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Abstract

Equation with the symmetric integral with respect to stochastic measure is considered. For the

integrator, we assume only σ-additivity in probability and continuity of the paths. It is proved that

the averaging principle holds for this case, the rate of convergence to the solution of the averaged

equation is estimated.

1 Introduction

Averaging is an important method to describe the main part of the behavior of dynamical systems. It
allows to avoid the detailed analysis of fast-changing variables and consider the simplified equations.
This approach is well developed for deterministic and stochastic systems.

Averaging principle for non-random equations is considered in details, for example, in [20]. The
stochastic case was studied mainly for equations driven by Wiener process. Averaging of equations was
considered in [18], slow-fast systems – in [2], [4, Section 7.9], [25].

Other stochastic integrators were also considered. Averaging of the system with α-stable noises
was studied in [1], fractional Brownian motion – in [12], Poisson process – in [8], [11].

In these papers the strong convergence to the solutions of averaged equations was studied, a similar
result is obtained in the given paper. The weak convergence in averaging scheme was considered in [2],
[3], [5], [21, Section II.3].

We will consider averaging of equation driven by general stochastic measure µ. For µ we assume
only σ-additivity in probability and continuity of the paths. This integrator includes many classes of
processes, see examples in Section 2.1. In the previous papers, the scaling invariance of the driving
processes was very important in the proofs, we do not assume such property for µ.

In the given paper, the following equation is considered

◦dXε
t = σ(Xε

t ) ◦ dµt + b(Xε
t , t/ε) dt, 0 ≤ t ≤ T, Xε

0 = X0,

where ◦ denotes the symmetric integral, defined in [16] (see Section 2.2). We prove that

sup
t∈[0,T ]

|Xε
t − X̄t| → 0, ε→ 0,

for X̄t that is the solution to the equation

◦dX̄t = σ(X̄t) ◦ dµt + b̄(X̄t) dt, 0 ≤ t ≤ T, X̄0 = X0.

Under some additional assumptions, we obtain the rate of convergence.
The rest of the paper is organized as follows. Section 2 contains the basic facts concerning SMs and

symmetric integral. In Section 3 we formulate and prove the main result of the paper (Theorem 3.1).
By C and C(ω) we will denote positive finite constant and random constant respectively whose

exact values are not important.

1The final version will be published in ”Stochastics”
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2 Preliminaries

2.1 Stochastic measures

Let L0 = L0(Ω,F ,P) be the set of all real-valued random variables defined on the complete proba-
bility space (Ω,F ,P) (more precisely, the set of equivalence classes). Convergence in L0 means the
convergence in probability. Let X be an arbitrary set and B a σ-algebra of subsets of X.

Definition 2.1. A σ-additive mapping µ : B → L0 is called stochastic measure (SM).

We do not assume the moment existence or martingale properties for SM. In other words, µ is
L0–valued vector measure.

For deterministic measurable functions f : X → R the integral
∫

X
f dµ is defined. Construction of

the integral and basic facts concerning general SMs may be found in [6, Chapter 7], [13, Chapter 1]. In
particular, every bounded measurable f is integrable with respect to any µ. An analog of the Lebesgue
dominated convergence theorem holds for this integral, see [6, Proposition 7.1.1]. Some additional facts
and review of results about equations driven by SMs are given in [14].

Important examples of SMs are orthogonal stochastic measures, α-stable random measures defined
on a σ-algebra for α ∈ (0, 1) ∪ (1, 2] (see [19, Chapter 3]).

Many examples of the SMs on the Borel subsets of [0, T ] may be given by the Wiener-type integral

µ(A) =

∫

[0,T ]
1A(t) dXt. (2.1)

We note the following cases of processes Xt in (2.1) that generate SM.

1. Xt – any square integrable continuous martingale.

2. Xt =WH
t – the fractional Brownian motion with Hurst index H > 1/2, see Theorem 1.1 [10].

3. Xt = Sk
t – the sub-fractional Brownian motion for k = H − 1/2, 1/2 < H < 1, see Theorem

3.2 (ii) and Remark 3.3 c) in [24].

