
OBSERVING A LÉVY PROCESS UP TO A STOPPING TIME

MATIJA VIDMAR

Abstract. It is proved that the law of a possibly killed Lévy process X, seen up to and including

(resp. up to strictly before) a stopping time, determines already the law of X (resp. up to a

compound Poisson component and killing).

1. Introduction

We fix a d ∈ N — the dimension of the Euclidean space Rd in which our Lévy processes will live

— and a ∂ /∈ Rd – it will play the role of a cemetery state. We agree that for x ∈ Rd ∪ {∂}, ∂ ± x
and x± ∂ are all equal to ∂.

Recall then that a stochastic process X = (Xt)t∈[0,∞) on a probability space (Ω,G,P) is a possibly

killed Rd-valued Lévy process in the filtration F = (Ft)t∈[0,∞) satisfying F∞ ⊂ G, if the following

holds: (1) X takes values in (Rd ∪ {∂},BRd ∨ σ({∂})) and is F-adapted; (2) X = ∂ on [ζ,∞),

where ζ := inf{t ∈ (0,∞) : Xt = ∂} is the lifetime of X; (3) X has paths that are right-continuous

and have left limits on [0, ζ); (4) P-a.s. X0 = 0 and ζ > 0; and (5) P[g(Xt − Xs)1{s<ζ}|Fs] =

1{s<ζ}P[g(Xt−s)] a.s.-P for all real 0 ≤ s ≤ t and all g ∈ BRd/B[0,∞] extended by 0 on {∂}.1 When

these conditions prevail, then in fact for any F-stopping time T with P(T < ζ) > 0, under the

measure P(·|T < ζ), the process ∆TX := (XT+t −XT )t∈[0,∞) is independent of FT |{T<ζ} and has

the same distribution as does X under P. This is known as the strong Markov property of X. In

particular there exists a necessarily unique q ∈ [0,∞) with ζ ∼P Exp(q).

Furthermore, X is called simply an Rd-valued Lévy process in F if ζ = ∞ (corresponding to

q = 0). In the latter case, if e ∈ G/B[0,∞] is independent of F∞ and exponentially distributed (with

strictly positive mean) under P, then ke(X), the process X killed at the time e (i.e. the process equal

to X on [0, e) and equal to ∂ on [e,∞)) is, in turn, a possibly killed Lévy process in the progressive

enlargement of F by e, i.e. in the smallest enlargement of F that makes e a stopping time.

Conversely, if we revert to X being just a possibly killed Lévy process, then there exists a unique
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OBSERVING A LÉVY PROCESS UP TO A STOPPING TIME 2

law L of an Rd-valued Lévy process such that for all t ∈ [0,∞), (X|[0,t])?P(·|t < ζ) = (ξ|[0,t])?L,

where ξ is the canonical process.

We refer the reader to [8] for further general theory and terminology concerning Lévy processes

(albeit without killing and in their natural filtrations). In particular, the reader will recall that,

thanks to the stationary independent increments property, the one-dimensional distributions of a

possibly killed Lévy process determine already its law.

Put differently, observing the laws of two possibly killed Lévy processes X1 and X2 up to a (and

even just at a given) strictly positive deterministic time, we are able to say whether or not X1 and

X2 have the same law. The result of Theorem 1 below — whose content was already described in

informal terms in the abstract — provides a non-obvious (cf. Examples 3 and 4), though intuitively

appealing complement to this observation, namely one in which a stopping time takes the role of a

deterministic time. Remark 9 on p. 6 will comment on the related case of continuous-time Markov

chains. Finally, another motivation for the investigations — and at the same time an application

— of Theorem 1 is provided in Example 10 on p. 7.

