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EFFECTIVE ŁOJASIEWICZ GRADIENT INEQUALITY

AND FINITE DETERMINACY OF NON-ISOLATED NASH

FUNCTION SINGULARITIES

BEATA OSIŃSKA-ULRYCH, GRZEGORZ SKALSKI, AND STANISŁAW SPODZIEJA

Abstract. Let X ⊂ Rn be a compact semialgebraic set and let f : X → R

be a nonzero Nash function. We give a Solernó and D’Acunto-Kurdyka type
estimation of the exponent ̺ ∈ [0, 1) in the Łojasiewicz gradient inequality
|∇f(x)| ≥ C|f(x)|̺ for x ∈ X, |f(x)| < ε for some constants C, ε > 0, in
terms of the degree of a polynomial P such that P (x, f(x)) = 0, x ∈ X. As a
corollary we obtain an estimation of the degree of sufficiency of non-isolated
Nash functions singularities.

1. Introduction

Łojasiewicz inequalities are important tools in various branches of mathemat-
ics: differential equations, singularity theory and optimization (for more detailed
references, see for example [16], [18], [19], [22] and [34]). Quantitative aspects, like
estimates (or exact computation), of these exponents are subject of intensive study
in real and complex algebraic geometry (see for instance [18], [19], [20] and [33]).
Our main goal is to give, in terms of the Łojasiewicz inequality, an effective suf-
ficient condition for Nash function germs of non-isolated singularity at zero to be
isotopical (Theorem 1.3). The main tool in the proof is an effective estimation of
the exponent in the Łojasiewicz gradient inequality (Theorems 2.1 and 2.2).

Determinacy of jets of functions with isolated singularity at zero was investigated
by many authors, including N. H. Kuiper [14], T. C. Kuo [15], J. Bochnak and S.
Łojasiewicz [2] for real functions and S. H. Chang and Y. C. Lu [5], B. Teissier [40]
and J. Bochnak and W. Kucharz [1] for complex functions. Similar investigations
were also carried out for functions in a neighbourhood of infinity by P. Cassou-
Noguès and H. H. Vui [4] (see also [35], [37]). The case of real jets with non-
isolated singularities was studied among others by V. Grandjean [11] and X. Xu
[41], and for complex functions by D. Siersma [36] and R. Pellikaan [30]. In the
case of nondegenerate analytic functions f , g, a condition for topological triviality
of deformations f + tg, t ∈ [0, 1] in terms of Newton polyhedra was obtained by
J. Damon and T. Gaffney [8], and for blow analytic triviality by T. Fukui and
E. Yoshinaga [9]. Some algebraic conditions for finite determinacy of a smooth
function jet were obtained by L. Kushner [21].
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1.1. Łojasiewicz gradient inequality. Let U ⊂ Rn be an open set and let a ∈ U .
Let f, F : U → R be continuous semialgebraic functions such that a ∈ F−1(0) ⊂
f−1(0) ⊂ U . Then the following Łojasiewicz inequality holds:

(1.1) |F (x)| ≥ C|f(x)|η in a neighbourhood of a ∈ Rn for some constant C > 0.

The lower bound of the exponents η in (1.1) is called the Łojasiewicz exponent
of the pair (F, f) at a and is denoted by La(F, f). It is known that La(F, f) is a
rational number (see [3]) and the inequality (1.1) holds actually with η = La(F, f)
on some neighbourhood of the point a for some positive constant C (see for instance
[39]). An asymptotic estimate for La(F, f) was obtained by Solernó [38]:

(S) La(F, f) ≤ DMcℓ

,

where D is a bound for the degrees of the polynomials involved in a description
of F , f and U ; M is the number of variables in these formulas; ℓ is the maximum
number of alternating blocs of quantifiers in these formulas; and c is an unspecified
universal constant.

In this paper, we consider the case when F is equal to the gradient ∇f :=
(

∂f
∂x1

, . . . , ∂f
∂xn

)

: U → Rn of a Nash function f in x = (x1, . . . , xn). Recall that

semialgebraic and analytic functions are called Nash functions.

Our main goal is to obtain an effective estimate for the exponent ̺ ∈ [0, 1) in
the following Łojasiewicz gradient inequality (see [23] or [24], cf. [40]):

(Ł) |∇f(x)| ≥ C|f(x)|̺ in a neighbourhood of a ∈ Rn for some constant C > 0

for an arbitrary Nash function f : U → R, where f(a) = 0, in terms of the degree
of a polynomial P ∈ R[x, y] describing the graph of f . We denote by |∇f(x)| the

Euclidean norm of ∇f(x), i.e. |∇f(x)|2 =
(

∂f
∂x1

(x)
)2

+ · · ·+
(

∂f
∂xn

(x)
)2

.

The smallest exponent ̺ in (Ł), denoted by ̺a(f), is called the Łojasiewicz
exponent in the gradient inequality at a. It is known that (Ł) holds with ̺ = ̺a(f).

In the case of a polynomial function f : Rn → R of degree d > 0 such that 0 is
an isolated point of f−1(0), J. Gwoździewicz [12] (cf. [13]) proved that

(G2) ̺0(f) ≤ 1−
1

(d− 1)n + 1
,

and in the general case of an arbitrary polynomial f , D. D’Acunto and K. Kurdyka
[6] (cf. [7], [10] and [31]) showed that

(DK) ̺0(f) ≤ 1−
1

d(3d− 3)n−1
, provided d ≥ 2.

If f is a rational function of the form f = p/q, where p, q ∈ R[x], p(0) = 0 and
q(0) 6= 0, then ̺0(f) = ̺0(p), so (G2) and (DK) hold with d = deg p.

The aim of this paper is to show generalizations of the above estimates for Nash
functions (see Theorems 2.1 and 2.2 in Section 2). More precisely, let U ⊂ Rn be
a neighbourhood of a ∈ Rn and let f : U → R be a nonzero Nash function. We
give a Solernó and D’Acunto-Kurdyka type estimation of the exponent ̺ ∈ [0, 1)
in the Łojasiewicz gradient inequality (Ł) in terms of the degree d of a nonzero
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polynomial P such that P (x, f(x)) = 0, x ∈ U . Namely, in Theorem 2.2 we obtain

̺a(f) ≤ 1−
1

2(2d− 1)3n+1
.

If additionally n ≥ 2 and ∂P
∂y (x, f(x)) 6= 0 for x ∈ U , then in Theorem 2.1 we obtain

̺a(f) ≤ 1−
1

d(3d− 2)n + 1
, provided d ≥ 2.

The above estimates are comparable with the Solernó estimate (S), but our esti-
mates are explicit.

As a corollary, we obtain the following inequality (see Corollary 3.6):

(1.2) |∇f(x)| ≥ C dist(x, f−1(0))2(2d−1)3n+1−1 in a neighbourhood of a.

If additionally n ≥ 2 and ∂P
∂y (x, f(x)) 6= 0 for x ∈ U , then

(1.3) |∇f(x)| ≥ C dist(x, f−1(0))d(3d−2)n in a neighbourhood of a.

The inequalities (1.2), (1.3) are essential points in the effective estimate of the
degree of sufficiency of non-isolated Nash function singularities given in the next
section. The proof of these inequalities is based on Theorem 2.2 and estimates of
the length of trajectories of the vector field ∇f in U \ f−1(0) (see Theorem 3.4).

1.2. Sufficiency of non-isolated Nash function singularities. Let C k
a (n) de-

note the set of C k real functions defined in neighbourhoods of a ∈ R
n.

