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A DIFFERENTIAL GRADED LIE ALGEBRA CONTROLLING

THE POISSON DEFORMATIONS OF AN AFFINE POISSON

VARIETY

MATEJ FILIP

Abstract. We construct a differential graded Lie algebra g controlling the
Poisson deformations of an affine Poisson variety. We analyse g in the case of
affine Gorenstein toric Poisson varieties. Moreover, explicit description of the
second and third Hochschild cohomology groups is given for three-dimensional
affine Gorenstein toric varieties.

1. Introduction

In the last decades differential graded Lie algebras have become a very important
tool in deformation theory. A deformation problem is controlled by a differential
graded Lie algebra h if its corresponding functor of Artin rings is isomorphic to the
deformation functor of h. In characteristic 0 every deformation functor is controlled
by a differential graded Lie algebra, due to Quillen, Deligne, Drinfeld and Kont-
sevich. It is well known that associative non-commutative (resp. commutative)
deformations of affine varieties are controlled by the Hochschild (resp. Harrison)
differential graded Lie algebra.

In recent years there has been a lot of interest in Poisson deformations, i.e. in
deformations of a pair consisting of a variety and a Poisson structure on it (see [5],
[7], [9], [10], [11]).

In this paper we construct a differential graded Lie algebra g controlling the
Poisson deformations of an affine Poisson variety Spec(A). We see that the Poisson
cohomology groups Hk(g) are related to some parts of the Hodge decomposition
of Hochschild cohomology groups HHn(A) (see e.g. [6] for definition of the Hodge
decomposition). In the case of affine toric varieties we gave a convex geometric
description of these parts in [3].

The paper is organized as follows. In Section 2 we recall basic deformation theory
via differential graded Lie algebras and basic results about the Hodge decomposi-
tion of Hochschild cohomology groups. The first main result of this paper is a
construction of a differential graded Lie algebra g controlling the Poisson deforma-
tions, which is done in Section 3. We notice that for the computation of the Poisson
cohomology groups Hk(g) parts of the Hodge decomposition of the Hochschild co-
homology are relevant (see (1)). The Poisson cohomology groups for affine Poisson
Gorenstein toric surfaces are computed in Subsection 4.2. Using results in [3] we
explicitly compute some parts of the Hochschild cohomology groups in the case of
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2 MATEJ FILIP

three-dimensional affine Gorenstein toric varieties, which is our second main re-
sult (see Theorem 4.11) obtained in Subsection 4.3. This result also reproves and
generalizes [1, Theorem 4.4]. In particular, a complete description of the second
(which describes the first order deformations) and third Hochschild cohomology
group (which contains the obstructions for extending deformations to larger base
spaces) is given (see Corollary 4.12).

2. Preliminaries

2.1. Deformation theory via differential graded Lie algebras. Let k be a
field of characteristic 0 and let A be the category of local Artinian k-algebras with
residue field k (with local homomorphisms as morphisms). By S we denote the
category of sets. If not otherwise specified a tensor product ⊗ means ⊗k. Let g

be a differential graded Lie algebra (dgla for short). By gi we denote the degree i
elements of g.

Definition 1. For a dgla g we define the functor MCg : A → S by

B 7→
{

x ∈ g1 ⊗mB | d(x) +
1

2
[x, x] = 0

}

.

MCg is said to be the Maurer-Cartan functor associated to g. Elements in
MCg(B) are the Maurer-Cartan elements of the dgla g⊗B.

Definition 2. Let G denote the category of groups. Let g be a dgla and define the
functor Gg : A → G given by

B 7→ exp(g0 ⊗mB),

where exp is the standard exponential functor on Lie algebras. Gg is said to be
the gauge functor associated to g.

Fix a dgla g over k; the gauge functor Gg acts naturally on the Maurer-Cartan
functor MCg by the formula

Gg(B)× MCg(B) → MCg(B)

(eb, x) 7→ x+

∞
∑

n=0

[b, ·]n

(n+ 1)!
([b, x]− d(b)).

This action is called the gauge action.

Definition 3. Let g be a dgla over k. The deformation functor associated to g is
the functor Defg : A → S given by

B 7→
MCg(B)

Gg(B)
.

We say that a dgla g controls a functor F if Defg ∼= F holds.

2.2. The Hodge decomposition of the Hochschild cohomology. Let A be
a finitely generated k-algebra. Let C•(A) be the Hochschild cochain complex, i.e.,
Cn(A) is the space of k-linear maps f : A⊗n → A (or A-module homomorphisms
A⊗A⊗n → A) with the differential given by

(df)(a1 ⊗ · · · ⊗ an) := a1f(a2 ⊗ · · · ⊗ an)+
∑n−1

i=1 (−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)+
(−1)nf(a1 ⊗ · · · ⊗ an−1)an.
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The n-th cohomology group of this complex is called the n-th Hochschild cohomol-
ogy group, denoted by HHn(A). The Lie bracket on C•(A)[1] is coming from the
Gerstenhaber bracket [f, g] of f ∈ Cm(A), g ∈ Cn(A), which is defined by

[f, g] := f ◦ g − (−1)(m+1)(n+1)g ◦ f ∈ Cm+n−1(A),

where

(f ◦ g)(a1 ⊗ · · · ⊗ am+n−1) :=

m
∑

i=1

(−1)(i−1)(n+1)f(a1 ⊗ · · · ⊗ ai−1 ⊗ g(ai ⊗ · · · ⊗ ai+n−1)⊗ ai+n ⊗ · · · ⊗ am+n−1).

