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EKEDAHL-OORT STRATA ON THE MODULI SPACE
OF CURVES OF GENUS FOUR

Z1JIAN ZHOU

ABSTRACT. We study the induced Ekedahl-Oort stratification on the moduli of
curves of genus 4 in positive characteristic.

1. INTRODUCTION

Let k be an algebraically closed field with char(k) = p > 0. Let A; ® k be the
moduli space (stack) of principally polarized abelian varieties of dimension g defined
over k and let M, ® k be the moduli space of (smooth projective) curves of genus g
defined over k. Ekedahl and Oort introduced a stratification on A, ® k consisting
of 29 strata, cf. [13, 2]. These strata are indexed by n-tuples p = [p, . .., i1, with
0<n<gand puy > pus >---> pu, > 0. The largest stratum is the locus of ordinary
abelian varieties corresponding to the empty n-tuple u = (). Their cycle classes have
been studied by [16].

Via the Torelli map 7: M, ® k = A, ® k we can pull back this stratification to
M, ® k and it is natural to ask what stratification this provides. Similarly, we can
ask for the induced stratification on the hyperelliptic locus H, ® k. We denote the
induced strata on M, ® k by Z,. We say a (smooth) curve has Ekedahl-Oort type
p if the corresponding point in My ® k lies in Z,.

Here we are interested in the existence of curves of genus 4 with given Ekedahl-Oort
type. By a curve we mean a smooth irreducible projective curve defined over k. For
g < 3, we know the situation for the induced Ekedahl-Oort stratification on M, ® k.
But for ¢ > 4 much less is known. Elkin and Pries [4] give a complete classification
for hyperelliptic curves when p = 2. Our first result describes this stratification on
H4 @ k with p = 3. In the following we write simply A, (resp. Mg, H,) for A, @ k
(resp. M, @ k, H, ® k). Recall that the indices p of the Ekedahl-Oort strata are
partially ordered by

= [, ) 20 =[U1,.. ., U]
ifn<mand pu; <v;fore=1,...,n.

Theorem 1.1. Let k be an algebraically closed field with char(k) =3. A smooth
hyperelliptic curve of genus 4 over k has a-number < 2. In particular, Z, N Hy is
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empty if p = [3,2,1]. If p % [3,2,1], the codimension of Z, N Hy in Ha equals the
expected codimension Y1 p;. Moreover, in the cases p = [4,1],[3,1],[3,2], [2,1] and
[1] the intersection Z,, N Hy is irreducible.

Part of Theorem 1.1 was known. Frei [5] proved that hyperelliptic curves in odd
characteristic cannot have a-number g — 1. Glass and Pries ([6, Theorem 1]) showed
that the intersection of H, with the locus V; of p-rank <[ has codimension g — [ in
characteristic p > 0. Pries ({14, Theorem 4.2]) showed that Zy N H, has dimension
5 for p > 3.

The following result shows that certain Ekedahl-Oort strata in My are not empty.

Theorem 1.2. Let k be an algebraically closed field of characteristic p. For any odd
prime p with p = £2 (mod 5), the loci Zju 9 and Zy g in My are non-empty. For any
prime p = —1(mod5), there exist superspecial curves of genus 4 in characteristic p.

To prove Theorem 1.2, we use cyclic covers of the projective line in positive char-
acteristic. Furthermore, we give an alternative but much shorter proof of a result of
Kudo [8] showing that there exists a superspecial curve of genus 4 in characteristic
p for all p with p = 2 (mod3). Related results on Newton polygons of cyclic covers
of the projective line and on the existence of curves with given Newton polygon can
be found in [9, 10].

2. PROOF OF THEOREM 1.1

Let X be a hyperelliptic curve of genus 4 defined over k with p = 3. Before giving
the proof of Theorem 1.1, we prove several propositions needed for Theorem 1.1 and
give a basis of the de Rham cohomology of a hyperelliptic curve of genus 4 defined
over k.

We first show that any smooth hyperelliptic curve of genus 4 has a-number at
most 2.

Proposition 2.1. A hyperelliptic curve of genus 4 in characteristic 3 has a-number
at most 2.

Proof. Any smooth hyperelliptic curve X can be written as y* = f(z) with f(z) =
39 ya;xt € k[x] and disc(f) # 0. By putting a branch point at 0 and by scaling we
may assume that a; = ag = 1 and

fx)=2" +aga® + -+ +agx® + 2 (1)

with a; € k for i = 2,...,8. As a basis of H*(X, QL) we choose w; = x'/ydz
for i = 0,...,3. Then the Cartier-Manin matrix H, i.e. the matrix of the Cartier
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operator acting on the holomorphic differentials with respect to a basis, of curve X is

a 1 0 0\

H— as a4 Az a2 (2)
ag ar ag 0as
0 0 1 oag

where H'/? = (hilj/g) it H = (h;j). Since rank(H) > 2, we have for the a-number

a=4—rank(H) < 2. O

Remark 2.2. Note that the map from the parameter space of the a; (i =2,...,8)
to the hyperelliptic locus has finite fibres. Indeed, if ¢ is an isomorphism between
two smooth hyperelliptic curves given by fi(z) = 37, a;2* and fo(z) = 39, bz’ as
in (1) that induces an isomorphism of P! fixing 0 and oo, then ¢ is given by scaling
x — ax and y — By. We obtain o®/3? = a/3? = 1 and hence o® =1, 32 = a.