4. Xt = Zk
H(t) – the Hermite process, 1/2 < H < 1, k ≥ 1, see [9], [22, Section 3.1.3]. Z2

H(t) is
known as the Rosenblatt process, see also [23, Section 3].

Main result of this paper will be obtained under the following assumption on µ.

Assumption A1. µ is a SM on Borel subsets of [0, T ], and the process µt = µ((0, t]) has continuous
paths on [0, T ].

Processes Xt in examples 1–4 are continuous, therefore A1 holds in these cases.
Give an another example. Let η be an arbitrary SM defined on Borel subsets of [a, b] ⊂ R, function

f : [0, T ]× [a, b] → R be such that f(0, x) = 0, and

|f(t, x)− f(s, y)| ≤ L(|t− s|+ |x− y|γ), γ > 1/2, L ∈ R.

Then f(·, x) is absolutely continuous for each x,
∣

∣

∣

∂f(t, x)

∂t

∣

∣

∣
≤ L a. e., and we can define SM

µ(A) =

∫

[a,b]
dη(x)

∫

A

∂f(t, x)

∂t
dt, A ∈ B([0, T ]). (2.2)

The σ-additivity of µ follows from the analog of the Lebesgue dominated convergence theorem, see
details in [15, Section 3]. Theorem 1 of [15] implies that the process

µt = µ((0, t]) =

∫

[a,b]
f(t, x) dη(x), t ∈ [0, T ],

has a continuous version. Thus, in this case the process Xt = µt in (2.1) defines an SM that satisfies
A1.

In some propositions we will impose the following condition.
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Assumption A2. There exists a real-valued finite measure m on (X,B) with the following property: if
a measurable function h : X → R is such that

∫

X
h2 dm < +∞ then h is integrable with respect to µ

on X.

This assumption holds in examples 2, 3 for the Lebesgue measure m (see [10], [24]), for α-stable
random measure and the control measure m (see (3.4.1) [19]). If martingale Xt in example 1 has the
deterministic characteristic then A2 is fulfilled for m(A) =

∫

A d〈Xt〉.
If A2 holds for SM η in (2.2) then it holds for µ. This follows from the boundedness of

∂f(t, x)

∂t
.

This assumption is used in the following statement.

Lemma 2.2. (Corollary 3.3 [16]) If A2 holds then the set of random variables

{

j
∑

k=1

(

∫

X

fk dµ
)2 ∣

∣

∣
fk : X → R are measurable,

j
∑

k=1

f2k (x) ≤ 1, j ≥ 1
}

is bounded in probability.

Recall that set of random variables ξα, α ∈ A is bounded in probability if

sup
α∈A

P(|ξα| ≥ c) → 0, c→ ∞.

2.2 Symmetric integral

The symmetric integral of random functions with respect to stochastic measures was considered in [16].
We review the basic facts and definitions.

Definition 2.3. Let ξt and ηt be random processes on [0, T ], 0 = tn0 < tn1 < · · · < tnjn = T be a
sequence of partitions such that maxk |tnk − tnk−1| → 0, n→ ∞. We define

∫

(0,T ]
ξt ◦ dηt := p lim

n→∞

jn
∑

k=1

ξtn
k−1

+ ξtn
k

2
(ηtn

k
− ηtn

k−1
) (2.3)

provided that this limit in probability exists.

For Wiener process ηt and adapted ξt we obtain the classical Stratonovich integral. If ηt and ξt are
Hölder continuous with exponents γη and γξ, γη + γξ > 1, then value of (2.3) equals to the integral
defined in [26].

The following theorem describes the class of processes for which the integral exists.

Assumption A3. Vt is a continuous process of bounded variation on [0, T ].

Theorem 2.4. (Theorem 4.6 [16]) Let A1 and A3 hold, f ∈ C
1,1(R2). Then integral (2.3) of f(µt, Vt)

with respect to µt is well defined, and

∫

(0,T ]
f(µt, Vt) ◦ dµt = G(µt, Vt)−G(µ0, V0)−

∫

(0,T ]
G′

2(µt, Vt) dVt,

where G(x, v) =
∫ x
0 f(y, v) dy.