The Gerstenhaber bracket equips C•(A)[1] with the structure of a dgla.
Gerstenhaber and Schack described the Hodge decomposition of the Hochschild

(co-)homology that we will briefly recall (see [6] for more details). In the group
ring of the permutation group Sn one defines si,n−i to be

∑

(sgnπ)π, where the
sum is taken over those permutations π ∈ Sn such that π(1) < π(2) < · · · < π(i)

and π(i + 1) < π(i + 2) < · · · < π(n). Let sn =
∑n−1

i=1 si,n−i. It holds that
Cn(A) = Cn

(1)(A)⊕· · ·⊕Cn
(n)(A), where Cn

(i)(A) = {f ∈ Cn(A) | f ◦sn = (2i−2)f}.

The Hodge decomposition is

HHn(A) ∼= Hn
(1)(A) ⊕ · · · ⊕Hn

(n)(A),

where Hn
(i)(A) is the n-th cohomology of C•

(i)(A).

We denote the projectors of HHn(A) to Hn
(i)(A) by en(i).

Lemma 2.1. For an element p ∈ H2
(2)(A) and an element q ∈ H2

(1)(A) we have

the following:

• the equation e3(3)[p, p] = 0 is the Jacobi identity, e3(2)[p, p] = 0
• [p, q] = e3(2)[p, q] and [q, q] = e3(1)[q, q].

Proof. An easy computation, see also [12]. �

3. Poisson deformations

Poisson deformations are deformations of a pair consisting of a variety and a
Poisson structure on it. Lately there has been a lot of interest in these deformations,
see for example results of Namikawa [9],[10], [11] or Kaledin and Ginzburg [7].

Definition 4. A skew-symmetric Hochschild 2-cocycle p (i.e. p ∈ C2
(2)(A) with

dp = 0) that satisfies the Jacobi identity

p(a⊗ p(b⊗ c)) + p(b⊗ p(c⊗ a)) + p(c⊗ p(a⊗ b)) = 0

is called an (algebraic) Poisson structure (or a Poisson bracket). A commutative
algebra together with a Poisson bracket is called a Poisson algebra. Its spectrum is
called an affine Poisson variety.

Note that p ∈ H2
(2)(A)

∼= homA(Ω
2
A|k, A) (see e.g. [8]), where Ω2

A|k is the 2-th

exterior power of the module of Kähler differentials. Using Lemma 2.1 we can
equivalently define the Poisson structure as an element p ∈ C2

(2)(A) with dp =

e3(3)[p, p] = 0.
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Definition 5. A Poisson deformation of a Poisson algebra A over an Artin ring
B is a pair (A′, π), where A′ is a Poisson B-algebra and π : A′ ⊗B k → A is an
isomorphism of Poisson k-algebras. Two such deformations (A′, π1) and (A′′, π2)
are equivalent if there exists an isomorphism of Poisson B-algebras φ : A′ → A′′

such that it is compatible with π1 and π2, i.e. such that π1 = π2 ◦ (φ⊗B k).

3.1. Dgla that controls the deformation problem. A functor that encodes
this deformation problem is

PDefA : A → S

B 7→ {Poisson deformations of A over B}/ ∼ .

In the following we define a dgla that controls the above deformation problem.
Consider the Double complex 1.
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Figure 1. Double complex 1

The map dp is defined as dp := −[µp, ·] : C
n(A) → Cn+1(A), where µp ∈ C2

(2)(A)

is a Poisson structure on A. In the double complex 1 we restrict dp on the chosen
domains and codomains. Note that we have d[µp, f ] = [µp, df ] (since dµp = 0) and
thus we really obtain a double complex. We denote its total complex by D•.

We define the bracket [ , ]p on D• as follows: let Cn(A) = Cn
(1)(A)⊕· · ·⊕Cn

(n)(A)

and define
[·, ·]p : Cm(A)× Cn(A) → Cm+n−1(A)

[(f1, ..., fm), (g1, ..., gn)]p := ([f1, g1], ...,
∑

i+j=k

[fi, gj ], ..., [fm, gn]),

where we restrict [fi, gj] to Cm+n−1
(i+j−1)(A).

This bracket defines a dgla structure on D•[1]: the shifted differential dp[1] is
equal to [µp, ·]p and the shifted differential d[1] is equal to [µ, ·]p, where µ is the

commutative multiplication on A. We denote the shifted differential of D•[1] by d̃.

It is given by d̃ = [µ + µp, ·]p. We can immediately check that the bracket [ , ]p
and differential d̃ equip D•[1] with the structure of a dgla. We denote this dgla by
C•

p(A)[1].
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Remark 1. Note that the Gerstenhaber bracket is in general not graded with
respect to the Hodge decomposition and thus the above product is not the Ger-
stenhaber bracket. From Lemma 2.1 we have [µ, µ]p = [µ, µ], [µ, µp]p = [µ, µp] and
[µp, µp]p = e3(3)[µp, µp].

