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Abstract

We propose a semi-proximal augmented Lagrangian based decomposition method
for convex composite quadratic conic programming problems with primal block an-
gular structures. Using our algorithmic framework, we are able to naturally derive
several well known augmented Lagrangian based decomposition methods for stochastic
programming such as the diagonal quadratic approximation method of Mulvey and
Ruszczyński. Moreover, we are able to derive novel enhancements and generalizations
of these well known methods. We also propose a semi-proximal symmetric Gauss-
Seidel based alternating direction method of multipliers for solving the corresponding
dual problem. Numerical results show that our algorithms can perform well even for
very large instances of primal block angular convex QP problems. For example, one
instance with more than 300, 000 linear constraints and 12, 500, 000 nonnegative vari-
ables is solved in less than a minute whereas Gurobi took more than 3 hours, and
another instance qp-gridgen1 with more than 331, 000 linear constraints and 986, 000
nonnegative variables is solved in about 5 minutes whereas Gurobi took more than 35
minutes.

1 Introduction

In this paper, we will focus on solving convex composite quadratic conic programming prob-
lems with a primal block angular structure, i.e. optimization problems with a separable

∗Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore
119076 (mattohkc@math.nus.edu.sg).

†Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
(defeng.sun@polyu.edu.hk).

‡Department of Mathematics, and Institute of Operations Research and Analytics, National University
of Singapore, 10 Lower Kent Ridge Road, Singapore 119076 (mattohkc@math.nus.edu.sg). This author’s
research is supported in part by the Ministry of Education, Singapore, Academic Research Fund under Grant
R-146-000-257-112.

1

http://arxiv.org/abs/1812.04941v1


convex objective function and conic constraints but the variables are coupled by linking lin-
ear constraints across different variables. Without specially designed strategies to exploit
the underlying block angular structure, computational inefficiency of an algorithm will be
severe because the constraints cannot be decomposed completely.

In practical applications, quadratic and linear problems with primal block angular struc-
ture appear in many contexts, such as multicommodity flow problems [1] and statistical
disclosure control [23]. These problems are often very large scale in practice, and standard
interior point methods such as those implemented in Gurobi or Mosek may not be efficient
enough to solve such problems. In the literature, specialized algorithms designed to solve
these problems have been studied extensively. Three of the most widely known algorithmic
classes are (i) decomposition methods based on augmented Lagrangian and proximal-point
algorithms, see for example [33, 39, 40, 41, 43, 44]; (ii) interior-point log-barrier Lagrangian
decomposition methods such as those studied in [53, 54, 55, 31, 32]; and (iii) standard
interior-point methods which incorporate novel numerical linear algebraic techniques to ex-
ploit the underlying block angular structures when solving the large linear systems arising
in each iteration, for example in [9, 16, 19, 46, 50].

Besides quadratic and linear problems, semidefinite programming (SDP) problems with
primal block angular structures are beginning to appear in the literature more frequently.
It is gaining more attention as practitioners become more sophisticated in using SDP to
model their application problems. For example, the authors in [21] reformulated a two-stage
distributionally robust linear program as a completely positive cone program which bears
a block angular structure and applied the reformulation to solve a multi-item newsvendor
problem. Although linear programming problems with primal block angular structures have
been studied extensively, the more complicated SDP version is still in its infancy stage.
Apart from [31], [48] and [56], we are not aware of other works.

By focusing on designing efficient algorithms for solving general conic programming prob-
lems with primal block angular structures, we can in general also use the same algorithmic
framework to solve the primal block angular linear and quadratic programming problems
efficiently through designing novel numerical linear algebraic techniques to exploit the un-
derlying structures. In this paper, our main objective is to design efficient and robust
(distributed) algorithms for solving large scale conic programming problems with block an-
gular structures. Specifically, we will design an inexact semi-proximal augmented Lagrangian
method (ALM) for the primal problem which attempts to exploit the block angular struc-
ture to solve the problem in parallel. Our algorithm is motivated by the recent theoretical
advances in inexact semi-proximal ALM that is embedded in [15]. In contrast to most ex-
isting augmented Lagrangian based decomposition algorithms where the solution for each
subproblem must be computed exactly or to very high accuracy, our algorithm has the key
advantage of allowing the subproblems to be solved approximately with progressive accuracy.
We will also elucidate the connection of our algorithm to the well-known diagonal quadratic
approximation (DQA) algorithm of Mulvey and Ruszczyński [33].

In the pioneering work in [25], an ADMM based framework was designed for the primal
block angular problem (P) wherein the variables are duplicated and auxiliary variables are
introduced to make the first ADMM subproblem in each iteration solvable in a distributed
fashion and that the succeeding second ADMM subproblem is a sufficiently simple quadratic
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program which is assumed to be easy to solve. However, the problem might still be difficult
to solve if the scale of the original problem gets very large. To overcome the potential com-
putational inefficiency induced by the extra variables and constraints, and also the relatively
expensive step of having to solve a QP subproblem in each iteration in the primal approach,
in this paper we will adopt the dual approach of solving (P). Specifically, we will design and
implement a semi-proximal symmetric Gauss-Seidel based alternating direction method of
multipliers (sGS-ADMM) to directly solve the dual problem, which will also solve the primal
problem as a by-product. The advantage of tackling the dual problem directly is that no
extra variables are introduced to decouple the constraints and no coupled QP subproblems
are needed to be solved in each iteration. We note that the sGS-ADMM is an algorithm
designed based on the recent advances in [15]; more details will be presented later.

We consider the following primal block-angular optimization problem:

(P) min
∑N

i=0 fi(xi) := θi(xi) +
1
2
〈xi, Qixi〉+ 〈ci, xi〉

s.t.




A0 A1 . . . AN

D1
...

. . .
...

DN




︸ ︷︷ ︸
B




x0

x1
...

xN




=




b0

b1
...

bN



,

xi ∈ Ki, i = 0, 1, . . . , N,

where for each i = 0, 1, . . . , N , θi : Xi → (−∞,∞] is a proper closed convex function,
Qi : Xi → Xi is a positive semidefinite linear operator, Ai : Xi → Y0 and Di : Xi → Yi are
given linear maps, ci ∈ Xi and bi ∈ Yi are given data, Ki ⊂ Xi is a closed convex set that
is typically a cone but not necessarily so, and Xi,Yi are real finite dimensional Euclidean
spaces each equipped with an inner product 〈·, ·〉 and its induced norm ‖ · ‖. Note that the
addition of the proper closed convex functions in the objective gives us the flexibility to add
nonsmooth terms such as ℓ1 regularization terms. We should also mention that a constraint
of the form bi − Dixi ∈ Ci, where Ci is a closed convex set can be put in the form in (P) by
introducing a slack variable si so that [Di, I](xi; si) = bi and (xi; si) ∈ Ki × Ci.

Without loss of generality, we assume that the constraint matrix B in (P) has full row-
rank. Let ni = dim(Xi) and mi = dim(Yi). Observe that the problem (P) has

∑N
i=0mi linear

constraints and the dimension of the decision variable is
∑N

i=0 ni. Thus even if mi and/or ni
are moderate numbers, the overall dimension of the problem can easily get very large when
N is large.

In the important special case of a block angular linear programming problem for which
Qi = 0 and θi = 0 for all i = 0, . . . , N , the Dantzig-Wolfe decomposition method (which
may be viewed as a dual method based on the Lagrangian function

∑N
i=0〈ci, xi〉 − 〈u, b0 −∑N

i=0Aixi〉) is a well known classical approach for solving such a problem. The Dantzig-
Wolfe decomposition method has the attractive property that in each iteration, xi can be
computed individually from a smaller linear program (LP) for i = 1, . . . , N . However, it is
generally acknowledged that an augmented Lagrangian approach has a number of important
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advantages over the usual Lagrangian dual method. For example, Ruszczyński stated in [43]
that the dual approach based on the ordinary Lagrangian can suffer from the nonuniqueness
of the solutions of subproblems. In addition, solving the subproblem of the augmented La-
grangian approach would be more stable. In that paper, the well-known diagonal quadratic
approximation (DQA) method is introduced. The DQA method is a very successful decom-
position method and it has been a popular tool in stochastic programming. Thus it would
be a worthwhile effort to analyse it again to see whether further enhancements are possible.

To summarize, our first contribution is in proposing several variants of augmented La-
grangian based algorithms for directly solving the primal form (P) of the convex composite
quadratic conic programming problem with a primal block angular structure. We also show
that they can be considered as generalizations of the well-known DQA method. Our second
contribution is in the design and implementation of a specialized algorithm for solving the
dual problem of (P). The algorithm is easy to implement and highly amenable to paralleliza-
tion. Hence we expect it to be highly scalable for solving large scale problems with million
of variables and constraints. Finally, we have proposed efficient implementations of the al-
gorithms and conducted comprehensive numerical experiments to evaluate the performance
of our algorithms against highly competitive state-of-the-art solvers in solving the problems
(P) and (D).

This paper is organized as follows. We will derive the dual of the primal block angular
problem (P) in section 2. In section 3, we will present our inexact semi-proximal augmented
Lagrangian methods for the primal problem (P). In section 4, we will propose a semi-proximal
symmetric Gauss-Seidel based ADMM for the dual problem of (P). For all algorithms we in-
troduce, we conduct numerical experiments to evaluate their performance and the numerical
results are reported in section 3.3 and section 5. We conclude the paper in the final section.

Notation.

• We denote [P ;Q] or (P ;Q) as the matrix obtained by appending the matrix Q to the
last row of the matrix P , whereas we denote [P,Q] or (P,Q) as the matrix obtained
by appending Q to the last column of matrix P , assuming that they have the same
number of columns or rows respectively. We also use the same notation symbolically
for P and Q which are linear maps with compatible domains and co-domains.