We will consider a stochastic equation of the form

◦ dXt = σ(Xt) ◦ dµt + b(Xt, t) dt, 0 ≤ t ≤ T, (2.4)

X0 is a given random variable.
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Definition 2.5. A process Xt, 0 ≤ t ≤ T is a solution to (2.4) if:
1) Xt = f(µt, Yt), f ∈ C

2,1(R2), Yt is a continuous process of bounded variation;
2) for any process Zs = ψ(µs,Xs), ψ ∈ C

1,1(R2), we have
∫

(0,t]
Zs ◦ dXs =

∫

(0,t]
Zsσ(Xs) ◦ dµs +

∫

(0,t]
Zsb(Xs, s) ds, t ∈ [0, T ].

For Zs ≡ 1 we get the usual integral form of the stochastic equation. This form of Definition 2.5 2)
was important for the proof of uniqueness of the solution.

Solution to (2.4) was obtained in [16] using the Doss–Sussmann transformation.

Assumption A4. 1) σ ∈ C
2(R) and the derivatives σ′, σ′′ are bounded;

2) b ∈ C(R2);
3) for each c > 0 there exists a L(c) such that

|b(x, t)− b(y, t)| ≤ L(c)|x− y|, |x|, |y| ≤ c;

4) b is bounded.

Let F : R2 → R be the solution of the equation

∂F

∂r
(r, x) = σ(F (r, x)), F (0, x) = x, (2.5)

which exists globally because of our assumptions. Set H(r, x) = F−1(r, x), where the inverse is taken
with respect to x. We have that F, H ∈ C

2,2(R2) and

∂F

∂x
(r, x) = exp

(

∫ r

0
σ′(F (s, x)) ds

)

(2.6)

(see calculations in (5.5)–(5.11) [17]).

Theorem 2.6. (Theorem 5.3 [16]) Let A1 and A4 hold, X0 be an arbitrary random variable. Then
equation (2.4) has a unique solution Xt = F (µt, Yt), where Yt is the solution of the random equation

Yt = H(0,X0) +

∫ t

0

∂H

∂x
(µs, F (µs, Ys))b(F (µs, Ys), s) ds. (2.7)

Further, we will need Lipschitz properties of functions in (2.7).
Using (2.5), we obtain

F (r, x) = x+

∫ r

0
σ(F (s, x)) ds⇒∂F (r, x)

∂x
= 1 +

∫ r

0
σ′(F (s, x))

∂F (s, x)

∂x
ds

A4.1)⇒
∣

∣

∣

∂F (r, x)

∂x

∣

∣

∣
≤ 1 + C

∫ r

0

∣

∣

∣

∂F (s, x)

∂x

∣

∣

∣
ds.

The Gronwall inequality implies that
∣

∣

∣

∂F (r, x)

∂x

∣

∣

∣
≤ exp{Cr}.

Therefore, for µs with continuous paths we obtain that
∣

∣

∣

∂F (µs, x)

∂x

∣

∣

∣
≤ C(ω).

Also from A4.1) and (2.6) we obtain that
∣

∣

∣

∂F (µs, x)

∂x

∣

∣

∣
≥ C(ω) > 0.

Therefore,
∣

∣

∣

∂H(µs, x)

∂x

∣

∣

∣
≤ C(ω). (2.8)

Here C(ω) do not depend of x ∈ R, s ∈ [0, T ].
Note that we use continuous version of process µs, solve (2.7) for each fixed ω. Therefore, our

estimates hold for all ω ∈ Ω.
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3 Averaging principle

For each ε > 0 consider the equation

◦ dXε
t = σ(Xε

t ) ◦ dµt + b(Xε
t , t/ε) dt, 0 ≤ t ≤ T, Xε

0 = X0, (3.9)

