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TOWARDS VORST’S CONJECTURE IN POSITIVE
CHARACTERISTIC

MORITZ KERZ, FLORIAN STRUNK, AND GEORG TAMME

ABSTRACT. Vorst’s conjecture relates the regularity of a ring with the
A'-homotopy invariance of its K-theory. We show a variant of this
conjecture in positive characteristic.

1. INTRODUCTION

A commutative unital ring A is called K,-regular if the canonical map
K,(A) — K,(A[Xi,...,X;n]) is an isomorphism for all positive integers
m. By [Vor79, Cor. 2.1] a K, i-regular ring is also K,-regular. It is well
known that a regular noetherian ring is K,,-regular for all n. In [Vor79| Vorst
conjectured the following partial converse.

Conjecture (Vorst). Let k be a field, and let A be essentially of finite type
over k. If A is Kqim(a)+1-regular, then A is regular.

The case dim(A) = 0 is easy and the case dim(A) = 1 was shown by Vorst
in [Vor79, Thm. 3.6]. For fields k of characteristic zero, Cortinas, Haese-
meyer, and Weibel proved the conjecture in [CHWO0S, Thm. 0.1]. Geisser
and Hesselholt in [GH12| proved the conjecture for A of finite type over a
perfect field k of positive characteristic assuming resolution of singularities.

In order to formulate our results, we introduce the p-dimension of an IF-
algebra A. This number is defined as

p-dim(A) = sup{p-dim(k(p)) + ht(p) |p C A prime ideal}

where p-dim(k(p)) is the p-rank of the residue field k(p), see Section [ for
details. In general p-dim(A) > dim(A) and equality holds for instance if A
is of finite type over a perfect field.

Theorem A. Let A be an excellent noetherian Fp-algebra such that [k(x) :
k(x)P] < oo for all points v € Spec(A). If A is K, gim(a)+1-Tegular, then A
1$ reqular.

In particular, this implies the result of Geisser and Hesselholt mentioned
above without assuming resolution of singularities. The theorem indicates
that the condition that A be essentially of finite type over a field is not
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necessary for the conjecture to hold. In fact, using the result of Cortifias—
Haesemeyer—Weibel, we show the following generalization in characteristic
Zero.

Theorem B. Let A be an excellent noetherian ring of characteristic zero.
If A is Kgim(a)41-regular, then A is reqular.

We also prove the following result for curves in mixed characteristic. This
seems to be the first result of that form in mixed characteristic.

Theorem C. Let A be an excellent noetherian ring with dim(A) < 1 such
that A/m is perfect of characteristic p > 2 for every maximal ideal m C A.
If A is Ko-regular, then A is reqular.

These results motivate the following question, already asked similarly by
Vorst in [Vor79].

Question D. Let A be an excellent noetherian ring which is Kgim(a)+1-
reqular. Is A necessarily reqular?

The proof of Theorem [C]is based on the dlog-map to (absolute) de Rham—
Witt forms and calculations of Hesselholt-Madsen [HMO04]. The proof of
Theorem [Al essentially follows the strategy of Geisser—Hesselholt. We replace
resolution of singularities by an argument involving the Zariski-Riemann
space of Spec(A). This forces us to study K-theory of valuation rings. In
fact, we use the following vanishing result for the K-theory of valuation rings.

Theorem E. Let V' be a wvaluation ring of characteristic p with field of
fractions F'. Then K;(V;Z/p) =0 for i > p-dim(F).

Using a recent result of Clausen, Mathew, and Morrow [CMM18], this fol-
lows from an analogous vanishing of topological cyclic homology (see Propo-
sition3.10)). The main new ingredient is a Cartier isomorphism for valuation
rings, a proof of which was outlined in a letter of Gabber to the first au-
thor [Gabl18]. We give a detailed account of his argument in the appendix.

This existence of a Cartier isomorphism is also used in a recent preprint of
Kelly and Morrow [KM18§|, where they independently prove the finer result
K;(V;Z/p") = WTQ"',’IOg by similar methods.

Acknowledgement. We thank Ofer Gabber for sending us an outline of the
proof of the Cartier isomorphism mentioned above and for helpful comments
on our presentation of his results in the appendix. We are grateful to the
referees for a careful reading of our paper and several helpful comments. In
particular, they suggested an alternative proof of the vanishing result for the
topological cyclic homology of a valuation ring mentioned above.

Notation. All rings in this text are assumed to be commutative and unital.
For a presheaf of spectra F and an integer p we write E/p for the cofibre of
the p-multiplication on E and set E;(X;Z/p) = m(E/p(X)).
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2. PRELIMINARIES ON THE p-DIMENSION

Let p be a prime number. In this section we introduce the notion of
p-dimension for Fp-algebras. Let R be an Fp-algebra, and let A be an R-
algebra. By R[AP] C A we denote the R-subalgebra of A generated by the
p-th powers of the elements in A. Recall the following definition from [Gro67,
Orv(21.1.9)].

Definition 2.1. A family (x;);c; of elements of A is called a p-basis of A
over R if the family of monomials

(2.1) Ha:z“ (0 <n; < p,n; =0 for all but finitely many i € I)

forms a basis of A as an R[AP]-module. It is called p-independent over R
if the family (2.1]) is linearly independent over R[AP]. The monomials (2.])
are called the p-monomials of the family (z;);c;. A p-basis for A over F), is
called an absolute p-basis or simply a p-basis for A.

We record the following simple observation.

Lemma 2.2. Assume that the family (xz;);cr forms a p-basis of A over R. If
S C A is a multiplicative set, then (5t);cr forms a p-basis of the localization
S~1A over R.

Proof. To see that the family of p-monomials associated with (%);cr gener-
ates S71A as an R[(S~!A)P]-module, note that we can write any element of
S71A in the form & with a € A and s € S. It is also easy to see that the
family (%)iers is p-independent over R. O

If the family (x;);cs is a p-basis of A over R, then it is also a differential
basis, i.e. the family (dz;);es is a basis of the A-module of Kahler differentials
Qa/R, see [Gro67, Oy Cor. 21.2.5]. The converse holds if R — A is a field
extension [Mat86, Thm. 26.5]. In particular, if ¥ C k is any extension of
fields of characteristic p, then k admits a p-basis over &’ and any two p-bases
have the same cardinality. This cardinality is called the p-rank of k over
k'. The p-rank of k over F, is simply called the p-rank of k and denoted
by p-dim(k). So p-dim(k) = dimy Q, where Q_y = Q_/r, denotes the

module of absolute Kahler differentials.

Lemma 2.3. Assume that k C k' is a finitely generated field extension in
characteristic p. Then

p-dim(k") = p-dim(k) + trdegy, k.
In particular, p-dim(k) = p-dim(k’) in case the extension is finite.
Proof. This follows from the exact sequence

0 %Fk’/k/Fp — QO Qp K — Qp —)Qk//k — 0,
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where the imperfection module I'ys /. , 1s defined as the kernel of the map
in the middle, together with the Cartier equality [Mat86, Thm. 26.10]
dimg Qs — dimy Uy g jp, = trdegy k,
which holds since the field extension k& C &’ is finitely generated. O
Definition 2.4. For an [F)-scheme X the p-dimension is defined as
p-dim(X) = sup{p-dim(k(z)) + dim(Ox )|z € X}
where k(z) is the residue field of X at x. For an Fp-algebra A we set
p-dim(A) = p-dim(Spec(A)).
Note that dim(Ogpec(a),p) = ht(p) and
p-dim(A) = sup{p-dim(A/p")|p’ C A minimal prime ideal}.
In the following, we collect some elementary properties of the p-dimension.

Lemma 2.5. If the noetherian Fy-algebra A is reduced and has an absolute
p-basis of cardinality r, then p-dim(A) = r.

Proof. By Lemma it is enough to show that
p-dim(k) +dim(A) = r

provided A is moreover local with residue field k. Since A is reduced, the
Frobenius map a +— @ is injective. According to [Gro67, Ory Thm. 21.2.7] the
[F,-algebra A is then formally smooth and hence regular by Theorem 22.5.8
there. Let m denote the maximal ideal of A. The claim now follows from
the fundamental exact sequence [Mat86, Thm. 25.2]

0—-m/m?> =5 Que4k = Q=0

using dimj m/m? = dim(A) by the regularity of A and dimg(Q4 ®4 k) =17
by the remarks preceding Lemma, 2.3 O

Lemma 2.6. Let A C B be a finite extension of integral IF)-algebras. Then
p-dim(A) = p-dim(B).

