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EXTENDING MEROMORPHIC CONNECTIONS TO

COADMISSIBLE ÙD-MODULES

THOMAS BITOUN AND ANDREAS BODE

Abstract. We investigate when a meromorphic connection on a smooth rigid

analytic variety X gives rise to a coadmissible ÙDX -module, and show that this
is always the case when the roots of the corresponding b-functions are all of
positive type.
We also use this theory to give an example of an integrable connection on the
punctured unit disk whose pushforward is not a coadmissible module.

1. Introduction

Let K be a complete nonarchimedean field with non-trivial valuation, of char-

acteristic zero. The study of ÙD-modules on rigid analytic K-varieties was initiated
by Ardakov–Wadsley in [4], [5], see also [1], [6] for further results. In those papers,
the notion of coadmissibility is investigated as the natural analogue of coherence in
the classical theory.

Developing a notion of holonomicity turns out to be more subtle: there is cur-
rently no satisfactory theory of characteristic varieties in the rigid analytic setting,
and modules satisfying the familiar condition of the vanishing of certain Ext groups
(called ‘weakly holonomic’ modules in Ardakov’s Oberwolfach Report [2]) still might
display some undesirable properties (infinite length, a direct image or inverse image

which is not even coadmissible). A study of weakly holonomic ÙD-modules, their
behaviour under operations and some pathologies is presented in [3] by Ardakov,
Wadsley and the second author.

In this paper, we show that the notion of weakly holonomic ÙD-module cannot
be refined to give a more suitable category without losing some integrable connec-
tions: we present an example of an integrable connection on the punctured unit
disk whose direct image is not coadmissible.
We thus answer a question of Ardakov in [2] in the negative.

Theorem 1.1. Let X = SpK〈x〉, j : U → X the embedding of U = X \ {0}, and

write ∂ = d
dx . Let Mλ = ÙDU/ÙDU (λ− x∂) = OUx

λ for some λ ∈ K of type zero.

Then j∗Mλ is not a coadmissible ÙDX-module.

We will discuss the notion of type, taken from [8, Definition 13.1.1], in section 3
of this paper, and also give an explicit example of a type zero number (for which
we thank Konstantin Ardakov and Arthur-César Le Bras).
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2 THOMAS BITOUN AND ANDREAS BODE

We note that the literature usually highlights differences between scalars of type 1
and those of type less than 1 (p-adic Liouville numbers), whereas in our situation
the special role of type zero numbers (which one might think of as ‘extremely Li-

ouville’ numbers) is owed to the specific convergence conditions in ÙD.

Throughout the paper we adopt the following, more general framework. Let X =
SpA be a smooth affinoid K-variety with free tangent sheaf and let

Z = {f = 0} ⊂ X

be a hypersurface. Let OX(∗Z) denote the sheaf of meromorphic functions with
singularities along Z, so that e.g. OX(∗Z)(X) = A[f−1]. We consider a mero-
morphic connection N on X with singularities along Z, by which we mean a
OX(∗Z)⊗OX

DX -module which is coherent over OX(∗Z). Writing again j : U → X
for the embedding of the complement of Z, we can view the restrictionM = N|U
as an integrable connection on U , and ask under which conditions j∗M is a coad-

missible ÙDX -module.
Considering global sections, we have a D(X)[f−1]-module N = N (X) which is

finitely generated over A[f−1], and we are studying the ÙD(X)-module M(U) =
ÙD(U)⊗D(X)[f−1] N .
The theory of b-functions (see [9]) ensures that N is finitely presented over D(X),

so that certainly ÙN = ÙD(X)⊗D(X) N is always coadmissible.
Viewing these two tensor products as suitable completions of N , we give several
equivalent conditions relating the coadmissibility of j∗M to properties of the canon-
ical morphism

ÙN = ÙD(X)⊗D(X) N → ÙD(U)⊗D(X)[f−1] N =M(U).

One sufficient condition is clearly that the two completions are actually isomorphic,
and this turns out to be always the case if all the roots of the corresponding b-
functions are of positive type (see Theorem 4.4).

Theorem 1.2. Let m1, . . . ,mk be a finite generating set of N (X) viewed as an
A[f−1]-module, and let b1, . . . , bk denote the corresponding b-functions from [9,
Théorème 3.1.1]. If all roots of bi (in an algebraic closure of K) are of positive
type for each i, then the natural morphism

ÙD(X)⊗D(X) N (X)→M(U)

is an isomorphism, and j∗M is a coadmissible ÙDX-module.

We remark that the assumption that X is an affinoid with free tangent sheaf is
only used to apply [9, Théorème 3.1.1] directly to X . If X is an arbitrary smooth
rigid analytic K-variety, we can pass to a suitable affinoid covering (Xi) to obtain
an analogue of Theorem 1.2, with the condition on the roots of b-functions imposed
for each Xi.

We conclude by considering the explicit case of Mλ = OUx
λ on the punctured

unit disk in section 5. In this case, the natural choice of b-function has root λ
(or an integral shift of it), and the sufficient condition above turns out to be also
necessary, as we show in Theorem 5.2.
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Theorem 1.3. Let j : U → X be the embedding of the punctured unit disk. Then

j∗Mλ is a coadmissible ÙDX-module if and only if λ is of positive type.

We thus establish the examples in Theorem 1.1.

This paper has two appendices: in Appendix A, we discuss elementary properties
of completed tensor products for locally convex topological modules. In particu-
lar, we show that Ardakov–Wadsley’s coadmissible tensor product “⊗ agrees with
the completed tensor product when coadmissible modules are equipped with their
canonical Fréchet topology.
While most results in this appendix are probably well-known to experts, we could
not find a reference in the required level of generality.

In Appendix B, we show that our definition of positive type (Definition 3.1) is
consistent with the theory of type in the literature (e.g. [8, Definition 13.1.1]).

We would like to thank Konstantin Ardakov for his suggestions and for his contin-
ued interest in this work. We also thank Arthur-César Le Bras for his example of
a type zero number.

2. General setup

We briefly introduce our geometric setup and recall some terminology from [4].

2.1. Spaces and sheaves. Let R be the valuation ring of K consisting of elements
with norm ≤ 1, and let π ∈ R \ {0} with |π| < 1.
Let X = SpA be a smooth affinoid K-variety, f ∈ A non-constant, Z = {x ∈ X :
|f(x)| = 0}, U = X \ Z. Let j : U → X denote the open embedding.
For simplicity, we will assume that the tangent sheaf of X is free, and we write
L = TX(X) = DerK(A).