By a k-jet at a ∈ Rn in the class C ℓ we mean a family of functions w ⊂ C ℓ
a (n),

called C ℓ-realizations of this jet, possessing the same Taylor polynomial of degree
k at a. We also say that f determines a k-jet at a in C ℓ if f is a C ℓ-realization
of this jet. For a function f ∈ C k

a (n), we denote by jkf(a) the k-jet at a (in C k)
determined by f .

Let Z ⊂ Rn be a set such that 0 ∈ Z and let k ∈ Z, k > 0. By a k-Z-jet in
the class C k, or briefly a k-Z-jet, we mean an equivalence class w ⊂ C k

0 (n) of the
following equivalence relation: f ∼ g iff for some neighbourhood U ⊂ R

n of the
origin, jkf(a) = jkg(a) for a ∈ Z ∩U (cf. [27], [41]). The functions f ∈ w are called
C k-Z-realizations of the jet w and we write w = jkZf . The set of all jets jkZf is
denoted by Jk

Z(n).

The k-Z-jet w ∈ Jk
Z(n) is said to be C r-Z-sufficient (resp. Z-v-sufficient) in the

class C k if for every of its C k-Z-realizations f and g there exist sufficiently small
neighbourhoods U1, U2 ⊂ Rn of 0, and a C r diffeomorphism ϕ : U1 → U2, such
that f ◦ ϕ = g in U1 (resp. there exists a homeomorphism ϕ : [f−1(0) ∪ Z] ∩ U1 →
[g−1(0) ∪ Z] ∩ U2 with ϕ(0) = 0 and ϕ(Z ∩ U1) = Z ∩ U2).

The classical and significant result on sufficiency of jets is the following:

Theorem 1.1 (Kuiper, Kuo, Bochnak-Łojasiewicz). Let w be a k-jet at 0 ∈ Rn and
let f be its C k-realization. If f(0) = 0 then the following conditions are equivalent:

(a) w is C 0-sufficient in C k,
(b) w is v-sufficient in C k,
(c) |∇f(x)| ≥ C|x|k−1 in a neighbourhood of the origin for some C > 0.
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The implication (c)⇒(a) was proved by N. H. Kuiper [14] and T. C. Kuo [15],
(b)⇒(c) by J. Bochnak and S. Łojasiewicz [2], and (a)⇒(b) is obvious (cf. [29]).

Let us recall the notions of isotopy and topological triviality. Let Ω ⊂ Rn be a
neighbourhood of 0 ∈ Rn and let Z ⊂ Rn with 0 ∈ Z.

A continuous mapping H : Ω× [0, 1] → R
n is called an isotopy near Z at zero if:

(a) H0(x) = x for x ∈ Ω and Ht(x) = x for t ∈ [0, 1] and x ∈ Ω ∩ Z,
(b) for any t the mapping Ht : Ω → Rn is a homeomorphism onto Ht(Ω),
where Ht(x) = H(x, t) for x ∈ Ω, t ∈ [0, 1].

Functions f : Ω1 → R, g : Ω2 → R, where Ω1,Ω2 ⊂ Rn are neighbourhoods of
0 ∈ Rn, are called isotopical near Z at zero if there exists an isotopy near Z at
zero, H : Ω× [0, 1] → Rn, with Ω ⊂ Ω1 ∩ Ω2, such that f(H1(x)) = g(x), x ∈ Ω.

A deformation f + tg is called topologically trivial near Z along [0, 1] if there
exists an isotopy near Z at zero, H : Ω× [0, 1] → Rn, with Ω ⊂ Ω1 ∩Ω2, such that
f(H(t, x)) + tg(H(t, x)) does not depend on t.

Theorem 1.1 concerns the case of an isolated singularity of f at 0, i.e. 0 is an
isolated zero of ∇f . In the case of a non-isolated singularity of f at 0, from [27,
Theorems 1.3 and 1.4] (cf. [41]) we have the following criterion for sufficiency of
jets.

Theorem 1.2. Let f ∈ C k
0 (n) be a C k-Z-realization of a k-Z-jet w ∈ Jk

Z(n), where
k > 1 and Z = f−1(0), 0 ∈ Z, and suppose (∇f)−1(0) ⊂ Z. Then the following
conditions are equivalent:

(a) The k-Z-jet w is C 0-Z-sufficient in C k.

(b) For any C k-Z-realizations f1, f2 of w, the deformation f1 + t(f2 − f1), t ∈ R,
is topologically trivial along [0, 1].

(c) Any two C k-Z-realizations of w are isotopical at zero.

(d) The k-Z-jet w is Z-v-sufficient in C k.

(e) There exists a positive constant C such that

|∇f(x)| ≥ C dist(x, Z)k−1 in a neighbourhood of the origin.

Let f : U → R be a Nash function, where U ⊂ Rn is a neighbourhood of the
origin, let Z = f−1(0), and suppose 0 ∈ Z.

The main result of this paper is the following corollary from Theorem 1.2 and
inequality (1.2).

Theorem 1.3. Let k = 2(2d− 1)3n+1, where d = deg0 f , and let w ∈ Jk
Z(n) be the

k-Z-jet for which f is a C k-Z-realization. Then:

(a) The k-Z-jet w is C 0-Z-sufficient in C k.

(b) For any C k-Z-realizations f1, f2 of w, the deformation f1 + t(f2 − f1), t ∈ R,
is topologically trivial along [0, 1].

(c) Any two C k-Z-realizations of w are isotopical at zero.

(d) The k-Z-jet w is Z-v-sufficient in C k.

Under additional assumption on f , from Theorem 1.2 and inequality (1.3), we
obtain
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Theorem 1.4. Assume that there exists a nonzero polynomial P ∈ R[x, y] such
that P (x, f(x)) = 0 and ∂P

∂y (x, f(x)) 6= 0 for x ∈ U . Then the assertion of Theorem

1.3 holds with k = d(3d− 2)n + 1, where d = degP .

Remark 1.5. If f is a polynomial of degree d > 1 or a rational function f = p/q,
where p(0) = 0, q(0) 6= 0 and d = deg p, then from Theorem 1.2 and by (DK), the
assertion of Theorem 1.3 holds with k = d(3d − 3)n−1. If additionally the origin
is an isolated zero of f , then by (G2) the assertion of Theorem 1.3 holds with
k = (d− 1)n + 1.

2. Łojasiewicz gradient inequality

Let f : U → R, where U ⊂ Rn is a connected neighbourhood of a ∈ Rn, be a
Nash function. Let P ∈ R[x, y] be the unique irreducible real polynomial such that

(2.1) P (x, f(x)) = 0 for x ∈ U,

and let

d = degP.

We will call this number d the degree of the Nash function f at a and denote it by
dega f . Obviously d = dega f > 0 is uniquely determined. For d = 1, the function
f is linear and (Ł) holds with ̺ = 0, so we will assume that d > 1. We will also
assume that ∇f(a) = 0, because in the opposite case (Ł) holds with ̺ = 0.

Put

R(n, d) = max{2d(2d− 1), d(3d− 2)n}+ 1.

The main result of this section is the following theorem.

Theorem 2.1. Let f : U → R be a nonzero Nash function such that f(a) = 0 and
∇f(a) = 0. Assume that for the unique polynomial P satisfying (2.1) we have

(2.2)
∂P

∂y
(x, f(x)) 6= 0 for x ∈ U.