Proof. For a prime ideal ¢ C B and p = qN A C A, we have the equality
p-dim(k(q)) = p-dim(k(p)) by Lemma 23 as the residue field extension
k(p) C k(q) is finite. Moreover, ht(q) < ht(p), since A C B is integral,
and hence p-dim(B) < p-dim(A). On the other hand, for every prime ideal
p C A there exists a prime ideal ¢ C B with p = qN A and ht(q) > ht(p) by
going-up [Mat86l Thm. 9.4]. Therefore p-dim(B) > p-dim(A). This shows
the claim. 0

Lemma 2.7. Let A be either an Fp-algebra of finite type over a field k or a
complete local noetherian F,-algebra with residue field k. Then

p-dim(A) = p-dim(k) + dim(A)

where dim denotes the Krull dimension.
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Proof. We may assume that p-dim(k) < oo, since otherwise both sides of the
equation are oo. By the remark after Definition 2.4] we may assume that
A is integral. Write d for the Krull dimension of A. In case A is of finite
type over a field k, Noether normalization [Mat80, (14.G)| yields a finite

injective map k[z1,...,x4] — A. If A is complete, A contains a coefficient
field [Mat86, Thm. 28.3], and a choice of a system of parameters yields a
finite injective map k[[z1,...,z4]] =& A. By Lemma it now suffices to
show that

p-dim(k[z1, ..., z4)) = p-dim(k[[z1, ..., x4)]) = p-dim(k) + d.

But in view of Lemma this follows from the fact that if by,...,b, form a
p-basis of k, then by,...,b.,x1,...,24 form a p-basis of k[z1,...,x4] and of
El[x1,...,24]], see [GOO8, Lemma 2.1.5]. O

Lemma 2.8. Let A C B be an extension of finite type of integral noetherian
Fp-algebras. Then p-dim(B) < p-dim(A) + trdegpac(a) Frac(B).

Proof. Let ¢ C B be a prime ideal, and let p = qN A C A. The dimension
inequality [Mat86, Thm. 15.5] gives

ht(q) + trdegk(p) k(q) < ht(p) + tI'degFraC(A) Frac(B).

Since the field extension k(p) C k(q) is finitely generated, Lemma [2.3]implies
that

p-dim(k(q)) = p-dim(k(p)) + trdegy ) k(q).
Taken together, these facts imply the claim. O

3. DERIVED DIFFERENTIAL FORMS AND VALUATION RINGS

Let A be an [F,-algebra. Since the differential of the (absolute) de Rham
complex % is Frobenius-linear, the subgroups of cycles ZQQ C Qféx and
boundaries BQY C QY, and the cohomology groups H*(2%) are canonically
A-modules via the Frobenius a + aP. There is a unique A-linear multiplica-
tive map

va: QY — H'(Q)

characterized by v4(1) = 1 and ya(dx) = 2P~ 'dx, see [Kat70, Proof of
Thm. 7.2]. The map ~y4 is usually denoted by C~! and is called the inverse
Cartier operator. The classical theorem of Cartier [Kat70, Thm. 7.2] says
that v4 is an isomorphism provided that A is smooth over a perfect field. If
Y4 is an isomorphism, the inverse induces a map C: Z Qi; — Qi; called the
Cartier operator. In the appendix (Corollary [A4](iii)) we explain a proof of
the following result due to Gabber [Gabl8].

Theorem 3.1. Let V be a valuation ring of characteristic p. Then the
inverse Cartier operator vy is an isomorphism.

In the following, we need some nonabelian derived functors, see [Lur(9,
§5.5.8] and [Lurl8, Ch. 25| for a general treatment. We denote by Polyy,
the category of polynomial F,-algebras in finitely many variables, and by



[§ MORITZ KERZ, FLORIAN STRUNK, AND GEORG TAMME

SCRp, the oo-category obtained from the category of simplicial commuta-
tive [F)-algebras by inverting the quasi-isomorphisms. Then Poly]Fp is a full
subcategory of SCRy,. Moreover, if D is any oo-category that admits sifted
colimits, then any functor F': Polyp  — D admits an essentially unique ex-
tension LF': SCRy, — D which preserves sifted colimits. The functor LF is
called the derived functor of F.

If F'is a functor SCRy, — D, we still denote by LF the derived functor of
the restriction of F' to Poly . There is a natural transformation LF — F. If
the functor F' commutes with filtered colimits, then LF(A) ~ colimaopr F(P)
where P = A is a simplicial resolution by free F,-algebras.

Example 3.2. For F' = Q_), viewed as functor on Polyp ~with values
in the derived oo-category D(F,) of HF,-modules, we obtain the functor
LQy: SCRp, — D(F,). For any Fj-algebra A, L4 is equivalent to the
underlying HF,-module of the cotangent complex L4 /r, € D(A), see [Lurlg,
§25.3].

Moreover, L) is equivalent to the underlying HF,-module of the derived
exterior power L /\24 L 4/r,, see [Lurl8, §25.2]. This follows directly from the
constructions and the fact that for a polynomial [Fj-algebra P the P-module
Qp is free.

The following result is essentially due to Gabber and Ramero.

Theorem 3.3. Let V' be a valuation ring of characteristic p, and let ¢ > 0.
Then the following hold.

(1) Loy, ~ Q0. '

(2) The V-module Qi is torsion-free or, equivalently, Q, flat.

Proof. For ¢ = 0 both claims are clear; for ¢ = 1, assertion (1) follows
from [GRO3, Thm. 6.5.12] and (2) is Corollary 6.5.21 there. An alternative
argument due to Gabber is explained in the appendix, see Corollary [A.4]
Let now ¢ > 2. Since Ly ~ Qy[0] and Qy is torsion-free and hence flat, it
follows that

LY, ~ L/\V Ly ~ /\V Qy = Qi [0],
see |[Lurl8, Prop. 25.2.3.4]. It remains to prove (2) for i > 2. As Qy is
torsion free, it is isomorphic to a filtered colimit of finitely generated torsion
free modules, which are free by [Bou89, VI.3.6 Lemma 1]. Since exterior
powers of free modules are free, and since taking exterior powers commutes

with filtered colimits, Qﬁf is a filtered colimit of free modules and hence
flat. O

We want to prove the analog of Theorem [B.3]for the de Rham—Witt groups.
For this we need some preparations.

Lemma 3.4. Let V be a valuation ring of characteristic p. Then LB, ~
B [0] and LZO, ~ ZO[0].
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Proof. By the Cartier isomorphism, recalled at the beginning of this section,
we have the following short exact sequence of functors on Polpr:

0— B - 20" S 0 50
Taking derived functors and evaluating at V' we obtain the cofibre sequence
LB, —— LZQO, —— L,

As by Theorem [B1] the inverse Cartier operator vy is also an isomorphism
for the valuation ring V', we also have a cofibre sequence

BQL[0] —— 29, [0] —<— i, [0].

As the inverse Cartier operator is natural, the following diagram, in which
the vertical maps are the canonical ones, commutes:

LB, —— LZO, — LQi,

| | I+

BQI 0] —— ZQL[0] —— QL [0].

The right vertical map in this diagram is an equivalence by Theorem So
we see that if we prove the assertion about B¢, then also the assertion about
ZSY follows. We now argue by induction on i. As BQ = 0, the assertion
is clearly true in the case ¢ = 0. Similarly as above, the exact sequence of
functors

0— 29 — Q' % Bait! 0
gives rise to the following diagram of cofibre sequences

LZQ, —— LOY, —— LB

ZQ%[0] —— QL [0] —— BQL0].
By induction, the left vertical map is an equivalence, hence so is the right
vertical map. O

We next recall the definition of the higher boundaries and cycles in the
de Rham complex from [[II79, 1.2.2]. Let A be an F,-algebra for which the
inverse Cartier operator v4: Qi; — H Z(QZ) is an isomorphism, for example
a polynomial algebra or a valuation ring. One defines the chain of subgroups

0= ByQy C By C--- C B,y C -
e CZpYy C e C Z00Y C ZyQYy = QY

inductively by setting B1QYy = BQYy, Z1QY = ZQ! and requiring that v
induces isomorphisms

(3.1) B,QY = B, 1Q4/BQY  and  Z,Q% = Z,.19Q4/BQY.
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Since the B, and Z,Q define functors on Poly]Fp, we get derived functors

LB,Q and LZ,$" defined on SCRp,. In particular, we may evaluate them
on any F,-algebra.

Lemma 3.5. Let V be a valuation ring of characteristic p. Then LB, ~
B, 0] and LZ,0%, ~ Z,01,[0].

Proof. We argue by induction on n. The case n = 1 is done in Lemma 341
By definition, we have the following exact sequence of functors on Polyg :

0— BQ — B S B,Q 0

Taking derived functors and evaluating at V' gives the inductive step, simi-
larly as in the proof of Lemma B4l The proof for Z,Q" is the same. O

Next we recall that to any IFp-algebra A one functorially associates its
de Rham-Witt pro-complex {W,Q%},, see [III79], [HMO04, Thm. A]. The
structure maps of the pro-system are denoted by R and are called restriction
maps. It follows directly from [III79, Thm. I.1.3] that the restriction maps
are surjective. We view W, as a functor on [Fp-algebras with values in
D(Z). So we have its derived functor available.

Proposition 3.6. Let V' be a valuation ring of characteristic p with field of
fractions F, and let n > 1 and i > 0. Then the following hold.