Definition 2.1 (see [4, Definitions 3.1, 6.1]). An R-subalgebra A ⊂ A is an affine

formal model of A if it is an R-algebra of topologically finite type such that
A⊗R K ∼= A.
If A ⊂ A is an affine formal model, we call an A-submodule L ⊆ L an (R,A)-Lie

lattice if the following is satisfied:

(i) L is finitely generated as an A-module, and L⊗R K ∼= L;
(ii) L is closed under the Lie bracket on L;
(iii) A is stable under the natural action of L on A.

If Y ∼= SpB is an affinoid subdomain of X , we say that an affine formal model
B ⊂ B is L-stable if it contains the image of A under the natural restriction
morphism A→ B and is preserved under the action of L.

We now fix an affine formal model A ⊂ A and a free (R,A)-Lie lattice L ⊂ L
by choosing a free generating set and rescaling suitably. Without loss of generality,
we can assume f ∈ A.
We will consider two different sheaves of differential operators in this paper: the

algebraic differential operators DX , and its completion ÙDX .
Note that for any affinoid subdomain Y = SpB, the commutator Lie bracket gives
TX(Y ) the structure of a (K,B)-Lie-Rinehart algebra in the sense of [10], so that
we can form the (relative) enveloping algebra UB(TX(Y )) entirely analogously to
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the enveloping algebra of a Lie algebra. We refer to the end of this subsection for
an explicit description.

Definition 2.2. The sheaf DX is the sheaf of K-algebras on X defined by

DX(Y ) = UB(TX(Y ))

for any affinoid subdomain Y ∼= SpB.

In order to define ÙD, we recall the auxiliary sheaves Dn on the site of πnL-
accessible subdomains. Recall that an admissible open affinoid subset Y ⊂ X is
called a rational subdomain if it is of the form

Y = X

Å
f1
f0

, . . . ,
fn
f0

ã
:= {x ∈ X : |fi(x)| ≤ |f0(x)|, i = 1, . . . n}

for some f0, f1, . . . , fn ∈ A generating the unit ideal. As usual, we simplify X( g1 )

to X(g) and X( 1g ) to X(g−1) for any g ∈ A.

Definition 2.3 ([4, Definitions 4.6, 4.8]). Let Y be a rational subdomain of X . If
Y = X , we say that it is L-accessible in 0 steps. Inductively, if n ≥ 1 then we say
that it is L-accessible in n steps if there exists a chain Y ⊆ Z ⊆ X such that the
following is satisfied:

(i) Z ⊆ X is L-accessible in (n− 1) steps;
(ii) Y = Z(g) or Z(g−1) for some non-zero g ∈ O(Z);
(iii) there is an L-stable affine formal model C ⊂ O(Z) such that L · g ⊆ C, where

L · g = {φ(g) : φ ∈ L},

where the action of L on O(Z) is induced from the restriction map

TX(X)→ TX(Z) = DerK(O(Z)).

Roughly speaking, a rational subdomain Y is L-accessible in one step if Y = X(g)
or Y = X(g−1) for some g ∈ A which is compatible with L: if Y = X(g), there
exists an L-stable model C ⊂ A (which by definition satisfies A ⊂ C) such that the
image B of C〈g〉 is an affine formal model of O(Y ) and the image of B ⊗A L is an
(R,B)-Lie lattice in TX(Y ). If Y = X(g−1), the same description holds mutatis
mutandis.

We will be concerned with subdomains which can be obtained by repeating this
process iteratively and glueing:
A rational subdomain Y ⊆ X is said to be L-accessible if it is L-accessible in n
steps for some n ∈ N.
An affinoid subdomain Y of X is said to be L-accessible if it is L-admissible and
there exists a finite covering Y = ∪rj=1Yj where each Yj is an L-accessible rational
subdomain of X .
A finite covering {Yj} of X by affinoid subdomains is said to be L-accessible if each
Yj is an L-accessible affinoid subdomain of X . Note that any affinoid subdomain is
πnL-accessible for sufficiently large n by [4, Proposition 7.6]. For any n ≥ 0, con-
sider the sheaf of K-algebras Dn on the site of πnL-accessible subdomains, given
by

Y 7→ ¤�UB(B ⊗A πnL)⊗R K
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for Y ∼= SpB with πnL-stable affine formal model B ⊂ B.
Note that as a B-module, Dn(Y ) is naturally isomorphic to B“⊗AD(X), whereD(X)
is equipped with the seminorm whose unit ball is generated by A and πnL.

Definition 2.4 (see [4, Definition 9.3]). The sheaf ÙDX is the sheaf of K-algebras
on X defined by

ÙDX(Y ) = ˇ�UB(TX(Y )) = lim
←−
Dn(Y )

for any affinoid subdomain Y ∼= SpB.

We can view ÙDX(Y ) as the completion of DX(Y ) with respect to every submul-
tiplicative seminorm extending the supremum norm on B.

Moreover, we have the sheaf OX(∗Z) of meromorphic functions with poles in Z,
i.e.

OX(∗Z)(Y ) = B[f−1]

for any affinoid subdomain Y ∼= SpB.
We set DX(∗Z) = OX(∗Z)⊗OX

DX , a sheaf of K-algebras with the obvious mul-
tiplication.

For the convenience of the reader, we describe here explicitly some sections of
the sheaves we have introduced so far. Let ∂1, . . . , ∂a be a free generating set of the
Lie lattice L ⊂ L as an A-module, and abbreviate

∂i = ∂i1
1 . . . ∂ia

a

for any i = (i1, . . . , ia) ∈ Na, and |i| = i1 + · · ·+ ia.

(i) OX(X) = A.
(ii) OX(∗Z)(X) = A[f−1].
(iii) OX(U) = lim

←−
A〈πnf−1〉.

(iv) DX(X) = {finite sums
∑

i∈Na gi∂
i : gi ∈ A}.

(v) DX(∗Z)(X) = {finite sums
∑

i∈Na gi∂
i : gi ∈ A[f−1]}.

(vi) Dn(X) = {
∑

i∈Na gi∂
i : gi ∈ A, |π|−n|i||gi| → 0 as |i| → ∞}.

(vii) ÙDX(X) = U̇A(L) = {
∑

i∈Na gi∂
i : gi ∈ A, |π|−n|i||gi| → 0 as |i| → ∞ ∀n ≥ 0}.

2.2. Fréchet–Stein algebras and coadmissibility. Let Un = X(πnf−1), which
is obtained from X by removing a tubular neighbourhood of Z. For example, if
X = SpK〈x〉 is the closed unit disk and f = x, then Un is the closed annulus with
inner radius |π|n. Note that the Un form an admissible covering of U .
Since f ∈ A, we have L · f ⊆ A by definition of (R,A)-Lie lattice, and thus
πnL · π−nf ⊆ A. In particular, Un is πmL-accessible for any m ≥ n. We thus

obtain K-Banach algebras Dm(Un) for any m ≥ n, and ÙD(U) = lim
←−
Dn(Un).