Then ̺a(f) ≤ 1− 1
R(n,d) . Moreover, for ̺ = 1− 1

R(n,d) and some constants C, ε > 0,

(2.3) |∇f(x)| ≥ C|f(x)|̺ for |x− a| < ε, |f(x)| < ε.

Without the assumption (2.2), we have a somewhat weaker estimation of the
exponent ̺a(f) than in Theorem 2.1. Namely, let

S(n, d) = 2(2d− 1)3n+1.

Theorem 2.2. Let f : U → R be a nonzero Nash function such that f(a) = 0
and ∇f(a) = 0 and let P be the unique polynomial satisfying (2.1). Then ̺a(f) ≤
1− 1

S(n,d) . Moreover, (2.3) holds actually with ̺ = 1− 1
S(n,d) .

Theorems 2.1 and 2.2 are generalizations for Nash functions of the above men-
tioned results by J. Gwoździewicz and D. D’Acunto and K. Kurdyka in the poly-
nomial function case. They are also comparable with Solernó’s estimate (S), but
our estimates are explicit. In the case of Nash functions with isolated singularity at
zero, a similar result was obtained in [17].

We give the proofs of Theorems 2.1 and 2.2 in Section 5.
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3. Łojasiewicz inequality

Let X ⊂ R
n be a compact semialgebraic set and let f : X → R be a Nash

function. Then f is defined in a neighbourhood of X . So, there exists a compact
semialgebraic set Y ⊂ Rn such that X ⊂ IntY and f is defined on Y .

The degree of f is defined to be sup{dega f : a ∈ X} and is denoted by degX f .
In fact, degX f = max{dega f : a ∈ X}. Moreover, one can assume that Y was
chosen in such a manner that degX f = degY f .

Let dist(x, V ) denote the distance of a point x ∈ Rn to a set V ⊂ Rn in the
Euclidean norm (with dist(x, V ) = 1 if V = ∅).

3.1. Global gradient Łojasiewicz inequality. Theorems 2.1 and 2.2 have a local
character. From these theorems we obtain a global Łojasiewicz gradient inequality.

Corollary 3.1. Let d = degX f . If (∇f)−1(0) ⊂ f−1(0) then for some positive
constant C,

(3.1) |∇f(x)| ≥ C|f(x)|̺ for x ∈ X

with ̺ = 1− 1
S(n,d) . If additionally there exists a polynomial P ∈ R[x, y] such that

P (x, f(x)) = 0 and ∂P
∂y (x, f(x)) 6= 0 for x ∈ X and d1 = degP , then (3.1) holds

with ̺ = 1− 1
R(n,d1)

.

Denote by ̺X(f) the smallest exponent ̺ for which (3.1) holds. We call it the
Łojasiewicz exponent in the gradient inequality on X . It is known that the inequality
(3.1) holds with ̺ = ̺X(f). So, from Corollary 3.1 we obtain

Corollary 3.2. ̺X(f) ≤ 1− 1
S(n,d) .

3.2. Length of trajectory. Let f : X → R be a nonzero Nash function such that
(∇f)−1(0) ⊂ f−1(0), let ̺ ∈ (0, 1) and C > 0 be such that the global inequality
(3.1) in Corollary 3.1 holds in X , and let V = f−1(0). Then ∇f(x) 6= 0 for x ∈ X\V .

Let ϕ(t) = |t|1−̺ for t ∈ R. By the same argument as in the proof of [18,
Proposition 1] we obtain (cf. [16])

Proposition 3.3 (Kurdyka-Łojasiewicz inequality). Under the above notations,

|∇(ϕ ◦ f)(x)| ≥ (1− ̺)C for x ∈ X \ V .

We will also assume that IntX \ V = X . Let

UX,f =

{

x ∈ IntX :
1

C(1 − ̺)
|f(x)|1−̺ < dist(x,Rn \X)

}

.

Then UX,f ⊂ X is a neighbourhood of (IntX) ∩ V .

Take a global trajectory γ : [0, s) → UX,f \ V of the vector field

H(x) = − sign f(x)
∇f(x)

|∇f(x)|
for x ∈ UX,f \ V .

Then the function f ◦ γ is monotonic, so the limit limt→s f ◦ γ(t) exists.

Let length γ denote the length of γ. Since |γ′(t)| = 1, we have length γ = s.

The following generalization of [18, Theorem 1] has a similar proof.
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Theorem 3.4. The limit limt→s γ(t) exists and belongs to V . Moreover,

dist(γ(0), V ) ≤ length γ ≤
1

(1 − ̺)C
|f(γ(0))|1−̺.

Proof. Let s1 ∈ [0, s) and γs1 = γ|[0,s1]. Then length γs1 = s1. Since ∇f
|∇f | sign f(x) =

∇(ϕ◦f)
|∇(ϕ◦f)| for x ∈ U \ V , it follows that

(ϕ ◦ f ◦ γ)′ = 〈∇(ϕ ◦ f) ◦ γ, γ′〉 = −|∇(ϕ ◦ f) ◦ γ|,

where 〈·, ·〉 denotes the standard scalar product in Rn, and Proposition 3.3 gives

ϕ(f(γ(0))) − ϕ(f(γ(s1))) = −s1(ϕ ◦ f ◦ γ)′(t) = s1|∇(ϕ ◦ f) ◦ γ(t)|

≥ (1− ̺)C length γs1

for some t ∈ [0, s1]. Then, letting s1 → s, from the definition of ϕ we have

length γ ≤
1

(1− ̺)C
(|f(γ(0))|1−̺ − α) ≤

1

(1− ̺)C
|f(γ(0))|1−̺,

where α = lims1→s |f(γ(s1))|
1−̺ ≥ 0.

Since γ(0) ∈ UX,f , we see that length γ < dist(γ(0),Rn \ X), so the limit
limt→s γ(t) certainly exists and belongs to UX,f . Consequently, limt→s γ(t) ∈ V
and length γ ≥ dist(γ(0), V ). This gives the assertion. �

From Theorem 3.4 we have

Corollary 3.5. Under the assumptions and notations of Theorem 3.4,

|f(x)| ≥ (C(1− ̺))
1/(1−̺)

dist(x, V )1/(1−̺), x ∈ UX,f ,

and

|∇f(x)| ≥ (C(1− ̺))̺/(1−̺) dist(x, V )̺/(1−̺), x ∈ UX,f .

Similarly to [18], we obtain a version of the above corollary in the complex case
with the same formulation.

From Corollaries 3.1, 3.5 and Theorem 2.2, we immediately obtain

Corollary 3.6. Let d = degX f . Then there exists a positive constant C such that

|f(x)| ≥ C dist(x, V )2(2d−1)3n+1

, x ∈ X,

and

|∇f(x)| ≥ C dist(x, V )2(2d−1)3n+1−1, x ∈ X.