We let Y be the open subset of affine space with coordinates (as, . .., ag) such that
disc(f) # 0. Denote by T, the locus of curves of genus g with a-number > a in
M, and by X the smooth projective hyperelliptic curve defined by the equation
y* = f(x) as in (1). Let H; be the Cartier-Manin matrix of the curve X;. In the
following we simply write X (resp. H) for X; (resp. Hy). Now we give a result
about the intersection H, N1, with a < 2.

Proposition 2.3. The locus of Hy N'T, with a < 2 is irreducible of codimension
ala+1)/2.

Proof. For a = 0, we consider the curve with equation y? = f(z) = 2% + ta® + x
defined over k where t is a primitive element in Fg. Then disc(f) = 2 # 0 and by
(2) we have rank(H) = 4. Hence there is a curve with a = 0 and note that H, is
irreducible of dimension 7. Then by semicontinuity the generic hyperelliptic curve is
ordinary and Ty N Hy is irreducible of dimension 7.

The condition @ = 1 means rank(H) = 3. We show that the locus in Y with
rank(H) = 3 is given by

(a8a6 — a5)(a2a4 — &5) + (ag — agag)(a2a7 — 0,8) =0.

Indeed if ay = ag = 0 and disc(f) # 0, then by Gauss reduction the rank of H is
equal to the rank of

0 100\
as 0 0 0
0 0 0 as
0 010
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Since we want rank(H) > 2 we must have a5 # 0. Then this implies rank(H) = 4
and the curve is ordinary.

Suppose one of as, ag is not zero; by symmetry we can assume ay # 0 and the rank
of H is equal to the rank of

as 1 0o o0\

0 aq4—as/as az ag
0 a7 — CLg/CLQ Qg 0as
0 0 1 as

We have det(H) = 0 as rank(H) = 3 and hence
(agag — as)(azay — as) + (ay — agag)(asar; —ag) = 0. (3)
Note that equation (3) can be rewritten as
azai + 2(asarag + asas + 2a0a4a6a8 + azag)as + azai + a2 + 2asagag = 0.

This is a 6-dimensional subspace of Y, which is irreducible. Also if we take ay = a; =
ag =1 and a; = 0 for i # 2, 7,8, then disc(f) = 2 # 0 and rank(H ) = 3. Hence there
is a curve with @ = 1 and by semicontinuity 77 N H, is irreducible of codimension 1.

For a = 2, we want to show that the locus in Y with a = 2 is given by ay = a5 =
ag = 0. Since we want rank(H) = 2 and the first and fourth row of H are linearly
independent, we have several situations to deal with: i) as = 0, ii) ag = 0 and i7)
ao0asg % 0.

For the first two cases, if the rank(H) = 2, then the second and third rows of H are
linear combinations of the first and fourth rows. Therefore we have ay = a5 = ag = 0.
For the third case, if asag # 0, let e; to be the i-th row of H, then with some
b,c,s,t € k we have

bei + cey = ey, sep +tey = e3.
This implies a3 = as/as, ay = as/as, ag = as/as, a; = ag/as and hence

f(x) = (22 + (as/as)*z + (ag/as)?)* (2® + agz® + (as/az)z)

which does not have distinct roots, a contradiction. Then we have ay = a5 = ag = 0,
which defines an irreducible sublocus in Y. Indeed, if we take a3 = 1,a; = 2 and
a; = 0 for i # 3,7, then disc(f) = 1 # 0 and rank(H) = 2. So we find a curve with
rank(H) = 2. Hence by semicontinuity 75 N H, is irreducible of codimension 3. [

We have seen that any hyperelliptic curve over k£ with a-number 2 is given by an
equation y*> = f(z) as in (1) with (ag,...,as) € Y and az = a5 = ag = 0. We will
now use the de Rham cohomology Hlp(X) for a curve X of genus g. Recall that
this is a vector space of dimension 2g provided with a non-degenerate pairing, cf.
[13, Section 12]. Now we consider the action of Verschiebung V' on the de Rham
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cohomology of a curve X given by equation (1) with a-number 2. First we give a
basis of the de Rham cohomology of a hyperelliptic curve with a-number 2. Let X
be a smooth irreducible complete curve over k with equation

y2:f:x9+a7x7—|—a6x6—|—a4:c4—|—a3x3+:c, a; €k, (4)

where the discriminant of f is non-zero. Let m : X — P! be the hyperelliptic
map. Take an open affine cover U = {Uy, Uy} with U; = 7~ 1(P! — {0}) and U, =
7 (P! — {oo}). By Section [12, Section 5|, the de Rham cohomology H},(X) can
be described as

HéR(X) - ZéR(u)/BcllR(Z/O
with chlR(u) = {(t,wl,w2)| t e OX(Ul N UQ),CUi S Q%((UZ),dt = W — WQ} and
BéR(U) = {(tl — t2,dt1,dt2)| t; € Ox(UZ)} Then V(HC%R(X)) = HO(X, Q%() and V
coincides with the Cartier operator on H°(X, Q).

