(δ) >
√
2−1
δ from Lemma 2. Namely, we extend the range

of δ and then improve the upper bound of α when the operator is the gradient of a convex function
or using linesearch, see Fig. 1, which causes larger step size λn that will be more efficient for
numerical experiments.
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Fig. 1 The improved region (blue) of the parameters α and δ.

3.1 Convergence Analysis

This section devotes to studying convergence properties of Algorithm 1. For δ ∈ [1,+∞[, its
convergence and convergence rate can be obtained by combining the methods in [29, 42] with the

basic theory of limit. However, it is a completely different situation for δ ∈]
√
5−1
2 , 1[, since the

desired properties (such as monotonicity and nonnegativity) are no longer valid in the case of

δ ∈]
√
5−1
2 , 1[ although we can adopte a larger value of α.

We next give a basic lemma about the iterations generated by Algorithm 1 for any δ ∈
]
√
5−1
2 ,+∞[, which play a crucial role in proving the main convergence results.

Lemma 3 Let {xn} and {yn} be two sequences generated by Algorithm 1. For any x ∈ H, we have

‖xn+1 − x‖2 ≤ ‖xn − x‖2 −
λn

δλn−1
[‖yn − xn‖2 + ‖xn+1 − yn‖2] +

(
λn

δλn−1
− 1

)
‖xn+1 − xn‖2

+2α‖yn − yn−1‖‖xn+1 − yn‖ − 2λn[(1 + δ)g(xn)− δg(xn−1)− g(x)]

−2λn〈F (yn), yn − x〉. (15)

Proof. Followed by xn+1 = proxλng(xn − λnF (yn)) and Fact 1, we have

〈xn+1 − xn + λnF (yn), x− xn+1〉 ≥ λn(g(xn+1)− g(x)), ∀x ∈ H, (16)

which shows

〈xn − xn−1 + λn−1F (yn−1), x− xn〉 ≥ λn−1(g(xn)− g(x)), ∀x ∈ H.

Substituting x := xn+1 and x := xn−1 into the above inequality respectively, we obtain

〈xn − xn−1 + λn−1F (yn−1), xn+1 − xn〉 ≥ λn−1(g(xn)− g(xn+1)), (17)

〈xn − xn−1 + λn−1F (yn−1), xn−1 − xn〉 ≥ λn−1(g(xn)− g(xn−1)). (18)

Multiplying (18) by δ and then adding it to (17), which by yn = xn + δ(xn − xn−1) yields

〈xn − xn−1 + λn−1F (yn−1), xn+1 − yn〉 ≥ λn−1[(1 + δ)g(xn)− g(xn+1)− δg(xn−1)]. (19)
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Multiplying (19) by λn

λn−1
and using yn = xn + δ(xn − xn−1) again, we get〈

λn(yn − xn)

δλn−1
+ λnF (yn−1), xn+1 − yn

〉
≥ λn[(1 + δ)g(xn)− g(xn+1)− δg(xn−1)]. (20)

Finally, adding (16) to (20) gives us

〈xn+1 − xn, x− xn+1〉+

〈
λn(yn − xn)

δλn−1
, xn+1 − yn

〉
+ λn〈F (yn)− F (yn−1), yn − xn+1〉

≥ λn[(1 + δ)g(xn)− g(x)− δg(xn−1)] + λn〈F (yn), yn − x〉.

Then, using (10), the updating of λn and Cauchy-Schwarz inequality, we obtain

‖xn+1 − x‖2 ≤ ‖xn − x‖2 −
λn

δλn−1
[‖yn − xn‖2 + ‖xn+1 − yn‖2] +

(
λn

δλn−1
− 1

)
‖xn+1 − xn‖2

+2λn‖F (yn)− F (yn−1)‖‖xn+1 − yn‖ − 2λn[(1 + δ)g(xn)− δg(xn−1)− g(x)]

−2λn〈F (yn), yn − x〉

≤ ‖xn − x‖2 −
λn

δλn−1
[‖yn − xn‖2 + ‖xn+1 − yn‖2] +

(
λn

δλn−1
− 1

)
‖xn+1 − xn‖2

+2α‖yn − yn−1‖‖xn+1 − yn‖ − 2λn[(1 + δ)g(xn)− δg(xn−1)− g(x)]

−2λn〈F (yn), yn − x〉.

The proof is completed. �

Lemma 4 Let {xn}, {yn} be two sequences generated by Algorithm 1 and x̄ ∈ S (the solution set
of problem (1)). Then, for any ε1, ε2 > 0, we have

‖xn+1 − x̄‖2 + 2λn(1 + δ)Φ(x̄, xn) ≤ ‖xn − x̄‖2 + 2λn−1(1 + δ)Φ(x̄, xn−1)

+

[
1

ε1

(
1 +

1

ε2

)
α− λn

δλn−1

]
‖xn − yn‖2

+

(
λn

δλn−1
− 1

)
‖xn+1 − xn‖2

+

(
ε1α−

λn
δλn−1

)
‖xn+1 − yn‖2 +

1 + ε2
ε1

α‖xn − yn−1‖2,

where Φ is defined as in (9).

Proof. Using Fact 4, for any ε1 > 0 we have

2α‖yn − yn−1‖‖yn − xn+1‖ ≤ α(
1

ε1
‖yn − yn−1‖2 + ε1‖xn+1 − yn‖2).

Meanwhile, for any ε2 > 0 we deduce

‖yn − yn−1‖2 = ‖yn − xn‖2 + ‖xn − yn−1‖2 + 2〈yn − xn, xn − yn−1〉
≤ ‖yn − xn‖2 + ‖xn − yn−1‖2 + 2‖yn − xn‖‖xn − yn−1‖

≤ (1 +
1

ε2
)‖yn − xn‖2 + (1 + ε2)‖xn − yn−1‖2.

