EKEDAHL-OORT STRATA ON THE MODULI SPACE OF CURVES OF GENUS FOUR

ZIJIAN ZHOU

ABSTRACT. We study the induced Ekedahl-Oort stratification on the moduli of curves of genus 4 in positive characteristic.

1. INTRODUCTION

Let *k* be an algebraically closed field with $char(k) = p > 0$. Let $\mathcal{A}_q \otimes k$ be the moduli space (stack) of principally polarized abelian varieties of dimension *g* defined over *k* and let $\mathcal{M}_q \otimes k$ be the moduli space of (smooth projective) curves of genus g defined over *k*. Ekedahl and Oort introduced a stratification on $A_q \otimes k$ consisting of 2^{*g*} strata, cf. [\[13](#page-16-0), [2\]](#page-15-0). These strata are indexed by *n*-tuples $\mu = [\mu_1, \ldots, \mu_n]$ with $0 \le n \le g$ and $\mu_1 > \mu_2 > \cdots > \mu_n > 0$. The largest stratum is the locus of ordinary abelian varieties corresponding to the empty *n*-tuple $\mu = \emptyset$. Their cycle classes have been studied by $|16|$.

Via the Torelli map $\tau : \mathcal{M}_g \otimes k \to \mathcal{A}_g \otimes k$ we can pull back this stratification to $\mathcal{M}_g \otimes k$ and it is natural to ask what stratification this provides. Similarly, we can ask for the induced stratification on the hyperelliptic locus $\mathcal{H}_q \otimes k$. We denote the induced strata on $\mathcal{M}_g \otimes k$ by Z_μ . We say a (smooth) curve has Ekedahl-Oort type μ if the corresponding point in $\mathcal{M}_g \otimes k$ lies in Z_μ .

Here we are interested in the existence of curves of genus 4 with given Ekedahl-Oort type. By a curve we mean a smooth irreducible projective curve defined over *k*. For $g \leq 3$, we know the situation for the induced Ekedahl-Oort stratification on $\mathcal{M}_g \otimes k$. But for $q > 4$ much less is known. Elkin and Pries [\[4\]](#page-15-1) give a complete classification for hyperelliptic curves when $p = 2$. Our first result describes this stratification on $\mathcal{H}_4 \otimes k$ with $p = 3$. In the following we write simply \mathcal{A}_g (resp. \mathcal{M}_g , \mathcal{H}_g) for $\mathcal{A}_g \otimes k$ (resp. $\mathcal{M}_g \otimes k$, $\mathcal{H}_g \otimes k$). Recall that the indices μ of the Ekedahl-Oort strata are partially ordered by

$$
\mu = [\mu_1, \ldots, \mu_n] \preceq \nu = [\nu_1, \ldots, \nu_m]
$$

if $n \leq m$ and $\mu_i \leq \nu_i$ for $i = 1, \ldots, n$.

Theorem 1.1. Let *k* be an algebraically closed field with $char(k) = 3$. A smooth *hyperelliptic curve of genus* 4 *over k has a-number* \leq 2*. In particular,* $Z_{\mu} \cap \mathcal{H}_{4}$ *is*

empty if $\mu \geq [3, 2, 1]$ *. If* $\mu \not\geq [3, 2, 1]$ *, the codimension of* $Z_{\mu} \cap \mathcal{H}_4$ *in* \mathcal{H}_4 *equals the expected codimension* $\sum_{i=1}^{n} \mu_i$ *. Moreover, in the cases* $\mu = [4, 1], [3, 1], [3, 2], [2, 1]$ *and* [1] *the intersection* $Z_{\mu} \cap \mathcal{H}_4$ *is irreducible.*

Part of Theorem [1.1](#page-0-0) was known. Frei [\[5\]](#page-15-2) proved that hyperelliptic curves in odd characteristic cannot have *a*-number $g-1$. Glass and Pries ([\[6,](#page-15-3) Theorem 1]) showed that the intersection of \mathcal{H}_q with the locus V_l of *p*-rank $\leq l$ has codimension $g - l$ in characteristic *p* > 0. Pries ([\[14](#page-16-2), Theorem 4.2]) showed that $Z_{[2]} \cap \mathcal{H}_4$ has dimension 5 for $p \geq 3$.

The following result shows that certain Ekedahl-Oort strata in \mathcal{M}_4 are not empty.

Theorem 1.2. *Let k be an algebraically closed field of characteristic p. For any odd prime p with* $p \equiv \pm 2 \pmod{5}$ *, the loci* $Z_{[4,2]}$ *and* $Z_{[4,3]}$ *in* \mathcal{M}_4 *are non-empty. For any prime* $p \equiv -1 \pmod{5}$ *, there exist superspecial curves of genus* 4 *in characteristic p*.

To prove Theorem [1.2,](#page-1-0) we use cyclic covers of the projective line in positive characteristic. Furthermore, we give an alternative but much shorter proof of a result of Kudo [\[8](#page-15-4)] showing that there exists a superspecial curve of genus 4 in characteristic *p* for all *p* with $p \equiv 2 \pmod{3}$. Related results on Newton polygons of cyclic covers of the projective line and on the existence of curves with given Newton polygon can be found in $[9, 10]$ $[9, 10]$ $[9, 10]$.

2. Proof of Theorem [1.1](#page-0-0)

Let *X* be a hyperelliptic curve of genus 4 defined over *k* with *p* = 3. Before giving the proof of Theorem [1.1,](#page-0-0) we prove several propositions needed for Theorem [1.1](#page-0-0) and give a basis of the de Rham cohomology of a hyperelliptic curve of genus 4 defined over *k*.

We first show that any smooth hyperelliptic curve of genus 4 has *a*-number at most 2.

Proposition 2.1. *A hyperelliptic curve of genus* 4 *in characteristic* 3 *has a-number at most* 2*.*

Proof. Any smooth hyperelliptic curve *X* can be written as $y^2 = f(x)$ with $f(x) =$ $\sum_{i=0}^{9} a_i x^i \in k[x]$ and disc(*f*) $\neq 0$. By putting a branch point at 0 and by scaling we may assume that $a_1 = a_9 = 1$ and

$$
f(x) = x^9 + a_8 x^8 + \dots + a_2 x^2 + x \tag{1}
$$

with $a_i \in k$ for $i = 2, \ldots, 8$. As a basis of $H^0(X, \Omega_X^1)$ we choose $\omega_i = x^i/y dx$ for $i = 0, \ldots, 3$. Then the Cartier-Manin matrix *H*, i.e. the matrix of the Cartier operator acting on the holomorphic differentials with respect to a basis, of curve *X* is

$$
H = \begin{pmatrix} a_2 & 1 & 0 & 0 \\ a_5 & a_4 & a_3 & a_2 \\ a_8 & a_7 & a_6 & a_5 \\ 0 & 0 & 1 & a_8 \end{pmatrix}^{1/3},
$$
 (2)

where $H^{1/3} = (h_{ij}^{1/3})$ if $H = (h_{ij})$. Since rank $(H) \geq 2$, we have for the *a*-number $a = 4 - \text{rank}(H) \leq 2.$

Remark 2.2. Note that the map from the parameter space of the a_i ($i = 2, \ldots, 8$) to the hyperelliptic locus has finite fibres. Indeed, if ϕ is an isomorphism between two smooth hyperelliptic curves given by $f_1(x) = \sum_{i=1}^9 a_i x^i$ and $f_2(x) = \sum_{i=1}^9 b_i x^i$ as in [\(1\)](#page-1-1) that induces an isomorphism of \mathbb{P}^1 fixing 0 and ∞ , then ϕ is given by scaling $x \mapsto \alpha x$ and $y \mapsto \beta y$. We obtain $\alpha^9/\beta^2 = \alpha/\beta^2 = 1$ and hence $\alpha^8 = 1, \beta^2 = \alpha$.

We let *Y* be the open subset of affine space with coordinates (a_2, \ldots, a_8) such that $\text{disc}(f) \neq 0$. Denote by T_a the locus of curves of genus *g* with *a*-number $\geq a$ in \mathcal{M}_4 and by X_f the smooth projective hyperelliptic curve defined by the equation $y^2 = f(x)$ as in [\(1\)](#page-1-1). Let *H_f* be the Cartier-Manin matrix of the curve X_f . In the following we simply write *X* (resp. *H*) for X_f (resp. H_f). Now we give a result about the intersection $\mathcal{H}_4 \cap T_a$ with $a \leq 2$.