• For any linear map T : X → Y , we denote its adjoint as T ∗. If X = Y , and T
is self-adjoint and positive semidefinite, then for any x ∈ X we have the notation
‖x‖T :=

√
〈x, T x〉.

• Let f : X → (−∞,+∞] be an arbitrary closed proper convex function. We denote
domf as its effective domain and ∂f as its subdifferential mapping. The Fenchel
conjugate function of f is denoted as f ∗.

• The Moreau-Yosida proximal mapping of f is defined by Proxf(y) := argminx{f(x) +
1
2
‖x− y‖2}.
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2 Derivation of the dual of (P)

For notational convenience, we define

X = X0 × X1 × · · · × XN , Y = Y0 ×Y1 × · · · × YN , K = K0 ×K1 × · · · × KN . (1)

For each x ∈ X , y ∈ Y , and c ∈ X , b ∈ Y , we can express them as

x = (x0; x1; · · · ; xN ), y = (y0; y1; · · · ; yN),
c = (c0; c1; · · · ; cN), b = (b0; b1; · · · ; bN).

(2)

We also define A, Q and θ as follows:

A = [A0,A1, . . . ,AN ], Q(x) =
(
Q0(x0);Q1(x1); . . . ;QN (xN)

)
, θ(x) =

∑N
i=0 θi(xi). (3)

Using the notation in (1)–(3), we can write (P) compactly in the form of a general convex
composite quadratic conic programming problem:

min
{
θ(x) + 1

2
〈x, Qx〉 + 〈c, x〉 | Bx− b = 0, x ∈ K

}
. (4)

By introducing auxiliary variables u, v ∈ X , problem (4) can equivalently be written as the
following model:

min θ(u) + 1
2
〈x, Qx〉+ 〈c, x〉+ δK(v)

s.t. Bx− b = 0, u− x = 0, v − x = 0.
(5)

To derive the dual of (4), consider the following Lagrangian function for (5):

L(x, u, v; y, s, z)
= θ(u) +

1

2
〈x, Qx〉+ 〈c, x〉+ δK(v)− 〈y, Bx− b〉 − 〈s, x− u〉 − 〈z, x− v〉

=
1

2
〈x, Qx〉+ 〈c− B∗y − s− z, x〉+ θ(u) + 〈s, u〉+ δK(v) + 〈z, v〉+ 〈y, b〉,

where x, u, v, s, z ∈ X , y ∈ Y . Now for a given subspace W ⊂ X containing Range(Q), the
range space of Q, we have

inf
x
L(x, u, v; y, s, z) = inf

x

{1
2
〈x, Qx〉+ 〈c− B∗y − s− z, x〉

}

=

{
−1

2
〈w, Qw〉, if c−B∗y − s− z = −Qw for some w ∈ W ,

−∞, otherwise.

Also,

inf
u
L(x, u, v; y, s, z) = inf

u

[
θ(u) + 〈s, u〉

]
= −θ

∗(−s);
inf
v
L(x, u, v; y, s, z) = inf

v

[
δK(v) + 〈z, v〉

]
= −δ∗K(−z).
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Hence the dual of (5) is given by

max
y,s,z

inf
x,u,v

L(x, u, v; y, s, z)

= max
y,s,z,w

{
− θ

∗(−s)− 1

2
〈w, Qw〉+ 〈y, b〉 − δ∗K(−z) | −Qw +B∗y + s+ z = c, w ∈ W

}
,

or equivalently,

−min θ
∗(−s) + 1

2
〈w, Qw〉 − 〈b, y〉+ δ∗K(−z)

s.t. −Qw +B∗y + s+ z = c,

s ∈ X , y ∈ Y , w ∈ W .

(6)

It is not difficult to check that for all z = (z0; z1; . . . ; zN), s = (s0; s1; . . . ; sN) ∈ X , we have

δ∗K(−z) =∑N
i=0 δ

∗
Ki
(−zi), θ

∗(−s) =∑N
i=0 θ

∗
i (−si). (7)

Assume that both the primal and dual problems satisfy the (generalized) Slater’s con-
dition. Then the optimal solutions for both problems exist and they satisfy the following
Karush-Kuhn-Tucker (KKT) optimality conditions:





Bx− b = 0,

−Qw +B∗y + s+ z − c = 0, Qw −Qx = 0, w ∈ W ,

−s ∈ ∂θ(x) ⇔ x− Proxθ(x− s) = 0,

x−ΠK(x− z) = 0.

(8)

By applying the structures in (1)–(3) and (7) to (6), we get explicitly the dual of (P):

(D) −min
∑N

i=0 θ
∗
i (−si) + δ∗Ki

(−zi) + 1
2
〈wi, Qi(wi)〉 − 〈bi, yi〉

s.t.




A∗
0

A∗
1

...

A∗
N



y0 +




−Q0w0 + s0 + z0

D∗
1y1 −Q1w1 + s1 + z1

...

D∗
NyN −QNwN + sN + zN



= c,

wi ∈ Wi, i = 0, 1, . . . , N,

(9)

where for each i = 0, 1, . . . , N , Wi ⊂ Xi is a given subspace containing Range(Qi).

3 Inexact semi-proximal augmented Lagrangian meth-

ods for the primal problem (P)

First we rewrite (P) in the following form:

min
{ N∑

i=0

fi(xi) + δFi
(xi) | Ax = b0, x = (x0; x1; . . . ; xN ) ∈ X

}
, (10)
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where F0 = K0, and Fi = {xi ∈ Xi | Dixi = bi, xi ∈ Ki}, i = 1, . . . , N . For a given parameter
σ > 0, we consider the following augmented Lagrangian function associated with (10):

Lσ(x; y0) =
∑N

i=0 fi(xi) + δFi
(xi) +

σ
2
‖Ax− b0 − σ−1y0‖2 − 1

2σ
‖y0‖2. (11)

The augmented Lagrangian method for solving (10) has the following template.

ALM. Given σ > 0 and y00 ∈ Y0. Perform the following steps in each iteration.

Step 1. xk+1 ≈ argminx Lσ(x; y
k
0).

Step 2. yk+1
0 = yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the step-length.

As one may observe from Step 1 of the ALM, an undesirable feature in the method is that
it destroys the separable structure in the Dantzig-Wolfe decomposition method. Although
the feasible sets for the xi’s are separable, the objective function has a quadratic term which
couples all the xi’s.

Here we propose to add a semi-proximal term to the augmented Lagrangian function to
overcome the difficulty of non-separability. In this case, the function Lσ(x; y

k
0) in Step 1 of

the ALM is majorized by an additional semi-proximal term at the point xk, i.e.,

Lσ(x; y
k
0) +

σ

2
‖x− xk‖2T ,

where T is a given positive semidefinite self-adjoint linear operator which should be chosen
appropriately to decompose the computation of the xi’s in Step 1 of the ALM while at the
same time the added proximal term should be as small as possible. In this paper, we choose
T to be the following positive semidefinite linear operator:

T = diag(J0, . . . ,JN)−A∗A, (12)

where Ji � βiI +A∗
iAi, with βi =

∑N
j=0,j 6=i ‖A∗

iAj‖2 for each i = 0, 1, . . . , N. Such a choice

is generally less conservative than the usual choice of T̂ given in (20). It is especially a good
choice when Ai and Aj are nearly orthogonal to one another for most of the index pairs
(i, j).

With the choice in (12), we get

Lσ(x; y
k
0) +

σ

2
‖x− xk‖2T

=

N∑

i=0

(
fi(xi) + δFi

(xi)
)
+
σ

2
‖Ax− b0 − σ−1y0‖2 −

1

2σ
‖y0‖2 +

σ

2
‖x− xk‖2T

=
N∑

i=0

(
fi(xi) + δFi

(xi) +
σ

2

[
〈xi, Jixi〉 − 2〈xi, A∗

i (b0 + σ−1y0 −Axk) + Jixki 〉
])

+
σ

2

[
‖b0 + σ−1y0‖2 + ‖xk‖T

]
− 1

2σ
‖y0‖2.
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The inexact semi-proximal ALM (sPALM) we consider for solving the primal block an-
gular problem (P) through (10) is given as follows.

sPALM. Given σ > 0 and y00 ∈ Y0. Let {εk} be a given summable sequence of nonnegative
numbers. Perform the following steps in each iteration.

Step 1. Compute

xk+1 ≈ x̂k+1 := argmin{Lσ(x; yk0) +
σ

2
‖x− xk‖2T }, (13)

with residual

dk+1 ∈ ∂xLσ(x
k+1; yk0) + σT (xk+1 − xk), (14)

satisfying ‖dk+1‖ ≤ εk. Let Gi = Qi+σJi, gki = Qix
k
i+ci+σA∗

i (Axk−b0−σ−1yk0)−Gixki .
Due to the separability of the variables in (13) because of the specially chosen T , one
can compute in parallel for i = 0, 1, . . . , N ,

xk+1
i ≈ x̂k+1

i := argmin
{
θi(xi) +

1

2
〈xi, Gixi〉+ 〈gki , xi〉 | xi ∈ Fi

}
, (15)

with the residual dk+1
i := vk+1

i + Gixk+1
i + gki for some vk+1

i ∈ ∂(θi + δFi
)(xk+1

i ) and
satisfying

‖dk+1
i ‖ ≤ 1√

N + 1
εk. (16)

Step 2. yk+1
0 = yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the steplength.

Observe that with the introduction of the semi-proximal term σ
2
‖x − xk‖2T to the aug-

mented Lagrangian function in Step 1 of the sPALM, we have decomposed the large coupled
problem involving x in ALM into N + 1 smaller independent problems that can be solved
in parallel. For the case of a quadratic or linear program, we can employ a powerful solver
such as Gurobi or Mosek to efficiently solve these smaller problems.