Definition 2.5 (see [11, section 3]). A topological K-algebra U is a (two-sided)
Fréchet–Stein algebra if U ∼= lim

←−
Un, where for each n the following is satisfied:

(i) Un is a (two-sided) Noetherian Banach K-algebra;
(ii) the morphism Un+1 → Un makes Un a flat Un+1-module on both sides and

has dense image.
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It was shown in [4, Theorem 6.4] that ÙD(Y ) is a Fréchet–Stein algebra for any

affinoid subdomain Y . Moreover, OX(U) = lim
←−
O(Un) and ÙD(U) = lim

←−
Dn(Un) are

both Fréchet–Stein algebras.

Definition 2.6 (see [11, section 3]). A left module M over a Fréchet–Stein algebra
U = lim

←−
Un is called coadmissible if M ∼= lim

←−
Mn, where for each n the following is

satisfied:

(i) Mn is a finitely generated Un-module;
(ii) the natural morphism Un⊗Un+1

Mn+1 →Mn is an isomorphism of Un-modules.

Coadmissible modules over a Fréchet–Stein algebra form an abelian category,
containing all finitely presented modules (see [11, Corollary 3.5, Corollary 3.4.v)]).
Recall from the comment after [11, Corollary 3.5] that each coadmissible module
M over a Fréchet–Stein algebra U is equipped with a canonical Fréchet topology.
We will abbreviate this by talking about the canonical U-topology of M . This
naturally includes the case of finitely generated modules over Noetherian Banach
K-algebras, corresponding to a constant projective system.

2.3. Localization on U . We need to introduce the notion of completed tensor
product. In the case of tensor products over K, this is done in [12].

Definition 2.7 (see [12, section 17.B]). Given two locally convex K-vector spaces
V1, V2, the projective tensor product topology on V1 ⊗K V2 is defined by
lattices of the form L1⊗R L2, where L1 (resp. L2) runs over all open lattices in V1

(resp. V2).

Definition 2.8. A K-algebra U is called a locally convex algebra if it is equipped
with a locally convex topology such that the multiplication map U × U → U is
continuous.
A locally convex module over a locally convex algebra U is a U-module V equipped
with a locally convex topology such that the action map U ×V → V is continuous.

Definition 2.9. Let U be a locally convex K-algebra, V1 a locally convex right
U-module and V2 a locally convex left U-module. The projective tensor product
topology on V1⊗U V2 is induced by the natural surjection ρ : V1⊗K V2 → V1⊗U V2.
The completed tensor product V1“⊗UV2 is the Hausdorff completion of V1⊗U V2

with respect to the projective tensor product topology.

We refer to Appendix A for the usual basic properties of completed tensor prod-
ucts. We in particular verify that the coadmissible tensor product Ù⊗ from [4,
Lemma 7.3] is just a special case of the completed tensor product defined above, so

that we can phrase the definition of a coadmissible ÙD-module (from [4, Definitions
8.3, 9.4]) as follows.

Definition 2.10. Let Y be a smooth rigid analytic K-variety. A ÙDY -module M
is coadmissible if there exists an admissible affinoid covering (Yi) of Y such that
for each i the following is satisfied:

(i) M(Yi) is coadmissible over the Fréchet–Stein algebra ÙDY (Yi);
(ii) the natural morphism

ÙDY (Z)“⊗ÙD(Yi)
M(Yi)→M(Z)

is an isomorphism for each affinoid subdomain Z ⊂ Yi, where M(Yi) is

equipped with the canonical ÙD(Yi)-topology.
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Returning to the set-up of subsection 2.1, we can now use completed tensor

products to describe sections of ÙD and of coadmissible ÙD-modules explicitly.

Proposition 2.11. Let Y = SpB be an affinoid subdomain of X.

(i) There is a natural isomorphism

B“⊗A
ÙDX(X)→ ÙDX(Y )

of locally convex B-modules.
(ii) There is a natural isomorphism

B“⊗A
ÙDX(U)→ ÙDX(Y ∩ U)

of locally convex B-modules.

(iii) Let M be a coadmissible ÙDX-module. There are natural isomorphisms

B“⊗AM(X) ∼= ÙD(Y )“⊗ÙD(X)
M(X) ∼=M(Y )

of locally convex B-modules.

(iv) Let M be a coadmissible ÙDU -module. There are natural isomorphisms

B“⊗AM(U) ∼= ÙD(Y ∩ U)“⊗ÙD(U)
M(U) ∼=M(Y ∩ U)

of locally convex B-modules.

Proof. (i) Note that ÙD(Y ) ∼= lim
←−
Dn(Y ) ∼= lim

←−
(B“⊗ADn(X)), so that the result

follows from Lemma A.2.(iii).
(ii) Fix a positive integer k such that Y ∩ U0 = V (f−1) is πkL-accessible. Then

Y ∩ Un is πn+kL-accessible, and ÙD(Y ∩ U) ∼= lim
←−
Dn+k(Y ∩ Un). As

Dn+k(Y ∩ Un) ∼= O(Y ∩ Un)“⊗O(Un)Dn+k(Un)

and O(Y ∩ Un) ∼= B“⊗AO(Un) by [7, Proposition 7.1.4/4], it follows from
associativity of the completed tensor product (Lemma A.3) and Lemma A.2.(i)
that

Dn+k(Y ∩ Un) ∼= B“⊗ADn+k(Un),

and the result follows from Lemma A.2.(iii).

(iii) By definition of coadmissibility, M(Y ) ∼= ÙD(Y )“⊗ÙD(X)M(X), so that the re-

sult follows immediately from (i) by using associativity and Lemma A.2.(i).

(iv) Fix k as in (ii). As before, ÙD(U) ∼= lim
←−
Dn(Un) and

ÙD(Y ∩ U) ∼= lim
←−
Dn+k(Y ∩ Un)

are Fréchet–Stein algebras. The isomorphisms

M(U) ∼= lim
←−

Ä
Dn(Un)⊗ÙD(Un)

M(Un)
ä

and
M(Y ∩ U) ∼= lim

←−

Ä
Dn+k(Y ∩ Un)⊗ÙD(Un)

M(Un)
ä

exhibit these modules as coadmissible over ÙD(U) resp. ÙD(Y ∩ U). Thus

M(Y ∩ U) ∼= lim
←−

Ä
Dn+k(Y ∩ Un)⊗ÙD(Un)

M(Un)
ä

∼= lim
←−

Ä
Dn+k(Y ∩ Un)⊗Dn(Un)

Ä
Dn(Un)⊗ÙD(Un)

M(Un)
ää

∼= ÙD(Y ∩ U)Ù⊗ÙD(U)
M(U).
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Applying Lemma A.2.(iv) gives M(Y ∩ U) ∼= ÙD(Y ∩ U)“⊗ÙD(U)
M(U), and

applying (ii) finishes the proof.
�

2.4. A criterion for coadmissibility. Let D = D(X). A D[f−1]-module N is
called a meromorphic connection with singularities along Z if it is finitely
generated over A[f−1]. We will also use the same terminology to refer to the
corresponding DX(∗Z)-module.
By [9, Théorème 3.1.1], N is a finitely presented D-module, and thus

ÙN := ÙD(X)⊗D N

is a finitely presented, hence coadmissible ÙD(X)-module.