If additionally n ≥ 2 and there exists a polynomial P ∈ R[x, y] such that
P (x, f(x)) = 0 and ∂P

∂y (x, f(x)) 6= 0 for x ∈ X, and d = degP , then

|f(x)| ≥ C dist(x, V )d(3d−2)n+1, x ∈ X,

and

|∇f(x)| ≥ C dist(x, V )d(3d−2)n , x ∈ X.
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Proof. Take a compact semialgebraic set Y ⊂ Rn such that X ⊂ IntY and Y ⊂
{x ∈ Rn : dist(x,X) < ε}. If ε is sufficiently small, then we can consider the function
f on Y . Then we may assume that degY f = degX f and (∇f)−1(0) ⊂ f−1(0) after
extending f onto Y . So, the assertions of Theorem 3.4 and Corollary 3.5 hold with
̺ = 1 − 1

S(n,d) on the set UY,f . Hence the assertions hold for x ∈ X ∩ UY,f . By

the definition of UY,f , we see that X \ UY,f is a compact set and min{|x− y| : x ∈
V, y ∈ X \ UY,f} > 0. So, diminishing C if necessary, we obtain the first part of
the assertion. The second part is proved analogously. �

3.3. Łojasiewicz exponent. Corollary 3.5 implies the known fact that the expo-
nents α > 0 in the inequality

(3.2) |f(x)| ≥ C dist(x, V )α, x ∈ X,

for some positive constant C, are bounded below. The inequality (3.2) is called the
Łojasiewicz inequality for f on X and the lower bound of the exponents α > 0
is the Łojasiewicz exponent of f on X , denoted by LX(f). It is known that (3.2)
holds with α = LX(f) and some positive constant C.

From Theorem 3.4 we obtain

Corollary 3.7. LX(f) ≤ 1
1−̺X (f) .

Corollary 3.5 implies

Corollary 3.8. If d = degX f , then LX(f) ≤ 2(2d− 1)3n+1.

For n ≥ 4 the above estimate is sharper than the one given in [20] for continuous

semialgebraic functions: LX(f) ≤ d(6d − 3)n+r−1, where r ≤ n(n+1)
2 is the degree

of complexity of f , equal to the number of inequalities necessary to define the
graph of f , and d is the maximal degree of polynomials describing the graph of f .
Consequently, this gives the estimate LX(f) ≤ d(6d − 3)n+n(n+1)/2−1 in terms of
the degree only. So, the estimate in Corollary 3.8 is more exact than the one above
for n ≥ 4.

4. Total degree of algebraic sets

Let C[x] denote the ring of complex polynomials in x = (x1, . . . , xn).

Let f = (f1, . . . , fr) : Cn → Cr be a polynomial mapping with deg fi > 0 for
i = 1, . . . , r. Let V = f−1(0) ⊂ Cn.

The total degree of V is the number

δ(V ) = deg V1 + · · ·+ deg Vs,

where V = V1∪· · ·∪Vs is the decomposition into irreducible components (see [25]).

We have the following useful fact (see [25]).

Fact 4.1. If V,W ⊂ C
n are algebraic sets, then

δ(V ∩W ) ≤ δ(V )δ(W ).

From Fact 4.1 and the definition of total degree of algebraic sets we have the
following two facts (cf. [25]).
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Fact 4.2. δ(V ) ≤ deg f1 · · · deg fr. In particular, for any irreducible component Vj

of V we have
deg Vj ≤ deg f1 · · · deg fr.

Fact 4.3. Let L : Cn → Ck be a linear mapping. Then

δ(L(V )) ≤ δ(V ).

We will need the following lemma (see [17, Lemma 3.20]).

Lemma 4.4. Let Vj be an irreducible component of the set V , and suppose dimVj ≥
1. Then for a generic linear mapping L = (L1, . . . , Ln−1) : C

r → Cn−1 the set Vj

is an irreducible component of the set of common zeros of the system of equations

Li ◦ f = 0, i = 1, . . . , n− 1.

In particular,
degVj ≤ deg(L1 ◦ f) · · ·deg(Ln−1 ◦ f).

Moreover, we can take L1(y1, . . . , yr) = y1.

5. Proofs of Theorems 2.1 and 2.2

The idea of the proofs is similar to that in [17, proof of Theorem 1.2].

Without loss of generality, we may assume that a = 0. Let f : U → R be a
nonzero Nash function defined in an open neighbourhood U ⊂ Rn of the origin
such that f(0) = 0 and ∇f(0) = 0. Let P ∈ R[x, y] be the unique irreducible
polynomial satisfying (2.1) and let d = degP .

Since the set of critical values of a differentiable semialgebraic function is finite,
we have

Fact 5.1. There exists ε > 0 such that f has no critical values in the interval
(−ε, ε) except 0.

Let ε > 0 be as in Fact 5.1. Take r > 0. Denote by Ω the closed ball

Ω := {x ∈ R
n : |x| ≤ r}

and by ∂Ω the sphere {x ∈ Rn : |x| = r}. Suppose that Ω ⊂ U . Define a semialge-
braic set Γ ⊂ Ω by

Γ := {x ∈ Ω : ∀ζ∈Ω f(x) = f(ζ) ⇒ |∇f(x)| ≤ |∇f(ζ)|}.

Then by the definition of Γ we have

Fact 5.2. Let ̺ ∈ R and let C > 0. If |∇f(x)| ≥ C|f(x)|̺ for x ∈ Γ such that
|f(x)| < ε, then |∇f(x)| ≥ C|f(x)|̺ for x ∈ Ω, |f(x)| < ε.

Let ̺0 = ̺0(f). Then, decreasing r if necessary, we can assume that

(5.1) |∇f(x)| ≥ C|f(x)|̺0 for x ∈ Ω and some constant C > 0.

Let us fix such an r.

Consider the case n = 1. Denote by ord0 f the order of f at zero. Then f has an
isolated zero and singularity at zero, ord0 f > 0 and the inequality (2.3) holds with

(5.2) ̺0(f) =
ord0 f − 1

ord0 f
= 1−

1

ord0 f
.
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Let the polynomial P be of the form P (x1, y) = p0(x1)y
d+p1(x1)y

d−1+· · ·+pd(x1),
where p0, . . . , pd ∈ R[x1]. As P is irreducible, pd 6= 0 and ord0 pd ≤ d. Since

−pd(x1) = f(x1)(p0(x1)(f(x1))
d−1 + p1(x1)(f(x1))

d−2 + · · ·+ pd−1(x1)),

we have ord0 f ≤ ord0 pd ≤ d. Together with (5.2) this gives (2.3) with ̺0(f) = 1− 1
d

and the assertions of Theorems 2.1 and 2.2 in the case n = 1.

In the remainder of this article we will assume that n > 1.

By (5.1) and the Curve Selection Lemma, there exists an analytic curve ϕ :
[0, 1) → Ω for which f(ϕ(0)) = 0, f(ϕ(ξ)) 6= 0 for ξ ∈ (0, 1) and for some constant
C1 > 0,

(5.3) C|f(ϕ(ξ))|̺0 ≤ |∇f(ϕ(ξ))| ≤ C1|f(ϕ(ξ))|
̺0 , ξ ∈ [0, 1)

(cf. [39]). By Fact 5.2 we may assume that ϕ([0, 1)) ⊂ Γ. Then we have two cases:

I. ϕ
(

(0, 1)
)

⊂ IntΩ,

II. ϕ
(

[0, 1)
)

⊂ ∂Ω.

We will use the Lagrange multipliers theorem to describe the relation between
the values y = f(x) and u = |∇f(x)|2 for x ∈ Γ, so we put

ΓI = {x ∈ Ω : ∃λ∈R ∇|∇f(x)|2 − λ∇f(x) = 0},

ΓII = {x ∈ ∂Ω : |f(x)| < ε ∧ ∃λ1,λ2∈R ∇|∇f(x)|2 − λ1∇f(x)− 2λ2x = 0}.

To fulfill the assumptions of the Lagrange theorem we will need

Lemma 5.3. There exists ε > 0 such that for every x ∈ ∂Ω and every y ∈ R such
that 0 < |y| < ε and y = f(x), the vectors ∇

(

|x|2 − r2
)

and ∇f(x) (that is, 2x and
∇f(x)) are linearly independent.