In order to judge how accurately the decomposed subproblems in Step 1 must be solved,
we need to analyse the stopping condition for (15) in detail. In particular, we need to find
vk+1
i ∈ ∂(θi + δFi

)(xk+1
i ) for i = 0, 1, . . . , N . This can be done by considering the dual of the

subproblem (15), which could be written as:

−min θ∗i (−si) + 1
2
〈wi, Giwi〉 − 〈bi, yi〉+ δ∗Ki

(−zi)
s.t. −Giwi +D∗

i yi + si + zi = gki ,

si ∈ Xi, yi ∈ Yi, wi ∈ Wi, i = 1, . . . , N.

(17)

Note that for i = 0, we have a similar problem as the above but the terms involving yi are
absent. For the discussion below, we will just focus on the case where i = 1, . . . , N , the case
for i = 0 can be derived similarly. One can estimate vk+1

i to be −D∗
i y

k+1
i − sk+1

i − zk+1
i for a

8



computed dual solution (yk+1
i , sk+1

i , zk+1
i ) and the residual dk+1

i is simply the residual in the
dual feasibility constraint in the above problem.

Remark 3.1 In the sPALM, some of the dual variables for (D) are not explicitly constructed.
Here we describe how they can be estimated. Recall that for (D), we want to get

−Qixi +A∗
i y0 +D∗

i yi + si + zi − ci = 0 ∀ i = 0, 1, . . . , N.

Note that for convenience, we introduced D∗
0 = 0. From the KKT conditions for (15) and

(17), we have that

−Giwk+1
i + D∗

i y
k+1
i + sk+1

i + zk+1
i − gki =: Rd

i ≈ 0,

Giwk+1
i − Gixk+1

i ≈ 0.

By using the expression for Gi, gki and yk+1
0 , we get

−Qix
k+1
i +A∗

i y
k+1
0 +D∗

i y
k+1
i + sk+1

i + zk+1
i − ci

= Rd
i + (Giwk+1

i − Gixk+1
i ) + σJi(xk+1

i − xki ) + σA∗
iA(xk − xk+1) + (τ − 1)σA∗

i (b0 −Axk+1).

Note that the right-hand-side quantity in the above equation will converge to 0 based on the
convergence of sPALM and the KKT conditions for (15) and (17). Thus by using the dual
variables computed from solving (17), we can generate the dual variables for (D).

3.1 Convergence of the inexact sPALM

The convergence of the inexact sPALM for solving (10) can be established readily by using
known results in [14]. To do that, we need to first reformulate (10) into the form required
in [14] as follows:

min
{
h(x) + ψ(x) | Ax = b0, x = (x0; x1; . . . ; xN) ∈ X

}
, (18)

where h(x) =
∑N

i=0
1
2
〈xi, Qixi〉+ 〈ci, xi〉 and ψ(x) =

∑N
i=0 θi(xi)+ δFi

(xi). Its corresponding
KKT residual mapping is given by

R(x, y0) =

(
b0 −Ax

x− Proxψ(x−Qx− c−A∗y0)

)
∀ x ∈ X , y0 ∈ Y0. (19)

Note that (x, y0) is a solution of the KKT system of (18) if and only R(x, y0) = 0.
Now we state the global convergence theorem here for the convenience of the readers.

Define the self-adjoint positive definite linear operator V : X → X by

V := τσ
(
Q+ σT +

2− τ

6
σAA∗

)
.

We have the following convergence result for the inexact sPALM.
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Theorem 3.1 Assume that the solution set to the KKT system of (10) is nonempty and
(x, y0) is a solution. Then, the sequence {(xk, yk0)} generated by sPALM is well-defined such
that for any k ≥ 1,

‖xk+1 − x̂k+1‖2Q+σT +σAA∗
≤ 〈dk+1, xk+1 − x̂k+1〉,

and for all k = 0, 1, . . .,

(
‖xk+1 − x‖2V̂ + ‖yk+1

0 − y0‖2
)
−
(
‖xk − x‖2V̂ + ‖yk0 − y0‖2

)

≤ −
(
2−τ
3τ

‖yk0 − yk+1
0 ‖2 + ‖xk+1 − xk‖2V − 2τσ〈dk, xk+1 − x〉

)
,

where V̂ = V + 2−τ
6
σAA∗. Moreover, the sequence {(xk, yk0)} converges to a solution to the

KKT system of (10).

Proof. The result can be proved directly from the convergence result in [14, Theorem 1]. �

The local linear convergence of sPALM can also be established if the KKT residual
mapping R satisfies the following error bound condition: there exist positive constants κ and
r such that dist((x, y0),Ω) ≤ κ‖R(x, y0)‖ for all (x, y0) satisfying ‖(x, y0) − (x∗, y∗0)‖ ≤ r,
where Ω is the solution set of (18) and (x∗, y∗0) is a particular solution of (18). In order to
save some space, we will not state the theorem here but refer the reader to [14, Theorem 2].

3.2 Comparison of sPALM with the diagonal quadratic approxi-
mation method and its recent variants

Let ρ := (N + 1)−1. Consider the following linear operator

T̂ = diag(E0, . . . , EN)−A∗A, (20)

where Ei � ρ−1A∗
iAi for all i = 0, 1, . . . , N . It is not difficult to show that T̂ � 0.

If instead of (12), we choose T to be the linear operator given in (20), then instead of
sPALM, we get the following variant of the inexact sPALM.

sPALM-b. Given σ > 0 and y00 ∈ Y0. Let {εk} be a given summable sequence of nonnegative
numbers. Perform the following steps in each iteration.

Step 1. Let gki = Qix
k
i + ci+ σA∗

i (Axk− b0 −σ−1yk0)− (Qi+σEi)xki . Compute (in parallel)
for i = 0, 1, . . . , N ,

xk+1
i ≈ argmin

{
θi(xi) +

1

2
〈xi, (Qi + σEi)xi〉+ 〈gki , xi〉 | xi ∈ Fi

}
, (21)

with the residual dk+1
i := vk+1

i + (Qi + σEi)xk+1
i + gki for some vk+1

i ∈ ∂(θi + δFi
)(xk+1

i )
and satisfying ‖dk+1

i ‖ ≤ 1√
N+1

εk.

Step 2. yk+1
0 = yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the steplength.

10



In [41], Ruszczyński proposed the diagonal quadratic approximation (DQA) augmented
Lagrangian method that aims to solve a problem of the form (P). As already mentioned, the
DQA method is a very successful decomposition method that is frequently used in stochastic
programming. Although it was not derived in our way in [41], we shall see later that the
DQA method can roughly be derived as the augmented Lagrangian method described in
ALM where the minimization problem in Step 1 is solved approximately by a proximal
gradient method, with the proximal term chosen specially using the linear operator T̂ in
(20) to make the resulting subproblem separable.

ALM-DQA-mod. Given σ > 0, y00 ∈ Y0 and x0 ∈ X . Let {εk} be a given summable
sequence of nonnegative numbers. Perform the following steps in each iteration.

Step 1. Starting with x̂0 = xk, iterate the following step for s = 0, 1, . . . until convergence:

• Compute x̂s+1 ≈ argmin
{
Lσ(x; y

k
0) +

σ
2
‖x − x̂s‖2T̂ | x ∈ X

}
. As the problem is

separable, one can compute in parallel for i = 0, 1, . . . , N ,

x̂s+1
i ≈ argmin

{
fi(xi) +

σ

2
〈xi − x̂si , Ei(xi − x̂si )〉+ 〈xi − x̂si , ĝ

s
i 〉 | xi ∈ Fi

}

= argmin
{
θi(xi) +

1

2
〈xi, (Qi + σEi)xi〉+ 〈xi, ḡsi 〉 | xi ∈ Fi

}
, (22)

where ĝsi = σA∗
i (Ax̂s − b0 − σ−1yk0), ḡ

s
i = Qix̂

s
i + ci + σA∗

i (Ax̂s − b0 − σ−1yk0) −
(Qi + σEi)x̂si .

At termination, set xk+1 = x̂s+1.

Step 2. yk+1
0 = yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the steplength.

Observe that the subproblem (21) in Step 1 of sPALM-b is exactly one step of the
proximal gradient method (22) in Step 1 of the ALM-DQA-mod. As solving the problem of
the form in (22) multiple times for each iteration of the ALM-DQA-mod may be expensive,
it is highly conceivable that the overall efficiency of sPALM-b could be better than that of
the ALM-DQA-mod.

Next, we elucidate the connection between ALM-DQA-mod and the DQA method
described in [41]. Given x̂si ∈ Fi, we can parameterize a given xi as

xi = x̂si + ρdi = (1− ρ)x̂si + ρ(x̂si + di), i = 0, 1, . . . , N,

with ρ = (N +1)−1 ∈ (0, 1]. Then by convexity, fi(xi) ≤ (1−ρ)fi(x̂
s
i )+ ρfi(x̂

s
i + di). Also, if

11



x̂si+di ∈ Fi, then xi ∈ Fi since x̂
s
i ∈ Fi. From here, we have that for all x ∈ F0×F1×· · ·×FN ,

Lσ(x; y
k
0) +

σ

2
‖x− x̂s‖2T̂ +

1

2σ
‖yk0‖2

≤ (1− ρ)

N∑

i=0

fi(x̂
s
i ) + ρ

N∑

i=0

fi(x̂
s
i + di) +

σ

2
‖A(x̂s + ρd)− b0 − σ−1yk0‖2 +

σρ2

2
‖d‖2T̂

=

N∑

i=0

ρfi(x̂
s
i + di) + ρ〈di, ĝsi 〉+

σρ2

2
〈di, Eidi〉+ (1− ρ)

N∑

i=0

fi(x̂
s
i ) +

σ

2
‖Ax̂s − b0 − σ−1yk0‖2. (23)

Hence instead of (22), we may consider to minimize the majorization of Lσ(x; y
k
0)+

σ
2
‖x−x̂s‖2T̂

in (23), and compute for i = 0, 1, . . . , N ,

ds+1
i = argmin ρ

{
fi(x̂

s
i + di) +

σρ

2
〈di, ρEidi〉+ 〈di, ĝsi 〉 | x̂si + di ∈ Fi, di ∈ Xi

}
. (24)

We get the DQA method of [41] if we take Ei = ρ−1A∗
iAi, compute ds+1 exactly in the above

subproblem (24), and set

x̂s+1
i = x̂si + ρds+1

i , i = 0, 1, ..., N,

instead of the solution in (22). Thus we may view the DQA method as an augmented
Lagrangian method for which the subproblem in Step 1 is solved by a majorized proximal
gradient method with the proximal term chosen to be σ

2
‖x− x̂s‖2T̂ in each step.