Combining the above inequalities we have

2α‖yn − yn−1‖‖yn − xn+1‖

≤ α

[
1

ε1

(
1 +

1

ε2

)
‖yn − xn‖2 +

1 + ε2
ε1
‖xn − yn−1‖2 + ε1‖xn+1 − yn‖2

]
. (21)
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In addition, the monotonicity of F implies for any x ∈ H

λn〈F (yn), yn − x〉 ≥ λn〈F (x), yn − x〉
= λn[(1 + δ)〈F (x), xn − x〉 − δ〈F (x), xn−1 − x〉]. (22)

Substituting (21) and (22) into (15), we deduce by the aids of Φ(x, y) in (9) that

‖xn+1 − x‖2 ≤ ‖xn − x‖2 − ‖xn+1 − xn‖2 +
1

ε1

(
1 +

1

ε2

)
α‖yn − xn‖2

+
1 + ε2
ε1

α‖xn − yn−1‖2 + ε1α‖xn+1 − yn‖2

+
λn

δλn−1
(‖xn+1 − xn‖2 − ‖xn − yn‖2 − ‖xn+1 − yn‖2)

−2λn[(1 + δ)Φ(x, xn)− δΦ(x, xn−1)]. (23)

Since δ > 0 and {λn}n∈N is a monotone decreasing sequence, we have λnδ ≤ λn−1δ ≤ (1 + δ)λn−1.
Note that Φ(x̄, xn−1) ≥ 0 for any x̄ ∈ S, then

‖xn+1 − x̄‖2 ≤ ‖xn − x̄‖2 +

[
1

ε1

(
1 +

1

ε2

)
α− λn

δλn−1

]
‖xn − yn‖2

+

(
λn

δλn−1
− 1

)
‖xn+1 − xn‖2

+

(
ε1α−

λn
δλn−1

)
‖xn+1 − yn‖2 +

1 + ε2
ε1

α‖xn − yn−1‖2

−2λn(1 + δ)Φ(x̄, xn) + 2λn−1(1 + δ)Φ(x̄, xn−1).

This completes the proof. ut
By Lemma 4 and some transpositions, we have the following results directly.

Lemma 5 Let {xn}, {yn} be two sequences generated by Algorithm 1 and x̄ ∈ S. Then, for any
ε1, ε2 > 0, we have

an+1 ≤ an − bn, (24)

where 

an = ‖xn − x̄‖2 + 2λn−1(1 + δ)Φ(x̄, xn−1) + 1+ε2
ε1

α‖xn − yn−1‖2

+
(

1− λn−1

δλn−2

)
‖xn − xn−1‖2, n ≥ 2,

bn =
[

λn

δλn−1
−
(
ε1 + 1+ε2

ε1

)
α
]
‖xn+1 − yn‖2

+
[

λn

δλn−1
− 1

ε1

(
1 + 1

ε2

)
α+ 1

δ2

(
1− λn−1

δλn−2

)]
‖xn − yn‖2,

(25)

or 
an = ‖xn − x̄‖2 + 2λn−1(1 + δ)Φ(x̄, xn−1) + 1+ε2

ε1
α‖xn − yn−1‖2, n ≥ 2,

bn =
[

λn

δλn−1
−
(
ε1 + 1+ε2

ε1

)
α
]
‖xn+1 − yn‖2

+
[

λn

δλn−1
− 1

ε1

(
1 + 1

ε2

)
α
]
‖xn − yn‖2 +

(
1− λn

δλn−1

)
‖xn+1 − xn‖2.

(26)

Because the sequence {λn}n∈N is monotonically decreasing, we have 1 − λn

δλn−1
≥ 0 for any

δ ≥ 1. But for δ ∈]
√
5−1
2 , 1[, we have lim

n→+∞

(
1− λn

δλn−1

)
= 1− 1

δ < 0. So, convergence of Algorithm

1 with δ < 1 is different from that with δ ≥ 1, and hence cannot be established by the similar
methods as in [29,42].
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Notice that an ≥ 0 in (25) when δ ≥ 1, we take (25) to study the convergence of Algorithm 1
with δ ≥ 1. Consequently, a larger upper bound κ(δ) of α is obtained than that in [42]. While for
the case of δ < 1, we take (26) as an ≥ 0 for all n ≥ 1, and further investigate the properties of bn
to ensure convergence of Algorithm 1.

Below we state and prove our main convergence result of Algorithm 1 for above two different

regions: δ ∈]
√
5−1
2 , 1[ and δ ∈ [1,+∞[.

Theorem 1 Let {xn} be the sequence generated by Algorithm 1 with δ ∈ [1,+∞[. Then, {xn}
converges weakly to a solution of problem (1).

Proof. From Remark 1, we have lim
n→∞

λn = λ > 0. Then for any δ ∈ [1,+∞[ and α < κ(δ), we have

lim
n→∞

[
λn

δλn−1
−
(
ε1 +

1 + ε2
ε1

)
α

]
=

1

δ
−
(
ε21 + ε2 + 1

ε1

)
α > 0,

lim
n→∞

[
λn

δλn−1
− 1

ε1

(
1 +

1

ε2

)
α+

1

δ2

(
1− λn−1

δλn−2

)]
=

1

δ
− 1

ε1

(
1 +

1

ε2

)
α+

1

δ2

(
1− 1

δ

)
> 0.