Proposition 2.3. *The locus of* $\mathcal{H}_4 \cap T_a$ *with* $a \leq 2$ *is irreducible of codimension* $a(a+1)/2$.

Proof. For $a = 0$, we consider the curve with equation $y^2 = f(x) = x^9 + tx^5 + x$ defined over *k* where *t* is a primitive element in \mathbb{F}_9 . Then $\text{disc}(f) = 2 \neq 0$ and by [\(2\)](#page-2-0) we have rank(H) = 4. Hence there is a curve with $a = 0$ and note that \mathcal{H}_4 is irreducible of dimension 7. Then by semicontinuity the generic hyperelliptic curve is ordinary and $T_0 \cap \mathcal{H}_4$ is irreducible of dimension 7.

The condition $a = 1$ means rank $(H) = 3$. We show that the locus in *Y* with rank $(H) = 3$ is given by

$$
(a_8a_6-a_5)(a_2a_4-a_5)+(a_2-a_3a_8)(a_2a_7-a_8)=0.
$$

Indeed if $a_2 = a_8 = 0$ and $\text{disc}(f) \neq 0$, then by Gauss reduction the rank of *H* is equal to the rank of

$$
\left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ a_5 & 0 & 0 & 0 \\ 0 & 0 & 0 & a_5 \\ 0 & 0 & 1 & 0 \end{array}\right)^{1/3}
$$

.

Since we want rank $(H) > 2$ we must have $a_5 \neq 0$. Then this implies rank $(H) = 4$ and the curve is ordinary.

Suppose one of a_2, a_8 is not zero; by symmetry we can assume $a_2 \neq 0$ and the rank of *H* is equal to the rank of

We have $\det(H) = 0$ as $\operatorname{rank}(H) = 3$ and hence

$$
(a_8a_6-a_5)(a_2a_4-a_5)+(a_2-a_3a_8)(a_2a_7-a_8)=0.
$$
 (3)

.

Note that equation [\(3\)](#page-3-0) can be rewritten as

$$
a_7a_2^2 + 2(a_3a_7a_8 + a_4a_5 + 2a_2a_4a_6a_8 + a_2a_8)a_2 + a_3a_8^2 + a_5^2 + 2a_5a_6a_8 = 0.
$$

This is a 6-dimensional subspace of *Y*, which is irreducible. Also if we take $a_2 = a_7 = a_7$ $a_8 = 1$ and $a_i = 0$ for $i \neq 2, 7, 8$, then disc(f) = 2 $\neq 0$ and rank(H) = 3. Hence there is a curve with $a = 1$ and by semicontinuity $T_1 \cap \mathcal{H}_4$ is irreducible of codimension 1.

For $a = 2$, we want to show that the locus in *Y* with $a = 2$ is given by $a_2 = a_5 =$ $a_8 = 0$. Since we want rank $(H) = 2$ and the first and fourth row of *H* are linearly independent, we have several situations to deal with: *i*) $a_2 = 0$, *ii*) $a_8 = 0$ and *iii*) $a_2a_8 \neq 0.$

For the first two cases, if the rank $(H) = 2$, then the second and third rows of *H* are linear combinations of the first and fourth rows. Therefore we have $a_2 = a_5 = a_8 = 0$. For the third case, if $a_2a_8 \neq 0$, let e_i to be the *i*-th row of *H*, then with some $b, c, s, t \in k$ we have

$$
be_1 + ce_4 = e_2, se_1 + te_4 = e_3.
$$

This implies $a_3 = a_2/a_8$, $a_4 = a_5/a_2$, $a_6 = a_5/a_8$, $a_7 = a_8/a_2$ and hence

$$
f(x) = (x2 + (a5/a8)1/3x + (a2/a8)1/3)3(x3 + a8x2 + (a8/a2)x),
$$

which does not have distinct roots, a contradiction. Then we have $a_2 = a_5 = a_8 = 0$, which defines an irreducible sublocus in *Y*. Indeed, if we take $a_3 = 1, a_7 = 2$ and $a_i = 0$ for $i \neq 3, 7$, then disc(*f*) = 1 \neq 0 and rank(*H*) = 2. So we find a curve with rank(*H*) = 2. Hence by semicontinuity $T_2 \cap H_4$ is irreducible of codimension 3. \Box

We have seen that any hyperelliptic curve over *k* with *a*-number 2 is given by an equation $y^2 = f(x)$ as in [\(1\)](#page-1-1) with $(a_2, ..., a_8) \in Y$ and $a_2 = a_5 = a_8 = 0$. We will now use the de Rham cohomology $H_{dR}^1(X)$ for a curve X of genus g. Recall that this is a vector space of dimension 2*g* provided with a non-degenerate pairing, cf. [\[13,](#page-16-0) Section 12]. Now we consider the action of Verschiebung *V* on the de Rham cohomology of a curve *X* given by equation [\(1\)](#page-1-1) with *a*-number 2. First we give a basis of the de Rham cohomology of a hyperelliptic curve with *a*-number 2. Let *X* be a smooth irreducible complete curve over *k* with equation

$$
y^{2} = f = x^{9} + a_{7}x^{7} + a_{6}x^{6} + a_{4}x^{4} + a_{3}x^{3} + x, \ a_{i} \in k,
$$
\n(4)

where the discriminant of *f* is non-zero. Let $\pi : X \to \mathbb{P}^1$ be the hyperelliptic map. Take an open affine cover $\mathcal{U} = \{U_1, U_2\}$ with $U_1 = \pi^{-1}(\mathbb{P}^1 - \{0\})$ and $U_2 =$ $\pi^{-1}(\mathbb{P}^1 - {\infty})$. By Section [\[12](#page-16-3), Section 5], the de Rham cohomology $H^1_{dR}(X)$ can be described as

$$
H_{dR}^1(X) = Z_{dR}^1(\mathcal{U})/B_{dR}^1(\mathcal{U})
$$

 $\text{with} \ Z_{dR}^1(\mathcal{U}) = \{ (t, \omega_1, \omega_2) | t \in \mathcal{O}_X(U_1 \cap U_2), \omega_i \in \Omega_X^1(U_i), \text{d}t = \omega_1 - \omega_2 \}$ and $B_{dR}^1(\mathcal{U}) = \{(t_1 - t_2, dt_1, dt_2) | t_i \in \mathcal{O}_X(U_i)\}.$ Then $V(H_{dR}^1(X)) = H^0(X, \Omega_X^1)$ and V coincides with the Cartier operator on $H^0(X, \Omega^1_X)$.

For $1 \leq i \leq 4$, put $s_i(x) = xf'(x) - 2if(x)$ with $f'(x)$ the formal derivative of $f(x)$ and write $s_i(x) = s_i^{\leq i}$ $\frac{\leq i}{i}(x) + s_i^{>i}(x)$ with $s_i^{\leq i}$ $\frac{\xi^i}{i}(x)$ the sum of monomials of degree $\leq i$. By Köck and Tait [\[7](#page-15-7)], $H_{dR}^1(X)$ has a basis with respect to $\{U_1, U_2\}$ consisting of the following residue classes with representatives in $Z_{dR}^1(X)$:

$$
\gamma_i = [(\frac{y}{x^i}, \frac{\psi_i(x)}{2x^{i+1}y} dx, -\frac{\phi_i(x)}{2x^{i+1}y} dx)], \ i = 1, ..., 4,
$$
\n(5)

$$
\lambda_j = [(0, \frac{x^j}{y} dx, \frac{x^j}{y} dx)], \ j = 0, \dots, 3,
$$
\n(6)

where $\psi_i(x) = s_i^{\leq i}$ $\frac{\leq i}{i}(x)$ and $\phi_i(x) = s_i^{>i}(x)$. Also we have $\langle \gamma_i, \lambda_j \rangle \neq 0$ if $j = i - 1$ and $\langle \gamma_i, \lambda_j \rangle = 0$ otherwise. Now we give the action of Verschiebung.