After applying the differentials d on the double complex 1, we obtain for j, k ≥ 1
the first spectral sequence

(1) Ej,k
1 = Hj+k−1

(j) (A) ⇒ Hj+k−1(C•

p(A)[1]),

where d1 = −[µp, ·] : E
j,k
1 → Ej+1,k

1 .
To show that the functor PDefA is controlled by the dgla C•

p(A)[1] we first need
few Lemmata. For a k-algebra A we define the k-algebra A0 that is as a k-vector
space isomorphic to A and it has zero multiplication.

Lemma 3.1. Poisson algebra structures on A0 are in bijection with Maurer-Cartan
elements of C•

p(A0)[1], i.e with elements (µ, µp) ∈ C2
(1)(A0) ⊕ C2

(2)(A0) satisfying
1
2 [µ, µ] = [µ, µp] =

1
2 [µp, µp]p = 0.

Proof. Let (µ, µp) be a Maurer-Cartan element of C•
p(A0)[1]. We define the mul-

tiplication on A0 by a · b := µ(a, b) := µ(a ⊗ b) and the Poisson structure by
{a, b} := µp(a, b) := µp(a ⊗ b). The product · is commutative and associative if
and only if µ ∈ C2

(1)(A0) and 1
2 [µ, µ] = 0. Now we show that µp defines a Poisson

structure. Since µp ∈ C2
(2)(A0), everything except the Jacobi identity is clear. The

Jacobi identity we get from 1
2 [µp, µp]p = 0 as in Lemma 2.1 (note that we have

[µp, µp]p = e3[µp, µp]). We now show the following claim:

{a, b · c} = {a, b}c+ {a, c}b (i.e. µp(a, µ(b, c)) = µ(µp(a, b), c) + µ(µp(a, c), b))

holds if and only if [µ, µp] = 0. Assume that

F (a, b, c) := µp(a, µ(b, c))− µ(µp(a, b), c)− µ(µp(a, c), b) = 0

holds. We have

F (a, b, c) + F (c, a, b) =
(

µp(a, µ(b, c))− µ(µp(a, b), c)− µ(µp(a, c), b)
)

+
(

µp(c, µ(a, b))− µ(µp(c, a), b)− µ(µp(c, b), a)
)

=
−[µp, µ].

and thus we see one direction. For the other direction we compute

[µp, µ](a, b, c) + [µp, µ](a, c, b)− [µp, µ](b, a, c) =
(

µp(ab, c)− µp(a, bc) + µp(a, b)c− µp(b, c)a
)

+
(

µp(ac, b)− µp(a, cb) + µp(a, c)b − µp(c, b)a
)

−
(

µp(ba, c)− µp(b, ac) + µp(b, a)c− µp(a, c)b
)

=
2
(

− µp(a, bc) + µp(a, b)c+ µp(a, c)b
)

= −2F (a, b, c).

To shorten the notation we wrote ab = µ(a, b) and similarly for other elements.
Thus the claim is proved. From this we easily conclude the proof. �

Definition 6. The Poisson product on a vector space V is a pair (·, { , }), such
that (V, ·, { , }) is a Poisson algebra.

Lemma 3.2. Let A be a Poisson algebra and let B be an Artin ring. Maurer-
Cartan elements of C•

p(A ⊗ mB)[1] are in bijection with Poisson products on the
vector space A⊗k B, giving the known Poisson product on A ∼= A⊗k B/mB.
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Proof. Let a Maurer-Cartan element (µ, µp) of C•
p(A0)[1] represents the Poisson

bracket of A. The Poisson products on the vector space A⊗k B, giving the known
product on A ∼= A⊗kB/mB are obtained by (ξ, ξp) ∈ C2

(1)(A⊗mB)⊕C2
(2)(A⊗mB)

satisfying

(2) [(µ, µp) + (ξ, ξp), (µ, µp) + (ξ, ξp)]p = 0.

Since [(µ, µp), (µ, µp)]p = 0 and the differential on C•
p(A ⊗ mB)[1] is given by

[(µ, µp), ·], then we see that the equation (2) gives us MC elements (ξ, ξp) of
C•

p(A⊗mB)[1]. �

Proposition 3.3. For a Poisson algebra A the functor PDefA is controlled by the
dgla C•

p(A)[1].

Proof. We write for short g := C•
p(A)[1]. By Lemma 3.2 there exists a bijection

between MCg(B) and Poisson products on the vector space A ⊗k B, giving the
known Poisson product on A ∼= A⊗k B/mB.

To conclude the proof we show that two Poisson products (·, { , }) and (·′, { , }′)
on A⊗kB are equivalent (in the sense of Definition 5) if and only if the correspond-
ing elements (γ, γp), (γ

′, γ′
p) ∈ MCg(B) are gauge equivalent. The products are

equivalent if and only if there exists α ∈ C1(A) ⊗mB such that

(3) a ·′ b = exp(α)(exp(−α)(a) · exp(−α)(b)),

(4) {a, b}′ = exp(α)({exp(−α)(a), exp(−α)(b)}).