For 1 <i <4, put s;(z) = xf'(z) — 2if(x) with f'(z) the formal derivative of f(z)
and write s;(z) = s7'(x) 4+ s7%(x) with s7'(z) the sum of monomials of degree < i.
By Kock and Tait [7], Hiz(X) has a basis with respect to {U;, Uy} consisting of the
following residue classes with representatives in Z},(X):

Y %‘(@d _Cbi(x)

Vi [(Iz’ sz—i-ly ’ sz—i-lydx)]’ L ) ) (5)
J J

A = [0, =de, Zda)], j=0,...,3, (6)
Y )

where ;(z) = s7'(x) and ¢;(z) = s7(z). Also we have (y;,\;) #0if j =i — 1 and
(7, Aj) = 0 otherwise. Now we give the action of Verschiebung.

Lemma 2.4. Let X be a smooth hyperelliptic curve over k with equation (4). Let
{Uy1,Us} be a covering of X as above. Then for the basis of Hip(X) given by (5) and
(6) , we have V(XAg) =V (A3) =V (y2) = V(y3) =0 and

V(M) = a%/g)\Q + alll/g)‘l + Ao, V(A2) = A3 + aé/g)w + Clé/g)\l ;
V() = det ag/*As +aY A0, V() = ai* X + (1= (a3a7) " + (aaae) )\ + agl* Do
Proof. Since V coincides with the Cartier operator on H°(X, QL) we have V (hdz) =

(—d%h/dz?)Y?dz with h € k(z). We will compute V (7;) and the rest of the lemma
will follow easily by using a similar argument. Note that we always have for 1 <i <4

Yi(z)

2aitly

dz) = V(=2 g4

2ritly

Vi
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as0=V(d(y/z")) = V(%dx)—‘/(—%dz). So it suffices to compute V(%dz)
instead of computing V' (;). For i = 1, we have

bie) 1 d(d(L)/da)
2:£1+1yd$) N V(xydz) = dx
Note that df'(x)/dxz = 0 and by a calculation we have
d(d(5;)/dx) ¥ + aga® + aza’
dw N x3y3 '
Hence V(¢ (z)/ (22 y)dz) = (22/y + ai*z/y + ay/* /y) dz and we have V(1) =
Ao + a A1 + ai* o O

V( )3 Az .

Now we give a proof of Theorem 1.1.

Proof of Theorem 1.1. The theorem holds for cases ;1 = [0] and [1] by Proposition 2.3
where we showed that T, N H, is irreducible with codimension a(a + 1)/2 for a < 2.
Also T35 NH4 is empty by Proposition 2.1, hence Z, N H4 = @ for any p > [3,2,1].

We only need to prove that the theorem is true for the remaining nine Ekedahl-
Oort strata, that is six strata consisting of curves with a-number 2 and three strata
consisting of curves with a-number 1.

As an outline of the proof, we first show that for u = [2,1],[3,1], [3, 2], [4, 1], [4, 2]
and (4, 3] the codimension of Z, NH,4 in H4 equals the expected codimension »7;"; y;
with p = [p1,..., ). For p = [2],[3] and [4], combined with the fact V; N H, is
non-empty of codimension 4 — [ in H,4 for | = 0,1,2 by Glass and Pries [6, Theo-
rem 1|, the intersection Z, N H4 also has the expected codimension. In the cases
p=12,1],[3,1],[3, 2], [4, 1], [4, 2] and [4, 3], a curve with Ekedahl-Oort type p can be
written as equation (4) by the proof of Proposition 2.3.

Throughout the proof, denote by X a smooth hyperelliptic curve given by equation
y?> = f(z) as in (4) with Ekedahl-Oort type u. Denote

}/2 = V(HO(Xa Qﬁ()) = V(<)\0a SRR )\3>) and }/6 = YV2J_

with respect to the paring (,) on Hip(X). Put v : {0,1,...,8} — {0,1,...,4}
the final type of X. From Lemma 2.4 above, we know that Y5 is a 2-dimensional
subspace of H°(X, Q%) generated by V(A1) and V(Ap).