Thus, there exists an integer N > 2, such that for any n > N ,

λn

δλn−1
−
(
ε21+ε2+1

ε1

)
α > 0,

λn

δλn−1
− 1

ε1

(
1 + 1

ε2

)
α+ 1

δ2

(
1− λn−1

δλn−2

)
> 0,


which implies that bn ≥ 0 in (25) when n > N . Recall 1 − λn−1

δλn−2
≥ 0 for any δ ≥ 1, we deduce

an ≥ 0 in (25). Hence, by Lemma 5 and Fact 3, {an}n∈N is convergent and lim
n→∞

bn = 0. This

means that {‖xn− x̄‖2} is bounded and so does {xn}n∈N. Also, we have lim
n→∞

‖xn+1−yn‖ = 0 and

lim
n→∞

‖xn − yn‖ = 0. By ‖xn+1 − xn‖ = 1
δ ‖xn+1 − yn+1‖, we also have that lim

n→∞
‖xn+1 − xn‖ = 0

and {yn}n∈N is bounded.
In what follows, we prove the sequence {xn} converges weakly to a solution of problem (1).

For any cluster x∗ ∈ H of {xn}, there exists a subsequence {xnk
} that converges weakly to x∗,

namely xnk
⇀ x∗. It is obvious that {ynk

} also converges weakly to x∗. Next we verify that x∗ ∈ S.
Applying Fact 1, we deduce〈

xnk+1 − xnk

λnk

+ F (ynk
), x− xnk+1

〉
≥ g(xnk+1)− g(x), ∀x ∈ H. (27)

Letting k → ∞ in (27) and using the facts lim
k→∞

‖xnk+1 − xnk
‖ = 0, g(x) is lower semicontinuous

and lim
n→∞

λn = λ > 0, we obtain

〈F (x∗), x− x∗〉 ≥ lim inf
k→∞

g(xnk+1)− g(x) ≥ g(x∗)− g(x), ∀x ∈ H,

which confirms x∗ ∈ S.
Finally, we prove that xn ⇀ x∗. We take x̄ = x∗ in the definition (25) of an and label as a∗n.

Notice that {λn} is bounded and Φ(x∗, ·) is continuous from (A3), we observe

lim
n→∞

a∗n = lim
k→∞

a∗nk+1

= lim
k→∞

(
‖xnk+1 − x∗‖2 + 2λnk

(1 + δ)Φ(x∗, xnk
) + 1+ε2

ε1
α‖xnk+1 − ynk

‖2

+
(

1− λnk

δλnk−1

)
‖xnk+1 − xnk

‖2

)
= 0.
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Therefore, lim
k→∞

‖xn − x∗‖ = 0, which by Fact 2 shows xn ⇀ x∗. �

Now, we focus on convergence analysis of Algorithm 1 with δ ∈]
√
5−1
2 , 1[ and use (26). For this

case, we can not establish the nonnegativity of {bn} and the monotonic decreasing of {an} because
1
δ − 1 > 0. Consequently, convergence of {an}n∈N can not be obtained from (24). We thus need to
further investigate the sequence {an} for getting a clear convergence, by using the boundedness of
{‖xn − xn−1‖} from Correction step.

First, we show that ‖xn+1 − xn‖ < +∞ when δ ∈]
√
5−1
2 , 1[ and the operator F is the gradient

of a convex function f : H → R, i.e., F = ∇f . From (23) with x = xn and Φ(xn, xn) = 0, we
deduce [

2− λn
δλn−1

]
‖xn+1 − xn‖2 +

1 + ε2
ε1

α‖xn+1 − yn‖2

≤
[

1

ε1

(
1 +

1

ε2

)
α− λn

δλn−1

]
‖yn − xn‖2 +

1 + ε2
ε1

α‖xn − yn−1‖2

+

[(
ε1 +

1 + ε2
ε1

)
α− λn

δλn−1

]
‖xn+1 − yn‖2 + 2λnδΦ(xn, xn−1).

Using F = ∇f and the convexity of f yields

Φ(xn, xn−1) = 〈∇f(xn), xn−1 − xn〉+ g(xn−1)− g(xn)

≤ φ(xn−1)− φ(xn),

where φ = f + g. This together with lim
n→∞

λn = λ > 0, α < κ(δ) and λn ≤ λn−1 gives us(
2− 1

δ

)
‖xn+1 − xn‖2 +

1 + ε2
ε1

α‖xn+1 − yn‖2 + 2λnδ(φ(xn)− φ(x̄))

≤ 1 + ε2
ε1

α‖xn − yn−1‖2 + 2λn−1δ(φ(xn−1)− φ(x̄)), ,

where x̄ ∈ S, which implies from φ(xn)− φ(x̄) ≥ 0 that(
2− 1

δ

)
‖xn+1 − xn‖2 ≤

1 + ε2
ε1

α‖xN+1 − yN‖2 + 2λNδ(φ(xN )− φ(x̄)) < +∞, ∀n > N. (28)

That is to say, Correction step is not necessary when F = ∇f , for a convex function f .

Theorem 2 Let {xn} be the sequence generated by Algorithm 1 with δ ∈]
√
5−1
2 , 1[. Then, {xn}

converges weakly to a solution of problem (1).