Proof. If f |∂Ω is a constant function then the assertion is obvious. Assume that f
is not constant on ∂Ω. Then, by Fact 5.1, there exists ε > 0 such that ∇f(x) 6= 0
for x ∈ ∂Ω, 0 < |f(x)| < ε.

Suppose to the contrary that for any ε > 0 there exist x ∈ ∂Ω and yε ∈ R with
0 < |yε| < ε such that yε = f(x) and ∇f(x) = ξ · 2x for some ξ ∈ R \ {0}. Then
by the Curve Selection Lemma there exist analytic curves γ : [0, 1) → ∂Ω with
γ((0, 1)) ⊂ Ω \ f−1(0) and f(γ(0)) = 0, and α : [0, 1) → R, such that for t ∈ (0, 1),

∇f
(

γ(t)
)

= α(t) · 2γ(t).

Then
(f ◦ γ)′(t) = 〈∇f(γ(t)), γ′(t)〉 = α(t)〈γ(t), γ′(t)〉 = 0,

and consequently f ◦γ is a constant function equal to 0. This contradicts the choice
of γ and ends the proof. �

By the Lagrange multipliers theorem, Fact 5.1 and Lemma 5.3 we obtain

Fact 5.4. Let ε > 0 fulfill Fact 5.1 and Lemma 5.3. Take a point x0 ∈ Ω such that
0 < |f(x0)| < ε.

(a) If x0 ∈ Γ ∩ IntΩ then x0 is a lower critical point of the function Ω ∋ x 7→
|∇f(x)|2 ∈ R on the set f−1(f(x0)) ∩Ω. In particular, Γ ∩ IntΩ ⊂ ΓI .

(b) If n ≥ 3, x0 ∈ Γ ∩ ∂Ω then x0 is a lower critical point of the function
∂Ω ∋ x 7→ |∇f(x)|2 ∈ R on the set f−1(f(x0)) ∩ ∂Ω. In particular, Γ ∩ ∂Ω ⊂ ΓII .
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Let M = Cn ×C×C×Cn ×Cn, and let X ⊂ M be the Zariski closure of the set

{(x, f(x), |∇f(x)|2,∇f(x),∇|∇f(x)|2) ∈ M : x ∈ Ω}.

We will determine polynomials describing a certain algebraic set Y ⊂ M con-
taining X as an irreducible component. Let G ∈ C[x, y, u], where u is a variable, be
the polynomial defined by

(5.4) G(x, y, u) =
n
∑

i=1

(

∂P

∂xi
(x, y)

)2

−

(

∂P

∂y
(x, y)

)2

· u.

It is easy to observe that G(x, f(x), |∇f(x)|2) = 0 for x ∈ Ω. In particular, the
polynomial G vanishes on X.

Take systems of variables t = (t1, . . . , tn), z = (z1, . . . , zn), and let G1, G2,i, G3,i ∈
C[x, y, u, t, z] be defined by

G1(x, y, u) = u− t21 − · · · − t2n, ,

G2,i(x, y, t) =
∂P

∂xi
(x, y) +

∂P

∂y
(x, y)ti , 1 ≤ i ≤ n,

G3,i(x, y, u, t, z) =
∂G

∂xi
(x, y, u) +

∂G

∂y
(x, y, u) ti

−

(

∂P

∂y
(x, y)

)2

· zi , 1 ≤ i ≤ n.

Let Y ⊂ M be the closure of the constructible set

Y
0 = {w = (x, y, u, t, z) ∈ M : P (x, y) = 0,

∂P

∂y
(x, y) 6= 0, G1(x, y, u) = 0,

G2,i(x, y, t) = 0, G3,i(w) = 0, 1 ≤ i ≤ n}.

Obviously X ⊂ Y, and locally Y0 is the graph of a complex Nash mapping (i.e., a
holomorphic mapping with semialgebraic graph). Moreover, we have

Lemma 5.5. The set X is an irreducible component of Y. Moreover, Y0 is a
Zariski open and dense subset of Y, and any point w = (x0, y0, u0, t0, z0) ∈ Y0 has
a neighbourhood B ⊂ M such that Y ∩B = Y0 ∩B and

Y
0 ∩B = {w = (x, g(x), h(x),∇g(x),∇h(x)) ∈ M : x ∈ ∆}

for some holomorphic function g : ∆ → C, where ∆ ⊂ Cn is a neighbourhood of x0,

and h(x) =
(

∂g
∂x1

(x)
)2

+ · · ·+
(

∂g
∂xn

(x)
)2

.

Proof. Since P is an irreducible polynomial, ∂P
∂y does not vanish on X. So, by the

Implicit Function Theorem, {w = (x, y, u, t, z) ∈ X : ∂P
∂y (x, y) 6= 0} is an open

and dense subset of X, and moreover it is a smooth and connected submanifold
of Y0. Consequently, X is an irreducible component of Y. The “moreover” part of
the assertion follows immediately from the Implicit Function Theorem. �
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Define G0, G4,i,j , G4,i,j,k ∈ C[x, y, u, t, z] by

G0(x) = x2
1 + · · ·+ x2

n − r2,

G4,i,j(t, z) = det

[

ti zi
tj zj

]

, 1 ≤ i < j ≤ n,

G4,i,j,k(x, t, z) = det





ti zi xi

tj zj xj

tk zk xk



 , 1 ≤ i < j < k ≤ n,

where the polynomials G4,i,j,k are defined if n ≥ 3. Put

XI = {w = (x, y, u, t, z) ∈ X : G4,i,j(t, z) = 0, 1 ≤ i < j ≤ n},

XII = {w = (x, y, u, t, z) ∈ X : G0(x) = 0, G4,i,j,k(x, t, z) = 0, 1 ≤ i < j < k ≤ n},

LI = {(w, λ) = (x, y, u, t, z, λ) ∈ X× C : z = λt},

LII = {(w, λ1, λ2) = (x, y, u, t, z, λ1, λ2) ∈ X× C× C : G0(x) = 0, z = λ1t+ λ2x},

YI = {w = (x, y, u, t, z) ∈ Y : G4,i,j(t, z) = 0, 1 ≤ i < j ≤ n},

YII = {w = (x, y, u, t, z) ∈ Y : G0(x) = 0, G4,i,j,k(x, t, z) = 0, 1 ≤ i < j < k ≤ n},

ZI = {w = (x, y, u, t, z) ∈ X : x ∈ ΓI},

ZII = {w = (x, y, u, t, z) ∈ X : x ∈ ΓII},

F = {w = (x, y, u, t, z) ∈ X : x ∈ ϕ((0, 1))},

where the sets XII , LII and YII are defined for n ≥ 3.

Obviously XI ⊂ YI and XII ⊂ YII . Moreover, any irreducible component of XI

is an irreducible component of YI . The same holds for XII and YII . Additionally,
by the Lagrange multipliers theorem and Facts 5.1, 5.4 we immediately obtain

Fact 5.6. (a) Let

AI = {w ∈ X : ∃λ∈C (w, λ) ∈ LI} .

If ϕ((0, 1)) ⊂ IntΩ then F ⊂ ZI ⊂ AI ⊂ XI ⊂ YI and there exists an irreducible
component XI,∗ of AI which contains F and is an irreducible component of XI .

(b) Let

AII = {w ∈ X : ∃λ1,λ2∈C (w, λ1, λ2) ∈ LII} .

If ϕ((0, 1)) ⊂ ∂Ω then F ⊂ ZII ⊂ AII ⊂ XII ⊂ YII and there exists an irreducible
component XII,∗ of AII which contains F and is an irreducible component of XII .