Let 1 = [2,1]. By Proposition 2.3 the intersection T N #H, is irreducible of dimen-
sion 4. For any curve X corresponding to a point in H, N75, we have by Lemma 2.4

V(Ys) = (VE\), V2(A)) = (V(adXo 4+ ab* M + Xo), VA + ai* As + a3 A1)
= (a7"V (X)) + ai* V(A1) 0"V (ho) + a "V (N)) . (7)
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We consider the curve associated to (as, as, ag, a7) = (1,0,0,2). Then disc(f) =1 # 0.
Moreover, V" (Y,) = Y3 for any n € Z~(. Hence the semi-simple rank of V' acting on
HO(X, Q%) is 2 and the Ekedahl-Oort type of this curve is [2,1]. Since the p-rank
can only decrease under specialization, the generic point of H,N75 has Ekedahl-Oort
type [2, 1] and Zpp 1) N Hy is irreducible of dimension 4.

Now we move to the case u = [3,1]. We show that a curve with Ekedahl-Oort type
[3,1] has equation (4) with araz = agas and disc(f) = aga? + agay +1 # 0. Then the
irreducibility and dimension will follow naturally.

Suppose X has Ekedahl-Oort type [3,1], then X is given by equation (4) with
dim(V(Ys)) = 1. Then by Lemma 2.4 and relation (7), we have azar; = ayas.

Put Y3 := V(Ys) then we have

dimY; =v(6) =v(2)+4—-2=3

by the properties of the final type v. If we take (as, a4, as,a7) = (0,1,0,0), then
disc(f) = 1 # 0. Note that V(71) = A2 and V(74) = A2+ Ay, hence Yo = (A3, A1+ o)
by the Lemma 2.4. Furthermore, it is easy to check that V2(\y) = 0 and V*()\;) = A;.
Then we get v(1) = 1. Also there exists an element v = Y% | b;y; with b; € k in
Ys such that b; # 0, otherwise it contradicts that (v, \g + A1) = 0. Thus b}/g)\Q =
V(v) € Y3 and by simple computation we have dim V' (Y3) = 2. Then there is a
curve with Ekedahl-Oort type [3,1] and by semicontinuity we have the Z 1 N Hy is
irreducible of dimension 3.

Let p = [3, 2], we show that the smooth hyperelliptic curve X with Ekedahl-Oort

type [3,2] can be written as
v’ = f(z) = 2" + arz” + a’aza® + aga’ + oPagr® + 2 (8)

with ay, a7, a € k* satisfying a®a2+aar; = ay+aa? and disc(f) = (aga + aza® + 1) # 0.

Indeed, if the curve X is given by equation (4) with Ekedahl-Oort type [3, 2], then
we have v(2) = 1 and v(1) = 1. By Lemma 2.4 and relation (7), the condition
v(2) = 1 implies aza; = aqag. Also Yg is generated by A; for i = 0,...,3 and
Z?:l bjf)/j with bj € k and <Z?:1 bj’}/j, }/2> =0.

If a; = 0, by aza; = agag we have (i) ag = 0 or (ii) ay = 0.

If we suppose a; = ag = 0, then Y5 = <ai/3A1 + Ao, A3 +a§/3>\1> and Yj is generated
by A; and Z?Zl b;7y; with

by + byay® = byas® + by =0, by, ... by € k. (9)

Write Y3 = V(Ys). If ay = 0, then we have V2(Y3) = (0), a contradiction since X
has Ekedahl-Oort type [3,2]. Now suppose ay # 0, then for all by, by satisfying (9)
we have

a
V(Ye) = Ys = (Ya, (1 +aiay/") Ao + <a—j>1/9A1 + a3 \o)) -
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2/9 1/9 2

Since v(3) = 1, we have 1 + a; = 0, which implies ala? = —1. In this case we

have disc(f) = a3a§+1=0, a contradiction

3 1/3

Now if a7 = a4 = 0, Ys is generated by \; and ZJ 1 bjy; with by = bgaé/ bs +

by = 0. By Lemma 2.4 we have V(v,) = A\ + a6 )\0, hence
Yy =V (Ys) = (Yo, Vi(baya + - + baya)) = (Y2, V(7a))
= Doy Az + a*Ag + ai* A1, A+ ag P Ao)
Therefore we have V(Y3;) = Y3, a contradiction with v(3) = 1.

Now assume a; # 0 and put a = (ag/ay)*/®. Then we have a3 = o®ay by relation
aras = agay, and

Yé < 1/3)\2 + al/g)\l + )\0, )\3 + aa7 )\2 + Oéal/g)\1> . (10)
By a similar argument to the above, Yj is generated by \; and E?:l bjy; with
(351 bjvj, Y2) = 0, this implies
by — aby = bga7 + 62&1/3 + b = O,bz ck.
Then Y; = V(Ys) = (Ya, V(b1y1 + bsy4)) and this equals (Ys, &) with
¢ =(1+aBa)*)do + (aad” + A + (0 Pa® + aMPal*)N) .
Since X has Ekedahl-Oort type p = [3,2], we have v(3) = 1. Then V((¢)) =
V(Y,) = V(a%/g)\g + ai/g)\l) by relation (10) and Lemma 2.4. Thus we have
cwtg/3 + (aay)V? = ai/g + al/gai/g
and hence
a2 + aar = ay + aaj . (11)
If o = 0, by equality (11) we have as = 0 and in equation (8) we have f = 2%4-a72"+2z
and one can easily show that v(1) = 0, a contradiction as X has Ekedahl-Oort type
p = [3,2]. By asimilar argument we can prove ay # 0. If we take (a7, o, a4) = (2,2,1)
in equation (8), we have disc(f) = 2 # 0. Then there is a curve with Ekedahl-Oort
type [3,2] and by semicontinuity we have Zj3 9 N H, is irreducible of dimension 2.