Proof. Firstly, δ ∈]
√
5−1
2 , 1[ gives 1

δ >
δ2+δ−1
δ3 > 0. Note that lim

n→∞
λn = λ > 0, by taking the limit

and from α < κ(δ), we have

lim
n→∞

[(
ε1 + 1+ε2

ε1

)
α− λn

δλn−1

]
=
(
ε21+ε2+1

ε1

)
α− 1

δ < 0,

lim
n→∞

[
1
ε1

(
1 + 1

ε2

)
α− λn

δλn−1

]
= 1

ε1

(
1 + 1

ε2

)
α− 1

δ < 0,

lim
n→∞

[
1
ε1

(
1 + 1

ε2

)
α− λn

δλn−1
+ 1

δ2

(
λn−1

δλn−2
− 1
)]

= 1
ε1

(
1 + 1

ε2

)
α− δ2+δ−1

δ3 < 0,

 (29)

for any δ ∈]
√
5−1
2 , 1[. Thus, there exists an integer N > 2, such that for any n > N ,(

ε21+ε2+1
ε1

)
α− λn

δλn−1
< 0,

1
ε1

(
1 + 1

ε2

)
α− λn

δλn−1
< 0,

1
ε1

(
1 + 1

ε2

)
α− λn

δλn−1
+ 1

δ2

(
1
δ − 1

)
< 0.

 (30)
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By xn+1 − xn = yn+1−xn+1

δ , Remark 1 and Lemma 5, for any ε1, ε2 > 0 and M > N + 1, we have

aM+1 − aN+1 =

M∑
n=N+1

(an+1 − an) (31)

≤
M∑

n=N+1

[(
ε1 +

1 + ε2
ε1

)
α− λn

δλn−1

]
‖xn+1 − yn‖2

+

M∑
n=N+2

[
1

ε1

(
1 +

1

ε2

)
α− λn

δλn−1
+

1

δ2

(
λn−1
δλn−2

− 1

)]
‖xn − yn‖2

+

[
1

ε1

(
1 +

1

ε2

)
α− λN+1

δλN

]
‖xN+1 − yN+1‖2 + ξM

≤ ξM . (32)

where ξM = 1
δ2

(
λM

δλM−1
− 1
)
‖xM+1 − yM+1‖2 < +∞ from Remark 1 and Correction step. This

together with an ≥ 0 in (26) implies that {an}n∈N is bounded and

0 ≤ −
∞∑

n=N+1

[(
ε1 + 1+ε2

ε1

)
α− λn

δλn−1

]
‖xn+1 − yn‖2 < +∞

0 ≤ −
∞∑

n=N+2

[
1
ε1

(
1 + 1

ε2

)
α− λn

δλn−1
+ 1

δ2

(
λn−1

δλn−2
− 1
)]
‖xn − yn‖2 < +∞,


so lim

n→∞
‖xn+1 − yn‖ = 0 and lim

n→∞
‖xn − yn‖ = 0. By the fact ‖xn+1 − xn‖ = 1

δ ‖xn+1 − yn+1‖, we

have lim
n→∞

‖xn+1 − xn‖ = 0.

Due to ‖xn − x̄‖2 ≤ an, then {xn}n∈N is bounded. We can complete the proof by Remark 1
and the similar methods as in the proof of Theorem 1. �

Remark 3 By the above analysis, it seems that convergence of the proposed algorithm could be
still ensured without the assumption (A3), but it is not clear how to prove this as far as we known.
Actually, the assumption (A3) is not restrictive, g is continuous on dom g when dom g is an open
set (this includes all finite-valued functions) or g = δC for any closed convex set C. Moreover,
(A3) holds for any separable lower semicontinuous convex function from [2, Corollary 9.15].

3.2 Ergodic Convergence Rate for δ ∈]
√
5−1
2 , 1]

Since there are many researches about the convergence rate when δ ≥ 1, we just focus on the

case when δ ∈]
√
5−1
2 , 1]. Actually, the optimal rate of convergence is O(1/n) for the extragradient

method [35]. In this subsection, we investigate the ergodic convergence rate of the sequence {yn}n∈N
for the general case (1).

From [15] and [29, Lemma 2.12], x∗ ∈ S if and only if x∗ ∈ dom g and

max
x∈dom g

Φ(x, x∗) := 〈F (x), x∗ − x〉+ g(x∗)− g(x) = 0.

The following theorem shows that the above criteria can be used to find x∗ under a desired accuracy.

Theorem 3 Let {xn} and {yn} be generated by Algorithm 1. For any n1 > N and a sufficiently
large J ∈ N related to n1, we define

λ̂j =

j∑
l=n1

λl + δλn1 and x̂j =
1

λ̂j

(
j∑

l=n1+1

λlyl + (1 + δ)λn1
xn1

)



Proximal extrapolated gradient method 13

for any j > J , then x̂j ∈ dom g and

Φ(x, x̂j) ≤
‖xn1 − x̄‖2 + δλn1Φ(x̄, xn1−1) + 1+ε2

ε1
α‖xn1 − yn1−1‖2

2λ̂j
, ∀x ∈ H.

Proof. First of all, we have by (23) that

2λn(1 + δ)Φ(x̄, xn)− 2λnδΦ(x̄, xn−1)

≤ ‖xn − x̄‖2 − ‖xn+1 − x̄‖2

+

[
1

ε1

(
1 +

1

ε2

)
α− λn

δλn−1

]
‖xn − yn‖2 −

(
1− λn

δλn−1

)
1

δ2
‖xn+1 − yn+1‖2

+
1 + ε2
ε1

α‖xn − yn−1‖2 −
(

λn
δλn−1

− ε1α
)
‖xn+1 − yn‖2.