(1) LWL Qf, =~ W, Q00 '

(2) The natural map W, — W,Q% is injective.

Proof. (1) As a first step, we treat the case i = 0. Note that W,,Q° is the ring
W, of Witt vectors of length n. We claim that in fact LW,,(A) ~ W,,(A)[0]
for any F,-algebra A. This is clear for n = 1. For n > 1 the claim follows by
induction using the short exact sequence

0— 425 Wht1(A) = Wy(A) — 0

which is natural in A.

We next prove that WOLWanA = WnQQ for any Fj-algebra A. Let P =5 A
be a simplicial resolution of A by free F)-algebras. We have to show that
the sequence

W, 2= W, 00— W0 — 0
is exact. According to [GHO6bL Lemma 2.4], the right-hand map is surjective
and its kernel is generated by elements of the form z - w and dz - w with
z € ker(W,(FPy) — Wir(A)) and w € W or w € Wanl, respectively.
By the first step of the proof we know that W, (P) = W,,(A) is a simplicial
resolution. In particular, for z as above there exists an element y € W,,(P;)
such that 9y(y) = =z, 01(y) = 0. If s denotes the degeneracy map W,,(FPy) —
Wy, (P1), then y- s(w) respectively dy - s(w) is a preimage of x - w respectively
dr - w under Jy — 01, thus showing the desired exactness.
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It remains to prove that LWnQ%/ is concentrated in degree 0 for ¢ > 1
and n > 1. We argue by induction on n. Since WiQ! = Q! (see [III79,
Thm. 1.1.3]), the case n = 1 follows from Theorem B3(1). Assume our
assertion is proven for some n > 1. Recall from [IlI79] 1.3.1] the canonical
filtration on Wqu = lim,, Wan4 given by

Fil" WQY = ker(WQ, % W,0%)

for any smooth F,-algebra A. Its associated graded pieces sit in a short exact
sequence

(3.2) 0= g Wy — Wy Oy 2 W00 — 0.

Viewed as a short exact sequence of functors in the smooth [Fj-algebra A,
the latter gives rise to a cofibre sequence of derived functors

(3.3) Legt"WQ — LW, Q" — LW, Q.

By induction, it now suffices to show that L gr” WQ@ is concentrated in
degree 0. By a fundamental result of Illusie [III79, Cor. 1.3.9], there is a
natural short exact sequence

(3.4) 0— QY /B,QY — gr" Wy — Q1 Z,077 -0

for any smooth IF)-algebra A. By the same argument as before, we now finish
the proof of (1) by noting that L(Q?/B,Q)y and L(Q!/Z,Q 1)y are
concentrated in degree 0. Indeed, this follows immediately from Lemma
together with Theorem [3.3](1).

(2) We again argue by induction on n. The case n = 1 is Theorem [B.32).
Note that by part (1) applied to the trivial valuation ring F', we also have
LWnQ’F ~ WnQ’F for all n > 1 and 7 > 0 and Lemma holds with V
replaced by F. Using the cofibre sequence ([3.3]) and the result of part (1),
we see that for the inductive step it suffices to show that

moL g WQ, — moL gr™ Wk

is injective for all n > 0. Then, using the cofibre sequence of derived functors
obtained from (3.4]), we reduce to proving that the maps

QL /B.Qy — Q%/B,Q%  and QL /Z,0% — Q%/Z,0%

are injective for any ¢ > 0 and n > 1.

We now prove the latter statement for the higher cycles by induction on n.
To simplify notation, we drop the index V or F', whenever a statement holds
for both of them. In the case n = 1, the desired injectivity follows from the
injectivity of d: /29 — Q*! and of Qyf' — Q'] see Theorem B:3](2).
Assume, we have proven injectivity for some n. It follows from the defini-
tion of higher cycles (3.I]) that the inverse Cartier operator v induces an
isomorphism

o

02,90 = ZO0 ) Z 1.
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Combining this isomorphism with the exact sequence
0— ZQ ) Zp 1 = Q)72 190 = Q)20 =0

and the injectivity for n = 1 gives the inductive step. The proof for higher
boundaries is the same, replacing in the above formulas Z,, by B,, and Z,11
by B,+1, and using the injection Q¢/BQ! < Q! given by the Cartier operator
for the case n = 1. O

Corollary 3.7. The p-multiplication p: WnQ@ — WnQﬁf factors as
WL w0l 5w,

and the induced map p is injective. In particular, the pro-group {WnQ’V}n 18
p-torsion-free.

Proof. For V replaced by any smooth IF,,-algebra the same assertion is proved
in [II79, Prop. 1.3.4] and remains true for ind-smooth F,-algebras. Hence
the p-multiplication on the derived functor LW, Q! factors as

w, o B pw, 0 L Lw, o

Evaluating on V' and using Proposition [3.6/(1) gives the desired factorisation.
Using part (2) of the proposition and Illusie’s result for the ind-smooth F)-
algebra F' proves the asserted injectivity. O

We will use the above results to prove a vanishing result for topological
cyclic homology of valuation rings in characteristic p. Recall that for any
(simplicial) [F,-algebra A one defines the spectra

TR"(4;p) = THH(A)%

as the genuine fixed points of the topological Hochschild homology spec-
trum THH(A). There are natural maps R, F: TR™(A;p) — TR" 1(4;p)
called restriction and Frobenius, and one defines the spectrum TR(A;p) =
limp TR™(A;p). The topological cyclic homology of A then sits in a fibre
sequence

(3.5) TC(A) — TR(4;p) =5 TR(A4; p).

Hesselholt-Madsen prove in [HM97, Prop. 5.4] that TR} (F,) is isomorphic
to the polynomial ring Z/p"[o,] with o,, of degree 2 and the restriction map
sends o, to po,_1 up to a unit in Z/p"~!. Hesselholt shows in [Hes96] that
for any IF,-algebra A and every n > 1 one gets a naturally induced map of
graded rings

(3.6) Wn¥h[on] — TRE(A; p)

and that (3.0]) is an isomorphism provided that A is smooth over F,, see
[Hes96, Thm. BJ. Since both sides of (B.6) commute with filtered colimits,
(3.6)) is an isomorphism if A is only assumed to be ind-smooth over Fy,.
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Proposition 3.8. Let V' be a valuation ring of characteristic p. Then the
map

WSl lon] = TRE(V;p)
from ([B.9) is an isomorphism of graded rings. In particular, the natural map
of pro-groups {W, 0, }n = {TR}(V;p)}n is an isomorphism.

Proof. Let P = V be a simplicial resolution by free F,-algebras. As the
spectrum valued functor TR"(—;p) on SCRy, commutes with sifted colimits
(this follows inductively from the basic cofibre sequence [Hes96l (1.3.10)]),
we have an equivalence colimaor TR™(P;p) ~ TR"(V;p) and hence a con-
vergent spectral sequence

E}, = TR}(Py;p) = TR, (V;p).

By Hesselholt’s result above, we have W,,Q5, [0y,] = E}, via the canonical
map, and hence 7, (LW,Q5[0,,]) 2 E2, by the definition of derived functors.
So Proposition implies E% = 0 for r > 0 and W, ,[0,,] = EZ,. This
gives the first claim. The second statement follows immediately from the
fact that the transition map sends o, to po,_1 up to a unit. O

Remark 3.9. With a similar approach, the result of Proposition 3.8 has been
shown by Kelly and Morrow [KMIS, §2.3] for Cartier-smooth [F,-algebras.

Proposition 3.10. Let V be a valuation ring of characteristic p with field
of fractions F. Then TC;(V;Z/p) =0 for i > p-dim(F).

Proof. In view of the fibre sequence ([B.5) and the Milnor sequence for TR,
it suffices to show that the pro-group {TR}(V;p,Z/p)}, vanishes for i >
p-dim(F). From Corollary B.7 and Proposition B.8 we deduce an isomor-
phism {W,, %, /p}n, = {TR}?(V;p,Z/p)}n. Since the map W, Q% — W, Q%
is injective by Proposition B.6] it now suffices to observe that W, Q% = 0 for
i > p-dim(F). Indeed, since F is ind-smooth over F, and Q% vanishes for
i > p-dim(F') this follows easily by induction using the exact sequences (3.2)
and [3.4) (note that Q% = ZQ% = --- = Z,Q% for i > p-dim(F)). O

Here is an alternative proof of Proposition B.10lindicated to us by a referee.
It does not use the computation of TR of a valuation ring in Proposition 3.8
and thus avoids the use of the derived de Rham—Witt complex.

Proof. Let A be a polynomial IF-algebra. We define a complete exhaustive
decreasing Z-indexed filtration on TC(A;Z/p) = TC(A)/p via
Fil" TC(4; Z/p) = ib(r>n(TR(A;p)/p) “= T2a(TR(4:p) /p)).