Let pn = [4,1]. We show that any smooth hyperelliptic curve with Ekedahl-Oort
type [4,1] can be written as

y2 = f(x) = 22+ arx” + alara® — alazat — at?ard + (12)

with a7, € k* and disc(f) = 2a'%y; + a?a; + 1 # 0. Then it will follow that
Za) N Hy is irreducible of dimension 2. Indeed, if X is given by equation (4) with
Ekedahl-Oort type [4,1], then v(2) = 1,v(1) = 0 and by Lemma 2.4 and relation (7)
we have azar = aqag .
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a) : If a; = 0, we have ag = 0 or a4 = 0. Assume ag = ay = 0, then by relation (7)
we have V(Ys) = (V()\1)). By Lemma 2.4, we have ay, = 0 since the p-rank of X is
zero. But then X has Ekedahl-Oort type [4,2] by a similar argument with Y5 = Y3+
and Y3 = V(Y5) as in case p = [3,2]. Now suppose a; = a4 = 0. We have ag = 0
since X has p-rank 0. Then again X has Ekedahl-Oort type [4, 2].

b) : Now assume ay # 0. Put a = (ag/a7)"/? and we have a3 = a’a, by equation
araz = agay. Write Y1 = V(Y3) = (a; 1o V(A2) + a4/9V(>\1)). Suppose we have
V™(Yy) = 0 and V™ 1Y) # 0 for some m € Z~g. For 0 < i < m, put Vi(YV;) =
(g:( Moy A3) + cidg + diAq) with g;(z,y) € k[z,y]. Then we have

& = (et + dar”, di = (acif + difY)ai” (13)
for 1 <4 <m. Now V(V™ 1(Y;)) = 0. Therefore by Lemma 2.4 we have
V(Y1) = V({em-1A2 + dim—1A1 + gm-1(Ao, A3))) = 0

Hence we have ¢, = d,,, = 0 as V((A\o, A\3)) = 0 by Lemma 2. 4 Thus we obtain
(e, +d? )l = (ac? | + dY2)ay® = 0, which implies ac/®, + di?
az 7& O Using the inductlve assumptlon (13) again, we have

+d1/3 _ (( 3 1/3+&1/3)(a1/3cm—2+dm—2))1/3:0-

1 =0as
1/3

Since V™L(Y1) # 0, we have a'/3¢y,_g + dp_s # 0 and hence (o?ar’® + a)*) = 0.
This implies a, = —a’a7 and a3 = o’ay = —a'a7. Now we compute Y3 = V/(Yg)
and this equals

(Ya, (1 — a2y + (aadd? + a®)A1 + (Ao, As))
for some g(z,y) € k[z,y]. Combined with
Ya = (a¥* (A — a®A1) + Ao, Az + aa 2 (s — a®Ay))
= (A3 — aro, @ * (s — &A1) + Ao)
we have v(3) =1 if
(=1 +a'*ar?) = (aa7” + '),

this is equivalent to a®(a'®—1)a; = a’+a. Otherwise X has Ekedahl-Oort type [4, 1]
for general pair (a7, ) € AZ. Hence we have the desired conclusion for p = [4,1].
Moreover if in equation (12) we take (a7, a) = (v'°,v%) with v a primitive element in
[Fy7, then disc(f) = v?! # 0 and there is a curve with equation (12) has Ekedahl-Oort
type associated to p = [4,1]. Hence by semicontinuity we have proved the theorem
is true for p = [4, 1].
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For = [4, 2], from the discussion in the case [4, 1] above, a hyperelliptic curve X
with Ekedahl-Oort type [4,2] is either given by equation (4) with a; = ag = a4 =0,
or it can be written as

12

y* = f(x) = 2° + ara” + aPaz2® — oPazat — aard + 2

with a7, o € k, a; # 0 satisfying o®(a'®—1)a; = a”+a and disc(f) # 0. Moreover,the
curve with equation y? = 2% + 27 4+ z has disc(f) = 1 # 0 and Ekedahl-Oort type
p = [4,2]. Hence Zj, 9 N Hy4 is non-empty of dimension 1.