Lemma 2.4. *Let X be a smooth hyperelliptic curve over k with equation* [\(4\)](#page-4-0)*. Let* ${U_1, U_2}$ *be a covering of X as above. Then for the basis of* $H^1_{dR}(X)$ *given by* [\(5\)](#page-4-1) *and* [\(6\)](#page-4-2), we have $V(\lambda_0) = V(\lambda_3) = V(\gamma_2) = V(\gamma_3) = 0$ and

$$
V(\lambda_1) = a_7^{1/3} \lambda_2 + a_4^{1/3} \lambda_1 + \lambda_0, V(\lambda_2) = \lambda_3 + a_6^{1/3} \lambda_2 + a_3^{1/3} \lambda_1,
$$

\n
$$
V(\gamma_1) = \lambda_2 + a_6^{1/3} \lambda_1 + a_3^{1/3} \lambda_0, V(\gamma_4) = a_4^{1/3} \lambda_2 + (1 - (a_3 a_7)^{1/3} + (a_4 a_6)^{1/3}) \lambda_1 + a_6^{1/3} \lambda_0.
$$

Proof. Since *V* coincides with the Cartier operator on $H^0(X, \Omega_X^1)$, we have $V(hdx) =$ $(-d^2h/dx^2)^{1/3}dx$ with $h \in k(x)$. We will compute $V(\gamma_1)$ and the rest of the lemma will follow easily by using a similar argument. Note that we always have for $1 \leq i \leq 4$

$$
V(\frac{\psi_i(x)}{2x^{i+1}y}dx) = V(-\frac{\phi_i(x)}{2x^{i+1}y}dx)
$$

as $0 = V(\mathbf{d}(y/x^i)) = V(\frac{\psi_i(x)}{2x^{i+1}y}\mathbf{d}x) - V(-\frac{\phi_i(x)}{2x^{i+1}y}\mathbf{d}x)$. So it suffices to compute $V(\frac{\psi_i(x)}{2x^{i+1}y}\mathbf{d}x)$ instead of computing $V(\gamma_i)$. For $i = 1$, we have

$$
V(\frac{\psi_1(x)}{2x^{1+1}y}dx) = V(\frac{1}{xy}dx) = (-\frac{d(d(\frac{1}{xy})/dx)}{dx})^{1/3} dx.
$$

Note that $df'(x)/dx = 0$ and by a calculation we have

$$
-\frac{d(d(\frac{1}{xy})/dx)}{dx} = \frac{x^9 + a_6x^6 + a_3x^3}{x^3y^3}
$$

.

Hence $V(\psi_1(x)/(2x^{1+1}y)dx) = (x^2/y + a_6^{1/3}x/y + a_3^{1/3}/y) dx$ and we have $V(\gamma_1) =$ $\lambda_2 + a_6^{1/3} \lambda_1 + a_3^{1/3}$ $\frac{1}{3}$ λ_0 .

Now we give a proof of Theorem [1.1.](#page-0-0)

Proof of Theorem [1.1.](#page-0-0) The theorem holds for cases $\mu = [0]$ and [1] by Proposition [2.3](#page-2-1) where we showed that $T_a \cap \mathcal{H}_4$ is irreducible with codimension $a(a+1)/2$ for $a \leq 2$. Also $T_3 \cap \mathcal{H}_4$ is empty by Proposition [2.1,](#page-1-2) hence $Z_\mu \cap \mathcal{H}_4 = \emptyset$ for any $\mu \succeq [3, 2, 1]$.

We only need to prove that the theorem is true for the remaining nine Ekedahl-Oort strata, that is six strata consisting of curves with *a*-number 2 and three strata consisting of curves with *a*-number 1.

As an outline of the proof, we first show that for $\mu = [2, 1], [3, 1], [3, 2], [4, 1], [4, 2]$ and [4, 3] the codimension of $Z_\mu \cap \mathcal{H}_4$ in \mathcal{H}_4 equals the expected codimension $\sum_{i=1}^n \mu_i$ with $\mu = [\mu_1, \ldots, \mu_n]$. For $\mu = [2], [3]$ and [4], combined with the fact $V_l \cap \mathcal{H}_4$ is non-empty of codimension $4 - l$ in \mathcal{H}_4 for $l = 0, 1, 2$ by Glass and Pries [\[6](#page-15-3), Theorem 1], the intersection $Z_\mu \cap \mathcal{H}_4$ also has the expected codimension. In the cases $\mu = [2, 1], [3, 1], [3, 2], [4, 1], [4, 2]$ and $[4, 3],$ a curve with Ekedahl-Oort type μ can be written as equation (4) by the proof of Proposition [2.3.](#page-2-1)

Throughout the proof, denote by *X* a smooth hyperelliptic curve given by equation $y^2 = f(x)$ as in [\(4\)](#page-4-0) with Ekedahl-Oort type μ . Denote

$$
Y_2 := V(H^0(X, \Omega^1_X)) = V(\langle \lambda_0, \ldots, \lambda_3 \rangle)
$$
 and $Y_6 := Y_2^{\perp}$

with respect to the paring \langle , \rangle on $H^1_{dR}(X)$. Put $v : \{0, 1, \ldots, 8\} \to \{0, 1, \ldots, 4\}$ the final type of X . From Lemma [2.4](#page-4-3) above, we know that Y_2 is a 2-dimensional subspace of $H^0(X, \Omega_X^1)$ generated by $V(\lambda_1)$ and $V(\lambda_2)$.

Let $\mu = [2, 1]$ $\mu = [2, 1]$ $\mu = [2, 1]$. By Proposition 2.3 the intersection $T_2 \cap \mathcal{H}_4$ is irreducible of dimension 4. For any curve *X* corresponding to a point in $\mathcal{H}_4 \cap T_2$, we have by Lemma [2.4](#page-4-3)

$$
V(Y_2) = \langle V^2(\lambda_1), V^2(\lambda_2) \rangle = \langle V(a_7^{1/3}\lambda_2 + a_4^{1/3}\lambda_1 + \lambda_0), V(\lambda_3 + a_6^{1/3}\lambda_2 + a_3^{1/3}\lambda_1) \rangle
$$

= $\langle a_7^{1/9}V(\lambda_2) + a_4^{1/9}V(\lambda_1), a_6^{1/9}V(\lambda_2) + a_3^{1/9}V(\lambda_1) \rangle$. (7)

We consider the curve associated to $(a_3, a_4, a_6, a_7) = (1, 0, 0, 2)$. Then disc(f) = 1 \neq 0. Moreover, $V^{n}(Y_2) = Y_2$ for any $n \in \mathbb{Z}_{>0}$. Hence the semi-simple rank of *V* acting on $H^0(X, \Omega_X^1)$ is 2 and the Ekedahl-Oort type of this curve is [2, 1]. Since the *p*-rank can only decrease under specialization, the generic point of $\mathcal{H}_4 \cap T_2$ has Ekedahl-Oort type [2, 1] and $Z_{[2,1]} \cap \mathcal{H}_4$ is irreducible of dimension 4.

Now we move to the case $\mu = [3, 1]$. We show that a curve with Ekedahl-Oort type [3, 1] has equation [\(4\)](#page-4-0) with $a_7a_3 = a_6a_4$ and $disc(f) = a_3a_4^2 + a_6a_7 + 1 \neq 0$. Then the irreducibility and dimension will follow naturally.

Suppose *X* has Ekedahl-Oort type [3*,* 1], then *X* is given by equation [\(4\)](#page-4-0) with $\dim(V(Y_2)) = 1$. Then by Lemma [2.4](#page-4-3) and relation [\(7\)](#page-5-0), we have $a_3a_7 = a_4a_6$. Put $Y_3 := V(Y_6)$ then we have

$$
(\pm 0) \text{ then we have}
$$

$$
\dim Y_3 = v(6) = v(2) + 4 - 2 = 3
$$

by the properties of the final type *v*. If we take $(a_3, a_4, a_6, a_7) = (0, 1, 0, 0)$, then $\text{disc}(f) = 1 \neq 0$. Note that $V(\gamma_1) = \lambda_2$ and $V(\gamma_4) = \lambda_2 + \lambda_1$, hence $Y_2 = \langle \lambda_3, \lambda_1 + \lambda_0 \rangle$ by the Lemma [2.4.](#page-4-3) Furthermore, it is easy to check that $V^2(\lambda_2) = 0$ and $V^n(\lambda_1) = \lambda_1$. Then we get $v(1) = 1$. Also there exists an element $\gamma = \sum_{i=1}^{3} b_i \gamma_i$ with $b_i \in k$ in *Y*₆ such that $b_1 \neq 0$, otherwise it contradicts that $\langle \gamma, \lambda_0 + \lambda_1 \rangle = 0$. Thus $b_1^{1/3} \lambda_2 =$ $V(\gamma) \in Y_3$ and by simple computation we have dim $V(Y_3) = 2$. Then there is a curve with Ekedahl-Oort type [3, 1] and by semicontinuity we have the $Z_{[3,1]} \cap \mathcal{H}_4$ is irreducible of dimension 3.