2. Results and proofs

Notation-wise, in the statement of the theorem to follow, for a process Z = (Zt)t∈T on a proba-

bility space (Θ,H,Q), taking its values in Rd ∪ {∂}, and defined temporally possibly only on some

random subset T of the time axis [0,∞), by Z?Q we mean the Q-law of the process Z ′ that is equal

to Z on T and equal to some adjoined extra state ↑ on [0,∞)\T , and we mean it on the space

((Rd ∪ {∂, ↑})[0,∞), (BRd ∨ σ({∂}, {↑}))⊗[0,∞)) [assuming of course Z ′ is H-measurable w.r.t. the

latter measurable structure]. Further, for laws M1, M2, L of Rd-valued Lévy processes, and for

q ∈ [0,∞): (I) ? denotes convolution of laws, viz. if Y 1 ∼QM1 and Y 2 ∼QM2, with Y1 indepen-

dent of Y 2 under Q, then M1 ?M2 = (Y 1 + Y 2)?Q, and (II) kq is the operator of adding a killing

at rate q, viz. if Y ∼Q L and e ∼Q Exp(q), Y independent of e under Q, then kq(L) = (ke(Y ))?Q.

Here is now the result of this note:

Theorem 1. For i ∈ {1, 2} let Xi = (Xi
t)t∈[0,∞) be a possibly killed Rd-valued Lévy process, defined

on a probability space (Ωi,Gi,Pi) in the filtration F i = (F it )t∈[0,∞), and let T i be an F i-stopping

time with Pi(T i > 0) > 0.

(i) If (X1|[0,T 1]∩[0,∞))?P
1 = (X2|[0,T 2]∩[0,∞))?P

2, then X1
?P

1 = X2
?P

2.

(ii) If (X1|[0,T 1))?P
1 = (X2|[0,T 2))?P

2, then there exist a law L of a Lévy process, laws L1 and

L2 of compound Poisson processes (allowing the zero process), and {q1, q2} ⊂ [0,∞), such

that (Xi)?P
i = kqi(L ? Li) for i ∈ {1, 2}, i.e. “the laws of X1 and X2 differ only modulo

compound Poisson processes and killing”.

Before giving the proof of this theorem, some (counter)examples and comments.

Example 2. Even if, for i ∈ {1, 2}, T i is finite Pi-a.s., there can be no hope of having just

(X1
T 11{T 1<∞}, T

1)?P
1 = (X2

T 21{T 2<∞}, T
2)?P

2 imply X1
?P

1 = X2
?P

2. Indeed, if, on a common
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probability space, B is a linear Brownian motion, 0 is the the zero process, and S is the first

hitting time of 0 by B after time 1, then a.s. S <∞, S is a stopping time of the completed natural

filtration of B in which both B and 0 are Lévy processes, BS1{S<∞} = 0 = 0S1{S<∞} a.s., yet of

course B and 0 do not have the same law.

Example 3. For (i) the stopping time property is essential. If 0 is the zero process and N is a

homogeneous Poisson process, both defined on a common probability space, then letting S be the

first jump time of N , one has 0 = 0 = N on [0, S/2]∩ [0,∞) and S/2 > 0 a.s., yet 0 and N do not

have the same law.

Example 4. Also for (ii) the stopping time property is essential. Indeed, by a result of Williams

[7, Theorem 55.9], for any given c ∈ (0,∞), on a common probability space, one may construct

a Brownian motion with drift −c, B1, a Brownian motion with drift c, B2, and an exponentially

distributed random time γ of rate 2c, such that γ is independent of B1, is equal to the time of the

overall infimum of B2, and with B1|[0,γ) = B2|[0,γ). (Of course this is also another counterexample

for (i).)

Example 5. In (i), even if (Ω1,G1,P1) = (Ω2,G2,P2), F1 = F2, and a.s. T 1 = T 2 & X1 = X2

on [0, T 1] ∩ [0,∞), still the conclusion cannot be strengthened to a.s. equality. To exemplify this,

take, on a common probability space, a standard one-dimensional Brownian motion B1, a random

time T independent of B1, positive and finite with a positive probability, and let B2 be got from

B1 by changing B1 into an independent standard linear Brownian motion after time T . Then B1

and B2 are both standard univariate Brownian motions in their completed joint natural filtration

of which T is a stopping time, they a.s. agree on [0, T ] ∩ [0,∞), but they are not a.s. equal.