As above let a Maurer-Cartan element (µ, µp) of C•
p(A0)[1] represents the Poisson

bracket of A.
From (3) we obtain

(5) (µ+ γ′)(a, b) = exp(α)(exp(−α)(a) · exp(−α)(b)) = exp([α, ·])(µ+ γ)(a, b),

where the later equality we get after some elementary computation. In the same
way from (4) we obtain

(6) (µp + γ′
p)(a, b) = exp(α){exp(−α)(a), exp(−α)(b)} = exp([α, ·])(µp + γp)(a, b).

Elements (γ, γp) ∈ MCg(B) and (γ′, γ′
p) ∈ MCg(B) are gauge equivalent if

(7) (γ′, γ′
p) = (γ, γp) +

∞
∑

n=0

[α, ·]np
(n+ 1)!

([α, (γ, γp)]p − d̃(α))

holds.
Since d̃(α) = [(µ, µp), α]p = −[α, (µ, µp)]p and [α, ·] = [α, ·]p, we see that (7)

holds if and only if the equations (5) and (6) hold. �

4. Computation of the Hochschild and Poisson cohomology groups

for Gorenstein toric varieties

4.1. Affine Gorenstein toric varieties. Let M,N be mutually dual, finitely gen-
erated, free Abelian groups. We denote by MR, NR the associated real vector spaces
obtained via base change with R. Let σ = 〈a1, ..., aN 〉 ⊂ NR be a rational, polyhe-
dral cone with apex in 0 and let a1, ..., aN ∈ N denote its primitive fundamental
generators (i.e. none of the ai is a proper multiple of an element of N). We define
the dual cone σ∨ := {r ∈ MR | 〈σ, r〉 ≥ 0} ⊂ MR and denote by Λ := σ∨ ∩M the
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resulting semi-group of lattice points. Its spectrum Spec(k[Λ]) is called an affine
toric variety.

Affine toric Gorenstein varieties are obtained by putting a lattice polytope P ⊂
A ∼= R

n−1 into the affine hyperplane A × {1} ⊂ A × R =: NR and defining σ :=
Cone(P ), the cone over P . Then the canonical degree R∗ ∈ M equals (0, 1).

It is a trivial check that Hochschild differentials respect the grading given by the

degrees R ∈ M . Thus we get the Hochschild subcomplex C•,R

(i) and we denote the

corresponding cohomology groups by Hn,R

(i) (A) ∼= T n−i,R

(i) (A), where the later is the

degree R part of the (higher) André-Quillen cohomology group T n−i,R

(i) (A) (see [3,

Section 4]). We will not use general André-Quillen cohomology theory, we will only
use the well-known isomorphism T n−i

(i) (A) ∼= Hn
(i)(A) for n ≥ i (see e.g. [8]).

4.2. Poisson cohomology groups of Poisson Gorenstein toric surfaces. Let
Xσn

= Spec(An) be the Gorenstein toric surface given by g(x, y, z) = xy − zn+1.
Λn := σ∨

n ∩M is generated by S1 := (0, 1), S2 := (1, 1) and S3 := (n + 1, n), with
the relation S1 + S3 = (n+ 1)S2.

In order to compute the Poisson cohomology groups we need to analyse the
spectral sequence (1). First we need to understand all the parts of the Hochschild
cohomology.

Proposition 4.1. It holds that

(8) dimk T
1,−R

(1) (An) = dimk T
1,−R

(2) (An) =

{

1 if R = kS2 for 2 ≤ k ≤ n+ 1
0 otherwise.

Moreover, T 2
(1)(An) ∼= H3

(1)(An) = 0. For i ≥ 3 we have T k
(i)(An) = 0 if k 6= i− 1, i

and

T i−1
(i) (An) ∼= T i

(i)(An) ∼= An/(
∂g

∂x1
,
∂g

∂x2
,
∂g

∂x3
).

The later has k-dimension equal to n.

Proof. [3, Proposition 3.3, Example 3]. �

Corollary 4.2. Since T i−1
(i) (An) ∼= H2i−1

(i) (An) and T i
(i)(An) ∼= H2i

(i)(An) we see that

Ej,k
2 = Ej,k

∞ holds for every j, k ≥ 1.

Elements from H2
(2)(An) define Poisson structures on Spec(An) by Lemma 2.1,

since H3
(3)(A) = 0. Let µp ∈ H2

(2)(An) denote a Poisson structure on Spec(An).

Let gn := C•
p(An)[1]. From above we have the following description of the spectral

sequence (1):

E3,•
1 : 0

d1−→ H4
(2)(An)

d1−→ H5
3 (An)

d1−→ 0
d1−→ · · ·

E2,•
1 : H2

(1)(An)
d1−→ H3

(2)(An)
d1−→ 0

d1−→ 0
d1−→ · · ·

E1,•
1 : H1

(1)(An)
d1−→ H2

(2)(An)
d1−→ 0

d1−→ 0
d1−→ · · · ,

Ej,•
1 for j > 3 have only two non-vanishing terms Ej,j−1

1 = H2j−2
(j) (An) and

Ej,j
1 = H2j−1

(j) (An).
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Corollary 4.3.