It follows from Hesselholt’s Hochschild-Kostant—Rosenberg theorem [Hes96),
Thm. B that there is a natural isomorphism TR, (A;p) = WQY. Since W%
is p-torsion free [III79, Prop. 1.3.4], it follows that m,.(TR(A;p)/p) = W /p.
For the associated graded of the above filtration on TC we thus obtain

g TC(A; Z/p) =~ (W /p —— WL /p)[n].
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The square of abelian groups

n I-F n
WL /p —— WQy/p

! |

=1
on = on/Ban
where the vertical maps are the canonical projections is bicartesian, see the
proof of [CMM18, Prop. 2.26], and thus cartesian when viewed as a diagram
of spectra. We thus obtain a natural equivalence

" TC(A: 2 p) = (2} +=7— 4/ BY) n].
As TC(—)/p commutes with sifted colimits [CMMI8, Cor. 2.15], we can de-
rive the above filtration on TC(—)/p of polynomial F)-algebras and obtain a
filtration on TC(—)/p of an arbitrary [F,-algebra R. Notice that this filtra-
tion is still complete (as Fil” TC(A;Z/p) is n— 1-connective) and exhaustive.
By the above, its graded pieces are given by

gr" TC(R;Z/p) ~ fib(LO% 1o L("/BQ")Rr)[n],
where as usual L denotes nonabelian derived functors.
Now let V' be a valuation ring of characteristic p with field of fractions F'.
It follows from Lemma [3.4] that LQ], ~ QF[0] and also that L(Q2"/BQ")y =
QOF/BQY[0] (this is where the Cartier isomorphism for valuation rings is
used). Thus

n n 1-C! n n
g TC(V; Z/p) = fib(Qy, —— Qy/BQy)[n]
is concentrated in degrees n — 1,n. Furthermore, from Theorem B.3] we
deduce that QF, vanishes for n > p-dim(F") and thus
gr" TC(V;Z/p) =0

forn > p-dim(F"). Since the filtration is complete, i.e. lim, Fil" TC(V;Z/p) =
0, this implies that Fil" TC(V;Z/p) = 0 for n > p-dim(F). Inductively,

we then get that Fil" TC(V;Z/p) is concentrated in homotopy degrees <

p-dim(F) for all n € Z. Since the filtration is exhaustive, we also get that
TC(V;Z/p) is concentrated in degrees < p-dim(F). O

The following consequence is Theorem [E] from the introduction.
Corollary 3.11. Let V be a valuation ring of characteristic p with field of
fractions F'. Then K;(V;Z/p) =0 for i > p-dim(F).

Proof. AsV is alocal ring, the cyclotomic trace K;(V;Z/p) — TC;(V;Z/p)
is injective by [CMMI8| Thm. D] and the statement follows from the previous
proposition. O

Remark 3.12. In case V = F is a field Corollary BI1l was proved for
p-dim(K) = 0 in [Kra80), Cor. 5.5] and in [Hil81l Thm. 5.4] and in [GLO00] in
general.
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4. THE MAIN RESULT

Lemma 4.1. Let k be a field of characteristic p, and let B be the k-algebra
B = k[ry,...,2.]/(x1,...,2,.)% Let yy,...,ys € k be p-independent. Then
the symbol {y1,...,ys,1 + x1,...,1 + x.} € Ks(B) does not vanish in
Ksyr(B)/pKsir(B).

Proof. 1t suffices to check that the image of the symbol under the Den-
nis trace map K,(B) — HHg,(B/Fp) does not vanish. Note that B =
By ®F, k where By = Fy[z1,...,2,.]/(21,. .. , )%, By the Kiinneth formula
for Hochschild homology [Wei94) Prop. 9.4.1] and the Hochschild—Kostant—
Rosenberg theorem [Wei94, Thm. 9.4.7] we have a natural isomorphism of
graded rings

HH, (B/F,) = 0 @x, HHL (Bo/F,).

By |[GH12, Thm. 2.1| the Dennis trace maps the symbol {1+z1,...,14+x,} €
K,(By) to a non-zero element of HH,(By/F,). On the other hand, the
Dennis trace is a map of graded rings, and the symbol {y1,...,ys} € K(k)
is mapped to

dlog(yi) . ..dlog(ys) = (y1 - --ys)_ldyl ...dys € QF,

see the proof of loc. cit. and the references given there. The latter element
does not vanish since yq, ..., ys are p-independent, finishing the proof. [J

Recall that the homotopy K -theory of a scheme X is defined as
KH(X)= cc&lci)PI)nK(X x A®)

where A® is the cosimplicial scheme with AP = Spec(Z[Ty,...,T,]/(>_T; —
1)) and K(—) denotes the non-connective K-theory spectrum.

Proposition 4.2. Let X be a noetherian Fp-scheme. Then KH;(X;Z/p) =
0 for i > p-dim(X).
Proof. We can assume that d = dim(X) < p-dim(X) is finite and we use
induction on d. A zero-dimensional noetherian scheme is a finite disjoint
union of schemes Spec(A) where A is artinian local with residue field k. As
homotopy K-theory is nilinvariant K H;(A;Z/p) = KH;(k;Z/p) and this
group vanishes for i > p-dim(k) by Corollary 3111

We proceed with the inductive step for d > 0. Again by Zariski descent
we may assume X = Spec(A) where A is a noetherian Fj-algebra of finite
Krull dimension d. By cdh-descent [Cis13, Thm. 3.9] and nil-invariance of
K H we may assume that X is integral. Let m: X’ — X be a modification,
i.e. a proper birational morphism with X’ integral. There exists a closed
subscheme Y of X with dim(Y) < dim(X) such that 7 is an isomorphism
outside Y. We obtain an abstract blow-up square

X «—Y'

|1

X +—Y
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inducing a long exact sequence

.=~ KHi (Y Z)p) — KH{(X;Z/p) —
— KH;(Y;Z/p) ® KH;(X';Z/p) — KH;(Y';Z/p) — ...

Let ¢ > p-dim(X). Since p-dim(X) > p-dim(Y’), the group K H;(Y;Z/p)
vanishes by the inductive hypothesis. Note that Lemma 2.8 implies that
p-dim(X) > p-dim(X’). As p-dim(X’) > p-dim(Y”), the inductive hypoth-
esis yields KH;+1(Y';Z/p) = KH;(Y';Z/p) = 0. Hence, any modification
X" — X induces an isomorphism KH;(X;Z/p) = KH;(X';Z/p) for all in-
tegers i > p-dim(X) and consequently an isomorphism

(4.1) KH;(X;Z/p) = colim KH;(X';Z/p).
X'—=X
modification

There is a convergent Zariski descent spectral sequence
B3 = HY (X' azae KH_o(—; Z/p)) = KH_s—4(X"; Z/p)

where az,, denotes Zariski sheafification. Note that dim(X’) < dim(X) for
every modification X’ — X and F3' vanishes unless 0 < s < dim(X").
Taking the filtered colimit as above of these uniformly bounded spectral
sequences yields a convergent spectral sequence
colim  H*(X' aza KH_(—;Z/p)) = colim KH_s (X";Z/p).
X'=X X'=X
modification modification
We can use (@) to identify the right-hand side with K H_,_(X;Z/p) for
—s —t > p-dim(X). We want to show that the left-hand side vanishes for
all s € Z and —t > p-dim(X). Consider the Zariski-Riemann space
ZR(X)= lim X'
X'=»X
modification

where the limit is formed in the category of locally ringed spaces (see [FK13|,
Def. E.2.3]). By [FK13| Prop. 3.1.19] we can rewrite the left-hand side of the
above spectral sequence as H*(ZR(X), F_;) where F; is the colimit of the
sheaves aza, K Hy(—;Z/p) on X, . Consider an integer ¢ > p-dim(X). It
suffices to show that the sheaf F; vanishes on the topological space ZR(X).
This can be tested on stalks. Hence, by [FK13, Cor. E.2.13] we must show
that F (V) vanishes for every valuation ring V' of F' where F' denotes the
function field of X. As (homotopy) K-theory commutes with filtered col-
imits, we have F(V) = KH;(V;Z/p). Now p-dim(F') < p-dim(X) implies
t > p-dim(F'). So the vanishing of K H;(V;Z/p) follows from Corollary [3.11]
and the following Lemma 3] O

Lemma 4.3. For a valuation ring V and m > 0 the canonical map K(V') —
K(V[Xy,..., X)) is an equivalence. In particular we get an equivalence

K(V)~ KH(V).
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Proof. We have to show that any element £ € NK;(V[Xq,...,X,,]) vanishes.
As V is a filtered colimit of noetherian integral subrings and as K-theory
commutes with filtered colimits of rings we can assume that there exists a
noetherian ring A C V and an element {4 € NK;(A[X,...,X,,]) mapping
to & By [KSTI18, Prop. 6.4] there exists a projective birational morphism
X' — Spec(A) such that €4 maps to 0 in NK;(X’ x A™). As the mor-
phism Spec(V') — Spec(A) factors through X’ by the valuative criterion for
properness, we see that & = 0. U

Remark 4.4. Lemmal4.3lwas suggested by Christian Dahlhausen. Kelly and
Morrow also prove Lemma [4.3] by a different method, see [KMI8| Thm. 3.3].