Let $\mu = [3, 2]$, we show that the smooth hyperelliptic curve X with Ekedahl-Oort type [3*,* 2] can be written as

$$
y^{2} = f(x) = x^{9} + a_{7}x^{7} + \alpha^{3}a_{7}x^{6} + a_{4}x^{4} + \alpha^{3}a_{4}x^{3} + x
$$
 (8)

with $a_4, a_7, \alpha \in k^*$ satisfying $\alpha^3 a_7^2 + \alpha a_7 = a_4 + \alpha a_4^2$ and $\text{disc}(f) = (a_4 \alpha + a_7 \alpha^2 + 1)^9 \neq 0$.

Indeed, if the curve X is given by equation (4) with Ekedahl-Oort type $[3, 2]$, then we have $v(2) = 1$ and $v(1) = 1$. By Lemma [2.4](#page-4-3) and relation [\(7\)](#page-5-0), the condition $v(2) = 1$ implies $a_3a_7 = a_4a_6$. Also Y_6 is generated by λ_i for $i = 0, \ldots, 3$ and $\sum_{j=1}^{4} b_j \gamma_j$ with $b_j \in k$ and $\langle \sum_{j=1}^{4} b_j \gamma_j, Y_2 \rangle = 0.$

If $a_7 = 0$, by $a_3a_7 = a_4a_6$ we have (*i*) $a_6 = 0$ or (*ii*) $a_4 = 0$.

If we suppose $a_7 = a_6 = 0$, then $Y_2 = \langle a_4^{1/3} \lambda_1 + \lambda_0, \lambda_3 + a_3^{1/3} \lambda_1 \rangle$ and Y_6 is generated by λ_i and $\sum_{j=1}^4 b_j \gamma_j$ with

$$
b_1 + b_2 a_4^{1/3} = b_2 a_3^{1/3} + b_4 = 0, \ b_1, \dots, b_4 \in k \,.
$$
 (9)

Write $Y_3 = V(Y_6)$. If $a_4 = 0$, then we have $V^2(Y_2) = \langle 0 \rangle$, a contradiction since X has Ekedahl-Oort type [3, 2]. Now suppose $a_4 \neq 0$, then for all b_1, b_4 satisfying [\(9\)](#page-6-0) we have

$$
V(Y_6) = Y_3 = \langle Y_2, (1 + a_4^{2/9} a_3^{1/9}) \lambda_2 + (\frac{a_3}{a_4})^{1/9} \lambda_1 + a_3^{1/3} \lambda_0 \rangle \rangle.
$$

Since $v(3) = 1$, we have $1 + a_4^{2/9} a_3^{1/9} = 0$, which implies $a_3^1 a_4^2 = -1$. In this case we have $\text{disc}(f) = a_3^3 a_4^6 + 1 = 0$, a contradiction.

Now if $a_7 = a_4 = 0$, Y_6 is generated by λ_i and $\sum_{j=1}^4 b_j \gamma_j$ with $b_1 = b_2 a_3^{1/3} + a_6^{1/3}$ $b_6^{1/3}b_3 +$ *b*₄ = 0. By Lemma [2.4](#page-4-3) we have $V(\gamma_4) = \lambda_1 + a_6^{1/3} \lambda_0$, hence

$$
Y_3 = V(Y_6) = \langle Y_2, V(b_2\gamma_2 + \dots + b_4\gamma_4) \rangle = \langle Y_2, V(\gamma_4) \rangle
$$

= $\langle \lambda_0, \lambda_3 + a_6^{1/3} \lambda_2 + a_3^{1/3} \lambda_1, \lambda_1 + a_6^{1/3} \lambda_0 \rangle$.

Therefore we have $V(Y_3) = Y_2$, a contradiction with $v(3) = 1$.

Now assume $a_7 \neq 0$ and put $\alpha = (a_6/a_7)^{1/3}$. Then we have $a_3 = \alpha^3 a_4$ by relation $a_7a_3 = a_6a_4$, and

$$
Y_2 = \langle a_7^{1/3} \lambda_2 + a_4^{1/3} \lambda_1 + \lambda_0, \lambda_3 + \alpha a_7^{1/3} \lambda_2 + \alpha a_4^{1/3} \lambda_1 \rangle. \tag{10}
$$

By a similar argument to the above, Y_6 is generated by λ_i and $\sum_{j=1}^4 b_j \gamma_j$ with $\langle \sum_{j=1}^{4} b_j \gamma_j, Y_2 \rangle = 0$, this implies

$$
b_4 - \alpha b_1 = b_3 a_7^{1/3} + b_2 a_4^{1/3} + b_1 = 0, b_i \in k.
$$

Then $Y_3 = V(Y_6) = \langle Y_2, V(b_1 \gamma_1 + b_4 \gamma_4) \rangle$ and this equals $\langle Y_2, \xi \rangle$ with

$$
\xi = (1 + \alpha^{1/3} a_4^{1/3}) \lambda_2 + (\alpha a_7^{1/3} + \alpha^{1/3}) \lambda_1 + (\alpha^{1/3} a_4^{1/3} + \alpha^{4/3} a_7^{1/3}) \lambda_0 \rangle.
$$

Since *X* has Ekedahl-Oort type $\mu = [3, 2]$, we have $v(3) = 1$. Then $V(\langle \xi \rangle) =$ $V(Y_2) = V(a_7^{1/3} \lambda_2 + a_4^{1/3} \lambda_1)$ by relation [\(10\)](#page-7-0) and Lemma [2.4.](#page-4-3) Thus we have

$$
\alpha a_7^{2/3} + (\alpha a_7)^{1/3} = a_4^{1/3} + \alpha^{1/3} a_4^{2/3}
$$

and hence

$$
\alpha^3 a_7^2 + \alpha a_7 = a_4 + \alpha a_4^2. \tag{11}
$$

If $\alpha = 0$, by equality [\(11\)](#page-7-1) we have $a_4 = 0$ and in equation [\(8\)](#page-6-1) we have $f = x^9 + a_7 x^7 + x$ and one can easily show that $v(1) = 0$, a contradiction as X has Ekedahl-Oort type $\mu = [3, 2]$. By a similar argument we can prove $a_4 \neq 0$. If we take $(a_7, \alpha, a_4) = (2, 2, 1)$ in equation [\(8\)](#page-6-1), we have $\text{disc}(f) = 2 \neq 0$. Then there is a curve with Ekedahl-Oort type [3, 2] and by semicontinuity we have $Z_{[3,2]} \cap \mathcal{H}_4$ is irreducible of dimension 2.

Let $\mu = [4, 1]$. We show that any smooth hyperelliptic curve with Ekedahl-Oort type [4*,* 1] can be written as

$$
y^{2} = f(x) = x^{9} + a_{7}x^{7} + \alpha^{3}a_{7}x^{6} - \alpha^{9}a_{7}x^{4} - \alpha^{12}a_{7}x^{3} + x \tag{12}
$$

with $a_7, \alpha \in k^*$ and $\text{disc}(f) = 2\alpha^{10}a_7 + \alpha^2a_7 + 1 \neq 0$. Then it will follow that $Z_{[4,1]} \cap \mathcal{H}_4$ is irreducible of dimension 2. Indeed, if X is given by equation [\(4\)](#page-4-0) with Ekedahl-Oort type [4,1], then $v(2) = 1, v(1) = 0$ and by Lemma [2.4](#page-4-3) and relation [\(7\)](#page-5-0) we have $a_3a_7 = a_4a_6$.

a) : If $a_7 = 0$, we have $a_6 = 0$ or $a_4 = 0$. Assume $a_6 = a_7 = 0$, then by relation [\(7\)](#page-5-0) we have $V(Y_2) = \langle V(\lambda_1) \rangle$. By Lemma [2.4,](#page-4-3) we have $a_4 = 0$ since the *p*-rank of *X* is zero. But then *X* has Ekedahl-Oort type [4, 2] by a similar argument with $Y_6 = Y_2^{\perp}$ and $Y_3 = V(Y_6)$ as in case $\mu = [3, 2]$. Now suppose $a_7 = a_4 = 0$. We have $a_6 = 0$ since *X* has *p*-rank 0. Then again *X* has Ekedahl-Oort type $[4, 2]$.