H0(gn) ∼= ker
(

H1
(1)(An)

d1−→ H2
(2)(An)

)

,

H1(gn) ∼= coker
(

H1
(1)(An)

d1−→ H2
(2)(An)

)

⊕ ker
(

H2
(1)(An)

d1−→ H3
(2)(An)

)

,

for k ≥ 2 we have

Hk(gn) ∼=







coker
(

Hk
( k
2
)
(An)

d1−→ Hk+1
( k
2
+1)

(An)
)

if k is even

ker
(

Hk+1

( k+1

2
)
(An)

d1−→ Hk+2

( k+1

2
+1)

(An)
)

if k is odd.

Proposition 4.4. It holds that H2(gn) ∼= An/(
∂g
∂x1

, ∂g
∂x2

, ∂g
∂x3

).

Proof. From Corollary 4.3 we know that H2(gn) ∼= coker
(

H2
(1)(An)

d1−→ H3
(2)(An)

)

.

In [4] we proved that the Gerstenhaber product H2
(1)(An)×H2

(2)(An) → H3
(2)(An)

is the zero map. Since by definition d1 = −[µp, ·], we see that d1 is the zero map.

Thus H2(gn) ∼= H3
(2)(An) ∼= An/(

∂g
∂x1

, ∂g
∂x2

, ∂g
∂x3

). �

Example 1. For every hypersurface given by a polynomial g(x, y, z) in k3, we can
define a Poisson structure πg on the quotient k[x, y, z]/g, namely:

πg := ∂x(g)∂y ∧ ∂z + ∂y(g)∂z ∧ ∂x + ∂z(g)∂x ∧ ∂y,

i.e., we contract the differential 1-form dg to ∂x∧∂y ∧∂z . In the case of Gorenstein
toric surfaces Xσn

= Spec(An) we have that

πg = f0(λ1, λ2)x
−S2+λ1+λ2 ,

where f0 is skew-symmetric and bi-additive with f0(S1, S3) = −(n + 1) (see [3,

Example 4]). Thus we see that πg ∈ H2,−S2

(2) (An). In this case we see that H1(gn) ∼=

H2(gn) ∼= An/(
∂g
∂x1

, ∂g
∂x2

, ∂g
∂x3

) by the proof of Proposition 4.4 and Corollary 4.3 since

H1
(1)(An)

d1−→ H2
(2)(An) is surjective. This is special case of [7, Lemma 3.1].

4.3. The Hochschild cohomology of three dimensional affine Gorenstein

toric varieties. For an affine Gorenstein toric variety Xσ = Spec(A) we will ex-

plicitly compute T 1
(i)(A) for all i ≥ 1. They appear in E•,2

1 (see (1) and note that

Hj+1
(j) (A) ∼= T 1

(j)(A)) and they are also important ingredients for understanding

HH2(A) and HH3(A) (see Corollary 4.12). This subsection reproves and general-
izes [1, Theorem 4.1].

In [3] we obtained a convex geometric description of T 1
(i)(A) for i ≥ 1, which we

recall now. Let the cone σ = 〈a1, ..., aN 〉 represent an n-dimensional toric variety
Xσ = Spec(A), n ≥ 3. For R ∈ M we define the affine space

A(R) := {a ∈ NR | 〈a,R〉 = 1} ⊂ NR

and consider the polyhedron Q(R) := σ ∩ A(R) ⊂ A(R). Vertices of Q(R) are

āj := aj/〈aj , R〉, for all j satisfying 〈aj , R〉 ≥ 1. We denote T 1
(i)(−R) := T 1,−R

(i) (A).

Let djk := āj āk denote the compact edges of Q(R) (for 〈aj , ak〉 ≤ σ, 〈aj , R〉 ≥ 1,
〈ak, R〉 ≥ 1). We denote the lattice N ∩ Spank〈aj , ak〉 by N̄jk and its dual with
M̄jk. Let R̄jk denote the projection of R to M̄jk. By T 1

〈aj,ak〉
(−R̄jk) we denote the

degree −R̄jk part of the toric surface given by a cone 〈aj , ak〉. We define Spank K
R
jk

to be
Spank K

R
jk := Spank

(

KR
aj

∩KR
ak

)

,
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with KR
aj

= {r ∈ Λ | 〈aj , r〉 < 〈aj , R〉}. Let

Wj(R) :=







2 if 〈aj , R〉 > 1
1 if 〈aj , R〉 = 1
0 if 〈aj , R〉 ≤ 0.

Proposition 4.5. If the compact part of Q(R) lies in a two-dimensional affine
space we have

dimk T
1
(i)(−R) = max

{

0,
N
∑

j=1

V i
j (R)−

∑

djk∈Q(R)

Qi
jk(R)−

(

n

i

)

+ siQ(R)

}

,

where

V i
j (R) :=







(

n
i

)

if 〈aj , R〉 > 1
(

n−1
i

)

if 〈aj , R〉 = 1
0 if 〈aj , R〉 ≤ 0,

Qi
jk(R) :=

{

(Wj(R)+Wk(R)+n−4−dimk T 1
〈aj,ak〉(−R̄jk)

i

)

if 〈aj , R〉, 〈ak, R〉 6= 0

0 otherwise,

siQ(R) :=

{

dimk ∧
i
(
⋂

djk∈Q(R) Spank K
R
jk

)

if Q(R) is compact

0 otherwise.