X0 is an arbitrary random variable.
From Theorem 2.6 it follows that Xε

t = F (µt, Y
ε
t ), where

Y ε
t = H(0,X0) +

∫ t

0

∂H

∂x
(µs, F (µs, Y

ε
s ))b(F (µs, Y

ε
s ), s/ε) ds. (3.10)

Assumption A4.4) and (2.8) imply that

|Y ε
t | ≤ C(ω), |Xε

t | ≤ C(ω), (3.11)

where C(ω) does not depend of t ∈ [0, T ], ε > 0.
Assume that there exist the following limit

b̄(y) = lim
t→∞

1

t

∫ t

0
b(y, s) ds.

Obviously, b̄ satisfies A4.2)-4) (as function of one variable).

Assumption A5. Function G(y, r) =
∫ r
0 (b(y, s)− b̄(y)) ds, r ∈ R+, y ∈ R is bounded.

This holds, for example, if b(y, s) is periodic in s for each fixed y.
Averaged form of (3.9) is the following

◦ dX̄t = σ(X̄t) ◦ dµt + b̄(X̄t) dt, 0 ≤ t ≤ T, X̄ε
0 = X0. (3.12)

From Theorem 2.6 it follows that X̄t = F (µt, Ȳt), where

Ȳt = H(0,X0) +

∫ t

0

∂H

∂x
(µs, F (µs, Ȳs))b̄(F (µs, Ȳs)) ds. (3.13)

Note that functions F , H are the same in (3.10) and (3.13).
The main result of the paper is the following.

Theorem 3.1. 1) Assume that A1, A4, and A5 hold, Xε
t and X̄t are the solutions of (3.9) and (3.12)

respectively. Then for each ω ∈ Ω

sup
t∈[0,T ]

|Xε
t − X̄t| → 0, ε→ 0. (3.14)

2) Let, in addition, A2 holds. Then the set of the random variables

supt∈[0,T ] |Xε
t − X̄t|

ε1/3
, ε > 0

is bounded in probability.
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Proof. Functions F , ∂H
∂x are locally Lipschitz. Using (3.11) we obtain

|Xε
t − X̄t|≤C(ω)|Y ε

t − Ȳt|
(3.10),(3.13)

= C(ω)
∣

∣

∣

∫ t

0

∂H

∂x
(µs,X

ε
s )b(X

ε
s , s/ε) ds −

∫ t

0

∂H

∂x
(µs, X̄s)b̄(X̄s) ds

∣

∣

∣

≤ C(ω)
∣

∣

∣

∫ t

0

∂H

∂x
(µs,X

ε
s )(b(X

ε
s , s/ε) − b(X̄s, s/ε)) ds

∣

∣

∣

+C(ω)
∣

∣

∣

∫ t

0

∂H

∂x
(µs,X

ε
s )(b(X̄s, s/ε)− b̄(X̄s)) ds

∣

∣

∣

+C(ω)
∣

∣

∣

∫ t

0

(∂H

∂x
(µs,X

ε
s )−

∂H

∂x
(µs, X̄s)

)

b̄(X̄s) ds
∣

∣

∣

(2.8)

≤ C(ω)

∫ t

0
|b(Xε

s , s/ε)− b(X̄s, s/ε)|ds + C(ω)
∣

∣

∣

∫ t

0

∂H

∂x
(µs,X

ε
s )(b(X̄s, s/ε)− b̄(X̄s)) ds

∣

∣

∣

+C(ω) sup |b̄|
∫ t

0

∣

∣

∣

∂H

∂x
(µs,X

ε
s )−

∂H

∂x
(µs, X̄s)

∣

∣

∣
ds

A4.3)
≤ C(ω)

∫ t

0
|Xε

s − X̄s|ds+ C(ω)
∣

∣

∣

∫ t

0

∂H

∂x
(µs,X

ε
s )(b(X̄s, s/ε)− b̄(X̄s)) ds

∣

∣

∣
.