Let n be an integer. Recall that a ring A is called K,,-regular if the canon-
ical map K,(A) — K,(A[X1,...,X]) is an isomorphism for all positive
integers m, or equivalently, if NPK,(A) = 0 (see [Weil3| Def. I11.3.4]) for
all positive integers p. Vorst and van der Kallen proved that K,-regularity
implies K, _i-regularity [Vor79l Cor. 2.1|. In fact, they just consider the
case n > 1 and the statement for all integers n can be found in [Weil3|
Thm. V.8.6]. Together with the spectral sequence

El, = N*K (A) = KH,,(A)

from [Weil3l Thm. IV.12.3| this implies that, if A is K,-regular, the canon-
ical map

is an isomorphism for all integers ¢ < n and surjective for ¢ = n + 1. The
next result is Theorem [A] from the introduction.

Theorem 4.5. Let A be an excellent Fy-algebra such that [k(x) : k(x)P] < oo
for all points x € Spec(A). If A is K}_gim(a)4+1-regular, then A is regular.

Remark 4.6. Note that a reduced F,-algebra A which satisfies [k(x) :
E(x)P] < oo for all maximal points x € Spec(A) is excellent if and only if it
is Frobenius finite, as shown by Kunz and Datta—Smith [DS18| Cor. 2.6].

Proof. First observe that we can assume without loss of generality that A has
finite Krull dimension. Indeed, we have to show that the finite dimensional
ring A, is a regular local ring for all prime ideals p C A. But by [Vor79,
Cor. 1.9] the localization Ay is K dim(4,)+1-regular.

We show the statement by induction on the finite Krull dimension d of
A. For d = 0 the noetherian ring A is regular if it is reduced and this is
immediately implied by Kj-regularity. We proceed with the inductive step
for d > 0. By the above observation we can assume that A is local.

Next, we want to reduce to the case of complete local IFj-algebras. Let
A — A be the completion at the maximal ideal m. The ring A is regular
if and only if Ais regular. In order to finish the reduction, we must show

that A is K, dim()1regular. As p-dim(A) < p-dim(A) by Lemma 7 it
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suffices to show that A is K, dgim(a)+1-regular. For an integer ¢ > 1 and
i = p-dim(A) + 1 consider the commutative diagram

NK;1(X) — NYK;(A on m) — NIK;(A) — NIUK;(X)

o | I

N1K; 1(X) — NIK;(A on m) — N9K;(A) — NIK;(X)

with exact rows, where X = Spec(A4)\ {m} and X = Spec(A)\ {m}. We will
show that the groups in the corners vanish. Let p # m be a prime ideal of A.
As before, the local ring Ay is K} qim(a,)+1-regular. As dim(4,) < dim(A4),
the ring A, is regular by the inductive hypothesis. So X is a regular scheme.

-~

As A is excellent, the morphism Spec(A) — Spec(A) is regular. By [Gro67,

IV, Scholie (7.8.3)(v)] it follows that also X is regular. Hence, the groups in

the corners of the above diagram involving X and X vanish. By Thomason—

Trobaugh excision [TT90, Prop. 3.19] for N?K, the second vertical map is

an isomorphism. This implies that the ring A is K, dim(4)+1-regular which

finishes the reduction. We can now assume that A is a complete F,-algebra.
Let k denote the residue field of A and set e = p-dim(A). We have

(4.3) e = p-dim(k) +d

by Lemma 2.7] which is a finite number as p-dim(k) is finite by assumption.
Since A is Keqq-regular, the fibre of K — KH is (e 4+ 1)-connected by
the discussion preceding Theorem Hence the fibre of K/p — KH/p is
(e 4+ 1)-connected as well and in particular

Ker1(A;Z)p) — KHe 1 (A Z/p)

is injective. The group on the right-hand side vanishes by Proposition [4.2]
and consequently K.11(4;Z/p) = 0.

Consider a minimal set of generators x1,...,x, for the maximal ideal m
of A. We have r = dim, m/m? > d = dim(A) and A is regular if and only
if equality holds. By Cohen’s theorem [Mat80, Thm. 28.3] the equichar-
acteristic complete local ring A has a coeflicient field, i.e. the projection
A — A/m = k admits a split k — A. Hence also k — A/m? — k is the
identity and there is a surjection k[X1,...,X,] — A/m? which induces an
isomorphism B = k[X1,..., X,]/(X1,...,X,)? = A/m?.

Finally we will show that K;(A;Z/p) # 0 for all i € {1,..., p-dim(k) +
r}. This implies p-dim(k) 4+ r < e by the vanishing result from before and
equation (£.3)) then gives r < d, whence the regularity of A. In order to show
the non-vanishing, let y1,...,ys € k be p-independent elements and consider
the symbol ¢ € K, .(B) which is given by the image of {y1,...,ys,1 +
X1,...,1+ X, }. This has a preimage £ € Ks,,(A) as A — B is surjective.
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Consider the diagram

§ € Ks-‘rr(A) — Ks-‘rr(A)/p

| |

ge KS+T(B) — KS+T(B)/p

The image of £ in the lower right corner is non-trivial by Lemma [Z.Jl Hence
the image of the element & in K ,(A)/p is non-trivial. As the canonical map
Ksir(A)/p — Ks1r(A;Z/p) is injective, we obtain Kgyr(A;Z/p) #0. O

In conjunction with Lemma [2.7] we obtain:

Corollary 4.7. Let k be a perfect field of positive characteristic and let A
be a k-algebra of finite type. Suppose that A is Kgjm(a)+1-regular. Then A
s a reqular ring.

We close this section by proving that in characteristic zero Vorst’s conjec-
ture can be generalized from affine algebras over fields to all excellent rings.
Recall that Vorst’s conjecture in characteristic zero is shown in [CHWOS].
Our generalization is based on the Hironaka—Artin algebraization of isolated
singularities. The following result is Theorem [B] from the introduction.

Theorem 4.8. Let A be an excellent noetherian ring of characteristic zero.
If A is Kgim(a)+1-regular, then A is regular.

Proof. As in the proof of Theorem we can assume without loss of gen-
erality that A has finite Krull dimension and that it is local. So we prove
Theorem A8 by induction on d = dim(A). By the induction assumption the
localization A, is regular for any g € A\ A*, so A has at most an isolated
singularity at its maximal ideal m. Arguing as in diagram (£.2]) we can also
assume that A is complete.

Let £ C A be a field of coefficients for A [Mat86, Thm. 28.3]. Then
by |Gro67, Oy Prop. 22.7.2] the k-algebra A satisfies the assumptions of
Hironaka—Artin algebraization [Art69, Thm. 3.8] so that A is the completion
of a k-algebra R of finite type at a maximal ideal m. We can assume that
R is regular away from the ideal m and that dim(R) = dim(A). Let X be
Spec R\ {m}, X = Spec(A) \'m, and let ¢ > 1. In the commutative diagram
with exact rows

NIK; 1(X) — NYK;(R on m) — NIK;(R) — NIK;(X)

(4.4) l % l l

~ ~

NK;1(X) — NYK;(A onm) — NIK;(A) — NK;(X)

the groups in the corners involving X and X vanish since these schemes are
regular. The second vertical map is an isomorphism by Thomason—Trobaugh
excision [TT90, Prop. 3.19| for N9K. So for i < dim(R) + 1 = dim(A) + 1
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the vanishing of N?K;(A) implies the vanishing of N1K;(R). By [CHWO08|
Thm. 0.1] the ring R is regular and so is its completion A. O

5. A ONE-DIMENSIONAL ANALOG OF VORST’S CONJECTURE IN MIXED
CHARACTERISTIC

In this section we prove Theorem [C] (see Theorem [B.1T] below). The proof
is based on calculations involving de Rham—Witt complex in mixed charac-
teristic, which was introduced in [HM04, Thm. A]. The key non-vanishing
result is Proposition .91

5.1. de Rham—Witt computations. Let p be an odd prime. For any
commutative ring R we denote by R[e] the ring of dual numbers over R,
i.e. Rle] = R[t]/(t?) with e corresponding to the class of t. Recall from
[HMO04, Lemma 4.1.1] that every element of the ring W, (R][t]) of p-typical
Witt vectors of length n may be written uniquely as a finite sum

(5.1) S al)l] +ZZVS ")

IS\ s=1jel,

with a( ) ¢ W, —s(R). Here I, is the set of natural numbers not divisible
by p and for any ring A the symbol [-],,: A — W,,(A) denotes the Teichmiiller
map. The index n will usually be clear from the context, and we often drop it
from the notation to increase readability. With the same proof as in [HMO04]
one obtains the following lemma.

Lemma 5.1. Any element in W, (R[e]) may be written uniquely in the form

n—1
o + il + S V(@ [dms)
s=1

with ag}_s) € Wy—s(R). The kernel of the canonical surjection W, (R[t]) —

W,.(Rle]) consists of those elements (B.1) for which a(" ) = 0 whenever
j=0o0rj=1.