b) : Now assume $a_7 \neq 0$. Put $\alpha = (a_6/a_7)^{1/3}$ and we have $a_3 = \alpha^3 a_4$ by equation $a_7a_3 = a_6a_4$. Write $Y_1 = V(Y_2) = \langle a_7^{1/9}V(\lambda_2) + a_4^{1/9}V(\lambda_1) \rangle$. Suppose we have $V^m(Y_1) = 0$ and $V^{m-1}(Y_1) \neq 0$ for some $m \in \mathbb{Z}_{>0}$. For $0 \leq i \leq m$, put $V^i(Y_1) =$ $\langle q_i(\lambda_0, \lambda_3) + c_i \lambda_2 + d_i \lambda_1 \rangle$ with $q_i(x, y) \in k[x, y]$. Then we have

$$
c_i = (\alpha c_{i-1}^{1/3} + d_{i-1}^{1/3})a_i^{1/3}, d_i = (\alpha c_{i-1}^{1/3} + d_{i-1}^{1/3})a_4^{1/3}
$$
(13)

for $1 \leq i \leq m$. Now $V(V^{m-1}(Y_1)) = 0$. Therefore by Lemma [2.4](#page-4-3) we have

$$
V^{m}(Y_{1})=V(\langle c_{m-1}\lambda_{2}+d_{m-1}\lambda_{1}+g_{m-1}(\lambda_{0},\lambda_{3})\rangle)=0.
$$

Hence we have $c_m = d_m = 0$ as $V(\langle \lambda_0, \lambda_3 \rangle) = 0$ by Lemma [2.4.](#page-4-3) Thus we obtain $(\alpha c_{m-1}^{1/3} + d_{m-1}^{1/3})$ $(a_{m-1})a_7^{1/3} = (a c_{m-1}^{1/3} + d_{m-1}^{1/3})$ $\alpha_{m-1}^{1/3}$, $a_4^{1/3} = 0$, which implies $\alpha_{m-1}^{1/3} + d_{m-1}^{1/3} = 0$ as $a_7 \neq 0$. Using the inductive assumption [\(13\)](#page-8-0) again, we have

$$
\alpha c_{m-1}^{1/3} + d_{m-1}^{1/3} = ((\alpha^3 a_7^{1/3} + a_4^{1/3})(\alpha^{1/3}c_{m-2} + d_{m-2}))^{1/3} = 0.
$$

Since $V^{m-1}(Y_1) \neq 0$, we have $\alpha^{1/3}c_{m-2} + d_{m-2} \neq 0$ and hence $(\alpha^3 a_7^{1/3} + a_4^{1/3})$ $\binom{1}{4}^3 = 0.$ This implies $a_4 = -\alpha^9 a_7$ and $a_3 = \alpha^3 a_4 = -\alpha^{12} a_7$. Now we compute $Y_3 = V(Y_6)$ and this equals

$$
\langle Y_2, (1 - \alpha^{10/3} a_7^{1/3}) \lambda_2 + (\alpha a_7^{1/3} + \alpha^{1/3}) \lambda_1 + g(\lambda_0, \lambda_3) \rangle
$$

for some $q(x, y) \in k[x, y]$. Combined with

$$
Y_2 = \langle a_7^{1/3}(\lambda_2 - \alpha^3 \lambda_1) + \lambda_0, \lambda_3 + \alpha a_7^{1/3}(\lambda_2 - \alpha^3 \lambda_1) \rangle
$$

= $\langle \lambda_3 - \alpha \lambda_0, a_7^{1/3}(\lambda_2 - \alpha^3 \lambda_1) + \lambda_0 \rangle$,

we have $v(3) = 1$ if

$$
\alpha^3(-1+\alpha^{10/3}a_7^{1/3}) = (\alpha a_7^{1/3} + \alpha^{1/3}),
$$

this is equivalent to $\alpha^3(\alpha^{16}-1)a_7 = \alpha^9 + \alpha$. Otherwise *X* has Ekedahl-Oort type [4, 1] for general pair $(a_7, \alpha) \in \mathbb{A}_k^2$. Hence we have the desired conclusion for $\mu = [4, 1]$. Moreover if in equation [\(12\)](#page-7-2) we take $(a_7, \alpha) = (v^{10}, v^9)$ with *v* a primitive element in \mathbb{F}_{27} , then disc(f) = $v^{21} \neq 0$ and there is a curve with equation [\(12\)](#page-7-2) has Ekedahl-Oort type associated to $\mu = [4, 1]$. Hence by semicontinuity we have proved the theorem is true for $\mu = [4, 1]$.

For $\mu = [4, 2]$, from the discussion in the case $[4, 1]$ above, a hyperelliptic curve X with Ekedahl-Oort type [4, 2] is either given by equation [\(4\)](#page-4-0) with $a_7 = a_6 = a_4 = 0$, or it can be written as

$$
y^{2} = f(x) = x^{9} + a_{7}x^{7} + \alpha^{3}a_{7}x^{6} - \alpha^{9}a_{7}x^{4} - \alpha^{12}a_{7}x^{3} + x
$$

with $a_7, \alpha \in k, a_7 \neq 0$ satisfying $\alpha^3(\alpha^{16}-1)a_7 = \alpha^9 + \alpha$ and disc(*f*) $\neq 0$. Moreover,the curve with equation $y^2 = x^9 + x^7 + x$ has $\text{disc}(f) = 1 \neq 0$ and Ekedahl-Oort type $\mu = [4, 2]$. Hence $Z_{[4,2]} \cap \mathcal{H}_4$ is non-empty of dimension 1.

For $\mu = [4, 3]$, a curve X with Ekedahl-Oort type $[4, 3]$ is given by [\(4\)](#page-4-0) with $V(Y_2)$ $\langle 0 \rangle$. Then by Lemma [2.4](#page-4-3) we have $a_7 = a_6 = a_4 = a_3 = 0$. This implies X is isomorphic to the curve with equation $y^2 = x^9 + x$. Now we have proved the theorem for $\mu = [2, 1], [3, 1], [3, 2], [4, 1], [4, 2]$ and $[4, 3]$. Also for $\mu = [2], [3]$ and $[4]$, by Glass and Pries [\[6](#page-15-3), Theorem 1] the intersection $V_l \cap H_4$ has codimension $4 - l$ in H_4 for $l = 0, 1, 2$. Since we have showed that $Z_{[2,1]}$ (resp. $Z_{[3,1]}$ and $Z_{[4,1]}$) intersects \mathcal{H}_4 with codimension 3 (resp. 4 and 5), it follows that $Z_\mu \cap \mathcal{H}_4$ has the expected codimension for $\mu = [2], [3]$ and [4].

3. Proof of Theorem [1](#page-1-0)*.*2

We prove Theorem [1](#page-1-0)*.*2 using cyclic covers of the projective line in characteristic *p >* 0. First we introduce some general facts on cyclic covers of the projective line and give a basis of the first de Rham cohomology for them.

Let k be an algebraically closed field of characteristic $p > 0$. We fix an integer $m \geq 2$ with $p \nmid m$. Write $a = (a_1, \ldots, a_N)$ for an *N*-tuple of positive integers with $N \geq 3$. We say *a* is a monodromy vector of length *N* if

$$
\sum_{i=1}^{N} a_i \equiv 0 \; (\text{mod } m), \qquad \gcd(a_i, m) = 1, \, i = 1, \dots, N. \tag{14}
$$

There is an action of $(\mathbb{Z}/m\mathbb{Z})^* \times \mathfrak{S}_N$ on the set of monodromy vectors of length *N*, where the symmetric group \mathfrak{S}_N acts by permutation of indices and $(\mathbb{Z}/m\mathbb{Z})^*$ acts by multiplication on vectors. Two monodromy vectors *a* and *a'* are called equivalent if they are in the same orbit.

Let P_1, \ldots, P_N be the distinct points in \mathbb{P}^1 and *x* be a coordinate on \mathbb{P}^1 . By a change of coordinates, we may assume $P_1 = 0$ and $P_N = \infty$. Denote by $x - \xi_i$ with $\xi_i \in k$ the local parameter of P_i ($\xi_1 = 0$) for $1 \leq i \leq N-1$. We consider a smooth projective curve *X* given by equation

$$
y^{m} = f_{a}(x) = \Pi_{i=1}^{N-1} (x - \xi_{i})^{a_{i}}.
$$
\n(15)

Note that the isomorphism class of the curve depends only on the orbit of monodromy vector *a*. For $N = 3$, the supersingularity of cyclic covers of the projective line has been studied and examples of supersingular curves was given for $4 \leq g \leq 11$, see [\[10\]](#page-15-6). In [\[3](#page-15-8)], Elkin gave a bound for the *a*-number of *X* for $m \geq 2$ and $N \geq 3$.