(3.15)

Consider the second term of the last sum. Divide [0, T ] into n segments of length ∆ = T
n . We have

I :=
∣

∣

∣

∫ t

0

∂H

∂x
(µs,X

ε
s )(b(X̄s, s/ε) − b̄(X̄s)) ds

∣

∣

∣

≤
n−1
∑

k=0

∣

∣

∣

∫

(k∆∧t,(k+1)∆∧t]

∂H

∂x
(µs,X

ε
s )(b(X̄s, s/ε) − b̄(X̄s)) ds

∣

∣

∣

≤
n−1
∑

k=0

(
∣

∣

∣

∫

(k∆∧t,(k+1)∆∧t]

(∂H

∂x
(µs,X

ε
s )−

∂H

∂x
(µk∆,X

ε
k∆)

)

(b(X̄s, s/ε) − b̄(X̄s)) ds
∣

∣

∣

+
∣

∣

∣

∫

(k∆∧t,(k+1)∆∧t]

∂H

∂x
(µk∆,X

ε
k∆)(b(X̄s, s/ε)− b(X̄k∆, s/ε)) ds

∣

∣

∣

+
∣

∣

∣

∫

(k∆∧t,(k+1)∆∧t]

∂H

∂x
(µk∆,X

ε
k∆)(b(X̄k∆, s/ε) − b̄(X̄k∆)) ds

∣

∣

∣

+
∣

∣

∣

∫

(k∆∧t,(k+1)∆∧t]

∂H

∂x
(µk∆,X

ε
k∆)(b̄(X̄k∆)− b̄(X̄s)) ds

∣

∣

∣

)

:=
n−1
∑

k=0

(I1k + I2k + I3k + I4k),

I1k
A4.4)
≤ C

∫

(k∆∧t,(k+1)∆∧t]

∣

∣

∣

∂H

∂x
(µs,X

ε
s )−

∂H

∂x
(µk∆,X

ε
k∆)

∣

∣

∣
ds

≤ C(ω)

∫

(k∆∧t,(k+1)∆∧t]
(|µs − µk∆|+ |Xε

s −Xε
k∆|) ds,

I2k
A4.3),(2.8)

≤ C(ω)

∫

(k∆∧t,(k+1)∆∧t]
|Xε

s −Xε
k∆|ds,

I3k =
∣

∣

∣

∂H

∂x
(µk∆,X

ε
k∆)

∣

∣

∣

∣

∣

∣

∫

(k∆∧t,(k+1)∆∧t]
(b(X̄k∆, s/ε) − b̄(X̄k∆)) ds

∣

∣

∣

(2.8),s=rε

≤ C(ω)ε
∣

∣

∣

∫

((k∆∧t)/ε,((k+1)∆∧t)/ε]
(b(X̄k∆, r)− b̄(X̄k∆)) dr

∣

∣

∣

A5
≤ C(ω)ε,

I4k
(2.8)

≤ C(ω)

∫

(k∆∧t,(k+1)∆∧t]
|X̄s − X̄k∆|ds.

6



We have that Xε
s = F (µs, Y

ε
s ), where F is locally Lipschitz. From (2.7), (2.8) and A4.4) it follows that

|Y ε
t − Ȳ ε

s | ≤ C(ω)|t− s|. Therefore,

|Xε
s −Xε

k∆| ≤ C(ω)(|µs − µk∆|+∆), s ∈ (k∆ ∧ t, (k + 1)∆ ∧ t].

The same estimate holds for X̄ in I4k. We arrive at

I ≤ C(ω)nε+ C(ω)n∆2 + C(ω)

n−1
∑

k=0

∫

(k∆∧t,(k+1)∆∧t]
|µs − µk∆|ds.

Recall that ∆ = T
n . Using that |µs| ≤ C(ω), consider separately interval (k∆, (k + 1)∆] ∋ t, and we

obtain

I ≤ J(n, ε) := C(ω)nε+ C(ω)∆ + C(ω)n∆2 + C(ω)

n−1
∑

k=0

∫

(k∆,(k+1)∆]
|µs − µk∆|ds

= C(ω)nε+
C(ω)

n
+ C(ω)

∫

(0,T ]
|µs − µ[s/∆]∆|ds.