Example 6. The conclusion of (ii) cannot be improved. For instance, if, on a common probability

space, N is a homogeneous Poisson process, while M is zero up to and then killed at the first jump

time S of N , then N and M are Lévy processes in the completed natural filtration of N of which

S is a stopping time, a.s. N = 0 = M on [0, S) and S > 0, yet N and M “differ by killing and by

a compound Poisson process”.

Remark 7. The content of Theorem 1 makes sense also for a possibly killed random walk (in the

obvious interpretation of that qualification), but in that case it is trivial. Indeed, if Z = (Zn)n∈N0 is

a possibly killed Rd-valued random walk, in a filtration H = (Hn)n∈N0 , under a probability Q, and if

S is a stopping time of H that is positive with a positive Q-probability, then Z is independent under

Q of H0 3 {S > 0}. Therefore, if the Q-law of Z|[0,S]∩N0
is known, then for any f ∈ BRd/B[0,∞]

extended by 0 on {∂}, the quantity Q[f(Z1)]Q(S > 0) = Q[f(Z1);S > 0] = Q[f(ZS1 );S > 0], and

hence the Q-law of Z is known. On the other hand the knowledge of the Q-law of Z|[0,S)∩N0
clearly

need not determine the Q-law of Z at all, since one can take S = 1.

Remark 8. (i) implies that, for any killed (lifetime ζ < ∞ a.s.) Lévy process X in a filtration F
under a measure P, and any F-stopping time S with P(S > 0) > 0, one has P(S ≥ ζ) > 0.
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We turn now to the

Proof of Theorem 1. Let i ∈ {1, 2}. Replacing both T i with T i ∧ 1 if necessary we may assume

each T i is finite. Then take the product space (Ωi,∞,Gi,∞,Pi,∞) := ((Ωi)N, (Gi)⊗N,×NP
i)). Set

Xi,n := Xi ◦ prn and T in := T i ◦ prn for n ∈ N. By the law of large numbers, since Pi(T i > 0) > 0,

and discarding a negligible set if necessary, we may assume that Sin :=
∑n

k=1 T
i
k ↑ ∞ as n → ∞

over N0.

Next we define the process Y i,n = (Y i,n
t )t∈[0,∞) on Ωi,∞, with n ∈ N, as follows: Y i,1 := Xi,1

and then inductively, for n ∈ N, Y i,n+1 = Y i,n on [0, Sin), while Y i,n+1 = Y i,n
Si
n

+Xi,n+1
·−Si

n
on [Sin,∞).

In words, still for n ∈ N, Y i,n starts at Xi,1
0 and then, up to hitting ∂, for k ∈ {1, . . . , n − 1}, the

increments of Y i,n on [Sik−1, S
i
k] are those of Xi,k on [0, T ik], while on [Sin,∞), they are those of

Xi,n on [0,∞).

It is then clear that, as n → ∞, the Y i,n are converging pointwise to a process, that we denote

by Y i; we claim furthermore, that for each n ∈ N, Y i,n (and therefore, in the limit, Y i) has the

same law under Pi,∞ as does Xi under Pi.

We need only prove the latter for “i = 1” (it is the same for “i = 2”); and then we drop, in the

next paragraph only, the superscript “i = 1” to ease the notation.