A curve defined by equation [\(15\)](#page-9-0) is equipped with a $\mathbb{Z}/m\mathbb{Z}$ action generated by $\epsilon : (x, y) \mapsto (x, \zeta^{-1}y)$ with $\zeta \in k$ a primitive *m*-th root of unity. This ϵ also induces an automorphism on $H^0(X, \Omega_X^1)$. Then we can decompose

$$
H^{0}(X,\Omega_{X}^{1}) = \bigoplus_{n=1}^{m-1} H^{0}(X,\Omega_{X}^{1})_{(n)},
$$
\n(16)

where $H^0(X, \Omega_X^1)_{(n)} := \{ \omega \in H^0(X, \Omega_X^1) \mid \epsilon^*(\omega) = \zeta^n \omega \}$ is the ζ^n -eigenspace of $H^0(X, \Omega^1_X)$. Denote by $\langle z \rangle := z - \lfloor z \rfloor$ the fractional part of *z* for any $z \in \mathbb{R}$. Put

$$
b(i, n) := \lfloor (na_i)/m \rfloor, \, \omega_{n,l} := y^{-n} x^l \Pi_{i=1}^{N-1} (x - \xi_i)^{b(i,n)} \, \mathrm{d}x \, .
$$

Then (see for example [\[11\]](#page-15-9)) the space $H^0(X, \Omega_X^1)_{(n)}$ is generated by $\omega_{n,l}$ with $0 \leq$ $l \leq -2 + \sum_{i=1}^{N} \langle na_i/m \rangle$ and

$$
d_n = \dim H^0(X, \Omega_X^1)_{(n)} = -1 + \sum_{i=1}^N \langle na_i/m \rangle.
$$

By the Hurwitz formula, the curve has genus $q = 1 + ((N - 2)m - N)/2$.

Now we introduce a basis of de Rham cohomology of a curve *X* given by equation [\(15\)](#page-9-0). Fix a monodromy vector *a* together with an ordered *N*-tuple (ξ_1, \ldots, ξ_N) . Let $\pi: X \to \mathbb{P}^1$ be the $\mathbb{Z}/m\mathbb{Z}$ -cover. Put $U_1 = \pi^{-1}(\mathbb{P}^1 - \{0\})$ and $U_2 = \pi^{-1}(\mathbb{P}^1 - \{\infty\})$. For the open affine cover $\mathcal{U} = \{U_1, U_2\}$, we consider the de Rham cohomology $H_{dR}^1(X)$ similar to the hyperelliptic case in Section [2](#page-1-3) above, i.e.

$$
H^1_{dR}(X) \cong Z^1_{dR}(\mathcal{U})/B^1_{dR}(\mathcal{U})
$$

 $\text{with } Z_{dR}^1(\mathcal{U}) = \{(t, \omega_1, \omega_2) | t \in \mathcal{O}_X(U_1 \cap U_2), \omega_i \in \Omega_X^1(U_i), \text{d}t = \omega_1 - \omega_2\} \text{ and } B_{dR}^1(\mathcal{U}) = \Omega_X^1(\mathcal{U})$ $\{(t_1 - t_2, dt_1, dt_2)| t_i \in \mathcal{O}_X(U_i)\}.$

By [\(16\)](#page-10-0), the vector space $H^0(X, \Omega_X^1)$ is generated by $\omega_{n,l}$ with $1 \leq n \leq m-1$ and $0 \leq l \leq -2 + \sum_{i=1}^{N} \langle na_i/m \rangle$. Moreover for the basis of $H^1(X, \mathcal{O}_X)$, we have the following result.

Lemma 3.1. Let $K(X)$ be the function field of X. For all integers n, l such that $1 \leq n \leq m-1$ and $0 \leq l \leq -2+\sum_{i=1}^{N} \langle na_i/m \rangle$, the elements $f_{n,l} := y^n x^{-l-1} \prod_{i=1}^{N-1} (x - j)$ $(f_i)^{-b(i,n)} \in K(X)$ *are regular on* $U_1 \cap U_2$ *and their residue classes* [$f_{n,l}$] *form a basis of* $H^1(X, \mathcal{O}_X)$ *with respect to* $\{U_1, U_2\}$ *.*

Proof. It suffices to show that the $f_{n,l}$ are regular on $U_1 \cap U_2$ for all integers n, l such that $\omega_{n,l} \in H^0(X, \Omega^1_X)$. One can check the linear independence by checking the order of $f_{n,l}$ at ∞ .

Note that for P_i with $i = 2, \ldots, N-1$, we have

$$
\begin{aligned} \n\text{ord}_{P_i}\left(\frac{y^n}{x^{l+1}\prod_{i=1}^{N-1}(x-\xi_i)^{b(i,n)}}\right) &= n \,\text{ord}_{P_i}(y) - b(i,n) \,\text{ord}_{P_i}(x-\xi_i) \\ \n&= na_i - mb(i,n) = na_i - m\left\lfloor \frac{na_i}{m} \right\rfloor \ge 0 \,. \n\end{aligned}
$$

Then $f_{n,l}$ is regular on $U_1 \cap U_2$ for $1 \le n \le m-1$ and $0 \le l \le -2+\sum_{i=1}^N \langle na_i/m \rangle$. \Box

Put
$$
s_a(x) := \Pi_{i=1}^{N-1} (x - \xi_i)^{b(i,n)}
$$
. Denote by $h_a(x)$ the polynomial in $k[x]$ such that\n
$$
\frac{nxs_a(x)f'_a(x) + ((l+1)s_a(x) + xs'_a(x))f_a(x)}{s_a^2(x)} = \Pi_{i=1}^{N-1} (x - \xi_i)^{a_i - b(i,n) - 1} h_a(x),
$$

where $f'_a(x)$ (resp. $s'_a(x)$) is the formal derivative of $f_a(x)$ (resp. $s_a(x)$). In the following we write simply $s(x)$ (resp. $f(x)$, $h(x)$) for $s_a(x)$ (resp. $f_a(x)$, $h_a(x)$).

Then we have the following result.

Proposition 3.2. *Let X be a smooth projective curve over k given by equation* [\(15\)](#page-9-0)*. Then* $H_{dR}^1(X)$ *has a basis with respect to* $\mathcal{U} = \{U_1, U_2\}$ *consisting of the following residue classes with representatives in* $Z_{dR}^1(\mathcal{U})$:

$$
\alpha_{n,l} = [(0, \omega_{n,l}, \omega_{n,l})], \ 1 \le n \le m-1, \ 0 \le l \le -2 + \sum_{i=1}^{N} \langle n a_i/m \rangle , \qquad (17)
$$

$$
\beta_{n,l} = \left[(f_{n,l}, \frac{\psi_{n,l}(x)t(x)}{x^{l+2}y^{m-n}} \, \mathrm{d}x, -\frac{\phi_{n,l}(x)t(x)}{x^{l+2}y^{m-n}} \, \mathrm{d}x) \right],\tag{18}
$$

where $t(x) = \prod_{i=1}^{N-1} (x - \xi_i)^{a_i - b(i,n)-1}$ and $\psi(x) + \phi(x) = h(x)$ with $\psi(x)$ the sum of *monomials of degree* $\lt l + 1$ *.*

Proof. We use the exact sequence

$$
0 \to H^0(X, \Omega_X^1) \to H^1_{dR}(X) \to H^1(X, \mathcal{O}_X) \to 0.
$$

The elements $\alpha_{n,l}$ are images of $\omega_{n,l}$ under the canonical map.

By Lemma [3.1,](#page-10-1) we have $[f_{n,l}] \in H^1(X, \mathcal{O}_X)$ for any n, l such that $\omega_{n,l} \in H^0(X, \Omega_X^1)$. To prove the theorem, we need to show that the elements $\beta_{n,l}$ are well defined and are mapped to the element $[f_{n,l}]$ in $H^1(X, \mathcal{O}_X)$. We first show that $\psi_{n,l}(x)/(x^{l+2}y^{m-n}) \in$ $\mathcal{O}(U_1)$ and $\phi_{n,l}(x)/(x^{l+2}y^{m-n}) \in \mathcal{O}(U_2)$. Next we show

$$
df_{n,l} = \frac{\psi_{n,l}(x)}{x^{l+2}y^{m-n}} - \left(-\frac{\phi_{n,l}(x)}{x^{l+2}y^{m-n}}\right)
$$

and then we will have the desired conclusion.