Proof. From Fact 5.4(a) we have F ⊂ {(x, y, u, t, z) ∈ X : x ∈ ΓI} ⊂ AI . Since all
the polynomials G4,i,j vanish on XI , the vectors t, z are linearly dependent provided
(x, y, u, t, z) ∈ XI for some x, y, u. So XI = XI ∪ AI , where

XI = {w = (x, y, u, t, z) ∈ XI : t = 0}.

Obviously, the set XI is contained in the hyperplane H defined by t = 0, and by
Fact 5.1 we have F \ H 6= ∅, so AI has an irreducible component containing F

which is an irreducible component of XI . This gives assertion (a).

Analogously, from Fact 5.4(b) we obtain F ⊂ AII . Moreover, the vectors x, t, z
are linearly dependent provided (x, y, u, t, z) ∈ XII for some y, u, so XII = XII∪AII ,
where

XII = {w = (x, y, u, t, z) ∈ XI : G0(x) = 0, G4,i,j(x, t) = 0, 1 ≤ i < j ≤ n}.
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Obviously, XII is contained in the set W defined by G4,i,j(x, t) = 0, 1 ≤ i < j ≤ n.
By Lemma 5.3 we have F \ W 6= ∅, so as above, the set AII has an irreducible
component satisfying (b). �

From Fact 5.6 and Lemmas 4.4 and 5.5 and the definition of Y we have

Fact 5.7. δ(XI,∗) ≤ δ(YI) ≤ 2(2d−1)3n+1 and δ(XII,∗) ≤ δ(YII) ≤ 2(2d−1)3n+1.

The proofs of Theorems 2.1 and 2.2 consist in showing that the projections of
the sets XI,∗ and XII,∗ onto the space of (y, u) ∈ C2 are proper algebraic subsets
of C2, since we have

Lemma 5.8. If Q ∈ C[y, u] is a nonzero polynomial of degree D such that

Q(f(ϕ(t)), |∇f(ϕ(t))|2) = 0 for t ∈ [0, 1),

where ϕ is the curve fulfilling (5.3), then

(a) ̺0(f) ≤ 1− 1
D if D is even,

(b) ̺0(f) ≤ 1− 1
D+1 if D is odd.

Proof. Let ord0(f ◦ ϕ) = M and ord0 |∇f ◦ ϕ|2 = K. Then M,K > 0 and

ord0(f ◦ ϕ)K = ord0 |∇f ◦ ϕ|2M ,

i.e., |f ◦ ϕ|
K
2M ∼ |∇f ◦ ϕ| near zero1, so by (5.3) we have

(5.5) ̺0(f) =
K

2M
.

Then, by definitions of M and K there exists a pair of different monomials αuNyS

and βuN1yS1 of the polynomial Q such that

N + S ≤ D and N1 + S1 ≤ D,

and

NK + SM = N1K + S1M.

Hence N −N1 6= 0, S1 − S 6= 0, and

K

2M
=

S1 − S

2(N −N1)
.

Since M > 0, we have ord0 ∇f ◦ ϕ ≤ M − 1, and so K ≤ 2M − 2, and K
2M < 1. On

the other hand, |S1−S|, |N−N1| ∈ {1, . . . , D}, so by (5.5), ̺0(f) is estimated from
above by the maximal possible rational number less than 1 with numerator from
the set {1, . . . , D} and denominator from {2, 4, . . . , 2D}. Consequently, we obtain
the assertion. �

1That is, there are C1, C2 > 0 such that C1|f ◦ ϕ|
K
2M ≤ |∇f ◦ ϕ| ≤ C2|f ◦ ϕ|

K
2M near zero.
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5.1. Proof of Theorem 2.1 in case I when ϕ((0, 1)) ⊂ IntΩ. By the assumption
(2.2), in the definition of Y one can take the polynomials

(5.6) K3,i(x, y, u, z) =
∂G

∂xi
(x, y, u)

∂P

∂y
(x, y)−

∂G

∂y
(x, y, u)

∂P

∂xi
(x, y)

−

(

∂P

∂y
(x, y)

)3

· zi

instead of G3,i, 1 ≤ i ≤ n; also in the definitions of XI and YI one can take

K4,i,j(x, y, u) =
∂P

∂xi
(x, y)

∂G

∂xj
(x, y, u)−

∂P

∂xj
(x, y)

∂G

∂xi
(x, y, u)

instead of G4,i,j , 1 ≤ i < j ≤ n.

From the above and Fact 5.6 we obtain the following fact.

Fact 5.9. For x ∈ ΓI and v = (x, y, u) = (x, f(x), |∇f(x)|2) we have

P (v) = 0,(5.7)

G(v) = 0,(5.8)

K4,i,j(v) = 0, 1 ≤ i < j ≤ n.(5.9)

Let YI,0 ⊂ M, where M = Cn×C×C, be an algebraic set defined by the system
of equations (5.7)–(5.9), and let

Y
0
I =

{

(x, y, u, t, z) ∈ YI :
∂P

∂y
(x, y) 6= 0

}

,

Y
0
I =

{

(x, y, u) ∈ YI,0 :
∂P

∂y
(x, y) 6= 0

}

,

YI = Y
0
I .

We have the following fact (cf. [17, Fact 2.11]).

Fact 5.10. The mapping

Y
0
I ∋ (x, y, u, t, z) 7→ (x, y, u) ∈ Y

0
I

is a bijection.

Proof. Taking any (x, y, u, t, z) ∈ Y0
I (respectively (x, y, u) ∈ Y

0
I ), by the Implicit

Function Theorem there are a neighbourhood ∆ ⊂ Cn of x, a holomorphic function
g : ∆ → C and neighbourhoods U1 ⊂ C×C×Cn×Cn and U2 ⊂ C×C of (y, u, t, z)
and (y, u) respectively such that

Y
0
I ∩ (∆× U1) = {(ζ, g(ζ), h(ζ),∇g(ζ),∇h(ζ)) ∈ M : ζ ∈ ∆ ∩ V },

Y
0
I ∩ (∆× U2) = {(ζ, g(ζ), h(ζ)) ∈ M : ζ ∈ ∆ ∩ V },

where h(ζ) =
(

∂g
∂x1

(ζ)
)2

+ · · ·+
(

∂g
∂xn

(ζ)
)2

, and

V = {ζ ∈ ∆ : K4,i,j(ζ, g(ζ), h(ζ)) = 0, 1 ≤ i < j ≤ n}.

In particular, g(x) = y, u = h(x), t = ∇g(x) and z = ∇h(x). Thus, we obtain the
assertion. �
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Let LI ⊂ M× C be the Zariski closure of the set

LI,0 = {(x, y, u, λ) ∈ Ω×R×R×R : y = f(x), u = |∇f(x)|2,∇|∇f(x)|2 = λ∇f(x)}.

From Fact 5.6(a) we obtain

Fact 5.11. There exists an irreducible component LI,∗ of LI which contains a
Zariski open and dense subset U such that for any (x, y, u, λ) ∈ U there exist t, z ∈
Cn such that (x, y, u, t, z) ∈ XI,∗ and in particular z = λt.

Proof. The set LI is the projection of the union of some irreducible components of
LI onto (x, y, u, λ) ∈ M× C. So by Fact 5.6(a) we obtain the assertion. �

Let
π : M× C ∋ (x, y, u, λ) 7→ (x, y, u) ∈ M,

let LI,∗ be an irreducible component of LI as in Fact 5.11 and let

XI := π(LI,∗).