For u = [4, 3], a curve X with Ekedahl-Oort type [4, 3] is given by (4) with V(Y3) =
(0). Then by Lemma 2.4 we have a; = ag = a4 = ag = 0. This implies X is
isomorphic to the curve with equation y? = 2° + 2. Now we have proved the theorem
for u =12,1],[3,1],[3,2], [4, 1], [4, 2] and [4, 3]. Also for p = [2], [3] and [4], by Glass
and Pries [6, Theorem 1] the intersection V; N ‘H, has codimension 4 — [ in H,4 for
[ =0,1,2. Since we have showed that Zj5 1) (resp. Zj31) and Z1)) intersects H, with
codimension 3 (resp. 4 and 5), it follows that Z, NH4 has the expected codimension
for p = [2],[3] and [4]. O

3. PROOF OF THEOREM 1.2

We prove Theorem 1.2 using cyclic covers of the projective line in characteristic
p > 0. First we introduce some general facts on cyclic covers of the projective line
and give a basis of the first de Rham cohomology for them.

Let k£ be an algebraically closed field of characteristic p > 0. We fix an integer
m > 2 with p t m. Write a = (aq,...,ay) for an N-tuple of positive integers with
N > 3. We say a is a monodromy vector of length N if

N
> a; =0 (mod m), ged(a;,m)=1,i=1,...,N. (14)
i=1
There is an action of (Z/mZ)* x &y on the set of monodromy vectors of length N,
where the symmetric group &y acts by permutation of indices and (Z/mZ)* acts by
multiplication on vectors. Two monodromy vectors a and o’ are called equivalent if
they are in the same orbit.

Let Py,..., Py be the distinct points in P! and = be a coordinate on P!. By a
change of coordinates, we may assume P; = 0 and Py = co. Denote by x — &; with
& € k the local parameter of P; (§; = 0) for 1 <i < N — 1. We consider a smooth
projective curve X given by equation

y" = falr) = 5 (@ — &)™ (15)

Note that the isomorphism class of the curve depends only on the orbit of monodromy
vector a. For N = 3, the supersingularity of cyclic covers of the projective line has
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been studied and examples of supersingular curves was given for 4 < g < 11, see
[10]. In [3], Elkin gave a bound for the a-number of X for m > 2 and N > 3.

A curve defined by equation (15) is equipped with a Z/mZ action generated by
€: (z,y) — (z,(ly) with ¢ € k a primitive m-th root of unity. This € also induces
an automorphism on H°(X,Q%). Then we can decompose

m—1
HO(X, Q%) = D H(X, Q%) m) , (16)
n=1

where H(X, Q% )m) = {w € H(X,Qk) | €(w) = ("w} is the ("-eigenspace of
HO(X, Q). Denote by (z) := z — | z| the fractional part of z for any z € R. Put

b(i,n) = [(nas)m], wot = y " TV (2 — &)1 da.

Then (see for example [11]) the space H°(X, Q%)) is generated by w,; with 0 <
| < -2+ 3% (na;/m) and

N
dp = dim H'(X, Q%)) = -1+ > _(na;/m).
i=1

By the Hurwitz formula, the curve has genus g = 1+ ((N —2)m — N)/2.

Now we introduce a basis of de Rham cohomology of a curve X given by equation
(15). Fix a monodromy vector a together with an ordered N-tuple (£, ...,&y). Let
7 : X — P! be the Z/mZ-cover. Put U; = 7~ }(P! — {0}) and Uy = 7~ 1(P! — {o0}).
For the open affine cover U = {U,, U, }, we consider the de Rham cohomology H},(X)
similar to the hyperelliptic case in Section 2 above, i.e.

Hap(X) = ZipU)/BipU)

with chlR(u) = {(t,wl,wQ)|t € Ox(Ulng),wi € Q}X(UZ),dt = wl—wg} and BéR(U) =
{(tl — 19, dtl, dt2)|tz S Ox(UZ)}

By (16), the vector space H°(X, Q%) is generated by w,; with 1 < n < m —1
and 0 <[ < -2+ ¥ (na;/m). Moreover for the basis of H'(X,Ox), we have the
following result.

Lemma 3.1. Let K(X) be the function field of X. For all integers n,l such that
1<n<m—1and0 <1< -2+ (na;/m), the elements f,; = y"o = N (2 —
&) € K(X) are regular on Uy N Uy and their residue classes [fn;] form a basis
of H'(X, Ox) with respect to {Uy, Uy }.

Proof. It suffices to show that the f,,; are regular on U; NU; for all integers n, [ such
that w,; € H°(X,Q%). One can check the linear independence by checking the order
of fn; at oo.
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Note that for P, with i =2,..., N — 1, we have

n

’ )
xl+1H£\i—11(x — &)bEn)

ordp, ( =nordp,(y) — b(i,n) ordp,(x — &)

na;

|>0.