Since ‖xn − yn‖ → 0 as n → +∞, there exists a sufficiently large J such that for any j > J , it
holds ‖xj − yj‖ ≤ ‖xn1

− yn1
‖ 6= 0 (If ‖xn1

− yn1
‖ = 0, then ‖xn1+1 − yn1+1‖ 6= 0, else xn1+1 is a

solution). So, we let ‖xn1
− yn1

‖ 6= 0 with n1 > N . Recalling (30) we deduce for any j > J that

2

(
λj(1 + δ)Φ(x̄, xj) +

j−1∑
l=n1

[λl(1 + δ)− λl+1δ]Φ(x̄, xl)

)

≤ ‖xn1
− x̄‖2 +

[
1

ε1

(
1 +

1

ε2

)
α− λn1

δλn1−1

]
‖xn1

− yn1
‖2 +

(
λj

δλj−1
− 1

)
1

δ2
‖xj+1 − yj+1‖2

+
1 + ε2
ε1

α‖xn1 − yn1−1‖2 + δλn1Φ(x̄, xn1−1)

≤ ‖xn1
− x̄‖2 +

[
1

ε1

(
1 +

1

ε2

)
α− λn1

δλn1−1
+

(
1

δ
− 1

)
1

δ2

]
‖xn1 − yn1‖2

+
1 + ε2
ε1

α‖xn1 − yn1−1‖2 + δλn1Φ(x̄, xn1−1)

≤ ‖xn1
− x̄‖2 +

1 + ε2
ε1

α‖xn1
− yn1−1‖2 + δλn1

Φ(x̄, xn1−1).

Note that the function Φ(x̄, ·) is convex. Now, applying the Jensen’s inequality to the left-hand
side of the above inequality and taking

λj(1 + δ) +

j−1∑
l=n1

[λl(1 + δ)− λl+1δ] =

j∑
l=n1

λl + δλn1

into account, we have

2

(
j∑

l=n1

λl + δλn1

)
Φ(x̄, x̂j) ≤ ‖xn1

− x̄‖2 +
1 + ε2
ε1

α‖xn1 − yn1−1‖2 + δλn1Φ(x̄, xn1−1),

where

λ̂j x̂j = λj(1 + δ)xj +

j−1∑
l=n1

[λl(1 + δ)− λl+1δ]xl =

j∑
l=n1+1

λlyl + (1 + δ)λn1xn1 .

Evidently, x̂j ∈ dom g which ends the proof. �

Notice that {λn} has a lower bound τ > 0 from Remark 1. Fixing n1 > N , then we get λ̂j →∞
as j →∞. This implies λ̂j ≥ (j − n1)τ and Algorithm 1 has the ergodic convergence rate O(1/j)
when j > J .
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3.3 Heuristics on Nonmonotonic Step Sizes

Generally speaking, the variable step is more beneficial than a fixed step for the proximal gradient
methods. In Algorithm 1, the step size {λn}n∈N is updated but in a nonincreasing way, which might
be adverse if the algorithm starts in the region with a big curvature of F . Namely, the step size
in Algorithm 1 is overdependent on the initial point. For the purpose of obtaining nonmonotonic
step sizes, we present an improved algorithm as follows:

Algorithm 2 (Improved PEG with nonmonotonic step size.)

Step 0. Take δ ∈]
√
5−1
2 ,+∞[, choose x0 ∈ H, λ0 > 0, γ ∈ (0, 1), α ∈]0, κ(δ)[ and a bounded

sequence {ζn}. Set y0 = x0, x1 = proxλ0g(x0 − λ0F (x0)) and n = 1. Choose λ̂ > 0 and a

sequence {φn} with φn ∈ [1, 1+δδ ] and φn = 1 when n ≥ n0 for given n0.
Step 1. Prediction:

1.a. Compute

yn = xn + δ(xn − xn−1), (33)

λn = min

{
φn−1λn−1,

α‖yn − yn−1‖
‖F (yn)− F (yn−1)‖

, λ̂

}
. (34)

1.b. Compute

xn+1 = proxλng(xn − λnF (yn)),

if xn+1 = xn = yn, then stop: xn+1 is a solution.
Step 2. Correction:

Check

‖xn+1 − xn‖ ≤ ζn,

if not hold, set λn ← γλn and return to Step 1.b.
Step 3. Set n← n+ 1 and return to Step 1.

Since the step size is no longer monotonically decreasing, an ≥ 0 in (25) is not necessarily valid

when δ ≥ 1, so Algorithm 2 implements Correction step for any δ ∈]
√
5−1
2 ,+∞[. By φn ∈ [1, 1+δδ ]

and λn+1 ≤ φnλn, we can deduce δλn+1 ≤ (1 + δ)λn. Then Lemmas 3, 4 and 5 with (26) are still
valid for sequences {xn} and {yn} generated by Algorithm 2.

The constant λ̂ in Algorithm 2 is given only to ensure the upper boundedness of {λn}. Hence,

it makes sense to choose λ̂ quite large. In this case, the step sizes generated are allowed to increase
but be bounded from Remark 1. Consequently, it follows from φn = 1 when n ≥ n0 for given
n0 that the sequence {λn}n>n0

generated by Algorithm 2 is monotonically decreasing and then
convergent,

lim
n→∞

λn > 0, lim
n→∞

λn
λn−1

= 1,

and 1
δ2

(
λn

δλn−1
− 1
)
‖xn+1 − yn+1‖2 < +∞. Under these conditions, it is not difficult to prove the

following convergence theorem by using Lemma 5 with (26), though we do not know how to choose
a proper n0.

Theorem 4 Let {xn}n∈N be a sequence generated by Algorithm 2 with δ ∈]
√
5−1
2 ,+∞[. Then,

{xn}n∈N converges weakly to a solution of problem (1).
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4 Further Discussion

From the statement above, the condition α ∈]0, κ(δ)[ for any δ ∈]
√
5−1
2 ,+∞[ is sufficient to ensure

convergence of the proposed method. In this section, we explain by an extremely simple example
that Algorithm 1 is not convergent when α ∈] 2

2δ+1 ,+∞[ for any δ ∈]0,+∞[. That is to say, we
would derive an upper bound of α to guarantee the convergence of Algorithm 1, but Algorithm 1
with (δ, α) in some regions remains to be further studied, see Fig. 2.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

δ

α

 

 

Convergence region
Non−convergence region

κ(δ)

2
2δ+1

Fig. 2 The convergence and non-convergence region of the parameters δ and α.