Note that for any P_i with $i = 1, \ldots, N-1$, we have

$$
\begin{split} \n\text{ord}_{P_i}(\frac{t(x)}{y^{m-n}} dx) &= \text{ord}_{P_i}(\frac{\Pi_{i=1}^{N-1}(x-\xi_i)^{a_i-b(i,n)-1}}{y^{m-n}}) + \text{ord}_{P_i}(dx) \\ \n&= m(a_i - \lfloor \frac{na_i}{m} \rfloor - 1) - a_i(m-n) + m - 1 = m\langle \frac{na_i}{m} \rangle - 1 \ge 0 \,, \n\end{split}
$$

since $gcd(a_i, m) = 1$. Hence

$$
\operatorname{ord}_{P_i}(\frac{\phi_{n,l}(x)t(x)}{x^{l+2}y^{m-n}}dx)) \ge \operatorname{ord}_{P_i}(\frac{t(x)}{y^{m-n}}dx) \ge 0
$$

and $\phi_{n,l}(x)t(x)/(x^{l+2}y^{m-n})dx$ is regular at P_i for $i = 2, ..., N-1$. By a similar argument, $\psi_{n,l}(x)t(x)/(x^{l+2}y^{m-n})dx$ is also regular at P_i for $i = 2, ..., N-1$. For $P_1 = 0$, we have

$$
\mathrm{ord}_{P_1}(\frac{\phi_{n,l}(x)t(x)}{x^{l+2}y^{m-n}}\,\mathrm{d}x)\geq \mathrm{ord}_{P_1}(\frac{t(x)}{y^{m-n}}\,\mathrm{d}x)\geq 0\,,
$$

since all the monomials of $\phi_{n,l}(x)$ has degree $\geq l+2$. Then the residue class of the element $\phi_{n,l}(x)t(x)/(x^{l+2}y^{m-n})dx$ is regular on U_2 . For $P_N = \infty$, by a similar calculation we have

$$
\mathrm{ord}_{P_N}(\frac{\psi_{n,l}(x)t(x)}{x^{l+2}y^{m-n}}\,\mathrm{d}x)\geq \mathrm{ord}_{P_N}(\frac{x^{l+1}t(x)}{x^{l+2}y^{m-n}}\,\mathrm{d}x)\geq 0\,.
$$

Let *n*, *l* be integers such that $\omega_{n,l} \in H^0(X, \Omega_X^1)$. Then

$$
d(f_{n,l}) = d(\frac{y^n}{x^{l+1}s(x)}) = \frac{nxs(x)f'(x) + ((l+1)s(x) + xs'(x))f(x)}{x^{l+2}s^2(x)y^{m-n}} dx
$$

=
$$
\frac{t(x)h(x)}{x^{l+2}y^{m-n}} dx = \frac{t(x)\psi_{n,l}(x)}{x^{l+2}y^{m-n}} dx - \frac{-t(x)\phi_{n,l}(x)}{x^{l+2}y^{m-n}} dx.
$$

Remark 3.3. The pairing \langle , \rangle for this basis is as follows: $\langle \alpha_{i_1,j_1}, \beta_{i_2,j_2} \rangle \neq 0$ if $(i_1, j_1) = (i_2, j_2)$ and $\langle \alpha_{i_1, j_1}, \beta_{i_2, j_2} \rangle = 0$ otherwise. Indeed, for $(i_1, j_1) = (i_2, j_2)$ we have $\text{ord}_{\infty}(1/x \, dx) = -1$ and hence $\langle \alpha_{i_1,j_1}, \beta_{i_2,j_2} \rangle \neq 0$. For the other cases, the proof is similar to the proof of $[15,$ Theorem 4.2.1].

Now for $p = 2$ and $N = 4$, we have the following

Corollary 3.4. *Let k be an algebraically closed field of characteristic p and a be a monodromy vector satisfying relation* [\(14\)](#page-9-1) *with* $a = (1, 1, 1, m - 3)$ *. Let X be a curve of genus m* − 1 *over k given by equation*

$$
y^m = x(x-1)(x-\xi),
$$

where $\xi \neq 0, 1 \in k$ *. Then* $H_{dR}^1(X)$ *has a basis with respect to* $\mathcal{U} = \{U_1, U_2\}$ *consisting of the following residue classes with representatives in* $Z_{dR}^1(\mathcal{U})$:

$$
\alpha_{i,0} = [(0, \frac{1}{y^i} dx, \frac{1}{y^i} dx)], \frac{m}{3} < i \leq m-1, \alpha_{j,1} = [(0, \frac{x}{y^j} dx, \frac{x}{y^j} dx)], \frac{2m}{3} < j \leq m-1,
$$

\n
$$
\beta_{i,0} = [(\frac{y^i}{x}, \frac{\xi}{xy^{m-i}} dx, -\frac{x+(\xi+1)}{y^{m-i}} dx)], \quad i \text{ even and } \frac{m}{3} < i \leq m-1,
$$

\n
$$
\beta_{i,0} = [(\frac{y^i}{x}, 0, -\frac{(\xi+1)}{y^{m-i}} dx)], \quad i \text{ odd and } \frac{m}{3} < i \leq m-1,
$$

\n
$$
\beta_{j,1} = [(\frac{y^j}{x^2}, 0, 0)], \quad j \text{ even and } \frac{2m}{3} < j \leq m-1,
$$

\n
$$
\beta_{j,1} = [(\frac{y^j}{x^2}, \frac{\xi}{x^2y^{m-j}} dx, -\frac{1}{y^{m-j}} dx)], \quad j \text{ odd and } \frac{2m}{3} < j \leq m-1,
$$

Proof. Note that $a = (a_1, a_2, a_3, a_4) = (1, 1, 1, m - 3)$. Then by definition $b(i, n) =$ $\langle na_i/m \rangle = 0$ for any $1 \leq n \leq m-1$ and $1 \leq i \leq 3$. Moreover, the differential form $\omega_{n,l} = y^{-n}x^l dx$ is holomorphic for $1 \leq n \leq m-1$ if and only if $0 \leq l \leq$ $-2 + \sum_{i=1}^{4} \langle na_i/m \rangle \leq -2 + 3 = 1$. If $0 \leq n \leq m/3$, then $\sum_{i=1}^{4} \langle na_i/m \rangle = 1$ and $H^0(X, \Omega_X^1)_{(n)} = \langle 0 \rangle$. The rest of the corollary follows from Proposition [3.2.](#page-11-0)

We can now give the proof of Theorem [1.2.](#page-1-0)

Proof of Theorem [1](#page-1-0)*.*2*.* Let *X* be a curve of genus 4 with equation

$$
y^5 = x(x-1)(x-\xi) ,
$$

where $\xi \in k \backslash \mathbb{F}_p$ and $p = 2 \pmod{5}$. We first show that *X* has Ekedahl-Oort type [4, 2]. Then the case $p = -2 \pmod{5}$ is similar and hence we omit it. Write $p = 5r+2$ with $r \in \mathbb{Z}_{\geq 0}$. Since p is a prime, either $r = 0$ or r is an odd positive integer.

Let $Y_8 := H^1_{dR}(X)$ and $Y_4 := H^0(X, \Omega_X^1)$. By Corollary [3.4,](#page-12-0) we have $V(Y_8) = Y_4$ and $Y_4 = \langle \alpha_{2,0}, \alpha_{3,0}, \alpha_{4,0}, \alpha_{4,1} \rangle.$

Note that

$$
\mathcal{C}(\frac{1}{y^2} dx) = \mathcal{C}(\frac{y^{5r}}{y^{5r+2}} dx) = \frac{1}{y} \mathcal{C}((x(x-1)(x-\xi))^r dx) = 0.
$$

Then similarly $C(1/y^3 dx) = C((x(x-1)(x - \xi))^{4r+1} dx)/y^4$, $C(1/y^4 dx) = C((x(x - \xi))^{4r+1} dx)/y^4$ 1)($x - \xi$))^{2*r*} d*x*)/ y^2 and $C(x/y^4 dx) = C(x^{2r+1}((x-1)(x-\xi))^{2r} dx)/y^2$. One can show that the coefficient of $x^{p-1} = x^{5r+1}$ in $x^{2r+i}((x-1)(x-\xi))^{2r}$ cannot be simultaneously zero for $i = 0, 1$ and $\xi \in k \backslash \mathbb{F}_p$. Similarly, the coefficients of x^{p-1} and x^{2p-1} in $(x(x-1)(x-\xi))^{4r+1}$ are both not zero. Then $Y_2 := V(Y_4) = \langle \alpha_{2,0}, \gamma \alpha_{4,0} + \eta \alpha_{4,1} \rangle$ with $\gamma, \eta \in k^*$. Denote by $Y_6 = Y_2^{\perp}$ the orthogonal complement with respect to the pairing on $H_{dR}^1(X)$. Hence by a calculation using Corollary [3.4,](#page-12-0) we have

$$
Y_6 = \langle \alpha_{2,0}, \alpha_{3,0}, \alpha_{4,0}, \alpha_{4,1}, \beta_{3,0}, \lambda_0 \beta_{4,0} + \lambda_1 \beta_{4,1} \rangle,
$$

where $\lambda_i \in k^*$. This implies $Y_3 := V(Y_6) = \langle \alpha_{2,0}, \alpha_{4,0}, \alpha_{4,1} \rangle$ and $V(Y_3) = \langle \alpha_{2,0} \rangle$. We obtain that *X* has Ekedahl-Oort type [4*,* 2].