Take then {n, k} ⊂ N, {g1, . . . , gk} ⊂ BRd/B[0,∞] extended by zero on {∂}, and real numbers

0 = t0 < · · · < tk; we are to show that P[g1(Xt1) · · · gk(Xtk)] = P∞[g1(Y n
t1 ) · · · gk(Y n

tk
)]. We compute:

P∞[g1(Y n+1
t1

) · · · gk(Y n+1
tk

)]

= P∞[g1(Y n
t1) · · · gk(Y n

tk ); tk ≤ Sn] +

k∑
l=1

P∞[g1(Y n
t1) · · · gl−1(Y n

tl−1
)gl(Y

n+1
tl

) · · · gk(Y n+1
tk

); tl−1 ≤ Sn < tl]

= P∞[g1(Y n
t1 ) · · · gk(Y n

tk
); tk ≤ Sn]+

k∑
l=1

P∞[g1(Y n
t1 ) · · · gl−1(Y n

tl−1
)gl(Y

n
Sn

+Xn+1
tl−Sn

) · · · gk(Y n
Sn

+Xn+1
tk−Sn

); tl−1 ≤ Sn < tl, Tn < ζn]

= P∞[g1(Y n
t1 ) · · · gk(Y n

tk
); tk ≤ Sn]+

k∑
l=1

P∞[g1(Y n
t1) · · · gl−1(Y n

tl−1
)gl(Y

n
Sn

+ (∆TnX
n)tl−Sn) · · · gk(Y n

Sn
+ (∆TnX

n)tk−Sn); tl−1 ≤ Sn < tl, Tn < ζn]

= P∞[g1(Y n
t1 ) · · · gk(Y n

tk
); tk ≤ Sn] +

k∑
l=1

P∞[g1(Y n
t1 ) · · · gl−1(Y n

tl−1
)gl(Y

n
tl

) · · · gk(Y n
tk

); tl−1 ≤ Sn < tl]

= P∞[g1(Y n
t1 ) · · · gk(Y n

tk
)],

where crucially in the third equality: we used (I) the strong Markov property for X at time

T , plus the various independences coming from the construction of P∞, to establish that under

P∞, conditionally on {Tn < ζn}, the process ∆TnX
n has the same law as Xn+1 and is, like

Xn+1, independent of (X1, . . . , Xn−1, (Xn)Tn , T1, . . . , Tn); noting that (II) Y n
Sn

= X1
T1

+ · · ·+Xn
Tn

,

Sn = T1 + · · · + Tn, and for each l ∈ {1, . . . , k} and m ∈ {1, . . . , l − 1}, gm(Y n
tm)1{tl−1≤Sn} are

all measurable w.r.t. σ(X1, . . . , Xn−1, (Xn)Tn , T1, . . . , Tn): it is only not obvious for the latter –
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to check it, write Y n
tm1{tl−1≤Sn} =

∑n
w=1 Y

n
tm1{Sw−1<tm≤Sw,tl−1≤Sn} =

∑n
w=1(X1

T1
+ · · · + Xw−1

Tw−1
+

(Xw)Twtm−Sw−1
)1{Sw−1<tm≤Sw,tl−1≤Sn}.

2 An inductive argument allows to conclude.

As we have noted, this now establishes that, for i ∈ {1, 2}, Y i
?P

i,∞ = Xi
?P

i; it will also be

helpful to keep in mind that, up to hitting ∂, for k ∈ N, the increments of Y i on [Sik−1, S
i
k] are

those of Xi,k on [0, T ik].

(i). Y 1 and Y 2 are seen to be the same measurable transformation of the sequences

((Xi,n
t )t∈[0,T i

n])n∈N with i = 1 and i = 2, respectively. Furthermore, for i ∈ {1, 2}, under Pi,∞,

by construction, the sequence ((Xi,n
t )t∈[0,T i

n])n∈N consists of i.i.d. random elements. Besides,

((X1,1
t )t∈[0,T 1

1 ])?P
1,∞ = ((X1

t )t∈[0,T 1])?P
1 = ((X2

t )t∈[0,T 2])?P
2 = ((X2,1

t )t∈[0,T 2
1 ])?P

2,∞ by the as-

sumption of (i). Therefore X1
?P

1 = Y 1
?P

1,∞ = Y 2
?P

2,∞ = X2
?P

2.