Remark 3.2 When the Ai’s are matrices, the majorization A∗A � diag(E0, . . . , EN) can be
improved as follows, as has been done in [13]. Let

Ij =
{
i ∈ {0, 1, . . . , N} | eTj Ai 6= 0

}
, χ := max{|Ij| | j = 1, . . . , m} ≤ N + 1 = ρ−1.

Then

‖Ax‖2 = ‖∑N
i=0Aixi‖2 =

∑m
j=1 |

∑N
i=0 e

T
j Aixi|2 =

∑m
j=1 |

∑
i∈Ij e

T
j Aixi|2

≤ ∑m
j=1

(
|Ij |
∑

i∈Ij |eTj Aixi|2
)

≤ χ
∑m

j=1

∑
i∈Ij |eTj Aixi|2

= χ
∑m

j=1

∑N
i=0 |eTj Aixi|2 = χ

∑N
i=0 ‖Aixi‖2.

That is, A∗A � diag(χA∗
0A0, · · · , χA∗

NAN). Such an improvement has been considered in
[13]. It is straightforward to incorporate the improvement into ALM-DQA-mod by simply
replacing Ei = ρ−1A∗

iAi in (20) by χA∗
iAi for each i = 0, 1, . . . , N.

With the derivation of the ALM-DQA-mod as an augmented Lagrangian method with
its subproblems solved by a specially chosen proximal gradient method, we can leverage on
this viewpoint to design an accelerated variant of this method. Specifically, we can improve
the efficiency in solving the subproblems by using an inexact accelerated proximal gradient
(iAPG) method, and we will also use a proximal term based on the linear operator (12),

12



which is typically less conservative than the term σ
2
‖x− xk‖T̂ used in the DQA method.

ALM-iAPG. Given σ > 0, y00 ∈ Y0 and x0 ∈ X . Let {εk} be a given summable sequence
of nonnegative numbers. Perform the following steps in each iteration.

Step 1. Starting with x̂0 = x̄0 = xk, t0 = 1, iterate the following step for s = 0, 1, . . . until
convergence:

• Compute x̂s+1 ≈ argmin
{
Lσ(x; y

k
0) +

σ
2
‖x − x̄s‖2T | xi ∈ Fi, i = 0, 1, . . . , N

}
. As

the problem is separable, one can compute in parallel for i = 0, 1, . . . , N ,

x̂s+1
i ≈ argmin

{
θi(xi) +

1
2
〈xi, Gixi〉+ 〈xi, ḡsi 〉 | xi ∈ Fi

}
, (25)

where Gi = Qi + σJi, ḡsi = Qix̄
s
i + ci + σA∗

i (Ax̄si − b0 − σ−1yk0)− Gix̄si .
• Compute ts+1 = (1 +

√
1 + 4t2s)/2, βs+1 = (ts − 1)/ts+1.

• Compute x̄s+1 = (1 + βs+1)x̂
s+1 − βs+1x̂

s.

At termination, set xk+1 = x̂s+1.

Step 2. yk+1
0 = yk0 + τσ(b0 −Axk+1), where τ ∈ (0, 2) is the steplength.

3.3 Numerical performance of sPALM and ALM-DQA-mod

In this subsection, we compare the performance of the sPALM and ALM-DQA-mod algo-
rithms for solving several linear and quadratic test instances. The detailed description of
the datasets is given in Section 5. We also report the number of constraints and variables
of the instances in the table. For all the instances, we have m1 = m2 = ... = mN and
n1 = n2 = ... = nN . Hence we denote them as mi and ni respectively.

Table 1 compares the performance of the two solvers sPALM and ALM-DQA-mod for the
primal problem (P) through (10) against that of the solver sGS-ADMM for the dual problem
(9). The details of the dual approach will be presented in the next section. Here, we could
observe that sPALM and ALM-DQA-mod always require much longer runtime to achieve the
same accuracy level in the relative KKT residual when compare to sGS-ADMM, although the
former algorithms generally take a smaller number of outer iterations. In addition, the ALM-
DQA-mod algorithm is slightly slower than sPALM on the whole though the difference is not
too significant. Note that our preliminary implementation of the algorithms is in Matlab

which does not have a good support for parallel computing. In a full scale implementation,
one may try to implement these algorithms on an appropriate parallel computing platform
with a good parallelization support. Nevertheless, the inferior performance of the two primal
approaches has motivated us to instead consider the dual approach of designing an efficient
algorithm for the dual problem (9).
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Table 1: Comparison of computational results between sGS-ADMM and two variants of ALM for primal
block angular problem. All the run result are obtained using single thread. Here, “Iter” is the number of
outer iterations performed, and “Time” is the total runtime in seconds.

sGS-ADMM sPALM ALM-DQA-mod
Data m0|mi n0|ni N Iter Time(s) Iter Time (s) Iter Time (s)

qp-rand-m1-n20-N10-t1 1 | 1 20 | 20 10 321 0.50 153 8.43 12 15.62

qp-rand-m50-n80-N10-t1 50 | 50 80 | 80 10 421 0.64 268 59.88 44 192.17

qp-rand-m10-n20-N10-t2 10 | 10 20 | 20 10 1501 1.20 2971 208.56 54 137.83

qp-rand-m50-n80-N10-t2 50 | 50 80 | 80 10 141 0.20 92 19.20 32 150.32

tripart1 2096 | 192 2096 | 2096 16 1981 3.01 3880 1212.86 1422 1113.26

tripart2 8432 | 768 8432 | 8432 16 6771 51.65 5000 6369.20 1610 5723.31

qp-tripart1 2096 | 192 2096 | 2096 16 653 1.44 308 94.60 114 202.45

qp-tripart2 8432 | 768 8432 | 8432 16 971 9.79 347 419.16 124 1043.54

qp-pds1 87 | 126 372 | 372 11 971 0.99 538 49.18 535 79.24

qp-SDC-r100-c50-l100-p1000-t1 5000 | 150 0 | 5000 100 32 1.52 10 37.49 7 61.51

qp-SDC-r100-c50-l100-p1000-t2 5000 | 150 0 | 5000 100 31 1.34 9 34.22 2 33.40

qp-SDC-r100-c50-l100-p5000-t1 5000 | 150 0 | 5000 100 32 1.40 10 37.75 8 75.85

qp-SDC-r100-c50-l100-p5000-t2 5000 | 150 0 | 5000 100 31 1.37 9 34.50 3 36.63

qp-SDC-r100-c50-l100-p10000-t1 5000 | 150 0 | 5000 100 32 1.37 10 37.93 9 86.82

qp-SDC-r100-c50-l100-p10000-t2 5000 | 150 0 | 5000 100 31 1.35 9 34.78 3 37.30

qp-SDC-r100-c100-l100-p1000-t1 10000 | 200 0 | 10000 100 31 2.67 10 73.50 7 116.72

qp-SDC-r100-c100-l100-p1000-t2 10000 | 200 0 | 10000 100 31 2.67 9 68.08 2 63.91

qp-SDC-r100-c100-l100-p5000-t1 10000 | 200 0 | 10000 100 31 2.70 10 74.02 8 137.19

qp-SDC-r100-c100-l100-p5000-t2 10000 | 200 0 | 10000 100 31 2.63 9 68.04 2 64.26

qp-SDC-r100-c100-l100-p10000-t1 10000 | 200 0 | 10000 100 32 2.65 10 74.65 8 147.16

qp-SDC-r100-c100-l100-p10000-t2 10000 | 200 0 | 10000 100 31 2.63 9 67.66 3 71.18

qp-SDC-r100-c100-l200-p20000-t1 10000 | 200 0 | 10000 200 41 6.68 10 183.21 8 302.29

qp-SDC-r200-c100-l200-p20000-t1 20000 | 300 0 | 20000 200 34 11.96 10 360.48 7 513.61

qp-SDC-r200-c200-l200-p20000-t1 40000 | 400 0 | 40000 200 31 22.33 10 783.49 7 1068.04

M64-64 405 | 64 511 | 511 64 1991 3.16 5000 2874.88 625 1241.12

4 A semi-proximal symmetric Gauss-Seidel based ADMM

for the dual problem (D)

In the last section, we have designed the sPALM algorithm to solve the primal problem (P)
directly. One can also attempt to solve (P) via its dual problem (D) given in (9). Based
on the structure in (D), we find that it is highly conducive for us to employ a symmetric
Gauss-Seidel based ADMM (D) to solve the problem, as we shall see later when the details
are presented.

To derive the sGS-ADMM algorithm for solving (D), it is more convenient for us to
express (D) in a more compact form as follows:

min {p(s) + f(y1:N , w, s) + q(z) + g(y0, z) | F∗[y1:N ;w; s] + G∗[y0; z] = c}, (26)
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where y1:N = [y1; . . . ; yN ], and

F∗ :=
[
D∗, −Q, I

]
, G∗ :=

[
A∗, I

]
,

p(s) := θ
∗(−s), f(y1:N , w, s) := −〈b1:N , y1:N〉+

1

2
〈w, Qw〉+ δW (w),

q(z) := δ∗K(−z), g(y0, z) := −〈b0, y0〉.
Here we take W = Range(Q). This is a multi-block linearly constrained convex program-
ming problem for which the direct application of the classical ADMM is not guaranteed to
converge. Thus we adapt the recently developed sGS-ADMM [15, 27] whose convergence is
guaranteed to solve the dual problem (D).