= na; —mb(i,n) = na; —m|
m

Then f,; is regular on UyNUsy for 1 <n <m—1and 0 <1 < -2+ (na;/m). O
Put s,(x) := I ! (2 — &)™) Denote by h,(x) the polynomial in k[x] such that
nwse(z) fo(x) + (L +1)s4(x) + w54(2)) fa(2)
sa(x)
/

where f!(z) (resp. s, (z)) is the formal derivative of f,(z) (resp. $sq.(z)). In the
following we write simply s(x) (resp. f(x), h(x)) for s.(x) (resp. fu(z), hq(z)).
Then we have the following result.

= I (2 = &)™ "0 hy ()

Proposition 3.2. Let X be a smooth projective curve over k given by equation (15).
Then H}p(X) has a basis with respect to U = {Uy,Us} consisting of the following
residue classes with representatives in Zyn(U):

N
Qpl = [(Oawn,lawn,l)L 1 S n S m — 1) 0 S [ S -2+ Z(na’z/m> ; (17)
i=1
V(@) G ()t
)} (18)

where t(x) = N7 (2 — &)% G~ and ¢(x) + ¢(x) = h(z) with ¥(x) the sum of
monomials of degree <[+ 1.

Proof. We use the exact sequence
0— HY(X,Q%) = Hjp(X) — H'Y(X,0x) = 0.

The elements «y,; are images of w,; under the canonical map.

By Lemma 3.1, we have [f,,;] € H'(X, Ox) for any n, [ such that w,; € H*(X, Q}).
To prove the theorem, we need to show that the elements 3, ; are well defined and are
mapped to the element [f,,;] in H*(X, Ox). We first show that ¢, ;(z)/(z"2y™™) €
O(U,) and ¢, y(z)/ (2! 2y™™") € O(Us). Next we show

af,— ) oule) |

xl+2ym—n xl+2ym—n

and then we will have the desired conclusion.
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Note that for any P, with i =1,..., N — 1, we have
Hi\i—ll(x _ é‘i)ai—b(’iﬂl)—l
ym—n

mJ—l)—ai(m—n)ij—l:m(m

ordpl(yt( ?) dz) = ordp,( ) + ordp, (dx)

na; na;

:m(a'z_|_ >_1>0>

since ged(a;, m) = 1. Hence

l+2ym n

ordp, (QSM( vt )d:z)) > ordpi(;iz_)n dz) >0

and ¢, (z)t(z)/(zF2y™")dx is regular at P; for i = 2,..., N — 1. By a similar
argument, 1, ;(z)t(z)/(z"T2y™")dx is also regular at P, for i = 2,..., N — 1. For
P, =0, we have

Pn1(2)E(2) t(x)
ordp, (—5—— - —dz) > ordpl(W dz) >0,
since all the monomials of ¢, ;(z) has degree > [ + 2. Then the residue class of
the element ¢, ,(z)t(z)/(x"2y™ ")dz is regular on U,. For Py = oo, by a similar
calculation we have
21t (z)
xl+2ym—n

ordp, (wnl( ) )dx) > ordp, (

l+2ym n

dz) > 0.

Let n, [ be integers such that w,; € H°(X, Q). Then
_ y" . nas(x)f'(z) + ((+ D)s(z) + 25'(2)) f(z)
d(fne) = (xl—l—ls(x)) 2252 (z)ymn dw

_ Hahle) | t@)ule) | )o@

xl+2ym—n xl+2ym—n Il+2ym n

O

Remark 3.3. The pairing ( , ) for this basis is as follows: (o, j,, Bijo) # 0 if
(ila,jl) = (ig,jg) and <O‘i1,j1762'2,j2> = 0 otherwise. Indeed, for (ila,jl) = (ig,jg) we
have ord«(1/x dx) = —1 and hence (i, j,, Bi,.j,) # 0. For the other cases, the proof
is similar to the proof of [15, Theorem 4.2.1].

Now for p =2 and N = 4, we have the following

Corollary 3.4. Let k be an algebraically closed field of characteristic p and a be a
monodromy vector satisfying relation (14) with a = (1,1,1,m —3). Let X be a curve
of genus m — 1 over k given by equation

y" =z = 1)(r =9),
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where £ # 0,1 € k. Then Hlp(X) has a basis with respect to U = {Uy, Uy} consisting
of the following residue classes with representatives in Zip(U):

1 1 2
ai,oz[(o,—.dx,—.dx)],%<¢gm—1,aj1:[(o,ﬁjdx,idx)], o j<m—1,
y* ' ’ Yy

Yy yJ 3
' 1
5i,0:[(y_> g_.dz,—aj+(€_+ )dz)], i even and <i<m-—1,
T xym™t ymt 3
' 1
Bio = [(%,0, —(z:_i>da:)], 1 odd and % <i<m-—1,

J 2
Bii = [(%,0,0)], j even and ?m <j<m-—1,

J 1
y—2, %dl’, -
xe xey™I

2
Bia = [ dz)], j odd and?m<j§m—1,

ym
Proof. Note that a = (a1, as,a3,a4) = (1,1,1,m — 3). Then by definition b(i,n) =
(na;/m) = 0 forany 1 < n < m—1and 1 < i < 3. Moreover, the differential
form w,; = y~"z! dz is holomorphic for 1 < n < m — 1 if and only if 0 < | <
—2+ 3¢ (na;/m) < —2+3=1. If 0 < n < m/3, then 3}, (na;/m) = 1 and
H(X, Q%)@ = (0). The rest of the corollary follows from Proposition 3.2. O

We can now give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let X be a curve of genus 4 with equation
y’ =@ —1)(@-§),

where ¢ € kE\F, and p = 2 (modb5). We first show that X has Ekedahl-Oort type
[4,2]. Then the case p = —2 (mod5) is similar and hence we omit it. Write p = 5r+2
with r € Z>. Since p is a prime, either 7 = 0 or 7 is an odd positive integer.