(ii). Let i ∈ {1, 2} and denote by ζi the lifetime of Xi. Replacing T i with T i ∧ ζi = inf{t ∈
(0, T i) : Xi

t = ∂} ∧ T i if necessary we may assume that T i ≤ ζi; then (possibly by enlarging the

underlying space and filtration) we may assume that ζi = ∞. Let next νi be the Lévy measure

of Xi under Pi (and hence of Y i under Pi,∞). Set γ := ν1 + ν2, f i := dνi

dγ for i ∈ {1, 2}, and

ν := (f1 ∧ f2) · γ. We check that (A) νi − ν, i ∈ {1, 2}, are finite measures.

Suppose per absurdum, and then without loss of generality, that ν1′ := ν1−ν = (f1−f1∧f2) ·γ
is infinite. The measure ν1′ is locally finite in Rd\{0}, hence there exists a sequence (Ak)k∈N in

BRd\{0} such that Ak ⊂ {f1 > f1∧f2} = {f1 > f2} for each k ∈ N and such that [0,∞) 3 ν1′(Ak) =

ν1(Ak)−ν2(Ak) ↑ ∞ as k →∞. For k ∈ N and i ∈ {1, 2}, set ξik equal to the number of jumps of Y i

during the time interval (0, 1] that fall into the Borel set Ak; then ξik ∼Pi,∞ PoisN0(νi(Ak)) and in

particular Pi,∞[ξik] = νi(Ak). Consequently, for each k ∈ N, P1,∞[ξ1
k]−P2,∞[ξ2

k] = ν1(Ak)− ν2(Ak),

which is ↑ ∞ as k →∞. On the other hand, setting N :=
∑

k∈N 1{S1
k≤1}, it is clear by construction

of the processes Y 1 and Y 2 and from (X1|[0,T 1))?P
1 = (X2|[0,T 2))?P

2, that P1,∞[ξ1
k] − P2,∞[ξ2

k] ≤
P1,∞[N ] for all k ∈ N. At the same time, the T 1

k , k ∈ N, are i.i.d. under P1,∞, hence by renewal

theory [6], since P1,∞(T 1
1 > 0) = P1(T 1 > 0) > 0, it follows that P1,∞[N ] <∞, a contradiction.

Next, by the Lévy-Itô decomposition one can write, for each i ∈ {1, 2}, Pi-a.s.:

Xi
t = Bi

t + Γit+ lim
ε↓0

∫
(0,t]×B(ε,1]

x[J i(ds, dx)− dsνi(dx)] +

∫
(0,t]×B(1,∞)

xJ i(ds, dx), t ∈ [0,∞),

for a d-dimensional (possibly non-standard, of course) Pi-Brownian motion Bi, a Γi ∈ Rd, and

with J i being the Poisson random measure of the jumps of Xi. Furthermore, by (A), the limit

L := limε↓0

[∫
B(ε,1] xν

1(dx)−
∫
B(ε,1] xν

2(dx)
]

is well-defined in Rd. Set X1,c
t := B1

t + Γ1t and

X2,c
t := B2

t + Γ2t + Lt for t ∈ [0,∞). Then, with i ∈ {1, 2}, on the time interval [0, T i), the

processes Xi,c can be extracted from the processes Xi by the same measurable transformation

(because this is true of the jumps). Therefore (X1,c|[0,T 1))?P
1 = (X2,c|[0,T 2))?P

2 and hence by

2It is tempting to think that one could somehow bypass the strong Markov property and still prove that Y?P
∞ =

X?P without assuming that T is an F-stopping time. But it is false. For instance, if, under P, X is a linear Brownian

motion with strictly negative drift, and if T is the last time that X is at 0, then under P∞, 0 is recurrent for the

process Y , while it is transient for the process X under P.
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sample-path continuity (X1,c|[0,T 1]∩[0,∞))?P
1 = (X2,c|[0,T 2]∩[0,∞))?P

2. Now, X1,c and X2,c are still

Lévy processes in the filtrations F1 and F2, respectively. Thus, by part (i), (B) X1,c
?P

1 = X2,c
?P

2.