LetM be the integrable connection on U determined by

Un 7→ O(Un)⊗A[f−1] N = D(Un)⊗D[f−1] N.

By [5, Proposition 6.2], this is a coadmissible ÙDU -module, with

Dm(Un)⊗ÙD(Un)
M(Un) ∼=M(Un)

for any m ≥ n.

Set M :=M(U) = lim
←−

(
Dn(Un)⊗D[f−1] N

)
= ÙD(U) ⊗D[f−1] N . In particular, M

is a finitely presented module over the Fréchet–Stein algebra ÙD(U).

The restrictions Dn(X)→ Dn(Un) now induce Dn(X)-module morphisms

θn : Dn(X)⊗D N → Dn(Un)⊗D[f−1] N = Dn(Un)⊗ÙD(U)
M,

and taking the limit we obtain a morphism

θ : ÙN →M

of ÙD(X)-modules.

Equipping Dn(X)⊗DN with the canonical Dn(X)-Banach structure, and Dn(Un)⊗
N with the canonical Dn(Un)-Banach structure, we see that θn is continuous, as
any Dn(X)-module morphism whose domain is a finitely generated Banach module
is continuous.
Thus, equipping ÙN with its canonical ÙD(X)-topology and M with its canonical
ÙD(U)-topology, the morphism θ is continuous.

Lemma 2.12. If M =M(U) is coadmissible over ÙD(X) then its canonical ÙD(X)-

topology is equivalent to its canonical ÙD(U)-topology.

Proof. Write T1 for the canonical ÙD(X)-topology on M , and T2 for the canonical
ÙD(U)-topology. As the maps

Dn(X)⊗ÙD(X) M → Dn(Un)⊗ÙD(U) M

are continuous (since the left hand side is finitely generated over Dn(X) by assump-
tion), passing to the limit shows that the identity map from (M,T1) to (M,T2) is
a continuous bijection, so by the Open Mapping Theorem for Fréchet spaces (see
[12, Corollary 8.7]), the two topologies are equivalent. �
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We recall the following definition.

Definition 2.13. A continuous morphism φ : M1 →M2 of locally convex K-vector
spaces is called strict if the induced morphism Coimφ→ Imφ is a homeomorphism.

If M1 and M2 are Fréchet, it follows from the Open Mapping Theorem that φ is
strict if and only if Imφ is a closed subspace of M2.

Proposition 2.14. The following are equivalent:

(i) The map θ is surjective.

(ii) The map θ is strict with respect to the canonical topologies on ÙN and M .

(iii) M is a coadmissible ÙD(X)-module.

(iv) M is a finitely generated ÙD(X)-module.

Proof. As already mentioned, the continuous maps θn : Dn(X)⊗N → Dn(Un)⊗N
ensure that θ is always continuous with respect to the canonical Fréchet topologies.
So θ is strict if and only if its image is closed by the Open Mapping Theorem, but
as the image of N is dense in M , this happens if and only if θ is surjective. So (i)
is equivalent to (ii).

If θ is a surjection, this realizes M as the quotient of a finitely presented ÙD(X)-

module by a closed submodule, so that M is coadmissible over ÙD(X) by [11, Lemma
3.6]. Thus (i) implies (iii) and (iv).

Conversely, if M is coadmissible, the topology on M agrees with its canonical

topology as a ÙD(X)-module by Lemma 2.12. It follows from the remark after [11,
Lemma 3.6] that θ is strict, so (iii) implies (ii).

If M is finitely generated over ÙD(X), the surjection ÙD(X)⊕r →M factors through
ÙD(U)⊕r and hence is continuous: the restriction ÙD(X) → ÙD(U) is naturally con-

tinuous, but any map of coadmissible ÙD(U)-modules is also continuous, again by
the remark after [11, Lemma 3.6]. Thus M is the quotient of a finitely presented
ÙD(X)-module by a closed submodule and hence coadmissible by [11, Lemma 3.6].
Thus (iv) implies (iii).

To summarize, (i) is equivalent to (ii), (i) implies (iii) and (iii) implies (ii), so
the first three statements are equivalent. Moreover, (i) implies (iv) and (iv) implies
(iii), finishing the proof. �

We note that this argument also implies that the image of θ is always a coadmis-

sible submodule of M which is dense with respect to the canonical ÙD(U)-topology.

2.5. Extension and localization. Recall that a finitely presented module over a
Fréchet–Stein algebra is coadmissible. For any smooth rigid analytic K-variety Y ,
we can thus define the extension functor

EY : {coherent DY−modules} → {coadmissible ÙDY−modules}

M 7→ ÙDY ⊗DY
M

which is exact by [6, Lemma 4.14].
We can view Proposition 2.14 in terms of this extension functor and the usual



10 THOMAS BITOUN AND ANDREAS BODE

restriction and direct image functors: N localizes to a DX(∗Z)-module N on
X which is a coherent DX -module (see [9]). The map θ is then the morphism
(EXN )(X)→ (j∗EUj

∗N )(X). We will often be concerned with modules for which
this is an isomorphism.

Proposition 2.15. Let N be a meromorphic connection with singularities along
Z, and assume the conditions in Proposition 2.14 are satisfied. Let M = EU j

∗N
be the sheaf given by

Y 7→ ÙD(Y )⊗D[f−1] N

for Y affinoid, as discussed above. Then j∗M is a coadmissible ÙDX-module.

Proof. We have seen in Proposition 2.14 that j∗M(X) =M(U) is a coadmissible
ÙD(X)-module, so it remains to show that the natural morphism

ÙD(Y )Ù⊗ÙD(X)
M(U)→M(Y ∩ U)

is an isomorphism for any affinoid subdomain Y = SpB of X .
By Proposition 2.11, the left hand side is isomorphic to B“⊗AM(U), whereM(U) is

equipped with the canonical ÙD(X)-topology, and the right hand side is isomorphic

to B“⊗AM(U), where M(U) is equipped with the canonical ÙD(U)-topology. The
desired isomorphism thus follows from Lemma 2.12. �

3. Numbers of positive type

In many explicit calculations in what follows, it will be crucial to distinguish
between scalars which are of positive type and those of type zero.