Given a positive parameter σ, the augmented Lagrangian function for (D) is given by

Lσ(y, w, s, z; x) = p(s) + f(y1:N , w, s) + q(z) + g(y0, z)+
σ
2
‖F∗[y1:N ;w; s] + G∗[y0; z]− c+ 1

σ
x‖2 − 1

2σ
‖x‖2

=
∑N

i=0 θ
∗
i (−si) + δ∗Ki

(−zi) + 1
2
〈wi, Qiwi〉 − 〈bi, yi〉

+σ
2
‖ −Q0w0 +A∗

0y0 + s0 + z0 − c0 + σ−1x0‖2 − 1
2σ
‖x0‖2.

+
∑N

i=1
σ
2
‖ −Qiwi +A∗

i y0 +D∗
i yi + si + zi − ci + σ−1xi‖2 − 1

2σ
‖xi‖2.

Now to develop the sGS-ADMM, we need to analyze the block structure of the quadratic
terms in Lσ(y, w, s, z; x) corresponding the blocks [y1:N ;w; s] and [y0; z], which are respec-
tively given as follows:

FF∗ =




DD∗ −DQ D
−QD∗ Q2 −Q

D∗ −Q I




=




0 −DQ D
0 0 −Q

0 0 0




︸ ︷︷ ︸
UF

+




DD∗ 0 0

0 Q2 0

0 0 I




︸ ︷︷ ︸
DF

+ U
∗
F

GG∗ =

[
AA∗ A
A∗ I

]
=

[
0 A
0 0

]

︸ ︷︷ ︸
U G

+

[
AA∗ 0

0 I

]

︸ ︷︷ ︸
DG

+ U
∗
G .

Based on the above (symmetric Gauss-Seidel) decompositions, we define the following posi-
tive semidefinite linear operators associated with the decompositions:

sGS(FF∗) = U
∗
FD

−1
F UF , sGS(GG∗) = U

∗
GD

−1
G UG . (27)

Note that here we view Q as a linear operator defined on W and because we take W =
Range(Q), Q2 is positive definite on W and hence DF is invertible. Since A is assumed to
have full row-rank, DG is also invertible.
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Given the current iterate (yk, sk, wk, zk, xk), the basic template of the sGS-ADMM for
(26) at the k-th iteration is given as follows.

Step 1. Compute

(yk+1
1:N , w

k+1, sk+1) = argminy1:N ,w,s





p(s) + f(y1:N , w, s)

+σ
2
‖F∗[y1:N ;w; s] + G∗[yk0 ; z

k]− c+ 1
σ
xk‖2

+σ
2
‖[y1:N ;w; s]− [yk1:N ;w

k; sk]‖2sGS(FF∗)




.

Step 2. Compute

(yk+1
0 , zk+1) = argminy0,z

{
q(z) + g(y0, z) +

σ
2
‖F∗[yk+1

1:N ;wk+1; sk+1] + G∗[y0; z]− c+ 1
σ
xk‖2

+σ
2
‖[y0; z]− [yk0 ; z

k]‖2sGS(GG∗)

}
.

Step 3. Compute xk+1 = xk + τσ(F∗[yk+1
1:N ;wk+1; sk+1] + G∗[yk+1

0 ; zk+1] − c), where τ ∈
(0, 1+

√
5

2
) is the steplength.

By using the sGS-decomposition theorem in [28], we can show that the computation in
Step 1 can be done by updating the blocks (y1:N , w, s) in a symmetric Gauss-Seidel fash-
ion. Similarly, the computation in Step 2 can be done by updating the blocks (y0, z) in a
symmetric Gauss-Seidel fashion. With the above preparations, we can now give the detailed
description of the sGS-ADMM algorithm for solving (9).

sGS-ADMM on (9). Given (y0, w0, s0, z0, x0) ∈ Y×W×X×X×X , perform the following
steps in each iteration. Note that for notational convenience, we define D0 = 0 in the
algorithm.

Step 1a. Let gk = A∗yk0 + zk − c+ σ−1xk. Compute

(ȳk1 , . . . , ȳ
k
N) = argminy1,...,yN

{
Lσ
(
(yk0 , y1, . . . , yN), w

k, sk, zk; xk
)}
,

which can be done in parallel by computing for i = 1, . . . , N ,

ȳki = argminyi

{
− 〈bi, yi〉+

σ

2
‖ −Qiw

k
i +D∗

i yi + ski + gki ‖2
}
.

Specifically, for i = 1, . . . , N , ȳki is the solution of the following linear system:

DiD∗
i yi = σ−1bi −Di(−Qiw

k
i + ski + gki ). (28)

Step 1b Compute w̄k = argmin
{
Lσ
(
(yk0 , ȳ

k
1 , . . . , ȳ

k
N), w, s

k, zk; xk
)}

by computing in paral-
lel for i = 0, 1, . . . , N,

w̄ki = argminwi

{1
2
〈wi, Qiwi〉+

σ

2
‖ −Qiwi +D∗

i ȳ
k
i + ski + gki ‖2 | wi ∈ Range(Qi)

}
.
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It is important to note that w̄ki is only needed theoretically but not needed explicitly in
practice. This is because in practical computation, only Qiw̄

k
i is needed. To compute

Qiw̄
k
i , we first compute the solution w̃ki of the linear system below:

(I + σQi)w̃i = σ(D∗
i ȳ

k
i + ski + gki ). (29)

Then we can compute Qiw̄
k
i = Qiw̃

k
i . The precise mechanism as to why the latter

equality is valid will be given in the remark after the presentation of this algorithm.

Step 1c. Compute

(sk+1
0 , . . . , sk+1

N ) = argmins0,...,sN

{
Lσ((yk0 , ȳk1 , . . . , ȳkN), w̄k, (s0, s1, . . . , sN), zk; xk)

}
,

which can be done in parallel by computing for i = 0, 1, . . . , N,

sk+1
i = argminyi

{
θ∗i (−si) +

σ

2
‖ − Qiw̄

k
i +D∗

i ȳ
k
i + si + gki ‖2

}

= −Proxθ∗i /σ(−Qiw̄
k
i +D∗

i ȳ
k
i + gki )

=
1

σ
Proxσθi

(
σ(−Qiw̄

k
i +D∗

i ȳ
k
i + gki )

)
− (−Qiw̄

k
i +D∗

i ȳ
k
i + gki ).

Step 1d Compute wk+1 = argmin
{
Lσ
(
(yk0 , ȳ

k
1 , . . . , ȳ

k
N), w, s

k+1, zk; xk
)}

by computing in
parallel for i = 0, 1, . . . , N,

wk+1
i = argminwi

{1
2
〈wi, Qiwi〉+

σ

2
‖ −Qiwi +D∗

i ȳ
k
i + sk+1

i + gki ‖2 | wi ∈ Range(Qi)
}
.

Note that the same remark in Step 1b is applicable here.

Step 1e Compute

(yk+1
1 , . . . , yk+1

N ) = argminy1,...,yN

{
Lσ
(
(yk0 , y1, . . . , yN), w

k+1, sk+1, zk; xk
)}
,

which can be done in parallel by computing for i = 1, . . . , N ,

yk+1
i = argminyi

{
− 〈bi, yi〉+

σ

2
‖ −Qiw

k+1
i +D∗

i yi + sk+1
i + gki ‖2

}
.

Step 2a. Let hk = −Qwk+1 +D∗yk+1 + sk+1 − c + σ−1xk. Compute

ȳk0 = argminy0

{
Lσ
(
(y0, y

k+1
1 , . . . , yk+1

N ), wk+1, sk+1, zk; xk
)}

= argminy0

{
− 〈b0, y0〉+

σ

2
‖A∗

0y0 + zk0 + hk0‖2 +
N∑

i=1

σ

2
‖A∗

i y0 + zki + hki ‖2
}
.

Specifically, ȳk0 is the solution to the following linear system of equations:

( N∑

i=0

AiA∗
i

)
y0 = σ−1b0 −

N∑

i=0

Ai(z
k
i + hki ). (30)
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Step 2b Compute zk+1 = argmin
{
Lσ
(
(ȳk0 , y

k+1
1 , . . . , yk+1

N ), wk+1, sk+1, z; xk
)}

by computing
in parallel for i = 0, 1, . . . , N ,

zk+1
i = argminzi

{
δ∗Ki

(−zi) +
σ

2
‖A∗

i ȳ
k
0 + zi + hki ‖2

}
= −Proxσ−1δ∗

Ki

(A∗
i ȳ
k
0 + hki )

=
1

σ
ΠKi

(
σ(A∗

i ȳ
k
0 + hki )

)
− (A∗

i ȳ
k
0 + hki ).

Step 2c Compute

yk+1
0 = argminy0

{
Lσ
(
(y0, y

k+1
1 , . . . , yk+1

N ), wk+1, sk+1, zk+1; xk
)}

= argminy0

{
− 〈b0, y0〉+

σ

2
‖A∗

0y0 + zk+1
0 + hk0‖2 +

N∑

i=1

σ

2
‖A∗

i y0 + zk+1
i + hki ‖2

}
.

Note that the computation in Step 2a is applicable here.

Step 3 Compute

xk+1 = xk + τσ(−Qwk+1 +B∗yk+1 + sk+1 + zk+1 − c),

where τ ∈ (0, 1+
√
5

2
) is the steplength.

Now we make some important remarks concerning the computations in sGS-ADMM.

1. If the term θ ≡ 0 in Step 1c, then this step is vacuous, and Step 1b and Step 1d are
identical. Hence the computation needs only to be done for Step 1d. Hence Step 1
only consists of Step 1a, 1d, and 1e.