(3.16)

We have used the notation [x] for the greatest integer not exceeding x.
From (3.15) and our considerations it follows that

|Xε
t − X̄t|≤C(ω)

∫ t

0
|Xε

s − X̄s|ds+ J(n, ε).

Gronwall inequality implies that for all t, ε, n

|Xε
t − X̄t|≤C(ω)J(n, ε). (3.17)

For each 0 < ε ≤ 1 we can take n = [ε−1/2]. Process µs has continuous paths, therefore
∫

(0,T ]
|µs − µ[s/∆]∆|ds→ 0, ∆ → 0.

From (3.16) and (3.17) it follows statement 1) of our theorem.
Now let us prove part 2). We claim that if A1 and A2 hold then the set of values

1√
∆

∫

(0,T ]
|µs − µ[s/∆]∆|ds, ∆ =

T

n
, n ≥ 1

is bounded in probability. The Cauchy inequality implies that
∫

(0,T ]

|µs − µ[s/∆]∆|√
∆

ds ≤ C
(

∫

(0,T ]

|µs − µ[s/∆]∆|2
∆

ds
)1/2

.

Dividing each (k∆, (k + 1)∆] into segments of length α = ∆
m for m large enough, we can approximate

∫

(0,T ]

|µs − µ[s/∆]∆|2
∆

ds =

n−1
∑

k=0

∫

(k∆,(k+1)∆]

|µs − µk∆|2
∆

ds

by integral sums
n−1
∑

k=0

m
∑

j=1

|µk∆+jα − µk∆|2
∆

α =
∑

k,j

(

∫

fk,j dµ
)2
.

Here

fk,j =

√

α

∆
1(k∆,k∆+jα],

∑

k,j

f2k,j ≤
α

∆
m = 1.

Lemma 2.2 implies our claim.
For each 0 < ε ≤ 1 we will choose n = [ε−2/3]. From (3.16) it follows that then values of J(n, ε)ε−1/3

are bounded in probability, applying of (3.17) finishes the proof.
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Corollary 3.2. If conditions of Theorem 3.1 2) hold then for each α < 1/3

supt∈[0,T ] |Xε
t − X̄t|

εα
P→ 0, ε→ 0.

Remark 1. Note that for non-stochastic case µt = t convergence rate in (3.14) is O(ε), see, for example,
[20, Theorem 2.8.1].

Let µt = Wt be the Wiener process. Then A2 holds, equation (2.4) with Stratonovich integral is
equivalent to the following equation with the Itô integral

dXt = σ(Xt) dWt + b̂(Xt, t) dt, b̂(x, t) = b(x, t) +
1

2
σ(x)σ′(x). (3.18)

Assumption A5 holds for b iff it is fulfilled for b̂. Theorem 3.1 2) directly gives the convergence rate
O(ε1/3) for this Itô-type equation.

We can refine convergence in (3.14) if µt is Hölder continuous with exponent γ. In this case

∫

(0,T ]
|µs − µ[s/∆]∆|ds ≤ C(ω)∆γ = C(ω)n−γ .

From (3.16) and (3.17) for n = [ε−1/(1+γ)] we obtain

|Xε
t − X̄t|≤C(ω)εγ/(1+γ).

We can compare our results with rate of strong convergence obtained for systems of stochastic
equations driven by the Wiener processes. In the case of slow-fast system of SDEs in [7] was obtained
the rate O(ε1/2). For SPDEs in [25] it was proved that supt∈[0,T ] |Xε

t − X̄t|ε−1/2 are bounded in

probability. For similar system in [2] rate of convergence of (3.14) is O(ε1/2−). Note that in these
papers non-generated case was studied, and we can not consider (3.18) as partial case of these systems.

For system of usual stochastic equations driven by Wiener and Poisson processes in [8] was obtained
the rate O(ε1/2), for SPDEs in [11] – O(ε1/4).
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