Consider the simplest optimization problem

min
x∈Rm

1

2
‖x‖2.

Obviously, it can be formulated as a special case of problem (3) with F = I (the identity operator),
L = 1 and C = Rm. Followed by the updates of Algorithm 1, we have

xn+1 = (1− λn − δλn)xn + δλnxn−1, δ ∈]0,+∞[. (35)

For any d̃n, d̂n ∈ R, if

d̃n + d̂n = 1− λn − δλn and d̃nd̂n = −δλn, (36)

then we can rewrite (35) as

xn+1 − d̃nxn = d̂n(xn − d̃nxn−1) or xn+1 − d̂nxn = d̃n(xn − d̂nxn−1). (37)

By (36) and Vieta’s Theorem, we have

d̃n, d̂n =
1− λn − δλn ±

√
(1− λn − δλn)2 + 4δλn

2
.

If max
{
|d̃n|, |d̂n|

}
> 1, then the iterative (37) is not convergent. As a result, (35) is not convergent

either. Namely, if

λn >
2

2δ + 1
, ∀δ > 0,

then the iterative (35) is not convergent. By Remark 1 and L = 1, the convergence of Algorithm
1 can not be guaranteed if λ0 >

2
2δ+1 and α ∈] 2

2δ+1 ,+∞[ for any δ ∈]0,+∞[.
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5 Numerical Experiments

In this section, we perform Algorithm 2 1 (denoted by “IPEG”) for solving some randomly gen-
erated minimization problems over difficult nonlinear constraints. The following state-of-the-art
algorithms are compared to investigate the computational efficiency of IPEG:

– Tseng’s forward-backward-forward splitting method used as in [29, Section 4] (denoted by
“TFBF”), with β = 0.7, θ = 0.99;

– Proximal extrapolated gradient methods [29, Algorithm 2] (denoted by “PEG”), with line
search and α = 0.41, σ = 0.7;

– Modified projected gradient method [42] (denoted by “MPG”), with α = 0.41, δ = 1.01.
– FISTA [33] with standard linesearch (denoted by “FISTA”), with β = 0.7, λ0 = 1;

We denote the random number generator by seed for generating data again in Python 3.8. All
experiments are performed on an Intel(R) Core(TM) i5-4590 CPU@ 3.30 GHz PC with 8GB of
RAM running on 64-bit Windows operating system.

Since solutions of (1) coincide with zeros of the residual function

r(x, y) := ‖y − proxλng(x− λF (y))‖+ ‖x− y‖,

for some positive number λ, and rn := r(xn, yn) = ‖xn+1 − yn‖ + ‖xn − yn‖ = 0 implies xn+1 =
xn = yn, thus we use rn < ε with given ε = 10−6 to terminate our algorithms, and the same ε is
used to terminate PEG, MPG, FB and FISTA. In particular for TFBF, we use

rn := ‖xn − proxλng(xn − λF (xn))‖ ≤ ε

as in [29].

We generate λ0 as in [13], choose y−1 as a small perturbation of y0 and take λ0 = ‖y−1−y0‖
‖F (y−1)−F (y0)‖ .

This gives us an approximation of the local inverse Lipschitz constant of F at y0. There are many
choices of the sequence {φn}n∈N, but in the earlier iterations the large range of λn is benefit for
selecting proper step size, we thus use

φn =

{
1+δ
δ , if n ≤ n̂;

1+δ+n−n̂
δ+n−n̂ , if n > n̂,

(38)

for a given n̂ ∈ N. In this section, we fix n̂ = 500 and n0 = 1000. For applying Correction step, we
use γ = 0.7 and (13) with ζmin = 10−6 and µ = ν = 10.

We report the number of iterations (Iter), the number of proximal operators (# prox), the
number of F (#F ) and the computing time (Time) measured in seconds. Note that the number
of iterations equals that of proximal operators for PEG and IPEG, and is 2 smaller than that of
F for IPEG, we thus report the number of iterations and the number of F for PEG and only the
number of iterations for IPEG. The bold letter indicates the best results in the following tables.

Problem 1 The first problem (called Sun’s problem) was considered in [28,39,42], and the Lipschitz-
continuous and monotone operator was generated by

F (x) = G(x) +H(x),

where

G(x) = (g1(x), g2(x), . . . , gm(x)),

gi(x) = x2i−1 + x2i + xi−1xi + xixi+1, i = 1, 2, . . . ,m, x0 = xm+1 = 0.

1 All codes are available at http://www.escience.cn/people/changxiaokai/Codes.html
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and H(x) = Ex+ c. Here E is a square matrix m×m defined by

eij =


4, j = i

1, i− j = 1

−2, i− j = −1

0, otherwise,

and c = (−1,−1, . . . ,−1). We choose the feasible set C as C1 = Rm+ and C2 = {x ∈ Rm+ |
∑m
i=1 xi =

m}.

For Problem 1, the initial point x0 is generated uniformly randomly from [−10, 10]d. For every
d = 103, 104, 105 and every C above, the test results are listed in Table 1. In addition, we show the
evolutions of rn and λn with respect to Iter for solving Problem 1 with C = C1, d = 103 in Fig. 3.

Table 1 Results for Problem 1 with different d and C.