We now assume that R is a Z,)-algebra.

Lemma 5.2. Any element in WnQ‘JJ%[ can be written uniquely as a finite

g
sum of the form

(52) af)+aldn+ n+z (Ve (@l o) +dV b9 [eln-s))

where agz_s) € Wn_sQ‘}]% and bﬁ"‘s) € Wn_sQ‘}]{l, In other words, as abelian
group
n—1
~ -1 -1
W oW 250 W, 0 o) (Wa- o & Woo o)

(5.3) WSy, =
s=1
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T d(x) F(x) Vix)
ale] (da)[e] + (—1)7d[e] 0 V(ale])
bd|e] (db)d[e] 0 (=1)9" pdV (ble]) + (—=1)9V((db)]e])
V*(ale]) dV*(ale]) pV*~H(ale]) Vet (ale])
dv=(ble]) 0 dve=1(ble]) pdV=t1(be])

TABLE 1. Structure maps on W, QR[E}

ald  bdle V*(ale]) dV* (ble])

d -z (da)ld (a'b)dle] V(F*(a)ale]) (=1)7H9V*(bF*(da’)[e])
+(-1 )qq/st(bFS( ")el)
TABLE 2. Multiplication by a’ € W, Q on Wy, Q

Rle]

The structure maps of the pro-system W.Q%[e] are induced by the ones of

W.Q?,%, On the first summand WnQ‘}]% the structure maps d, F, and V are
given by the underlying maps of We g, on the other summands they are
given in Table [1.

The product is given as follows. On the first summand, the product is the
one from W,Q%. The product of two summands from ([B.2) each of which

has an [€] vanishes. Finally, for o’ € WnQ% the left multiplication with a' is
given in Table 2

Proof. By |[GHO6D, Lemma 2.4] the canonical map Wilpy = Wallgyg
is surjective with kernel the dg-ideal generated by the kernel of the map
W, (R[t]) — Wy(R[e]). Using the description of this ideal in Lemma [5.1]
the lemma now follows directly from the corresponding description of the de
Rham-Witt complex of the polynomial ring R[t] in [HM04, Thm. 4.2.8]. O

For ease of notation, we introduce the following abbreviation. For any
ring k/F, we set
B(k) = Wa(k)[e]/ (pe)-
For example, B(F,) = Z[e]/(p, €)?.

Proposition 5.3. Forn > 2, the element d[1 + p|,d[1 + €], does not vanish
in WHQ%(FP)/p.

Proof. We write w;; p for the quotient of W”Q*R[e] by the dg-ideal given by
Dzt (WasQp ® Wi ") in B3).
Claim 5.4. We have d[1 + €], = d[e], in w), p.
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Proof. In W,,(R[e]) we have [1 + €], = 1 + [¢], + V(z) for some element
x € Wy_1(Re]). From Lemma [5.1] we see that V(z) is of the form V(zg) +
S V(s a[€lns) with 29 € Wy_1(R) and z,1 € W,_4(R). Since the
ring homomorphism W, (R[¢]) — W,,(R) that is induced by € — 0 must send
V(z) to 0, we find that in fact V' (zp) = 0. Thus

n—1

[1+¢€fp=1+[en+ Z V2 (@s1[€eln—s)-
s=1
Applying d, the claim follows. O
Claim 5.5. Multiplication by [p], is the zero map on WHQ%@) and hence

also on WnQ}Q where R is any quotient of Z,).
Proof. By [HMO04], Ex. 1.2.4] we have isomorphisms

n—1 n—1
(54) Wa(Z) =P Zg)- V(1) and W,Q =EDZ/p'Z-dVi(1)
=0 =1

and for 4,5 € {0,...,n — 1} we have Vi(1)dV7(1) = p'dVi(1) if i < j and
= 0 else. For every element = € Z(,) we have

n—1 ) - '
(5.5) [l =2 [+ ) p7 @ =2 ) Vi([Aami)
i=1

as one checks by computing the ghost components of both sides. By these
formulas, the action of [p], on dV7(1) is given by

[Pl - AV (1) = pdV (1) + (7 —p? AV (1) = p” dVI(1) =0
i=1
as pP~1 > j for every j > 1. This proves the claim. O

Claim 5.6. For R = Z, or some quotient of it, the projection WHQ%M —
wi r factors through the canonical surjection WnQ%M — WnQ?%[e] /

Note that for R = Z/(p*), R[e]/(pe) = B(F).

Proof. The kernel of the surjection W”Q*R[e] — WnQEM /(pe) is the dg-ideal
generated by the kernel of the map W, (R[e]) — W, (R[e]/(pe)). An ele-
ment of this kernel is of the form 37"~ Vi([x;pe],_;) with z; € R. The
dg-ideal generated by the elements V*([z;pel,,—;) for i > 0 lies in the kernel
of WNQE[E} — wy, p by definition.

It remains to show that the dg-ideal generated by [pel, in w,, p vanishes
in degree 2. We have d[pe] = [p]d[e] + [e]d[p]. Hence the vanishing of W,Q%
[HM04, Ex. 1.2.4|, Claim 5.5, and Lemma together imply that the prod-
uct of d[pe] with any 1-form in w}% g vanishes. Since every 2-form in wy, p is

pe)”

a multiple of d[e], also the product of [pe] with any element of wg’  vanishes.
This finishes the proof of the claim. O
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Claim 5.7. The natural map WnQZm /D — WnQE/(pz)/p is an isomorphism.

Proof. The kernel of WnQ%p) — Wy, /0?) is the dg-ideal generated by
the kernel W,,(p*Z,)) of the canonical map Wy (Zy) — Wa(Z/(p?)). It
is enough to show that Wy(p?Z,)) C pWn(Z)). The ideal W, (p*Z,)) is
additively generated by elements of the form V*([zp?],,—;). Set m = n — .
In the expression (5.5) of [zp?],, the coefficient of [1],, is zp®. For i > 0,
the coefficient of Vi([1]m—;) is divisible by p~(p2)?" " = p*' '~ Since
2p'~1 —i > 1 for all i > 1, it is divisible by p. Thus [zp?],, is a multiple of
p and so is any of its Verschiebungen. O

Claim 5.8. The element d[1 + p]s € WQQ%@) is not divisible by p.

Proof. Using the expression (5.5 we have
d[L +pla =p~ (1L +p)P — (1 +p))dV (1).

But p~ (1 4+p)? — (1+p) =>4 _, 0)p" 1 —1= -1 (mod p). In view of
the second isomorphism in (5.4]) this finishes the proof. O

We now finish the proof of Proposition 5.3l In order to show that d[1 +
Plnd[l + €], does not vanish in WHQ%(FP)/ p, it suffices by Claim 5.6l to show
that the image of d[1 + p|,d[l + €], in WZ,Z/(pZ)/p does not vanish. By
Claim [5.4]this image coincides with the image of d[1+4p],d[e],,. By Lemmal[5.2]
it suffices to show that d[1+p],, does not vanish in WnQ% /(0?) /p; equivalently,
d[1+ pl, # 0 in WnQ%(p) /p by Claim 57 Tt is clearly enough to show this
non-vanishing for n = 2, which is done in Claim [5.8 U

Proposition 5.9. Let k be a IFy-algebra. The canonical map W"Q?B(Fp)/p —
n

WnQ%(k)/p is injective for every n and q. In particular, d[1 + pl,d[1 + €|,

does not vanish in WnQ2B(k)/p forn > 2.

Proof. The second part of Proposition B.9 follows from the first part and
Proposition 5.3

Write F' for the functor k — WanB(k) /p from rings over F, to abelian
groups. This functor commutes with filtered colimits. Recall from [vdKS86),
Thm. 2.4] or [Borlll Prop. 6.9, Thm. 9.2] that if R — S is an étale covering,
i.e. étale and faithfully flat, then so is W, (R) — W;,(S). Assume that k — ¢
is an étale covering. Then B(k) — B({) is also an étale covering by base
change. It follows from [Hes15l Thm. C| that the canonical map

Wi (B(f)) QW (B(k)) WanB(k)/p — WnQ%(z) /p
is an isomorphism. Using the result of van der Kallen and Borger for the
map B(k) — B({), we get that W, (B(k)) — W, (B(¢)) is an étale covering.

Together these results imply that F'(k) — F(¢) is injective. In particular,
F(k) — F(¢) is injective for a finite separable field extension k& — ¢. Since
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F preserves filtered colimits, the map F(F,) — F(F,) is injective, where F,,
is an algebraic closure of F,,.