2. If Q ≡ 0, then Step 1b and 1d are vacuous. Therefore Step 1 only consists of Step 1a,
1c, and 1e.

3. The computation in Step 1d can be omitted if the quantity w̄ki computed in Step 1b
is already a sufficiently good approximate solution to the current subproblem. More
precisely, if the approximation w̄ki for wk+1

i satisfies the admissible accuracy condition
required in the inexact sGS-ADMM designed in [15], then we can just set wk+1

i = w̄ki
instead of using the exact solution to the current subproblem. Similar remark is also
applicable to the computation in Step 1e and Step 2c.

4. The sGS-ADMM in fact has the flexibility of allowing for inexact computations as
already shown in [15]. While the computation in Step 1a and 1e (similarly for Step
1b and 1d, Step 2a and 2c) are assumed to be done exactly (up to machine precision),
the computation can in fact be done inexactly subject to a certain predefined accuracy
requirement on the computed approximate solution. Thus iterative methods such as
the preconditioned conjugate gradient (PCG) method can be used to solve the linear
systems when their dimensions are too large. We omit the details here for the sake of
brevity.
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5. In solving the linear system (30), the m0 × m0 symmetric positive definite matrix∑N
i=0AiA∗

i is fixed, and one can pre-compute the matrix if it can be stored in the
memory and its Cholesky factorization can be computed at a reasonable cost. Then in
each sGS-ADMM iteration, ȳk0 and yk+1

0 can be computed cheaply by solving triangular
linear systems. In the event when computing the coefficient matrix or its Cholesky
factorization is out of reach, one can use a PCG method to solve the linear system. In
that case, one can implement the computation of the matrix-vector product in parallel
by computing AiA∗

i y0 in parallel for i = 0, 1, . . . , N , given any y0. Note that when
the PCG method is employed, the use of the inexact sGS-ADMM framework just
mentioned above will become necessary.

The same remark above also applies to the linear system (28) for each i = 1, . . . , N .

For the multi-commodity flow problem which we will consider later in the numerical
experiments, we note that the linear system in (30) has a very simple coefficient matrix
given by

∑N
i=0AiA∗

i = (N + 1)Im, and the coefficient matrix DiD∗
i in (28) is equal to

the Laplacian matrix of the network graph for all i = 1, . . . , N. Thus both (30) and
(28) can be solved efficiently by a direct solver.

6. In Step 1b, we claimed that Qiw̄
k
i = Qiw̃

k
i . Here we show why the result holds. For

simplicity, we assume that Qi is a symmetric positive semidefinite matrix rather than
a linear operator. Consider the spectral decomposition Qi = UDUT , where D ∈ ℜr×r

is a diagonal matrix whose diagonal elements are the positive eigenvalues of Qi and
the columns of U ∈ ℜmi×r are their corresponding orthonormal set of eigenvectors.
We let V ∈ ℜmi×(mi−r) be the matrix whose columns form an orthonormal set of
eigvectors of Qi correspond to the zero eigenvalues. With this decomposition and
the parameterization wi = Uξ (because wi ∈ Range(Qi)), the minimization for w̄ki is
equivalent to the following:

argmin
{1
2
〈ξ, Dξ〉+ σ

2
‖Dξ − UT g‖2 + σ

2
‖V Tg‖2 | ξ ∈ ℜr

}
, (31)

where we have set g = zki + hki for convenience. Now from solving (29), we get that

(I + σD)UT w̃ki = σUTg, V T w̃ki = σV Tg.

This show that UT w̃ki is the unique solution to the problem (31). Hence w̄ki = U(UT w̃ki )
is the unique solution to (29). From here, we have that Qiw̄

k
i = UDUT (UUT w̃ki ) =

UDUT w̃ki = Qiw̃
k
i .

4.1 Convergence theorems of sGS-ADMM

The convergence theorem of sGS-ADMM can be established directly by using known results
from [15] and [52]. Here we present the global convergence result and the linear rate of
convergence for the convenience of reader.

In order to state the convergence theorems, we need some definitions.

Definition 4.1 Let F : X ⇒ Y be a multivalued mapping and denote its inverse by F
−1.

The graph of multivalued function F is defined by gphF := {(x, y) ∈ X × Y | y ∈ F(x)}.
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Denote u := (y, w, s, z, x) ∈ U := Y ×W ×X ×X ×X . The KKT mapping R : U → U
of (4) is defined by

R(u) :=




Bx− b
−Qw +B∗y + s+ z − c

Qw −Qx
x− Proxθ(x− s)
x−ΠK(x− z)



. (32)

Denote the set of KKT points by Ω̄. The KKT mapping R is said to be metrically
subregular at (ū, 0) ∈ gphR with modulus η > 0 if there exists a scalar ρ > 0 such that

dist(u, Ω̄) ≤ η‖R(u)‖ ∀u ∈ {u ∈ U : ‖u− ū‖ ≤ ρ}.

Now we are ready to present the convergence theorem of sGS-ADMM.

Theorem 4.1 Let {uk := (yk, wk, sk, zk; xk)} be the sequence generated by sGS-ADMM.
Then, we have the following results.

(a) The sequence {(yk, wk, sk, zk)} converges to an optimal solution of the compact form
(6) of the dual problem (D), and the sequence {xk} converges to an optimal solution of the
compact form (4) of the primal problem (P).

(b) Suppose that the sequence {uk} converges to a KKT point ū := (ȳk, w̄k, s̄k, z̄k, x̄k) and
the KKT mapping R is metrically subregular at (ū, 0) ∈ gphR. Then the sequence {uk} is
linearly convergent to ū.

Proof. (a) The global convergence result follows from that in [15]. (b) The result follows
directly by applying the convergence result in [52, Proposition 4.1] (which slightly improves
an earlier result in [20]) to the compact formulation (6) of (D). �

Remark 4.1 By Theorem 1 and Remark 1 in [29], we know that when (P) is a convex
programming problem where for each i = 0, . . . , N , θi is piecewise linear-quadratic or strongly
convex, and Ki is polyhedral, then R is metrically subregular at (ū, 0) ∈ gphR for any KKT
point ū. Thus sGS-ADMM converges locally at a linear rate to an optimal solution of (P)
and (D) under the previous conditions on θi and Ki. In particular, for the special case of a
primal block angular quadratic programming problem where θi ≡ 0 and Ki = R

ni

+ for all i, we
know that sGS-ADMM is locally linearly convergent, which can even be proven to converge
globally linearly.

4.2 Computational cost

Now we would discuss the main computational cost of sGS-ADMM. We could observe that
the most time-consuming computations are in solving large linear system of equations in
Step 1a, 1b, 1d, 1e, 2a, and 2c.

In general, suppose for every iteration we need to solve a d×d linear system of equations:

Mx = r. (33)
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Assuming that M is stored, then we can compute its Cholesky factorization at the cost of
O(d3) operations, which needs only to be done once at the very beginning of the algorithm.
After that, whenever we need to solve the equation, we just need to compute the right-hand-
side vector r and solve two d× d triangular systems of linear equations at the cost of O(d2)
operations.

We can roughly summarize the costs incurred in solving Mx = r as follows:

(C1) Cost for computing the coefficient matrixM (only once at the beginning of algorithm);

(C2) Cost for computing Cholesky factorization of M (only once at the beginning of algo-
rithm);

(C3) Cost for computing right-hand-side vector r;

(C4) Cost for solving two triangular systems of linear equations.

The computational cost C1, C2, C3, C4 above for each of the equations in Step 1a, 1b, 1d,
1e, 2a, and 2c are tabulated in Table 2.

Table 2: Computational cost for solving the linear systems of equations in each of the steps.

Step C1 (once) C2 (once) C3 (each iteration) C4 (each iteration)

1a and 1e
(i = 1, . . . , N)

O(m2
ini) O(m3

i ) O(n2
i +mini) O(m2

i )

1b and 1d
(i = 1, . . . , N)

O(n2
i ) O(n3

i ) O(mini) O(n2
i )

2a and 2c O(m2
0n0) O(m3

0) O(m0n0) O(m2
0)

5 Numerical experiments

In this section, we evaluate the performance of the algorithm we have designed for solving
the problem (P). We conduct numerical experiments on three major types of primal block
angular model, including linear, quadratic, and nonlinear problems. Apart from randomly
generated datasets, we would demonstrate that our algorithms can be quite efficient in solving
realistic problems encountered in the literature.

5.1 Stopping condition

Based on the optimality conditions in (8), we measure the accuracy of a computed solution
by the following relative residuals:

η = max{ηP , ηD, ηQ, ηK , ηS},
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where

ηP =
‖Bx− b‖
1 + ‖b‖ , ηD =

‖ −Qw +B∗y + s+ z − c‖
1 + ‖c‖ , ηQ =

‖Qw −Qx‖
1 + ‖Q‖ ,

ηK =
‖x− ΠK(x− z)‖
1 + ‖x‖+ ‖z‖ , ηS =

‖x− Proxθ(x− s)‖
1 + ‖x‖ + ‖s‖ .

We terminate our algorithm when η ≤ 10−5.

5.2 Block angular problems with linear objective functions

In this subsection, we perform numerical experiments on minimization problems having
linear objective functions and primal block angular constraints. Multicommodity flow (MCF)
problems are one of the main representative in this class of problems. It is a model to solve
the routing problem of multiple commodities throughout a network from a set of supply nodes
to a set of demand nodes. These problems usually exhibit primal block angular structures
due to the network nature in the constraints.

Consider a connected network graph (N , E) with m nodes and n = |E| arcs for which N
commodities must be transported through the network. We assume that each commodity
has a single source-sink pair (sk, tk) and we are given the flow rk that must be transported
from sk to tk, for k = 1, . . . , N . Let M ∈ R

m×|E| be node-arc incidence matrix of the graph.
Then the MCF problem can be expressed in the form given in (P) with the following data:

K0 = {x0 ∈ R
n | 0 ≤ x0 ≤ u}, Ki = R

n
+, i = 1, . . . , N,

Qi = 0, θi(·) = 0, ∀i = 0, 1, ..., N,

A0 = In, Ai = −In, ∀i = 1, ..., N,

D1 = D2 = · · · = DN =M is the node-arc incidence matrix.