Definition 3.1. Let λ ∈ K. We say λ is of positive type if λ ∈ Z≥0 or if λ /∈ Z≥0

and there exists some integer r such that

πir

∏i−1
j=0(λ− j)

→ 0 as i→∞.

If λ is not of positive type, we say it is of type zero.

We show in Appendix B that our notion of positive type is equivalent to the one
in [8, Definition 13.1.1]. In particular, this implies the following:

(i) If λ ∈ K with |λ| > 1, then λ is of positive type, as |λ− j| = |λ| for each j.
(ii) Any integer is of positive type (see [8, Proposition 13.1.5]).
(iii) λ is of positive type if and only if λ− n is for some n ∈ Z.

Example. Note that there exist numbers which are not of positive type (this
example is due to Le Bras and was communicated to us by Ardakov):
For convenience, let K = Qp. Set k1 = p and define inductively kn+1 = p2kn for
n > 1. Let

λ =

∞∑

i=1

pki

and denote by mj the partial sum mj =
∑j

i=1 p
ki . So in particular,

|λ−mj| = |p|
kj+1 = |p|p

2kj

.
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But now for any integer r,
∣∣∣∣
prmj

λ−mj

∣∣∣∣ = |p|rmj−kj+1 .

But as rmj = r ·
∑j

i=1 p
ki and kj+1 = p2kj , the absolute values above tend to

infinity as j tends to infinity. Thus type(λ) = 0 (in the sense of Kedlaya, Definition
B.1), and Lemma B.2 implies that λ can’t be of positive type.

4. Extensions of meromorphic connections

We now return to the setup of section 2, so that X = SpA is a smooth affinoid
with free tangent sheaf TX , A ⊂ A is an affine formal model, and U ⊆ X is the
non-vanishing set of some non-constant f ∈ A. We write D = D(X), and let N be
a D[f−1]-module which is finitely generated over A[f−1].
We let ∂1, . . . , ∂a be a free generating set of the Lie lattice L inside L = TX(X).

Let m1, . . . ,mk be a finite generating set of N as a A[f−1]-module. Then by
[9, Théorème 3.1.1], there exists Pi(s) ∈ D[s] and monic bi(s) ∈ K[s] such that

Pi(s)f
−smi = bi(s)f

−s−1mi

for each i = 1, . . . , k.

Replacing mi by f−rmi for some r, we will always assume that bi(s) 6= 0 for
any s ∈ Z≥0. In particular,

f−jmi =
Pi(j − 1) · · · · · Pi(0)∏j−1

s=0 bi(s)
mi

for any j ≥ 0, i = 1, . . . , k, and the mi form a finite generating set of N as a
D-module.

Lemma 4.1. Suppose that all the roots of bi (in an algebraic closure of K) are of
positive type. Then for any n ≥ 0, there exists some positive integer r such that

πjr Pi(j − 1) . . . Pi(0)∏j−1
s=0 bi(s)

∈ U(πnL)

for any j ≥ 1.

Proof. Replacing L by πnL, it is enough to treat the case n = 0.
Then the Lie lattice L determines a submultiplicative norm on D = UA(L), with
unit ball U(L), and we are required to show that the given elements have norm less
than or equal to 1.
Setting |s| = 1 for the formal parameter s extends the norm to a norm on D[s] in
such a way that for any integer j ∈ Z, the evaluation map D[s] → D sending s to
j is contracting, i.e. bounded of norm ≤ 1 (by the triangle inequality, as |j| ≤ 1).
Therefore,

|Pi(j)| ≤ |Pi(s)|

for any j ∈ Z.
Let r′ ∈ Z such that |Pi(s)| ≤ |π|r

′

, then the above shows that

|Pi(j − 1) · · · · · Pi(0)| ≤ |π|
jr′
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for any j ≥ 1.

Now let λ1, . . . , λd be the roots of bi(s), with multiplicity, so that

bi(s) = (s− λ1) . . . (s− λd),

and hence
j−1∏

s=0

bi(s) =

j−1∏

s=0

(s− λ1) · · ·

j−1∏

s=0

(s− λd).

For any t ∈ {1, . . . , d}, λt is of positive type by assumption, so there exists some
r′′t ≥ 0 such that

πjr′′t

∏j−1
s=0(s− λt)

→ 0

as j →∞. Thus
πjr′′

∏j−1
s=0(s− λ1) · · · · ·

∏j−1
s=0(s− λd)

→ 0

as j →∞ for r′′ = r′′1+· · ·+r′′d . In particular the sequence is bounded, and replacing
r′′ by a suitable larger integer, we can assume that these terms have norm less than
or equal to 1 for each j ≥ 1.
Then any r ≥ r′′ − r′ has the desired property. �

Theorem 4.2. Suppose that for each i, all the roots of bi (in an algebraic closure

of K) are of positive type. Then ÙD(U) ⊗D[f−1] N is a coadmissible ÙD(X)-module,

and the morphism θ : ÙD(X)⊗D N → ÙD(U)⊗D[f−1] N is an isomorphism.

To prove Theorem 4.2, we establish the following terminology, similar to Lemma
2.12. The module N comes equipped with two different locally convex topologies.
Firstly, the surjection Dk → N obtained from the generating set {mi} above induces
the quotient topology, which can be seen as being induced by the semi-norms with
unit balls ∑

i

U(πniL)mi

for various ni ≥ 0. We call this topology T1.
Secondly, we can consider in the same way the surjection D[f−1]k → N , giving a
topology T2 induced by semi-norms with unit balls

∑

i

U(πniL)[πnif−1]mi.

Note that the completion of (N, T1) is ÙN = lim
←−

(Dn(X)⊗D N) = ÙD(X)⊗D N , and

the completion of (N, T2) is M = ÙD(U)⊗D[f−1] N .

It is now clear from the definition that the identity map (N, T1)→ (N, T2) is contin-
uous. The result will follow straightforwardly once we have established strictness.

Lemma 4.3. Suppose that for each i, all the roots of bi are of positive type. Then
the morphism

φ :Dk → N

(ξi) 7→
∑

i

ξimi
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is a strict surjection when N is equipped with the topology T2.
In particular, T1 is equivalent to T2.

Proof. As we have already determined that the map is a continuous surjection, we
want to establish that it is also open.
Fix i, and let n ≥ 0. It now suffices to show that φ((0, . . . , 0, U(πnL), 0, . . . , 0)),
which is just U(πnL) ·mi, contains a set of the form U(πmL)[πmf−1]mi for some
m ≥ 0.