To prove injectivity for a general IF,-algebra k, it is now enough to show
that F(F,) — F(k ®g, Fp) is injective. We can thus assume that & is an
Fp—algebra. Write k as a filtered colimit of finitely generated I_Fp-algebras
A;. As IF‘p is algebraically closed, each map IF‘p — A; has a section, and

hence F'(F,) — F(A;) is injective. As a filtered colimit of injective maps,

F(F,) — F(k) is then also injective. O

5.2. The mixed characteristic result. The next proposition is a special
case of |[GHOGal, Prop. B.1.1.].

Proposition 5.10. Let p # 2 be a prime and A a Zy-algebra. The natural
map

dlog[—],: AX — W04
r o [z],td[z),

n

satisfies the Steinberg relation dlog[z], dlog[l — z],, = 0 and hence induces a
natural map

dlog[—]n: K3'(A) = W, Q%

where the Milnor K -group K3 (A) is defined as A* ®A* modulo the subgroup
generated by a @ (1 — a) for units a and 1 — a.

The following result is Theorem [C] from the introduction.

Theorem 5.11. Let A be an excellent noetherian ring with dim(A) < 1 such
that A/m is perfect of characteristic p > 2 for every maximal ideal m C A.
If A is Ko-regular, then A is reqular.

Proof. Let A be a ring satisfying the assumptions of the theorem. We must
show that A is regular. As in the proof of Theorem we can assume
without loss of generality that A is local with maximal ideal m.

Once we prove that the strict henselization A" is regular, we can deduce
the regularity of A, see [Stal9, Lemma 06LN]. As the canonical map A — A
is a filtered colimit of étale morphisms by [Stal9, Lemma 04GN]|, van der
Kallen’s result on the N K,,-groups [vdK86, Thm. 3.2 implies that A" is still
Ko-regular. Moreover, A% is still excellent by [Gre76], Cor. 5.6]. Hence we
can assume without loss of generality that A is strict henselian and excellent.

Arguing exactly as in the proof of Theorem 3] we reduce to the case of
A being a complete local ring with dim(A) < 1 and maximal ideal m, alge-
braically closed residue field k = A/m of characteristic p > 2 and quotient
field F' of characteristic zero.

Claim 5.12. Ky(A)/p =0.

Proof of Claim[212. By assumption, A is a complete noetherian local ring.
The Kj-regularity implies that A is also reduced. Thus the normalization
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A — A is finite (see e.g. [Stal9, Lemma 032Y]) and we obtain an abstract
blow-up square

Spec(A) «+— Y’

! !

Spec(A) «—— Spec(k)

with Y, = Spec(k) x ... x Spec(k) as k is algebraically closed. Note that A
is regular. Descent for K H(—;Z/p), see [Cisl3, Thm. 3.9], yields an exact
sequence

... = KH3(Y';Z/p) — KHy(A;Z/p) — KHy(A; Z/p) K Ha(k; Z/p) — ...

The group KH3(Y";Z/p) = KH3(Y. 4;Z/p) = K3(Y';Z/p) and the group
KHy(k;Z/p) = Ko(k;Z/p) vanish by Corollary B.111

We have an injection Ko(A)/p = KHy(A)/p — KH(A;7Z/p) where the
first isomorphism uses the Kj-regularity of A, see [Weil3, Cor. IV.12.3.2].
Hence, the above exact sequence implies that the composite map

Ks(A)/p = KHy(A;Z/p) — KHy(A;Z/p) = Kao(A)/p

is injective and it suffices to show that Ko(A)/p = 0.
Consider the diagram

Ks(A)/p ——— K(F)/p

I l

K3(k; Z/p) —— Ka(A;Z/p) —— Ka(F;Z/p)

where the bottom horizontal line is part of the exact localization sequence
of the discrete valuation ring A. As K3(k;Z/p) = 0 by Corollary BTl we
deduce that the top horizontal map is injective. So to finish the proof of the
claim it suffices to show that Ks(F)/p = 0.

By the Merkurjev—Suslin theorem [MS82|, the norm residue homomor-
phism

Ks(F)/p = HX(F, u5?)

is an isomorphism. The group on the right-hand side vanishes as the field I
has property (C7) by [Ser02, 11.3.3.(c)| invoking Lang’s theorem and hence
has cohomological dimension < 1 by [Ser02, 11.3.2, Cor. to Prop. 8]. Hence
we get Ko(A)/p =0 as desired. This shows the claim. O

Consider a minimal set of generators x1,...,x, for the maximal ideal m
of A. The ring A is regular if and only if » = 1. We consider two cases.

Suppose first that p € m? and consider the Fp-algebra A := A/p. Then the
images Z1,...,Z, are still a minimal set of generators for the maximal ideal
mof A. Set B := A/m?. Arguing analogously as in the proof of Theorem 5]
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the image of the symbol {1 4+ z1,...,1 + z,} € K;(B) in K;(B)/p is non-
zero and hence K;(A)/p # 0 for all 4 € {1,...,r}. This implies » = 1 by
Claim and A is regular.

For the second case suppose that p ¢ m2. Then we can assume with-
out loss of generality that 1 = p. We argue by contradiction and suppose
that » > 2. By Cohen’s theorem [Mat80, Thm. 28.3] the complete local
ring A has a coefficient ring W (k). Hence, the canonical map X; — z;
induces an isomorphism W (k)[Xa, ..., X,]/(p, X2, ..., X;)? = A/m?. This
ring canonically surjects onto the ring Wa(k)[X]/(p, X)? = Wa(k)[e]/(pe)
which we denote by B(k). Analogously to the first case, it suffices to show
that the image of the symbol {1 + p,1+ €} in Ky(B(k))/p does not van-
ish. By [vdK77] and as the residue field k is infinite, the canonical map
KM(B(k)) — Ka(B(k)) is an isomorphism. Choose some integer n > 2.
The dlog-map from Proposition [5.10 sends the symbol {1 + p,1 + €} to the
element [1+pl; 1d[1+pl,[1+e],  d[1+ €], in WanB(k)/p which does not van-
ish by Proposition 5.9 Hence K3(A)/p # 0 which contradicts Claim
This implies that A is regular. O

APPENDIX A. THE CARTIER ISOMORPHISM FOR VALUATION RINGS
(after Ofer Gabber)

In this appendix we present a detailed account of results of Gabber about
valuations rings in positive characteristic. In particular we construct the
Cartier isomorphism for these rings. The exposition is based on [Gabl§|

and [GRO3].

A.l. Elementary extensions. Let V C W be an extension of integral
domains of characteristic p such that WP C V. For such an extension we get
a V-linear “inverse Cartier” operator

(A1) vV Ow Ly = ZQy /By
vRbdy; A... Ady; — vbpyf_ldyl Ao A y‘f_ldyi,
see |[Kat70l Sec. 7|. Here V' becomes a W-module via the Frobenius map.

In case V' = WP this map can be identified with the standard W-linear map
on absolute forms, discussed in Section [3]

yw o Qb — ZQ, /By,
where the Frobenius induces the W-module structure on the right.

We say that the extension V' C W is elementary if there exists a finite p-
basis x1,...,z, € W of W/V | see Definition 21l Note that z1,..., 2, € W
form a p-basis of W/V if W = V{[z1,...,x,] and if these elements form
a p-basis of the extension of quotient fields Q(W)/Q(V). An elementary

extension is a flat local complete intersection homomorphism of rings, since
we have the presentation

(A.2) W= V[X1,..., X, ]/(XP — b, ... XP —aP).
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This presentation also implies that Q- is a free W-module with basis
dﬂ?l, ce ,dl‘r.

By Ly we denote the cotangent complex of the ring extension VC W
and by Ly we denote the cotangent complex of V' over F,, see Section Bl

Proposition A.1l. (i) If the extension V. C W is elementary, then
Ly v is concentrated in degrees 0 and 1, and H;(Ly,y) is a flat
W -module for i € {0,1}.
(ii) If V. .C VP is a filtered colimit of elementary extensions V. C W,
then Ly ~ Qy[0] and Qv is a flat V-module.

Proof. Part (i) is clear from the presentation (A.2)) and [III71, Cor. IT1.3.2.7].
The second statement of part (ii) is clear from part (i) as the extension
V C VP is isomorphic to the extension VP C V via the Frobenius map and
as QV = QV/Vp.

So it remains to show that Ly ~ Qy/[0] under the assumption of part (ii).
Note that then V C V17 is faithfully flat. By part (i) the cotangent com-
plex Ly1/p )V as well as the isomorphic cotangent complex L, /2 Jvi/e are
concentrated in degrees 0 and 1. By the exact triangle

1/p?
LVl/p/V ®V1/p Vv / — Lvl/PZ/V — Lvl/pz/Vl/p

also L 2 v is concentrated in degrees 0 and 1. Arguing inductively this is

also true for the faithfully flat extension V c V1/P™,
Note that Ly 1/p00 is concentrated in degree zero, since the ring VP g
perfect [GRO3| 6.5.13(i)]. So we conclude by the exact triangle

Ly ®vy yuee Ly1/pee — Lvl/poo/v- O

Proposition A.2 (Cartier isomorphism). (i) If the extension V.C W

is elementary, then the morphism ~yy v of (A 4s an isomorphism.