For this problem, xi denotes the flow of the i-th commodity (i = 1, . . . , N) through the
network, x0 is the total flow, and u is a given upper bound vector on the total flow.

5.2.1 Description of datasets

Following [11], the datasets we used are as follows.

tripart and gridgen: These are five multicommodity instances obtained with the Tripart
and Gridgen generators. They could be downloaded from
http://www-eio.upc.es/~jcastro/mmcnf_data.html.

pds: The PDS problems come from a model of transporting patients away from a place of
military conflict. It could be downloaded from
http://www.di.unipi.it/optimize/Data/MMCF.html#Pds.

M{n}-{k}: These are the problems generated by the Mnetgen generator, which is one of
the most famous random generator of Multicommodity Min Cost Flow instances. Here
n is the number of nodes in the network and k is the number of commodity. It could be
downloaded from http://www.di.unipi.it/optimize/Data/MMCF.html#MNetGen.

22

http://www-eio.upc.es/~jcastro/mmcnf_data.html
http://www.di.unipi.it/optimize/Data/MMCF.html#Pds
http://www.di.unipi.it/optimize/Data/MMCF.html#MNetGen


5.2.2 Numerical results

In Table 3, we compare our sGS-ADMM algorithm against the solvers Gurobi and BlockIP.
We should emphasize that Gurobi is a state-of-the-art solver for solving general linear and
quadratic programming problems. Although it is not a specialized algorithm for primal
block angular problems, it has been so powerful in solving sparse general linear and convex
quadratic programming problems that it should be used as the benchmark for any newly
developed algorithm. On the other hand, BlockIP [12] is an efficient interior-point algorithm
specially designed for solving primal block angular problems, especially those arising from
MCF problems. As reported in [12], it has been successful in solving many large scale
instances of primal block angular LP and QP problems.

In the following numerical experiments, we employ Gurobi directly on the compact for-
mulation (4). To be more specific, we input B as a general sparse matrix. The feasibility and
objective gap tolerance is set to be 1e-5, and the number of threads is set to be 1. All the
other parameters remain as default setting. Similarly for BlockIP, all the three tolerances
(primal and dual feasibility, and relative objective gap) are set to be 1e-5 for consistency.
Its maximum number of iteration is set to be 500.

Table 3: Comparison of computational results between sGS-ADMM, Gurobi, and BlockIP for linear primal
block angular problems. All the results are obtained using a single thread. ‘Iter’ under the column for
Gurobi means the total number of simplex iterations.

sGS-ADMM Gurobi BlockIP
Data m0|mi n0|ni N Iter Time(s) Iter Time (s) Iter Time (s)

tripart1 2096 | 192 2096 | 2096 16 1981 3.01 5155 0.78 48 1.23

tripart2 8432 | 768 8432 | 8432 16 6771 51.65 42070 42.81 67 10.32

tripart3 16380 | 1200 16380 | 16380 20 5561 104.96 85390 189.37 81 48.70

tripart4 24815 | 1050 24815 | 24815 35 8581 343.32 246340 1685.50 115 139.36

gridgen1 3072 | 1025 3072 | 3072 320 7541 409.75 497709 8039.40 203 1589.04

pds15 1812 | 2125 7756 | 7756 11 2893 22.60 8545 1.01 81 12.19

pds30 3491 | 4223 16148 | 16148 11 4471 111.49 27645 4.79 110 51.66

pds60 6778 | 8423 33388 | 33388 11 7719 465.06 70168 17.57 145 403.23

pds90 8777 | 12186 46161 | 46161 11 5315 479.59 100858 25.18 162 822.45

M64-64 405 | 64 511 | 511 64 1991 3.16 7601 0.77 51 0.85

M128-64 936 | 128 1171 | 1171 64 2601 7.32 18108 3.93 52 3.15

M128-128 979 | 128 1204 | 1204 128 3801 28.89 32736 7.24 127 11.75

M256-256 1802 | 256 2204 | 2204 256 6821 225.31 103561 18.53 97 89.92

M512-64 3853 | 512 4768 | 4768 64 2631 45.77 48235 8.76 72 48.44

M512-128 3882 | 512 4786 | 4786 128 3581 137.23 87659 17.96 97 144.77

M512-512 707 | 512 1797 | 1797 512 7021 373.58 199260 16.79 146 308.95

From Table 3, we observe that Gurobi is the fastest to solve 11 out of 16 instances.
Gurobi is extremely fast in solving the pdsxx and Mxxx-xx problems but have difficulty in
solving tripart4 and gridgen1 efficiently. On the other hand, sGS-ADMM and BlockIP
are highly efficient in solving the latter instances. On the other hand, BlockIP is the fastest
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when solving the tripart2,3,4 instances while sGS-ADMM is the fastest in solving the
gridgen1 and M512-128 instances.

Our sGS-ADMM solver outperforms Gurobi when the instance is both hard and huge,
for example, tripart4 and gridgen1. For the latter instance, it is in fact the fastest solver.
We also noticed that BlockIP is quite sensitive to the practical setting of the upper bound
on the unbounded variables. For example, setting “9e6” and “9e8” as the upper bounds for
the unbounded variables can lead to a significant difference in the number of iterations.

5.3 Block angular problems with convex quadratic objective func-
tions

In this subsection, we perform numerical experiments on optimization problems having con-
vex quadratic objective functions and primal block angular constraints.

One of the main class of this type of problem is again from the multicommodity flow
problem. Following [12], we add in the quadratic objective term, Qi = 0.1I, ∀i = 0, ..., N .
The corresponding datasets start with a prefix "qp-", including tripart, gridgen and pds.

Another main class of quadratic primal block angular problems arises in the field of
statistical disclosure control. Castro [10] studied the controlled tabular adjustment (CTA)
to find a closest, perturbed, yet safe table given a three-dimensional table for which the
content need to be protected. In particular, we have

Qi = I, θi(·) = 0, i = 0, . . . , N,

A0 = I, Ai = −I, ∀i = 1, ..., N,

D1 = D2 = · · · = DN is a node-arc incidence matrix

and Ki (i = 0, 1, . . . , N) is the same as in section 5.2.

5.3.1 Description of datasets

The datasets we used are as follows.

rand: These instances are randomly generated sparse problems. Here we generated two
types of problems.

• Type 1 problem (with suffix -t1) has diagonal quadratic objective cost, i.e. Qi is
a random diagonal matrix given by spdiags(rand(n i,1),0,n i,n i).

• Type 2 problem (with suffix -t2) does not necessarily have diagonal quadratic
objective cost. In this case Qi is still very sparse but remained to be positive
semidefinite. We use the following routine to generate Qi for every i = 0, 1, ..., N :

tmp=sprandn(n i,n i,0.1); Qi = tmp*tmp’.

For both types of problems, we generate Ai and Di similarly for i = 0, ..., N usingMat-

lab command sprandn with density 0.5 and 0.3 respectively. Note that by convention
we have D0 = 0.
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L2CTA3D: This is an extra large instance (with a total of 10M variables and 210K con-
straints) provided in http://www-eio.upc.es/~jcastro/huge_sdc_3D.html.

SDC: These are some of the CTA instances we generated using the generator provided by
J. Castro at http://www-eio.upc.es/~jcastro/CTA_3Dtables.html.

5.3.2 Numerical results

As in the last subsection, we compare our sGS-ADMM algorithm against Gurobi and BlockIP
solver in Table 4.

Table 4: Comparison of computational results between sGS-ADMM, Gurobi, and BlockIP for quadratic
primal block angular problems. All the results are obtained using single thread. ‘Iter’ under the column
for Gurobi means the total number of barrier iterations. A ‘/’ under the column for BlockIP means that the
solver runs out of memory, and a ‘*’ means the solver is not compatible to solve the problem.

sGS-ADMM Gurobi BlockIP
Data m0|mi n0|ni N Iter Time(s) Iter Time (s) Iter Time (s)

qp-rand-m50-n80-N10-t1 50 | 50 80 | 80 10 421 0.64 14 0.28 29 0.13

qp-rand-m1000-n1500-N10-t1 1000 | 1000 1500 | 1500 10 748 57.67 15 1641.91 39 360.12

qp-rand-m100-n200-N100-t1 100 | 100 200 | 200 100 331 3.81 18 14.09 54 8.51

qp-rand-m1000-n1500-N100-t1 1000 | 1000 1500 | 1500 100 361 312.61 18 17175.81 / /

qp-rand-m100-n200-N150-t1 100 | 100 200 | 200 150 341 6.56 19 20.94 58 60.17

qp-rand-m1000-n1500-N150-t1 1000 | 1000 1500 | 1500 150 448 559.20 17 36591.57 / /

qp-rand-m10-n20-N10-t2 10 | 10 20 | 20 10 1501 1.20 14 0.25 * *

qp-rand-m50-n80-N10-t2 50 | 50 80 | 80 10 141 0.20 14 0.44 * *

qp-rand-m1000-n1500-N10-t2 1000 | 1000 1500 | 1500 10 131 50.81 12 6916.43 * *

qp-rand-m100-n200-N100-t2 100 | 100 200 | 200 100 81 3.61 14 28.40 * *

qp-rand-m1000-n1500-N100-t2 1000 | 1000 1500 | 1500 100 220 576.62 13 8823.43 * *

qp-rand-m100-n200-N150-t2 100 | 100 200 | 200 150 74 5.36 15 45.91 * *

qp-rand-m1000-n1500-N150-t2 1000 | 1000 1500 | 1500 150 252 930.81 13 15299.33 * *