C d
TFBF PEG MPG IPEG IPEG

(δ = 1.01) (δ = 0.73)
Iter # prox # F Time Iter # F Time Iter Time Iter Time Iter Time

C1

103 141 294 435 0.05 73 143 0.02 243 0.03 62 0.01 48 0.01
104 163 341 504 0.1 76 149 0.04 262 0.03 66 0.02 50 0.01
105 174 365 539 2.21 80 157 0.76 284 1.23 70 0.32 53 0.31

C2

103 139 292 431 0.05 78 154 0.02 229 0.03 77 0.01 63 0.01
104 145 305 450 0.31 83 164 0.09 249 0.24 83 0.08 67 0.07
105 170 359 529 4.89 88 174 1.44 270 3.41 88 1.13 71 1.01

0 50 100 150 200 250
Iter

10 5

10 3

10 1

101

r n

TFBF
PEG
MPG
IPEG, = 1.01
IPEG, = 0.73

(a) rn.

0 50 100 150 200 250
Iter

0.02

0.04

0.06

0.08

0.10

n

PEG
MPG
IPEG, = 1.01
IPEG, = 0.73

(b) λn.

Fig. 3 Comparison of rn and λn for solving Problem 1 with C = C1, d = 103.

Problem 2 The second test problem is the so-called Kojima-Shindo Nonlinear Complementarity
Problem (NCP), considered in [30, 37], where m = 4 and the mapping F is defined by

F (x1, x2, x3, x4) =


3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6
2x21 + x1 + x22 + 10x3 + 2x4 − 2
3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9
x21 + 3x22 + 2x3 + 3x4 − 3

 .

The feasible set is C = {x ∈ R4
+ | x1 + x2 + x3 + x4 = 4} and g(x) = lC(x).
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We choose three particular starting points: (0, 0, 0, 0), (1, 1, 1, 1) and (0.5, 0.5, 2, 1). The numer-
ical results are reported in Table 2 and the evolutions of rn and λn with respect to Iter for solving
Problem 1 with x0 = (1, 1, 1, 1) are shown in Fig. 4.

Table 2 Results for Problem 2 with different x0.

x0
TFBF PEG IPEG(δ = 1.01) IPEG(δ = 0.73)

Iter # prox # F Time Iter # F Time Iter Time Iter Time
(0, 0, 0, 0) 81 173 254 0.02 82 164 0.1 72 0.01 58 0.01
(1, 1, 1, 1) 84 177 261 0.02 79 156 0.1 70 0.01 56 0.01

(0.5, 0.5, 2, 1) 88 186 274 0.02 85 169 0.1 75 0.01 59 0.01
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10 1

100

r n
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IPEG, = 0.73

(a) rn.

0 20 40 60 80
Iter
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2 × 10 2

3 × 10 2

4 × 10 2
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n
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IPEG, = 1.01
IPEG, = 0.73

(b) λn.

Fig. 4 Comparison of rn and λn for solving Problem 2 with x0 = (1, 1, 1, 1).

Problem 3 The third problem is HpHard problem, considered as in [29, 42]. Let F (x) = Mx + q
with M = NNT +S+D and q ∈ Rm, where N , D and S ∈ Rm×m, S is a skew-symmetric matrix,
every entry of N and S is uniformly generated from (−5, 5). The matrix D is diagonal and its
diagonal entry is uniformly generated from (0, 0.3). Every entry of q is uniformly generated from
(−500, 0). The feasible set is C = {x ∈ Rm+ |

∑m
i=1 xi = m} and g(x) = lC(x).
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(b) λn.

Fig. 5 Comparison of rn and λn for solving Problem 3 with seed = 1 and d = 500.
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Table 3 Results for Problem 3 with different cases.

seed m
TFBF PEG IPEG(δ = 1.01) IPEG(δ = 0.73)

Iter # prox # F Time Iter Time Iter Time Iter Time

1
500 1066 2279 3345 0.25 1185 0.17 1185 0.13 972 0.09
1000 1155 2469 3624 1.75 1323 0.93 1268 0.42 1033 0.39
5000 1389 2969 4358 56.87 1575 27.89 1630 26.43 1326 22.86

2
500 1270 2715 3985 0.29 1447 0.19 1480 0.14 1165 0.12
1000 1134 2424 3558 1.56 1274 0.86 1262 0.41 1028 0.40
5000 1365 2918 4283 55.74 1554 33.91 1603 29.94 1303 25.64

For every m, as shown in Table 3, we have generated randomly two different M and q with
seed = 1 and 2. For all tests, we take x0 = (1, 1, · · · , 1). Since F is an affine operator, the number
of iterations is 2 smaller than that of F for PEG, thus we just report the number of iterations.

Problem 4 The fourth example is a sparse logistic regression problem for binary classification.
Let (hi, li) ∈ Rn × {±1}, i = 1, · · · ,m be the training set, where hi ∈ Rn is the feature vector of
each data sample, and li is the binary label. The formulation of sparse logistic regression reads

min
x∈Rn

φ(x) := µ‖x‖1 +
1

m

m∑
i=1

log(1 + elih
T
i x), (39)

where µ > 0 and is set to be 0.005‖HT l‖∞ in the numerical test.

Let Kij = −lihij and set f̂(y) =
∑m
i=1 log(1 + exp(yi)). Then the objective in (39) is φ(x) =

f(x) + g(x) with g(x) = µ‖x‖1 and f(x) = f̂(Kx). It is easy to derive that L∇f̂ = 1
4 . Thus,

L∇f = 1
4‖K

TK‖. We take three popular datasets from LIBSVM 2: w7a with m = 24692, n = 300,
a9a with m = 32561, n = 123 and real-sim with m = 72309, n = 20958.

Since f is convex and F = ∇f , we apply IPEG to (39) without Correction step. We use
ε = 10−10 to terminate all the algorithms for getting more accurate solution, and choose the
smallest objective value among all methods and set it to φ(x∗). The results are shown in Table 4.
To illustrate how does the value φ(xn)− φ(x∗) and rn change over times, we give two convergence
plots for data “a9a” in Fig. 6.