Proof. See [3, Proposition 4.14]. �

From now on we assume that Xσ is a three-dimensional affine toric Gorenstein
variety given by a cone σ = 〈a1, ..., aN〉, where a1, ..., aN are arranged in a cycle.
Let dj := aj+1 − aj (aN+1 := a1) and let ℓ(j) := ℓ(dj) denote its lattice lenght.
Let s1, ..., sN be the fundamental generators of the dual cone σ∨, labelled so that
σ ∩ (sj)

⊥ equals the face spanned by aj , aj+1 ∈ σ. Using the previous notation we
see that the polytope P = Q(R∗) is a polygon with (oriented) edges equal to dj for
j = 1, ..., N . It holds that 〈aj , R

∗〉 = 1 for all j = 1, ..., N .

Example 2. A typical example of a non-isolated, three dimensional toric Goren-
stein singularity is the affine cone Xσ over the weighted projective space P(1, 2, 3).
The cone σ is given by σ = 〈a1, a2, a3〉, where

a1 = (−1,−1, 1), a2 = (2,−1, 1), a3 = (−1, 1, 1).

We obtain σ∨ = 〈s1, s2, s3〉 with

s1 = (0, 1, 1), s2 = (−2,−3, 1), s3 = (1, 0, 1).

We need to better understand si
Q(R) and dimk T

1
〈aj,aj+1〉

(−R̄jk) that appears in

Qi
j,j+1(R).

Lemma 4.6. Let a cone σ = 〈aj , aj+1〉 ⊂ N̄j,j+1 define a toric surface given by
the edge dj. We have

dimk Spank K
R
j,j+1 = max{0,Wj(R) +Wj+1(R)− 2− dimk T

1
〈aj ,aj〉

(−R̄j,j+1)}.

Proof. See [3, Lemma 4.3]. �

Lemma 4.7.

dimk T
1
〈aj,aj+1〉

(−R̄j,j+1) =

{

1 if 2 ≤ 〈aj , R〉 = 〈aj+1, R〉 ≤ ℓ(j)
0 otherwise.
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Proof. The toric surface 〈aj , aj+1〉 is isomorphic to the Gorenstein toric surface
Spec(Aℓ(j)−1) and then the proof follows from Proposition 4.1 (more precisely from
equation (8)). �

Lemma 4.8. If there exists aj such that 〈R, aj〉 ≤ 0, then si
Q(R) = 0, otherwise

si
Q(R) ≤

(

3
i

)

.

Proof. Follows trivially from definitions. �

The next lemma establishes a useful criterion when T 1
(i)(−R) is zero in the Goren-

stein three-dimensional case.

Lemma 4.9. Assume that 〈aj , R〉 6= 〈aj+1, R〉 for all j = 1, ..., N (aN+1 := a1).
Then T 1

(i)(−R) = 0.

Proof. We will use Proposition 4.5. By the assumption and Lemma 4.7 we know
that dimk T

1
〈aj ,aj+1〉

(−R̄j,j+1) = 0 for all j. Since 〈aj , R〉 = 1 for at most two

j ∈ {1, ..., N} we can using Lemma 4.8 easily see that

N
∑

j=1

V i
j (R)−

N
∑

j=1

(

Wj(R) +Wj+1(R)− 1

i

)

−

(

3

i

)

+ siQ(R) ≤ 0,

which implies that T 1
(i)(−R) = 0 for all i. �

Lemma 4.10. Let R = qR∗ for q ≥ 2. It holds that dimk ∩j Spank E
R
j,j+1 = 3 if

ℓ(j) < q for all j. Moreover, dimk ∩j Spank E
R
j,j+1 = 2 if ℓ(j) < q for all j except

two (denoted by j1 and j2), for which it holds that dj1 and dj2 are parallel (the case
j1 = j2 is included). Otherwise it holds that dimk ∩j Spank K

R
j,j+1 = 1.

Proof. By definition we easily see that

(9) Spank K
R
j,j+1 =

{

M ⊗Z k if ℓ(j) < q
Spank{a

⊥
j ∩ a⊥j+1, R

∗} if ℓ(j) ≥ q.

Since Spank{a
⊥
j ∩ a⊥j+1, R

∗} = {c ∈ M ⊗Z k | 〈c, aj〉 = 〈c, aj+1〉} we see that

Spank{a
⊥
j1

∩ a⊥j1+1, R
∗} = Spank{a

⊥
j2

∩ a⊥j2+1, R
∗} for j1, j2 ∈ {1, .., N} if and only

if j1 = j2 or dj1 is parallel to dj2 . Thus we can easily conclude the proof. �

Let int(σ∨) denotes the interior of σ∨.

Theorem 4.11. Let Xσ be a three-dimensional affine toric Gorenstein variety.
The following holds:

(1) T 1
(1)(−R) is non-trivial in the following cases:

(a) R = R∗ with dimk T
1
(1)(−R) = N − 3,

(b) R = qR∗ (for q ≥ 2) with dimk T
1
(1)(−R) = max{0,#{j | q ≤ ℓ(j)}−2},

(c) R = qR∗ − psj with 2 ≤ q ≤ ℓ(j) and p ∈ Z sufficiently large such that
R 6∈ int(σ∨). In this case dimk T

1
(1)(−R) = 1.