Let Ys := HJp(X) and Y, := H°(X,Qk). By Corollary 3.4, we have V(Y3) = Y}
and Y, = (az,o, Q3 0, 040, a4,1>-

Note that

1 Y 1 ,
C(=dx) = C(y5r+2 dz) = QC((x(:c —1)(x—¢))"dz) =0.

Then similarly C(1/y*dz) = C((z(x — 1)(z — &) dz) /y*,C(1/y* dx) = C((x(x —
1) (z—&))*"dz)/y? and C(x/y* dz) = C(2* T ((x —1)(z —&))* dx)/y*. One can show
that the coefficient of zP~1 = 25! in 2%+ ((z—1)(x—&))?" cannot be simultaneously
zero for i = 0,1 and & € k\F,. Similarly, the coefficients of z7~! and z*~! in
(z(z — 1)(x — £))* ! are both not zero. Then Y; := V(Y}) = (g0, Yu0 + ntay)
with 7,7 € k*. Denote by Ys = Y5+ the orthogonal complement with respect to the
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pairing on H},(X). Hence by a calculation using Corollary 3.4, we have

Y = <Oé2,0, 30,040,041, 53,0, )\054,0 + )\154,1> )

where \; € k*. This implies Y3 := V(Yg) = (a20, 0, as1) and V(Y3) = (azg). We
obtain that X has Ekedahl-Oort type [4,2].

Now we show that Zj, 3 is non-empty in M, for any odd prime p with p =
+2(mod5).

Take now m = 5 and monodromy vector ¢ = (1,1,1,2) in equation (15) and
consider a curve X given by equation

Y’ =x(r =&z +§), (19)

where £ € k*. For p # 2,5, the curve is of genus 4. Moreover by Lemma 3.1, the
vector space H(X,Q%) has a basis given by forms y?dz,y*dz,y*dz and zy*dx.
Now if p > 2 and p = 2(mod 5), then write p = 5r + 2 with r an odd positive integer
and we consider the action of the Cartier operator C. By a similar calculation as in
the case Zj 2, we have

dx xdx dx xdx dx dx
?) = C(?) =0, C(?) = C(E) =g
with some 7,1, € k*. Then X has Ekedahl-Oort type [4,3] and v(2) = 0 with v
the final type, cf. [13, 16]. This implies X is supersingular, see [1, page 1379]. By a
similar argument, one can show that for p = 3(mod5), the curve has Ekedahl-Oort
type [4,3] and hence is supersingular.

Now we show the existence of superspecial curves of genus 4 in characteristic
p = —1(modb5). Again let X be the same curve given by equation (19) and write
p = 5r + 4 with 7 some positive integer. Then

C(

dx y15r+10 1 , .
C(?) = (W d[lf) = EC(ZE?’ +2(ZI§'2 — 'U2)3 +2 dl’) =0.
By a similar calculation, we have C(dz/y3) = C(zdz/y*) = C(dz/y*) = 0. Then
C(H°(X,9Q%)) =0 and X is superspecial. O

4. AN ALTERNATIVE PROOF OF KUDO’S RESULT

In [8], Kudo showed that there is a superspecial non-hyperelliptic curve of genus
4 over k for any odd prime p = 2 (mod 3) by viewing such curves as an intersection
of a quadric and a cubic in P?. Using our approach, we can give an alternative proof
of Kudo’s result.

Proposition 4.1. [8, Theorem 3.1] There exists a superspecial curve of genus 4 in
characteristic p = 2 (mod 3).
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Proof. Consider the monodromy vector a = (1,1,1,1,1,1). Let X be the smooth
projective curve of genus 4 with equation

v = - - &)@ - )z -¢)=2"+u,

where £ € k is a primitive 8-th root of unity.
By Lemma 3.1, the vector space H°(X, %) has a basis consisting of forms 1/y dx,
1/y?dx, x/y* dz and 2?/y* dz. Write p = 3r+2 with r an odd positive integer. Then

1 yorts Lo oriig 4y qy2rtt
Since r is an odd integer, the coefficient of z"~! in 2%+ (z* 4 1)?"*! for any n € Z-
is zero. Similarly, we have C(z*dxz/y*) =0 for i = 0,1, 2. O
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