Lemma 5.12. The set XI is an irreducible component of the algebraic set YI .
Moreover, XI contains a Zariski open and dense subset UI such that UI ⊂ Y

0
I ∩

π(LI,∗), and any point (x0, y0, u0) ∈ UI has a neighbourhood B ⊂ M such that
YI ∩B = UI ∩B and

(5.10) UI ∩B =

{(

x, g(x),

(

∂g

∂x1
(x)

)2

+ · · ·+

(

∂g

∂xn
(x)

)2
)

: x ∈ ∆ ∩ V

}

for some analytic set V ⊂ ∆ with x0 ∈ V and a holomorphic function g : ∆ → C,
where ∆ ⊂ Cn is a neighbourhood of x0.

Proof. By Facts 5.6, 5.10 and 5.11 we have π(LI,0) ⊂ YI , so XI ⊂ YI and XI is
an algebraic subset of YI . Since any irreducible component of XI is an irreducible
component of YI , the same holds for π(LI) and YI , because these sets are projec-
tions onto the space M of some collections of irreducible components of XI and YI ,
respectively. In particular, this holds for XI and YI . This gives the first part of the
assertion. We prove the “moreover” part analogously to Fact 5.10. �

Let
πy : XI ∋ v = (x, y, u) 7→ y ∈ C,

πu : XI ∋ v = (x, y, u) 7→ u ∈ C.

We have the following lemma (cf. [17, Lemmas 2.12, 2.14]).

Lemma 5.13. For generic y0 ∈ C, i.e., for any y0 ∈ C off a finite set, the function
πu is constant on each connected component of (πy)

−1(y0).

Proof. If dimXI = 0 or dim(πy)
−1(y) ≤ 0 for generic y ∈ C, then the assertion

holds. Assume that dimXI > 0 and dim(πy)
−1(y) > 0 for generic y ∈ C. Then by

Lemma 5.12, and under the notations of this lemma, we have πy(UI) = πy(XI) = C

and (πy)
−1(y) ∩ UI 6= ∅ for generic y ∈ C.

Take any y0 ∈ C such that (πy)
−1(y0) ∩ UI 6= ∅. Take any x0 ∈ Cn and u0 ∈ C

such that (x0, y0, u0) ∈ UI . By Lemma 5.12 there exist a neighbourhood B ⊂
M of (x0, y0, u0) and a holomorphic function g : ∆ → C, where ∆ ⊂ Cn is a
neighbourhood of x0, such that (5.10) holds for some analytic set V ⊂ ∆.
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Take any smooth curve γ : [0, 1] → ∆∩V such that g(γ(t)) = y0 for t ∈ [0, 1]. Let

h(x) =
(

∂g
∂x1

(x)
)2

+ · · ·+
(

∂g
∂xn

(x)
)2

for x ∈ ∆ and take a function u : [0, 1] → C

defined by

u(t) = h ◦ γ(t).

Observe that the function u is constant. Indeed, by definition of UI we see that for
any x ∈ ∆ ∩ V there exists λx ∈ C such that

∇h(x) = λx∇g(x).

So,

u′(t) = λγ(t)〈∇g(γ(t)), γ′(t)〉 for t ∈ [0, 1],

where 〈·, ·〉 denotes the standard scalar product in Cn. Since g(γ(t)) = y0 for t ∈

[0, 1], we have 〈∇g(γ(t)), γ′(t)〉 = 0, and consequently u′(t) = 0 for t ∈ [0, 1] and u
is constant. Summing up, the function πu is constant on each connected component
of (πy)

−1(y0) ∩ UI .

Since UI is a Zariski open and dense subset of XI , any irreducible component of
XI \UI has dimension smaller than the dimension of XI , and for generic y ∈ C any
irreducible component A of the fibre π−1

y (y) has a dense subset of the form A ∩ UI

(see [28, Chapter 3]). Then by the above we obtain the assertion. �

Since Γ is an infinite set, it follows that dimLI,0 ≥ 1, so by Fact 5.10, dimLI ≥ 1,
and since d = degP ≥ 2, Lemma 4.4 and the definition of YI yield δ(XI) ≤ d(3d−
2)n, where δ(XI) is the total degree of XI . So, from Lemma 5.13, the closure of

the projection of XI , W = {(y, u) ∈ C2 : ∃x∈Cn (x, y, u) ∈ XI}, is a proper algebraic
subset of C2 and by Fact 4.3, δ(W ) ≤ δ(XI). Then there exists a nonzero polynomial
Q ∈ C[y, u] such that

degQ ≤ d(3d− 2)n ≤ R(n, d)− 1

and Q(y, u) = 0 for (x, y, u) ∈ XI . In particular, Q(f(ϕ(t)), |∇f(ϕ(t))|2) = 0 for
t ∈ [0, 1). Since D = d(3d − 2)n may be odd, by Lemma 5.8(b) we obtain the
assertion of Theorem 2.1 in case I.

5.2. Proof of Theorem 2.1 in case II when ϕ
(

[0, 1)
)

⊂ ∂Ω. For any x ∈
∂Ω\f−1(0) sufficiently close to f−1(0) the tangent spaces to ∂Ω and f−1(f(x)) are
transversal, as shown in Lemma 5.3.

We will prove Theorem 2.1 in two dimensions and in the multidimensional case
separately.

Proof of Theorem 2.1 in case II for n = 2. Take a polynomial G ∈ C[x, y, u],
where x = (x1, x2) and y, u are single variables, defined by (5.4), i.e., G(x, y, u) =
∑2

i=1

(

∂P
∂xi

(x, y)
)2

−
(

∂P
∂y (x, y)

)2

· u. Let

YII,0 = {(x, y, u) ∈ C
2 × C× C : P (x, y) = 0, G0(x) = 0, G(x, y, u) = 0},

Y
0
II =

{

(x, y, u) ∈ YII,0 :
∂P

∂y
(x, y) 6= 0

}

,

YII = Y
0
II .
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Then for any x ∈ Γ ∩ ∂Ω we have (x, f(x), |∇f(x)|2) ∈ YII . Consequently,

(ϕ(t), f(ϕ(t)), |∇f(ϕ(t))|2) ∈ YII for t ∈ [0, 1).

In particular, dimYII ≥ 1 and by Fact 4.2 we have δ(YII) ≤ 2d(2d− 1).

Since P is an irreducible polynomial of positive degree with respect to y, for any
y ∈ C\{0} sufficiently close to 0 the set {x ∈ C2 : P (x, y) = 0, G0(x) = 0} is finite,
so the set {(x, u) ∈ C2 × C : (x, y, u) ∈ YII} is also finite. Then the projection

W = {(y, u) ∈ C
2 : ∃x∈C2(x, y, u) ∈ YII}

is contained in a proper algebraic subset of C2. By Fact 4.3,

δ(W ) ≤ 2d(2d− 1) ≤ R(n, d).

Then there exists a nonzero polynomial Q ∈ C[y, u] of degree degQ ≤ δ(W ) ≤
R(n, d) which vanishes on W . Since 2d(2d− 1) is even, by Lemma 5.8(a) we obtain
the assertion of Theorem 2.1 in case II for n = 2. �

Let us consider the case n ≥ 3. Let ε > 0 be as in Lemma 5.3.