Additional degrees exist only in the following two (overlapping) excep-
tional cases:
(d) P contains a pair of parallel edges dj, dk, both longer than every other

edge. Then dimk T
1
(1)(−qR∗) = 1 for q in the range

max{ℓ(l) | l 6= j, k} < q ≤ min{ℓ(j), ℓ(k)}},
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(e) P contains a pair of parallel edges dj, dk (with distance d = 〈aj , sk〉 =
〈ak, sj〉). In this case dimk T

1
(1)(−R) = 1 for R = qR∗ + psj with

1 ≤ q ≤ ℓ(j) and 1 ≤ p ≤ (ℓ(k)− q)/d.
(2) T 1

(2)(−R) is non-trivial in the following cases:

(a) R = R∗ with dimk T
1
(2)(−R) = N − 3,

(b) R = qR∗ (for q ≥ 2) with dimk T
1
(2)(−R) = max{0, 2 · #{j | q ≤

ℓ(j)} − 3},
(c) R = qR∗ − psj with 2 ≤ q ≤ ℓ(j) and p ∈ Z sufficiently large such that

R 6∈ int(σ∨). In this case dimk T
1
(2)(−R) = 2.

Additional degrees exist only in the following two (overlapping) exceptional
cases:
(d) P contains a pair of parallel edges dj, dk, both longer than every other

edge. Then dimk T
1
(2)(−qR∗) = 2 for q in the range

max{ℓ(l) | l 6= j, k} < q ≤ min{ℓ(j), ℓ(k)}},

(e) P contains a pair of parallel edges dj, dk (with distance d = 〈aj , sk〉 =
〈ak, sj〉). In this case dimk T

1
(2)(−R) = 2 for R = qR∗ + psj with

1 ≤ q ≤ ℓ(j) and 1 ≤ p ≤ (ℓ(k)− q)/d.
(3) T 1

(3)(−R) is non-trivial in the following cases:

(b) R = qR∗ (for q ≥ 2) with dimk T
1
(3)(−R) = max{0,#{j | q ≤ ℓ(j)}−1},

(c) R = qR∗ − psj with 2 ≤ q ≤ ℓ(j) and p ∈ Z sufficiently large such that
R 6∈ int(σ∨). In this case dimk T

1
(3)(−R) = 1.

Additional degrees exist only in the following two (overlapping) exceptional
cases:
(d) P contains a pair of parallel edges dj, dk, both longer than every other

edge. Then dimk T
1
(3)(−qR∗) = 1 for q in the range

max{ℓ(l) | l 6= j, k} < q ≤ min{ℓ(j), ℓ(k)}},

(e) P contains a pair of parallel edges dj, dk (with distance d = 〈aj , sk〉 =
〈ak, sj〉). In this case dimk T

1
(3)(−R) = 1 for R = qR∗ + psj with

1 ≤ q ≤ ℓ(j) and 1 ≤ p ≤ (ℓ(k)− q)/d.
(4) We have T 1

(i)(−R) = 0 for i ≥ 4.

Proof. We distinguish the following cases.

• Let R = R∗. In this case we have 〈aj , R〉=1 and Spank K
R
aj

= (aj)
⊥ for all j.

Thus si
Q(R) = 0 for all i and by Lemma 4.7 we have T 1

〈aj,aj+1〉
(−R̄j,j+1) = 0

for all j. Moreover,

N
∑

j=1

V i
j (R)−

∑

djk∈Q(R)

Qi
jk(R) = N

(

2

i

)

−N

(

1

i

)

.

From Proposition 4.5 it follows that dimk T
1
(1)(−R∗) = dimk T

1
(2)(−R∗) =

N − 3 and T 1
(i)(−R∗) = 0 for i > 2. Thus we proved (a) cases (note that

T 1
(3)(−R∗) = 0 and thus (a) case does not appear in the case (3)).

• Let R = qR∗, where q ≥ 2.

In this case we have 〈aj , R〉 ≥ 2. Thus
∑N

j=1 V
i
j (R) =

(

3
i

)

N . Let us

define v := #{j | q ≤ ℓ(j)}.
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For i = 1 we have
∑N

j=1 Q
1
j,j+1(R) = 3N − v (since for q ≤ ℓ(j) we

have dimk T
1
〈aj,aj+1〉

(−R̄j,j+1) = 1 by Lemma 4.7). Thus dimk T
1
(1)(−R) =

v− 3+ s1Q(R) holds by Proposition 4.5. If s1Q(R) = 1 (see Lemma 4.10 when

this holds) we obtain the case (1b). There is an exceptional case for which
dimk T

1
(1)(−R) 6= 0: this appears if v = 2 and s1

Q(R) = 2. From Lemma

4.10 we see that this happens for q in the range

max{ℓ(l) | l 6= j, k} < q ≤ min{ℓ(j), ℓ(k)}}.

Thus we proved the case (1d).

In the case i = 2 we have
∑N

j=1 Q
2
j,j+1(R) =

(

2
2

)

v+
(

3
2

)

(N−v) = 3N−2v.

Thus Proposition 4.5 gives us that dimk T
1
(2)(−R) = 2v − 3 + s2

Q(R). As in

the case i = 1 we obtain from Lemma 4.10 the cases (2b) and (2d).