Combining (A)-(B), by the independence between the “jump” and “continuous” part present in

the Lévy-Itô decomposition, the desired conclusion follows. �

Remark 9. The proof of Theorem 1(i) can be tweaked to handle the case of continuous-time Markov

chains, though the result is less definitive in this context. Let us look at this in more detail.

Fix a countable set E – it will be the state space; fix also — it will be the cemetery state —

a ∂ /∈ E. Recall then that a process X = (Xt)t∈[0,∞), defined on a measurable space (Ω,G), is a

(minimal) continuous-time E-valued Markov chain, in a filtration F = (Ft)t∈[0,∞) with F∞ ⊂ G,

under the probabilities P = (Px)x∈E on (Ω,G), provided: (1) X takes values in E ∪ {∂}, endowed

with the discrete topology and measurable structure, and it is F-adapted; (2) X has paths that are

right-continuous, X is E-valued on [0, ζ), and X = ∂ on [ζ,∞), where ζ := limn→∞ Jn, (Jn)n∈N

being the sequence of the consecutive jump times of X; (3) Px(X0 = x) = 1 for all x ∈ E; (4)

for {t, s} ⊂ [0,∞), x ∈ E, and g ∈ 2E/B[0,∞] extended by 0 on {∂}, one has Px[g(Xt+s)|Ft] =

PXt [g(Xs)] a.s.-Px on {t < ζ}. As is well-known, such an X then has the strong Markov property:

for any F-stopping time T , x ∈ E and g ∈ (2E∪{∂})⊗[0,∞)/B[0,∞], Px[g(XT+·)|FT ] = PXT [g(X)]

a.s.-Px on {T < ζ}.
Suppose then that the system (Ω,G,F ,P, X) constitutes such a continuous-time Markov

chain and let T be an F-stopping time. Take the measure P∞ := ×n∈N ×x∈E Px on

(
∏
n∈N

∏
x∈E Ω, (G⊗E)⊗N) and let Xx,n := X ◦ prx ◦ prn, T x,n := T ◦ prx ◦ prn for x ∈ E, n ∈ N (in

words, we take denumerably many independent copies of X for each starting position). Addition-

ally set X∂,n ≡ ∂ and T ∂ ≡ ∞ for n ∈ N. Fix next an x ∈ E. Define Y x,1 := Xx,1, Sx1 := T x,1,

and then recursively, for n ∈ N, Y x,n+1 := Y x,n on [0, Sxn), Y x,n+1 := X
Y x,n
Sx
n
,n+1

·−Sx
n

on [Sxn,∞), and

Sxn+1 := Sxn +T
Y x,n
Sx
n
,n+1

. (Note the denumerable state space ensures suitable measurability of these

objects and it ensures that P∞-a.s. Y x,n+1
Sx
n

= Y x,n
Sx
n

for all n ∈ N.) Set furthermore Sx := limn→∞ S
x
n

and assume that P∞(Sx =∞) = 1. (It would be an interesting question in its own right to investi-

gate under which conditions does P∞(Sx =∞) = 1 in fact obtain, however this will not be pursued

here.) It is then clear that the Y x,n converge P∞-a.s. to a process Y x as n → ∞. Furthermore,

using the strong Markov property, similarly to how we did in the proof of the Lévy case, we may

show that, for each n ∈ N, Y x,n, and hence in the limit Y x, has the same law under P∞ as does X

under Px. We leave the (grantedly more tedious when compared to the Lévy case) details of these

computations to the interested reader.

As a consequence of the preceding we obtain then, just as in the proof of Theorem 1(i), the

statement:

For i ∈ {1, 2}, let (Ωi,Gi,F i,Pi, Xi) be a continuous-time E-valued Markov chain in

the sense made precise above, and let T i be an F i-stopping time; associate to it Pi,∞

and the times (Si,x)x∈E in the obvious way, as above. Assume (X1|[0,T 1]∩[0,∞))?P
1
x =
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(X2|[0,T 2]∩[0,∞))?P
2
x for all x ∈ E. Let x ∈ E. If P1,∞(S1,x = ∞) = 1 (and hence

P2,∞(S2,x =∞) = 1), then X1
?P

1
x = X2

?P
2
x.