By the assumption (2.2), in the definition of the set Y one can take the polyno-
mials K3,i of the form (5.6) instead of G3,i; also, in the definitions of XII and YII ,
one can take the polynomials

K4,i,j,k(x, y, u) =

∣

∣

∣

∣

∣

∣

∣

∂P
∂xi

(x, y) ∂G
∂xi

(x, y, u) xi
∂P
∂xj

(x, y) ∂G
∂xj

(x, y, u) xj

∂P
∂xk

(x, y) ∂G
∂xk

(x, y, u) xk

∣

∣

∣

∣

∣

∣

∣

,

instead of G4,i,j,k for 1 ≤ i < j < k ≤ n, where G is defined in (5.4). Then

XII = {w = (x, y, u, t, z) ∈ X : G0(x) = 0, K4,i,j,k(x, y, u) = 0, 1 ≤ i < j < k ≤ n},

YII = {w = (x, y, u, t, z) ∈ Y : G0(x) = 0, K4,i,j,k(x, y, u) = 0, 1 ≤ i < j < k ≤ n}.

Let YII,0 ⊂ M, where M = Cn × C× C, be the algebraic set defined by

YII,0 = {(x, y, u) ∈ M : P (x, y) = 0, G0(x) = 0, G(x, y, u) = 0,

K4,i,j,k(x, y, u) = 0, 1 ≤ i < j < k ≤ n}

and let

Y
0
II =

{

(x, y, u, t, z) ∈ YII :
∂P

∂y
(x, y) 6= 0

}

,

Y
0
II =

{

(x, y, u) ∈ VII,0 :
∂P

∂y
(x, y) 6= 0

}

,

YII = Y0
II .

By an analogous argument to the proof of Fact 5.10 we obtain

Fact 5.14. The mapping

Y
0
II ∋ (x, y, u, t, z) 7→ (x, y, u) ∈ Y

0
II

is a bijection.
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Let LII ⊂ M× C2 be the Zariski closure of the set

LII,0 = {(x, y, u, (λ1, λ2)) ∈ ∂Ω× R× R× R
2 : y = f(x), u = |∇f(x)|2,

∇|∇f(x)|2 = λ1∇f(x) + λ2x}.

By a similar argument to the proof of Fact 5.11, from Fact 5.6(b) we obtain

Fact 5.15. There exists an irreducible component LII,∗ of LII which contains
a Zariski open, dense subset U such that for any (x, y, u, λ1, λ2) ∈ U there exist
t, z ∈ Cn such that (x, y, u, t, z) ∈ XII,∗ and in particular z = λ1t+ λ2x.

Let
π′ : M× C

2 ∋ (x, y, u, (λ1, λ2)) 7→ (x, y, u) ∈ M,

and let
XII = π′(LII,∗).

By an analogous argument to the proof of Lemma 5.12 we obtain

Lemma 5.16. The set XII is an irreducible component of the algebraic set YII .
Moreover, XII contains a Zariski open and dense subset UII such that UII ⊂ Y

0
II ∩

π′(LII,∗) and any point (x0, y0, u0) ∈ UII has a neighbourhood B ⊂ M such that
YII ∩B = UII ∩B and

(5.11) UII ∩B =

{(

x, g(x),

(

∂g

∂x1
(x)

)2

+ · · ·+

(

∂g

∂xn
(x)

)2
)

: x ∈ ∆ ∩ V

}

for some analytic set V ⊂ ∆, where x0 ∈ V and G0 vanishes on V , and a holomor-
phic function g : ∆ → C, where ∆ ⊂ Cn is a neighbourhood of x0.

Let

πy : XII ∋ v = (x, y, u) 7→ y ∈ C, πu : XII ∋ v = (x, y, u) 7→ u ∈ C.

We have the following lemma (cf. Lemma 5.13 and [17, Lemmas 2.12, 2.14]).

Lemma 5.17. For generic y0 ∈ C the function πu is constant on each connected
component of (πy)

−1(y0).

Proof. As in the proof of Lemma 5.13, we may assume that dimXII > 0 and
dim (πy)

−1(y) > 0 for generic y ∈ C. Then by Lemma 5.16, and under the notations

of that lemma, πy(UII) = πy(XII) = C and (πy)
−1(y) ∩ UII 6= ∅ for generic y ∈ C.

Take any y0 ∈ C such that (πy)
−1(y0) ∩ UII 6= ∅. Take any x0 ∈ Cn and u0 ∈ C

such that (x0, y0, u0) ∈ UII . By Lemma 5.16 there exist a neighbourhood B ⊂
Cn × C × C of (x0, y0, u0) and a holomorphic function g : ∆ → C, where ∆ ⊂ Cn

is a neighbourhood of x0, such that (5.11) holds for some analytic set V ⊂ ∆ such
that G0 vanishes on V .

Take a smooth curve γ = (γ1, . . . , γn) : [0, 1] → ∆ ∩ V such that g(γ(t)) = y0.
Then

(5.12) G0(γ(t)) = 0 for t ∈ [0, 1].

Let h(x) =
(

∂g
∂x1

(x)
)2

+ · · · +
(

∂g
∂xn

(x)
)2

, x ∈ ∆. Take a function u : [0, 1] → C

defined by
u(t) = h ◦ γ(t), t ∈ [0, 1].
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Observe that the function u is constant. Indeed, by definition of UII , for any x ∈
∆ ∩ V there exist λ1,x, λ2,x ∈ C such that

∇h(x) = λ1,x∇g(x) + λ2,xx.

So

u′(t) = λ1,γ(t)〈∇g(γ(t)), γ′(t)〉+ λ2,γ(t)〈γ(t), γ′(t)〉 for t ∈ [0, 1].

Since g(γ(t)) = y0, we have 〈∇g(γ(t)), γ′(t)〉 = 0 for t ∈ [0, 1]. Moreover, by (5.12)

we have 〈γ(t), γ′(t)〉 = 0 for t ∈ [0, 1]. Consequently, u′(t) = 0 for t ∈ [0, 1] and u is
constant. Summing up, the function πu is constant on each connected component
of (πy)

−1(y0)∩UII . Since UII is a dense subset of XII , we obtain the assertion. �

Since Γ is an infinite set, we have dimLII,0 ≥ 1, so by Fact 5.14, dimLII ≥ 1, and
since d = degP ≥ 2, Lemma 4.4 and the definition of YII yield δ(XII) ≤ d(3d−2)n.
So, from Lemma 5.17, the closure of the projection of XII ,

W = {(y, u) ∈ C2 : ∃x∈Cn (x, y, u) ∈ XII},

is a proper algebraic subset of C2 and δ(W ) ≤ δ(XII). Then there exists a nonzero
polynomial Q ∈ C[y, u] such that degQ ≤ 2(3d−2)n ≤ R(n, d)−1 and Q(y, u) = 0
for (x, y, u) ∈ XII . Since D = 2(3d− 2)n is an even number, by Lemma 5.8(a) we
obtain the assertion of Theorem 2.1 in case II.

5.3. Proof of Theorem 2.2. Analogously to the proof of Lemma 5.13, we prove
that the set

W = {(y, u) ∈ C2 : ∃x∈Cn ∃t∈Cn ∃z∈Cn (x, y, u, t, z) ∈ YI}

is a proper algebraic subset of C2. Moreover, by Fact 5.7 we have δ(W ) ≤ δ(YI) ≤
2d(2d− 1) if n = 1 and δ(W ) ≤ δ(YI) ≤ 2(2d− 1)3n+1 for n ≥ 2. Then by Lemma
5.8(a) we obtain the assertion of Theorem 2.2 in case I. An analogous argument
gives the assertion in case II.
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