For i = 3 we have
∑N

j=1 Q
3
j,j+1(R) = N − v. By Proposition 4.5 we have

dimk T
1
(3)(−R) = v−1+s3

Q(R). As in the case i = 1 we obtain from Lemma

4.10 the cases (3b) and (3d).
• Let R 6∈ int(σ∨). By Lemma 4.9 we see that the only possible cases for

having a non-zero T 1
(i)(−R) occur when 〈aj , R〉 = 〈aj+1, R〉 > 0 for some

j ∈ {1, ..., N} and 〈al, R〉 ≤ 0 for all other l. This happens for R = qR∗−psj

with q ≥ 1 and p ∈ Z sufficiently large such that R 6∈ int(σ∨). In this case
we have 〈aj , R〉 = 〈aj+1, R〉 = q and 〈al, R〉 ≤ 0 for other l. If q = 1, then
by Lemma 4.7 it holds that T 1

〈aj,aj+1〉
(−R̄j,j+1) = 0 and thus by Proposition

4.5 we have

dimk T
1
(i)(−R) = max{0, 2

(

2

i

)

−

(

1

i

)

−

(

3

i

)

} = 0

for all i. If q ≥ 2, then using Lemma 4.7 we see that

dimk T
1
(i)(−R) =

{

2
(

3
i

)

−
(

2
i

)

−
(

3
i

)

if 2 ≤ q ≤ ℓ(j)

2
(

3
i

)

−
(

3
i

)

−
(

3
i

)

= 0 if q > ℓ(j).

In the cases 2 ≤ q ≤ ℓ(j) we see that dimk T
1
(1)(−R) = dimk T

1
(3)(−R) = 1,

dimk T
1
(2)(−R) = 2 and dimk T

1
(i)(−R) = 0 for i ≥ 4. This proves (c) cases.

• Let R ∈ int(σ∨) and R 6= qR∗ for some q ≥ 1. By Lemma 4.9 it follows
that T 1

(i)(−R) = 0 for all R, except maybe for R = qR∗ + psj for some j

since in this case we have 〈aj , R〉 = 〈aj+1, R〉 = q.
Let us first assume that q ≥ 2. In this case we have that

dimk T
1
(i)(−R) = N

(

3

i

)

−

N
∑

l=1

(

3− dimk T
1
〈al,al+1〉

(−R̄l,l+1)

i

)

−

(

3

i

)

+ siQ(R).

We see that T 1
(i)(−R) = 0 if T 1

〈al,al+1〉
(−R̄l,l+1) = 0 for all l ∈ {1, ..., N}

since siQ(R) ≤
(

3
i

)

. If only T 1
〈aj ,aj+1〉

(−R̄j,j+1) 6= 0 we still obtain T 1
(i)(−R) =

0 since in this case si
Q(R) ≤

(

2
i

)

(by Lemma 4.6). Thus we see that the only

case to obtain nontrivial T 1
(i)(−R) is when there exist parallel edges dj , dk

(with distance d = 〈aj , sk〉 = 〈ak, sj〉). We have dimk T
1
(i)(−R) 6= 0 for

R = qR∗ + psj with 2 ≤ q ≤ ℓ(j) and 1 ≤ p ≤ (ℓ(k) − q)/d since in this
case dimk T

1
〈aj,aj+1〉

(−R̄j,j+1) = dimk T
1
〈ak,ak+1〉

(−R̄j,j+1) = 1 by Lemma
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4.7. Thus we have

dimk T
1
(i)(−R) = N

(

3

i

)

−
(

2

(

2

i

)

+ (N − 2)

(

3

i

)

)

−

(

3

i

)

+

(

2

i

)

=

(

3

i

)

−

(

2

i

)

.

We see that in this case dimk T
1
(1)(−R) = dimk T

1
(3)(−R) = 1 and dimk T

1
(2)(−R) =

2. Similarly we can treat the case q = 1 and thus finish the proof.

�

Remark 2. Note that in the case i = 1 our formulas agree with the ones given in
[1, Theorem 4.1], which were obtained by different methods.

Example 3. Let Xσ be as in Example 2. From Theorem 4.11 we obtain that if
R ∈ {2R∗−αs3, 2R

∗−βs1, 2R
∗−γs1 | α ≥ 1, β ≥ 1, γ ≥ 2}, then dimk T

1
(1)(−R) =

dimk T
1
(3)(−R) = 1 and dimk T

1
(2)(−R) = 2. For other degrees S ∈ M we have

T 1
(i)(−S) = 0 for all i ≥ 1.

Corollary 4.12. Let Spec(A) be a three-dimensional affine toric Gorenstein vari-
ety. The Hodge decomposition gives us

HH2(A) ∼= T 1
(1)(A)⊕ T 0

(2)(A),

HH3(A) ∼= T 2
(1)(A)⊕ T 0

(3)(A)⊕ T 1
(2)(A).

Descriptions of T 0
(2)(A) and T 0

(3)(A) were given in [3]. The module T 2
(1)(A) was anal-

ysed in [2, Corollary 5.4]. Theorem 4.11 gives us an explicit description of T 1
(1)(A)

and T 1
(2)(A) and thus we complete understanding of the second (which describes

the first order associative non-commutative deformations) and third Hochschild
cohomology group (which contains the obstructions for extending associative non-
commutative deformations to larger base spaces).
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