Table 4 Results for Problem 4.

data
TFBF PEG IPEG(δ = 1.01) IPEG(δ = 0.73)

Iter # prox # F Time Iter # F Time Iter Time Iter Time
w7a 971 1950 2867 4.1 968 1933 2.9 827 1.6 716 1.4
a9a 6758 14439 21197 27.8 4241 8601 12.2 3498 6.1 2844 5.0

real-sim 3984 8510 12494 153.8 2651 5312 70.9 2230 35.1 1796 32.8

To summarize our numerical experiments on Problems 1-4, we want to make some observations.
Firstly, the advantage of IPEG in comparison with other algorithms is a larger interval for possible
step size λn, see Fig. 3(b), Fig. 4(b) and Fig. 5(b), which resulted from the proper choice of δ and
the larger value of α.

Secondly, we observed that for the majority of the test problems, IPEG is more efficient than
other algorithms in both the number of iterations and the CPU time. Furthermore, IPEG with
δ = 0.73 performs efficiently than that with δ = 1.01 from the convergence plots of rn shown in
Fig. 3(a), Fig. 4(a) and Fig. 5(a), which is extremely due to the larger step size λn and the use of
only one value of the mapping required per iteration. Although linesearch is involved in Correction
step, the condition required is so weak that the linesearch is not started for many problems.

2 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Fig. 6 Comparison of rn and φ(xn)− φ(x∗) for solving Problem 4 with data “a9a”.

In addition, since MPG [42] adopted nonincreasing step sizes, it is adverse when starting in the
region with a big curvature of F , see Fig. 3(b) and the results of MPG for Problem 1. From Fig.
5, the step sizes generated by IEPG have fluctuated within a range at the first 500 iterations, after
that the range decreases as we use (38) with n̂ = 500 to control the increase of step sizes.

6 Conclusions

Without the knowledge of Lipschitz constant, we have proposed a proximal extrapolated gradient
method using a prediction-correction procedure to determine stepsizes, and improved it numerically
with non-monotonic step size. The method extended the range of parameters (considering the case
of δ < 1 ) and obtained a larger step size than the existing methods by using correction step. Finally,
a number of experiments illustrate that the proposed method is efficient, and the improvement can
be resulted from the larger step size.

In addition, we have shown by an extremely simple example that our method is not convergent
if λ0, α ∈] 2

2δ+1 ,+∞[ for any δ > 0. From Fig. 3, the convergence of the proposed method remains

unknown for (δ, α) in some regions. Especially for δ ∈]0,
√
5−1
2 ], it remains to be explored whether

there are any (larger) α > 0 such that Algorithms 1 and 2 are convergent. Perhaps our method
without the correction step is convergent as well, and can be generalized to other methods that need
to estimate the Lipschitz constant. We leave this as an interesting topic for our future research.
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25. Liang, J., Fadili, J., Peyré, G.: Activity identification and local linear convergence of forward-backward-type

methods. SIAM J. Optim. 27(1), 408–437 (2017)
26. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal.

16(6), 964–979 (1979)
27. Malitsky, Y.V., Semenov, V.V.: An extragradient algorithm for monotone variational inequalities. Cybern. Syst.

Anal. 50, 271–277 (2014)
28. Malitsky, Y.V.: Projected reflected gradient methods for variational inequalities. SIAM J. Optim. 25(1), 502–520

(2015)
29. Malitsky, Y.V.: Proximal extrapolated gradient methods for variational inequalities. Optim. Methods Soft.

33(1), 140–164 (2018)
30. Mainge, P.E., Gobinddass, M.L.: Convergence of one-step projected gradient methods for variational inequalities.

J. Optim. Theory Appl. 171, 146–168 (2016)
31. Monteiro, R.D., Svaiter, B.F.: Complexity of variants of Tseng’s modified FB splitting and Korpelevich’s meth-

ods for hemivariational inequalities with applications to saddle-point and convex optimization problems. SIAM J.
Optim. 21, 1688–1720 (2011)

32. Noor, M.A.: Modified projection method for pseudomonotone variational inequalities. Appl. Math. Lett. 15,
315–320 (2002)

33. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1/k2). Soviet
Mathematics Doklady, 27(2), 372–376 (1983)

34. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers,
Boston (2004)

35. Nemirovski, A.: Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz con-
tinuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15, 229–251
(2004)

36. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull.
Am. Math. Soc. 73(4), 591–597 (1967)

37. Pang, J.S., Gabriel, S.A.: NE/SQP: A robust algorithm for the nonlinear complementarity problem. Math.
Program. 60(1-3), 295–337 (1993)



22 Xiaokai Chang1,2 et al.

38. Solodov, M.V., Svaiter, B.F.: A new projection method for monotone variational inequalities. SIAM J. Control
Optim. 37, 765–776 (1999)

39. Sun, D.: A projection and contraction method for the nonlinear complementarity problems and its extensions.
Math. Numer. Sinica, 16, 183–194 (1994)

40. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J.Control
Optim. 37, 765–776 (1999)

41. Tseng, P.: A modified forward-backward splitting method for maximal monotone mapping. SIAM J. Control
Optim. 38, 431–446 (2000)

42. Yang J., Liu H.: A modified projected gradient method for monotone variational inequalities. J. Optim. Theory
Appl. 179(1), 197–211 (2018)


	1 Introduction
	2 Preliminaries
	3 Proximal Extrapolated Gradient Method with Prediction and Correction
	4 Further Discussion
	5 Numerical Experiments
	6 Conclusions