The case of discrete-time Markov chains is again trivial in this context (cf. Remark 7). The

analogue of Theorem 1(ii) is of no interest in the context of Markov chains.

Example 10. We close this paper with an example in the context of self-similar Markov processes

in which Theorem 1 produces non-trivial information.

To this end, let X = (Xt)t∈[0,∞) be a one-dimensional stable Lévy process under the probabilities

(Px)x∈R in a filtration F = (Ft)t∈[0,∞) satisfying the usual hypotheses. We make the standing

assumption that X has jumps of both signs in order to avoid triviality, and refer the reader to [2,

Chapter 13] [4] [3, Section 2] for any unexplained terminology and facts that we shall state without

proof below: introducing everything properly here would not be consistent with the scope of this

paper.

We consider the following two processes: Y , which is X sent to 0 on hitting (−∞, 0] (and then

stopped); and Z, which is X sent to 0 on hitting 0 (and then stopped). It is then well-known that

Y is a positive self-similar Markov process under the probabilities (Px)x∈(0,∞) and that Z is a real

self-similar Markov process under the probabilities (Px)x∈R\{0}, both in the filtration F . Moreover,

defining T0 := inf{s ∈ (0,∞) : Ys = 0}, R0 := inf{s ∈ (0,∞) : Zs = 0},

τt := inf

{
s ∈ (0, R0) :

∫ s

0
|Zv|−αdv > t

}
∧R0

and Gt := Fτt for t ∈ [0,∞), we have as follows:

(1) Put γ :=
∫ R0

0 |Zv|−αdv and define the processes µ = (µt)t∈[0,∞) and J = (Jt)t∈[0,∞), by

setting µt := log(|Zτt |) and Jt := sgn(Zτt) for t ∈ (0, γ), µ and J being killed on the

time-interval [γ,∞). Then [1] (µ, J) is a possibly killled Markov additive process (MAP)

under the probabilities (Pjex)(x,j)∈R×{−1,1} in the filtration (Gt)t∈[0,∞). This is known as

the Lamperti-Kiu transform. Further, let (G,M) be the ascending ladder MAP of (µ, J)

with associated local time at the maximum L; then, under P1, G killed at the first time M

changes its sign is a killed subordinator in the filtration (GL−1
s

)s∈[0,∞). It is the killed Lévy

process H1 which describes the movement of G as long as the modulating chain M is in

state 1.

(2) Similarly put ζ :=
∫ T0

0 Y −αv dv and define the process ξ = (ξt)t∈[0,∞) by setting ξt := log(Yτt)

for t ∈ (0, ζ), ξ being killed on the time-interval [ζ,∞). Then [5] ξ is a possibly killled Lévy

process in the filtration (Gt)t∈[0,∞) under the probabilities (Pex)x∈R. This is known as the

Lamperti transform. Further, let H be the ascending ladder height process of ξ under a

normalization of the local time at the maximum that is consistent with that of L; then,

under P1, H is a killed subordinator in the filtration (GL−1
s

)s∈[0,∞).
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Besides, it is clear from the pathwise construction of Y and Z, that H and H1 agree on [0, Lζ)

with Lζ being a stopping time of (GL−1
s

)s∈[0,∞). Indeed Lζ is the lifetime of H, and albeit it is not

the lifetime of H1, it is certainly majorized by the latter.

It follows then from Theorem 1 that the laws of H and H1 differ only by killing and compound

Poisson components, which yields an a priori insight into the non-trivial probabilistic structure of

the MAP (G,M) in terms of the much simpler object H. (A fully explicit description of the law of

(G,M), viz. of the MAP exponent of (G,M), is non-trivial, see [3].)
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