Now by Lemma 4.1, there exists some positive integer r such that

πjr Pi(j − 1) · · · · · Pi(0)∏j−1
s=0 bi(s)

∈ U(πnL)

for any j ≥ 0.

In particular, if m = n+ r and x ∈ U(πmL)[πmf−1]mi, we can write

x =

Ñ
∑

i∈Na,j≥0

πm(|i|+j)bi,j∂
if−j

é
mi

by [10, Theorem 3.1], where bi,j ∈ A and ∂i = ∂i1
1 . . . ∂ia

a ∈ UA(L) by definition.
Hence

x =

Ñ
∑

i,j

bi,j∂
iπm(|i|+j)Pi(j − 1) . . . Pi(0)∏j−1

s=0 bi(s)

é
mi.

Now by our choice of r

π(n+r)|i|+njbi,j∂
i · πjr Pi(j − 1) . . . Pi(0)∏j−1

s=0 bi(s)
∈ U(πnL)

for all i ∈ Na and all j ≥ 0, and thus x ∈ U(πnL) ·mi, as required. �

Proof of Theorem 4.2. By the above, the identity morphism (N, T1) → (N, T2)
is an isomorphism of locally convex vector spaces. Thus their completions are

isomorphic, i.e. θ is an isomorphism and M is a coadmissible ÙD(X)-module by
Proposition 2.14. �

We can now prove Theorem 1.2 from the introduction.

Theorem 4.4. Let X = SpA be a smooth affinoid K-variety with free tangent
sheaf, f ∈ A non-constant, Z = {f = 0} ⊂ X. Write j : U → X for the embedding
of the complement of Z. Let N be a meromorphic connection on X with singularities
along Z, and let M = EU j

∗N be the corresponding integrable connection on U .
Let m1, . . . ,mk be a finite generating set of N (X) viewed as an A[f−1]-module, and
let b1, . . . , bk denote the corresponding b-functions. If all roots of bi are of positive
type for each i, then the natural morphism

EXN → j∗M

is an isomorphism, and j∗M is a coadmissible ÙDX-module.
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Proof. By Theorem 4.2, we know that EXN (X)→ j∗M(X) is an isomorphism of
ÙDX(X)-modules. In particular, j∗M(X) is a coadmissible ÙDX(X)-module.
Thus the conditions in Proposition 2.14 are satisfied, so that j∗M is a coadmissible
ÙDX -module by Proposition 2.15. Hence [4, Theorem 8.2] implies that the natural
morphism

EXN → j∗M

is an isomorphism, as it is an isomorphism on the level of global sections. �

5. The modules Mλ on the punctured unit disk

We now discuss a particular family of examples on the punctured unit disk. This
will give rise to a collection of modules N for which the conditions in Proposition
2.14 are not satisfied.

Let X = SpA = SpK〈x〉, U = X \ {0}, and Un = SpK〈x, πnx−1〉.
We write ∂ for the free generator d

dx of TX(X), and let L be the R〈x〉-lattice gen-
erated by ∂.

Fix λ ∈ K, and let Nλ = A[x−1] · xλ be equipped with the natural D[x−1]-module

structure. As before, we obtain a coadmissible ÙDU -module Mλ
∼= OU · xλ, and a

morphism of ÙD(X)-modules θλ : N̂λ →Mλ =Mλ(U).

Proposition 5.1. If Mλ is a coadmissible ÙD(X)-module then λ is of positive type.

Proof. Suppose Mλ is a coadmissible ÙD(X)-module and λ is of type zero. If λ is
an integer, it is of positive type by [8, Proposition 13.1.5], so we have in particular
that λ /∈ Z.
Replacing λ by λ − n for some integer n does not change the property of being of
type zero, and A[x−1]xλ ∼= A[x−1]xλ−n as D-modules. In this way, we can assume
that Nλ is generated as a D-module by xλ.

Then the ÙD(X)-submodule of Mλ generated by xλ contains Nλ and is thus dense

with respect to the canonical ÙD(X)-topology by Lemma 2.12. As it is also finitely
generated, the same argument as in Proposition 2.14, (iv) implies (iii), shows that
ÙD(X) · xλ is coadmissible and hence closed in Mλ by [11, Lemma 3.6]. Therefore

Mλ is generated by xλ as a ÙD(X)-module.

Let ǫ0 = 1, i0 = j0 = 0. We now pick inductively ǫr ∈ R>0, jr, ir ∈ N as fol-
lows.
As λ is not of positive type, there exists some real number 0 < ǫr < ǫr−1 such that∣∣∣∣∣

π2ri

∏i−1
j=0(λ − j)

∣∣∣∣∣ > ǫr

for infinitely many natural numbers i. Without loss of generality, we can take ǫr to
be of the form |π|rjr for some natural number jr, and let ir > max{jr, ir−1} be a
natural number satisfying the inequality above.

Now consider the element

m =

∞∑

r=1

π(2ir−jr)rx−ir · xλ ∈Mλ = O(U)xλ.
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As |π|nir |π|(2ir−jr)r ≤ |π|nir+(2ir−ir)r = |π|(n+r)ir tends to 0 for any n ∈ Z as r
tends to infinity, this is indeed an element of Mλ.

As Mλ is generated by xλ as a ÙD(X)-module, there exist elements gj ∈ K〈x〉

such that
∑

gj∂
j ∈ ÙD(X) and
∑

j≥0

gj∂
j · xλ = m =

∑

r≥1

π(2ir−jr)rx−ir · xλ.

We now claim that we can assume that the gj all lie in K.

Writing gj =
∑

gijx
i ∈ K〈x〉, we have

∑
gj∂

jxλ =
∑

gijλ . . . (λ − j + 1)xλ+i−j

=
∑

t≥0

Ñ
g0,t +

∞∑

j=t+1

gj−t,j(λ− t) . . . (λ− j + 1)∂t

é
· xλ

where we write t = j−i and eliminate all terms with t < 0 by comparing coefficients
with m.
We will show that

∑
ht∂

t ∈ ÙD(X), where we have abbreviated

ht = g0,t +

∞∑

j=t+1

gj−t,j(λ− t) . . . (λ− j + 1).

First note that |λ| ≤ 1 by assumption, and hence |λ− a| ≤ 1 for any a ∈ Z.

Fix ǫ > 0, n ∈ N. As
∑

gj∂
j ∈ ÙD(X), we know that there exists some j′ such that

|gij | · |π|
−nj < ǫ ∀i, ∀j ≥ j′.