qp-tripart1 2096 | 192 2096 | 2096 16 653 1.44 15 1.17 24 0.22

qp-tripart2 8432 | 768 8432 | 8432 16 971 9.79 19 6.66 38 1.36

qp-tripart3 16380 | 1200 16380 | 16380 20 1034 27.09 22 30.08 55 6.78

qp-tripart4 24815 | 1050 24815 | 24815 35 5871 413.35 22 238.92 67 17.46

qp-gridgen1 3072 | 1025 3072 | 3072 320 4081 308.05 40 2143.19 208 1197.24

qp-pds15 1812 | 2125 7756 | 7756 11 1110 10.40 48 14.49 90 11.56

qp-pds30 3491 | 4223 16148 | 16148 11 1941 57.58 53 59.95 113 44.32

qp-pds60 6778 | 8423 33388 | 33388 11 4685 337.13 58 226.56 134 192.85

qp-pds90 8777 | 12186 46161 | 46161 11 3021 318.43 58 402.51 165 547.32

qp-L2CTA3D 100x100x1000 5000 110000 | 1000 0 | 100000 100 21 31.24 8 6696.47 7 22.72

qp-SDC-r100-c50-l100-p1000-t1 5000 | 150 0 | 5000 100 32 1.52 8 101.91 7 0.84

qp-SDC-r100-c50-l100-p1000-t2 5000 | 150 0 | 5000 100 31 1.34 6 96.47 6 0.80

qp-SDC-r100-c50-l100-p5000-t1 5000 | 150 0 | 5000 100 32 1.40 8 100.84 8 0.93

qp-SDC-r100-c50-l100-p5000-t2 5000 | 150 0 | 5000 100 31 1.37 6 106.82 6 0.79

qp-SDC-r100-c50-l100-p10000-t1 5000 | 150 0 | 5000 100 32 1.37 8 97.74 8 0.94

qp-SDC-r100-c50-l100-p10000-t2 5000 | 150 0 | 5000 100 31 1.35 6 102.74 6 0.77

qp-SDC-r100-c100-l100-p1000-t1 10000 | 200 0 | 10000 100 31 2.67 8 810.58 7 2.16

qp-SDC-r100-c100-l100-p1000-t2 10000 | 200 0 | 10000 100 31 2.67 6 1107.95 6 2.10

qp-SDC-r100-c100-l100-p5000-t1 10000 | 200 0 | 10000 100 31 2.70 8 1266.75 7 2.12
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Table 4: Comparison of computational results between sGS-ADMM, Gurobi, and BlockIP for quadratic
primal block angular problems. All the results are obtained using single thread. ‘Iter’ under the column
for Gurobi means the total number of barrier iterations. A ‘/’ under the column for BlockIP means that the
solver runs out of memory, and a ‘*’ means the solver is not compatible to solve the problem.

sGS-ADMM Gurobi BlockIP
Data m0|mi n0|ni N Iter Time(s) Iter Time (s) Iter Time (s)

qp-SDC-r100-c100-l100-p5000-t2 10000 | 200 0 | 10000 100 31 2.63 6 751.24 6 2.02

qp-SDC-r100-c100-l100-p10000-t1 10000 | 200 0 | 10000 100 32 2.65 8 779.24 8 2.42

qp-SDC-r100-c100-l100-p10000-t2 10000 | 200 0 | 10000 100 31 2.63 6 810.03 6 1.98

qp-SDC-r100-c100-l200-p20000-t1 10000 | 200 0 | 10000 200 41 6.68 8 1418.31 8 4.87

qp-SDC-r200-c100-l200-p20000-t1 20000 | 300 0 | 20000 200 34 11.96 8 5194.45 8 9.47

qp-SDC-r200-c200-l200-p20000-t1 40000 | 400 0 | 40000 200 31 22.33 8 53964.31 7 23.34

qp-SDC-r500-c50-l500-p50000-t1 25000 | 550 0 | 25000 500 41 43.36 8 11025.98 8 24.56

qp-SDC-r500-c500-l50-p5000-t1 250000 | 1000 0 | 250000 50 20 27.04 8 11360.16 / /

Table 4 shows that Gurobi is almost always slowest to solve the test instances in this case,
whereas our sGS-ADMM performs almost as efficiently as BlockIP in solving these quadratic
primal block angular problems. It is worth noting that our sGS-ADMM method works very
well on the large scale randomly generated problems compared to BlockIP, because for
these instances the matrices Ai and Qi are no longer simple identity matrices for which the
BlockIP solver can take special advantage of. Also, BlockIP runs out of memory for three
of the huge instances qp-rand-m1000-n1500-N100-t1, qp-rand-m1000-n1500-N150-t1 and
qp-SDC-r500-c500-l50-p5000-t1.

It is also observed that BlockIP solver could not solve for the qp-rand-xxx-t2 problem
because it is not designed to cater for solving problems with nondiagonal quadratic objective
cost. For these types of problem, our sGS-ADMM algorithm can substantially outperform
Gurobi, sometimes by a factor of more than 10.

5.4 Block angular problems with nonlinear convex objective func-
tions

In this subsection, we perform numerical experiments on optimization problems having non-
linear convex objective functions and primal block angular constraints. Nonlinear multicom-
modity flow problems usually arise in transportation and telecommunication. The two most
commonly used nonlinear objective functions are:

h(t) =

{∑m
i=1 fKr(ti; capi), known as Kleinrock function;

∑m
i=1 fBPR(ti; capi, ri), known as BPR (Bureau of Public Roads) function,

where

fKr(α; c) =

{
α
c−α if 0 ≤ α < c,

+∞ otherwise,
fBPR(α; c, r) =

{
rα[1 +B(α

c
)β] if α ≥ 0,

+∞ otherwise.
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The Kleinrock function is normally used to model delay in a telecommunication problem;
whereas the BPR function is mainly used to model congestion in a transportation problem.
Here capi is the capacity of arc i, ri is the free flow time of arc i, and β,B are two positive
parameters.

Thus in our problem setting, we have

θ0(x0) = h(x0), θi(xi) = 0, ∀ i = 1, ..., N,

Qi = 0, ci = 0, ∀ i = 0, ..., N,

A0 = I, Ai = −I, ∀ i = 1, ..., N,

D1 = D2 = · · · = DN is a node-arc incidence matrix,

b0 = 0, bi = di ∀i = 1, ..., N for some demand di for each commodity i,

Ki =

{
[0, capi], for Kleinrock function;

R
ni

+ , for BPR function.

Following [2], the datasets we used are the planar and grid problems, which could be
downloaded from http://www.di.unipi.it/optimize/Data/MMCF.html#Plnr.

Remark 5.1 In Step 1c of the sGS-ADMM algorithm, we need to update sk+1
i by

sk+1
i =

1

σ
Proxσθi

(
σ(−Qiw̄

k
i +D∗

i ȳ
k
i + gki )

)
−
(
−Qiw̄

k
i +D∗

i ȳ
k
i + gki

)
i = 0, 1, . . . , N.

To compute the proximal mapping for a given s:

Proxσθi(s) = argmin
{
g(t) := σθi(t) +

1

2
‖t− s‖2

}
,

we can use Newton’s method to solve the equation ∇g(t) = 0. In each sGS-ADMM itera-
tion, we warm-start Newton’s method by using the quantity already computed in the previous
iteration to generate ski .

Another point to note is that although sk+1
i is not computed exactly, the convergence of the

sGS-ADMM algorithm is not affected as long as sk+1
i is computed to satisfy the admissible

accuracy condition required in each iteration of the inexact sGS-ADMM method developed in
[15].

5.4.1 Numerical results

In this subsection, we compare our sGS-ADMM algorithm against BlockIP and IPOPT.
IPOPT is one of the state-of-the-art solvers for solving general nonlinear programs. We use
the Kleinrock function as our objective function here.
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Table 5: Comparison of computational results between sGS-ADMM, BlockIP and IPOPT for nonlinear
primal block angular problem. A ‘-’ under the column for BlockIP means that the solver encounters memory
issue.

sGS-ADMM BlockIP IPOPT
Data m0|mi n0|ni N Iter Time(s) Iter Time(s) Iter Time (s)

grid1 80 | 24 80 | 80 50 591 0.66 28 0.13 76 3.10

grid3 360 | 99 360 | 360 50 381 0.53 41 1.60 86 21.30

grid5 840 | 224 840 | 840 100 581 1.95 - - 90 127.50

grid8 2400 | 624 2400 | 2400 500 4171 261.73 215 4568.28 51 5027.50

grid10 2400 | 624 2400 | 2400 2000 3432 893.98 221 36035.85 14 5340.39

planar30 150 | 29 150 | 150 92 431 0.44 93 1.59 90 7.55

planar80 440 | 79 440 | 440 543 1875 20.07 - - 430 1400.91

planar100 532 | 99 532 | 532 1085 2614 70.99 - - 117 1184.46

Table 5 shows that IPOPT is almost always the slowest to solve the test instances but
it is very robust in the sense that it is able to solve all the test instances to the required
accuracy. It is not surprising for it to perform less efficiently since it is a general solver for
nonlinear programs.

On the other hand, we observed that BlockIP runs into memory issue when solving
almost half of the instances. This may be due to the fact that BlockIP uses a preconditioned
conjugate gradient (PCG) method and Cholesky factorization to solve the linear systems
arising in each iteration of the interior-point method. At some point of the iteration, the
PCG method did not converge and the algorithm switches to use a Cholesky factorization to
solve the linear system, which causes the out-of-memory error. Even when the PCG method
works well, it might still converge in almost 10 times slower than our algorithm.

6 Conclusion

In conclusion, we have designed efficient methods for solving convex composite quadratic
conic programming problems with a primal block angular structure. Numerical experiments
show that our algorithm is especially efficient for large instances with convex quadratic
objective functions. As a future project, we plan to implement our algorithm for solving
semidefinite programming problems with primal block angular structures. Also, it would
be ideal to utilize a good parallel computing and programming platform to implement the
algorithm to realize its full potential.
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