Now we show that $Z_{[4,3]}$ is non-empty in \mathcal{M}_4 for any odd prime *p* with $p \equiv$ ± 2 (mod 5).

Take now $m = 5$ and monodromy vector $a = (1, 1, 1, 2)$ in equation [\(15\)](#page-9-0) and consider a curve *X* given by equation

$$
y^5 = x(x - \xi)(x + \xi),
$$
\n(19)

where $\xi \in k^*$. For $p \neq 2, 5$, the curve is of genus 4. Moreover by Lemma [3.1,](#page-10-1) the vector space $H^0(X, \Omega_X^1)$ has a basis given by forms $y^2 dx, y^3 dx, y^4 dx$ and $xy^4 dx$. Now if $p > 2$ and $p \equiv 2 \pmod{5}$, then write $p = 5r + 2$ with r an odd positive integer and we consider the action of the Cartier operator \mathcal{C} . By a similar calculation as in the case $Z_{[4,2]}$, we have

$$
\mathcal{C}(\frac{\mathrm{d}x}{y^2})=\mathcal{C}(\frac{x\,\mathrm{d}x}{y^4})=0,\, \mathcal{C}(\frac{\mathrm{d}x}{y^3})=\eta_1\frac{x\,\mathrm{d}x}{y^4},\, \mathcal{C}(\frac{\mathrm{d}x}{y^4})=\eta_2\frac{\mathrm{d}x}{y^2}
$$

with some $\eta_1, \eta_2 \in k^*$. Then *X* has Ekedahl-Oort type [4,3] and $v(2) = 0$ with *v* the final type, cf. $[13, 16]$ $[13, 16]$. This implies X is supersingular, see $[1, \text{page 1379}]$. By a similar argument, one can show that for $p \equiv 3 \pmod{5}$, the curve has Ekedahl-Oort type [4*,* 3] and hence is supersingular.

Now we show the existence of superspecial curves of genus 4 in characteristic $p \equiv -1 \pmod{5}$. Again let *X* be the same curve given by equation [\(19\)](#page-14-0) and write $p = 5r + 4$ with *r* some positive integer. Then

$$
\mathcal{C}\left(\frac{\mathrm{d}x}{y^2}\right) = \mathcal{C}\left(\frac{y^{15r+10}}{y^{15r+10+2}}\,\mathrm{d}x\right) = \frac{1}{y^3}\mathcal{C}\left(x^{3r+2}(x^2-v^2)^{3r+2}\,\mathrm{d}x\right) = 0.
$$

By a similar calculation, we have $\mathcal{C}(\mathrm{d}x/y^3) = \mathcal{C}(x \mathrm{d}x/y^4) = \mathcal{C}(\mathrm{d}x/y^4) = 0$. Then $\mathcal{C}(H^0(X, \Omega^1_X)) = 0$ and *X* is superspecial.

4. An alternative proof of Kudo's result

In [\[8\]](#page-15-4), Kudo showed that there is a superspecial non-hyperelliptic curve of genus 4 over *k* for any odd prime $p \equiv 2 \pmod{3}$ by viewing such curves as an intersection of a quadric and a cubic in \mathbb{P}^3 . Using our approach, we can give an alternative proof of Kudo's result.

Proposition 4.1. *[\[8,](#page-15-4) Theorem* 3*.*1*] There exists a superspecial curve of genus* 4 *in characteristic* $p \equiv 2 \pmod{3}$.

Proof. Consider the monodromy vector $a = (1, 1, 1, 1, 1, 1)$. Let X be the smooth projective curve of genus 4 with equation

$$
y^3 = x(x - \xi)(x - \xi^3)(x - \xi^5)(x - \xi^7) = x^5 + x,
$$

where $\xi \in k$ is a primitive 8-th root of unity.

By Lemma [3.1,](#page-10-1) the vector space $H^0(X, \Omega_X^1)$ has a basis consisting of forms $1/y \, dx$, $1/y^2 dx, x/y^2 dx$ and $x^2/y^2 dx$. Write $p = 3r + 2$ with r an odd positive integer. Then

$$
\mathcal{C}(\frac{1}{y} dx) = \mathcal{C}(\frac{y^{6r+3}}{y^{6r+3+1}} dx) = \frac{1}{y^2} \mathcal{C}(x^{2r+1}(x^4+1)^{2r+1} dx).
$$

Since *r* is an odd integer, the coefficient of x^{np-1} in $x^{2r+1}(x^4+1)^{2r+1}$ for any $n \in \mathbb{Z}_{>0}$ is zero. Similarly, we have $\mathcal{C}(x^i dx/y^2) = 0$ for $i = 0, 1, 2$.

REFERENCES

- [1] C. Chai and F. Oort. Monodromy and irreducibility of leaves. *Ann. of Math. (2)*, 173(3):1359–1396, 2011.
- [2] T. Ekedahl and G. van der Geer. *Cycle Classes of the E-O Stratification on the Moduli of Abelian Varieties.* In: Algebra, Arithmetic, and Geometry, pages 567–636. Progr. Math., Volume 269. Birkhäuser Boston, Boston, 2009.
- [3] A. Elkin. The rank of the Cartier operator on cyclic covers of the projective line. *J. Algebra*, 327(1):1 – 12, 2011.
- [4] A. Elkin and R. Pries. Ekedahl-Oort strata of hyperelliptic curves in characteristic 2. *Algebra Number Theory*, 7(3):507–532, 2013.
- [5] S. Frei. *The a-Number of Hyperelliptic Curves.* In: Women in Numbers Europe II, pages 107–116. Springer International Publishing, Cham, 2018.
- [6] D. Glass and R. Pries. Hyperelliptic curves with prescribed p-torsion. *Manuscripta Math.*, 117(3):299–317, 2005.
- [7] B. Köck and J. Tait. On the de-Rham cohomology of hyperelliptic curves. *Res. Number Theory*, 4(2):Art. 19, 17, 2018.
- [8] M. Kudo. On the existence of superspecial nonhyperelliptic curves of genus 4. *ArXiv e-prints:* 1804*.*09063, April 2018.
- [9] W. Li, E. Mantovan, R. Pries, and Y. Tang. Newton Polygons Arising for Special Families of Cyclic Covers of the Projective Line. *ArXiv e-prints:* 1805*.*06914, May 2018.
- [10] W. Li, E. Mantovan, R. Pries, and Y. Tang. Newton polygons of cyclic covers of the projective line branched at three points. *ArXiv e-prints:* 1805*.*04598, May 2018.
- [11] B. Moonen. Special subvarieties arising from families of cyclic covers of the projective line. *Doc. Math.*, 15:793–819, 2010.
- [12] T. Oda. The first de Rham cohomology group and Dieudonné modules. *Ann. Sci. École Norm. Sup. (4)*, 2:63–135, 1969.
- [13] F. Oort. *A Stratification of a Moduli Space of Polarized Abelian Varieties in Positive Characteristic.* In: Moduli of Curves and Abelian Varieties: The Dutch Intercity Seminar on Moduli, pages 47–64. Vieweg+Teubner Verlag, Wiesbaden, 1999.
- [14] R. Pries. The *p*-torsion of curves with large *p*-rank. *Int. J. Number Theory*, 5(6):1103–1116, 2009.
- [15] J. Tait. *Group actions on differentials of curves and cohomology bases of hyperelliptic curves*. PhD thesis, University of Southampton, November 2014.
- [16] G. van der Geer. *Cycles on the Moduli Space of Abelian Varieties.* In: Moduli of Curves and Abelian Varieties: The Dutch Intercity Seminar on Moduli, pages 65–89. Vieweg+Teubner Verlag, Wiesbaden, 1999.