Thus for any t ≥ 0, |gj−t,j | < ǫ for j ≥ j′, so ht defines an element in K. Moreover,
we have

|π|−nt|ht| ≤ |π|
−nt sup{|g0,t|, |gj−t,j(λ− t) . . . (λ− j + 1)| : j > t}

≤ |π|−nt sup{|g0,t|, |gj−t,j | : j > t}.

Let t ≥ j′, so that |π|−nt|g0,t| < ǫ and

|π|−nt|gj−t,j | < |π|
−nj |gj−t,j | < ǫ

for any j > t.
Hence |π|−nt|ht| < ǫ for t ≥ j′. Thus

|π|−nt|ht| → 0 as t→∞

for any n, and
∑

ht∂
t ∈ ÙD(X).

Thus we can assume that
∑

gj∂
jxλ = m, where each gj ∈ K and

∑
gj∂

j ∈ ÙD(X).

But now ∑
gj∂

j · xλ =
∑

gjλ · (λ− 1) · · · · · (λ− j + 1)xλ−j ,

so by comparing coefficients with m we obtain

gir =
π(2ir−jr)r

∏ir−1
i=0 (λ− i)

.
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Thus

|gir | =

∣∣∣∣∣
π2rir

∏ir−1
i=0 (λ− i)

∣∣∣∣∣ ǫ
−1
r > 1

for any r ≥ 1, by construction of the ǫr = |π|rjr . But
∑

gj∂
j was supposed to give

an element in ÙD(X), which produces the desired contradiction. �

This provides us with the first examples of a module not satisfying the conditions
in Proposition 2.14, by taking N = Nλ for λ ∈ K of type zero. In particular, we
have established Theorem 1.1 from the introduction. Combining this with our
previous results, we also obtain Theorem 1.3.

Theorem 5.2. The following are equivalent.

(i) Mλ is a coadmissible ÙD(X)-module.
(ii) The map θλ is an isomorphism.
(iii) λ is of positive type.

Proof. As before, we can assume that xλ generates Nλ both as a D-module and as
an A[x−1]-module. Then we have

∂x−s · xλ = (λ− s)x−s−1 · xλ,

so that the associated b-function has λ as its unique root.

Thus (iii) implies (ii) by Theorem 4.2, (ii) implies (i) by Proposition 2.14, and
(i) implies (iii) by Proposition 5.1. �

Appendix A. Completed tensor products

Let U be a locally convex K-algebra, and V1 (resp. V2) a locally convex right
(resp. left) U-module. We denote by ρ : V1 ⊗K V2 → V1 ⊗U V2 the natural sur-
jection. If both sides are equipped with their respective projective tensor product
topologies, this is a strict surjection by definition.
We verify that the completed tensor product satisfies the following universal prop-
erty.

Lemma A.1. Let θ : V1×V2 →W be a continuous K-bilinear U-balanced map into
a complete locally convex K-vector space W . Then there exists a unique continuous
K-linear map α : V1“⊗UV2 → W such that θ factors as the composition of α with
the canonical map V1 × V2 → V1“⊗UV2.

Proof. By [12, Lemma 17.1], there exists a unique continuous K-linear map α′ :
V1⊗K V2 → W such that θ factors through α′, and as θ is U-balanced, this descends
to the quotient V1 ⊗U V2. As the surjection ρ : V1 ⊗K V2 → V1 ⊗U V2 is strict by
definition, it follows that the induced K-linear map V1⊗UV2 →W is also continuous
when the tensor products are equipped with the projective tensor product topology.
Since W is assumed to be complete, this gives the desired continuous map from the
completed tensor product to W . �

Lemma A.2. (i) The natural morphism U“⊗UV2 → V̂2 is an isomorphism.
(ii) The natural morphism

V1“⊗UV2 → V̂1“⊗“U V̂2

is an isomorphism.



EXTENDING MEROMORPHIC CONNECTIONS 17

(iii) Suppose that V1 is Fréchet, and write q1 ≤ q2 ≤ . . . for a family of defining
semi-norms on V1. Denote the Banach completion of V1 with respect to qn by
V1,n. Then the natural morphism

V1“⊗UV2 → lim
←−
n

(
V1,n“⊗UV2

)

is an isomorphism.
(iv) If V1

∼= lim
←−

V1,n and V2
∼= lim
←−

V2,n are both Fréchet as above, the natural
morphism

V1“⊗UV2 → lim
←−

(
V1,n“⊗UV2,n

)

is an isomorphism.

Proof. The first two claims follow as usual from the universal property in Lemma
A.1. For the last two claims, recall from the proof of [12, Proposition 7.5] that the
Hausdorff completion of any locally convex K-vector space V can be constructed
as

“V ∼= lim
←−

V/L,

where the limit ranges over all open lattices L in V . Denote the unit ball of V1

with respect to the semi-norm qn by Ln. As open lattices in V1 ⊗U V2 are given as
images of L1 ⊗R L2 for Li open in Vi, we can take the limit over pairs (πiLn, L2)
where i ∈ Z, n ∈ N, and L2 is open in V2. We thus obtain

V1“⊗UV2
∼= lim
←−

L1,L2

(V1 ⊗U V2/ρ(L1 ⊗R L2))

∼= lim←−
n

(
lim←−

i∈Z,L2

V1 ⊗U V2/ρ(π
iLn ⊗R L2)

)

∼= lim
←−
n

(
V1,n“⊗UV2

)
,

where the last isomorphism follows from the isomorphism (ii) above applied to the
semi-normed space (V1, qn) and the locally convex space V2.
This establishes (iii), and the proof of (iv) is entirely analogous, noting that pairs
of lattices (πiLn, πjL′n) form a cofinal system within the system of all pairs of open
lattices, where Ln (resp. L′n) is the unit ball of V1 (resp. V2) with respect to the
nth defining semi-norm. �

Lemma A.3. Let U , V be two locally convex K-algebras. Let V1 be a locally convex
right U-module, V2 a locally convex (U ,V)-bimodule, and V3 a locally convex left V-
module. Then the natural morphism

(V1 ⊗U V2)⊗V V3 → V1 ⊗U (V2 ⊗V V3)

is an isomorphism of locally convex K-spaces, inducing an isomorphism

(V1“⊗UV2)“⊗VV3
∼= V1“⊗U (V2“⊗VV3).

Proof. First note that the associativity of ⊗K with the projective tensor product
topology follows directly from the definition in terms of open lattices. Moreover, if
M1 → M2 is a strict surjection, then M1 ⊗K V → M2 ⊗K V is a strict surjection
for any locally convex K-spaces M1, M2, V .

By definition, the surjection V1 ⊗K V2 → V1 ⊗U V2 is strict, so

(V1 ⊗K V2)⊗K V3 → (V1 ⊗U V2)⊗K V3
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is a strict surjection by the above. Thus the projective tensor product topology on
(V1 ⊗U V2)⊗V V3 is equivalent to the quotient topology induced by the surjection

(V1 ⊗K V2)⊗K V3 → (V1 ⊗U V2)⊗V V3.

The analogous statement holds for V1 ⊗U (V2 ⊗V V3).
Using associativity of the projective tensor product over K, we thus obtain that
the natural bijection

(V1 ⊗U V2)⊗V V3 → V1 ⊗U (V2 ⊗V V3)

is an isomorphism of locally convex K-spaces, and applying Lemma A.2.(ii) yields
the result for the completions. �

We now verify that the coadmissible tensor product Ù⊗ defined in [4, Lemma 7.3]

is just “⊗.

Lemma A.4. Let U be a left Noetherian Banach algebra. Let M be a finitely
generated left U-module, equipped with its canonical Banach topology, and let W be
any locally convex left U-module. Then any U-linear map φ : M → W is continuous.

Proof. Let U◦ denote the unit ball of U . Let L be an open lattice in W . Since the
action map U ⊗K W →W is continuous, there exists an open lattice L′ of W such
that U◦ ⊗R L′ maps into L, and L contains the lattice U◦L′ that is U◦-stable.
Let m1, . . . ,mr be a finite generating set of M . There exists some integer n such
that πnφ(mi) ∈ U◦L′ for each i, and thus

∑

i

πnU◦φ(mi) ⊆ U
◦L′ ⊆ L

by U-linearity of φ. Thus φ is continuous. �

Lemma A.5. Let U = lim
←−
Un be a left Fréchet–Stein algebra and let M be a left

coadmissible U-module. Then the canonical Banach topology on the finitely gen-
erated Un-module Mn := Un ⊗U M is equivalent to the projective tensor product
topology.
In particular, Un ⊗U M ∼= Un“⊗UM .

Proof. Let T1 denote the projective tensor product topology on Mn, and T2 the
canonical Un-topology.
The natural bijection (Mn, T1)→ (Mn, T2) is continuous by the universal property
of projective tensor products, and its inverse is continuous by the previous lemma.
In particular, Un ⊗U M with the projective tensor product topology is already
complete. �

Corollary A.6. Let U and V be left Fréchet–Stein algebras. Let M be a left coad-
missible V-module and let P be a U-coadmissible (U ,V)-bimodule as defined in [4,
Definition 7.3]. Then the coadmissible tensor product

PÙ⊗VM := lim
←−

((Un ⊗U P )⊗V M)

is isomorphic to the completed tensor product P“⊗VM .
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Proof. The coadmissible module P is Fréchet, where a family of defining semi-norms
is obtained from the isomorphism P ∼= lim

←−
(Un ⊗U P ). Now apply Lemma A.2.(iii)

to get

P“⊗VM ∼= lim
←−

(
(Un ⊗U P )“⊗VM

)

∼= lim←−

(
(Un ⊗U P )“⊗Vn

(Vn“⊗VM)
)
.

By Lemma A.5, Vn“⊗VM ∼= Vn ⊗V M , so that

P“⊗VM ∼= lim
←−

(
(Un ⊗U P )“⊗Vn

(Vn ⊗V M)
)
.

Now both Un⊗UP and Vn⊗VM are equipped with their canonical Banach topologies
as finitely generated modules, so by the same argument as in Lemma A.5, their
tensor product topology is equivalent to the canonical Banach topology of the
finitely generated Un-module

(Un ⊗U P )⊗Vn
(Vn ⊗V M).

In particular, this is already complete, so that

P“⊗V M ∼= lim
←−

((Un ⊗U P )⊗V M)

as required. �

Appendix B. Positive type à la Kedlaya

Definition B.1 (see [8, Definition 13.1.1]). The type of λ ∈ K, denoted type(λ),
is the radius of convergence of the formal power series

∑

i≥0,i6=λ

xi

λ− i
.

In particular, type(λ) > 0 if and only if there exists some integer r such that

πir

λ− i
→ 0 as i→∞.

We now verify that λ is of positive type as defined in Definition 3.1 if and only if
type(λ) > 0.

Lemma B.2. Let λ ∈ K and λ /∈ Z≥0. Then type(λ) > 0 if and only if there exists
some integer r such that

πir

∏i−1
j=0(λ− j)

→ 0 as i→∞. (∗)

Proof. By [8, Lemma 13.1.6], we have the following equality of formal power series:

∑

i≥0

xi

λ(1 − λ) . . . (i − λ)
= ex ·

∑

i≥0

(−x)i

i!

1

λ− i
. (∗∗)

Suppose type(λ) > 0, so that we have some r ≥ 0 such that

πir

λ− i
→ 0.

Then for |x| ≤ |π|r · |p|1/(p−1), we have
∣∣∣∣

xi

i!(λ− i)

∣∣∣∣ ≤
∣∣∣∣
πir

λ− i

∣∣∣∣ ·
∣∣∣∣∣
pi/(p−1)

i!

∣∣∣∣∣→ 0.
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So the right hand side of the equation converges for |x| ≤ |π|m, where |π|m =
|π|r · |p|1/(p−1). Thus the same is true for the left hand side, and hence

∣∣∣∣
πim

λ · (λ− 1) . . . (λ− i+ 1)

∣∣∣∣ ≤
∣∣∣∣∣

π(i−1)m

λ · (λ− 1) . . . (λ− i+ 1)

∣∣∣∣∣→ 0.

Thus type(λ) > 0 implies that (∗) is satisfied.

For the converse, first note that if λ = −1, we are done: type(−1) > 0, and
−1 satisfies (∗) by the above. So from now on assume λ 6= −1, and suppose that
for some integer m,

πim

∏i−1
j=0(λ− j)

→ 0.

Write µ = λ+ 1. Mutliplying the above by 1/µ, we know that

πim

µ · (µ− 1) . . . (µ− i)
→ 0.

Thus the formal power series on the left hand side of (∗∗) has positive radius
of convergence when λ is replaced by µ, and (as e−x also has positive radius of
convergence) it follows that the right hand side has positive radius of convergence,
giving ∣∣∣∣

πir

µ− i

∣∣∣∣ ≤
∣∣∣∣

πir

i!(µ− i)

∣∣∣∣→ 0

for some integer r.
Thus ∣∣∣∣

πir

λ− i

∣∣∣∣ =
∣∣∣∣∣
π−r · π(i+1)r

λ+ 1− (i + 1)

∣∣∣∣∣ = |π|
−r ·

∣∣∣∣∣
π(i+1)r

µ− (i+ 1)

∣∣∣∣∣→ 0,

and type(λ) > 0. �
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