(i) If V. VP is a filtered colimit of elementary extensions V. .C W,
then the map vy is an isomorphism.

The isomorphism ~ is usually denoted by C~! and called the inverse
Cartier operator.

Proof. Part (ii) is an immediate consequence of part (i). For part (i) one
reduces to r = 1 as in the proof of [Kat70, Thm. 7.2|. Then one only has
to consider i = 0 and ¢ = 1. For ¢ = 1 a V-basis of the left side of (A) is
given by dx;. A V-basis of BQtl/V/V is given by dxi,x1dxq, ... ,xlf_zdxl, SO

a V-basis of the right side of (A1) is induced by 22~ 'da; = Ywyv (dzy). O

A.2. Purely inseparable extensions of valued fields. Let K C K’ be
an extension of valued fields of characteristic p with (K')? C K. Let V. .C V'
be the corresponding extension of valuation rings. A subextension of rings
V C W C V' is called elementary if the extension V' C W is elementary in
the sense of Subsection [A.1]
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Theorem A.3 (Gabber). The set S of elementary extensions V.C W C V'
1s directed by inclusion and
Uw=v.

wes
Combining Theorem with Propositions [A.1] and [A.2] we obtain:

Corollary A.4. Let V' be a valuation ring of characteristic p. Then the
following hold.
(i) Qv is a flat V-module.
(ii) Ly is concentrated in degree zero.
(i) The “mnverse Cartier” operator vy from Subsection[A. 1l is an isomor-
phism.

Remark A.5. Parts (i) and (ii) of Corollary[A.4lare shown in Theorem 6.5.12
and Corollary 6.5.21 in [GRO3| using related techniques. These techniques
are extended in [Gabl8| to prove Theorem [A.3] and Corollary [A.4l

We repeatedly need the following well-known result about finite extensions
of valuation rings, see Sections VI.8.3 and VI.8.5 in [Bou&9].

Lemma A.6. Let V C V' be an extension of valuation rings with the above
properties and with ¢ = [K' : K] finite. Let f be the degree of the residue
field extension and let e = [|[(K')*|: |K*|] be the ramification index. Then
(i) ¢ = ef, elq and flq,
(i) if f = q the extension V'/V is finite and V'm is the mazimal ideal
of V', where m is the maximal ideal of V.

In the proof of Theorem [A3] we use two preliminary reductions based on
the following lemmas. Let us call an extension of valuation rings V' C V’
good if it satisfies the conclusion of Theorem [A 3]

Lemma A.7. If V C V! C V" are extensions of valuation rings of charac-
teristic p with (V)P C V such that V. C V' and V! C V" are good extensions,
then also V. -.C V" is a good extension.

Proof. Let x = (x1,...,x,) be p-independent elements in the extension V' /V
and let y = (y1,...,ys) be p-independent elements in the extension V" /V".
Then x,y are p-independent in the extension V" /V, so V[x,y] is an elemen-
tary extension of V.

Consider a finitely generated V-subalgebra A of V”; we have to show that
for suitable x and y as above we have A C VIx,y|. Indeed, there exist
p-independent elements y in the extension V”/V’ such that V'A C V'[y].
So A C Bly] for a finitely generated V-subalgebra B of V'. There exist
p-independent elements x in the extension V'/V such that B C V[x]. Then
we get A C V[x,y] as requested. O

Lemma A.8. Let V C V' be an extension of valuation rings as above with
[K': K] =p. Let p’ C V' be a prime ideal lying over a prime ideal p C V.
Assume that one of the following two conditions holds:
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(a) the residue field extension r(p')/k(p) is trivial and V, C Vy is good,
or
(b) [k(p') : k(p)] =p and V/p C V' /p' is good.
Then the extension V- C V' is good.

Proof. In both parts of the proof we need the
Claim A.9. For z € p’ and t € V' \ p’ we have z/t € V.

Proof of Claim[A 9 1f x/t were not in V', then t/x would be in V', but that
would imply ¢ € p’, which is a contradiction. O

In order to prove Lemma [A.8 in case condition (a) holds, we start by
observing that the assumptions imply that

(A:3) Vo = U Vlal
zep’

and that the system of elementary extensions of V}, in the union is directed.

We prove that V' C V' is good by showing that the elementary extensions
of V of the form V[z/t] with z € p’ and t € V' \ p are directed and that their
union is V’. Note that x/t is automatically in V' by Claim [A.9

For given x € p’ we consider the ring Ry = Uyey\,V[2/t]. Then as R, =
V + Voz + Vpa? + -+ we have R, = Vp[z] N V'. So by (A3) the system of
rings R, where x runs through p’ is directed with union V”.

In order to prove Lemma [A.§ in case condition (b) holds, we show that
there is a canonical map from the set S of elementary extensions V/p C W C
V' /p’ to the set S of elementary extensions V. C W C V' given by

q>15—>8, @(W):V/ XV’/P’ W

Once we show that @ is well-defined and using that V/p C V' /p’ is good we
immediately deduce that the set of elementary extensions ®(S) is directed
by inclusion and that Uy, g®(W) = V.

In order to show that ® is well-defined consider an elementary extension
W = V/p[z] and lift z € V'/p’ to an element z € V’. Clearly, we have the
inclusion V[z] C ®(W) and we claim that equality holds. To see this start
with an element y € ®(W) C V’. By subtracting from y a lift of § € W to
V]z] we can assume without loss of generality that y € p’. By Lemma [A.6l
the ring extension V, C V) is finite and V|, /pV}, = r(p’), so by Nakayama’s
lemma we have Vp’, = V}[z] and we can write y = ag+ajz+- - -+a,_ 2P~ with
ag,...,ap—1 € Vp. As y € p’ we actually have ao,...,ap—1 € py. However,
pp C V by Claim [A.9 and therefore y € V[z]. O

Proof of Theorem[A.3. By Lemma [A7] one reduces to [K’ : K| = p. By
writing K as a filtered colimit of finitely generated fields we can also assume
without loss of generality that the field extension K/F, is finitely gener-
ated. Then the valuation is of finite height; to see this, combine Proposi-
tion VI.10.2.3 and Corollary VI.10.3.1 from [Bou89|. By induction on the
height and using Lemma [A 8 one reduces to the case of height one.
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From now on we assume that the valuations are given by an absolute value
|-|: K" — R and that [K': K] = p. We distinguish three cases:
Case 1: [k(V') : k(V)] = p.
In this case V' is finite over V and V//V'm = (V') by Lemma [A6], where
m is the maximal ideal of V. Let € V' be a lift of a generator of the field
extension k(V')/k(V). Then V' = V[z] by Nakayama’s lemma.

Case 2: The valuation is discrete and [|(K')*| : |[K*|] = p.

Choose a uniformizer x € V’. Then for any element y = ag + a1z + -+ +
ap—12P~ ' in K’ with ag,...,a,-1 € K we have

lyl = max{lag|,...|ap-12"~"|}

as the non-zero real numbers in the max are pairwise different (in fact they
are pairwise different in |(K')*|/|K*| = Z/pZ). This means that if |y| <1
then ag,...,a,-1 € V, since [V| = |K| N[0, |z|'~P].

Case 3: Remaining cases.

Now Gabber’s approximation method is applicable, which is explained in
the next section. For example, if V' is a discrete valuation ring and the
ramification index is one, then given a sequence (y,) with the property of
Proposition [A.10lone chooses (wy,) such that |w,| = |z—y,|, which is possible
by |K'| = |K].

If the valuation is not discrete, then given a sequence (y,,) with the prop-
erty of Proposition [A-T0] it is possible to find a sequence (w,) with the
requested property by successively choosing w, € V for n > 1 with
n+1

n

|z — yn| < [wn| < minf|w,-1], |z — yn}-

This can be done since |K*| is dense in R>g. O

A.3. Gabber’s approximation method. In this subsection let K C K’
be a purely inseparable extension of valued fields of height one and of char-
acteristic p with [K’ : K] = p. Let V C V' be the corresponding extension
of valuation rings. Assume that x(V’) = (V). Fix x € V' \ V, so that
K' = K|z].
Proposition A.10 (Gabber). Assume that there exist two sequences (Yn)n
and (wy)n in V' with the following properties:

o |x—yy| is non-increasing, and for anyy € V we have |z —y,| < |[x—y|

forn >0,
o |wy,| is non-increasing, |x — y,| < |wy| for all n, and
nll_{I;O | = yn|/|wn| = 1.

Then

v =V,

and the system of subrings in the union is increasing in n.
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Proof. The fact that the rings are increasing is easy and left to the reader. We
show that any element v € V/\ {0} is contained in V[(x —y,,)/wy] for n > 0.
As k(V') = k(V) we can assume without loss of generality that |v| < 1. Set

Zn =T — Yp andwritev:aén)—k---—i—a;n) g"),. a(") e K.

p—1 _ .
Z1zn  witha C Gy

Lemma A.11. Forn>> 0 (depending on v) we have
o] = max{lag” .. oy 271}

Proof. Observe that for a separable algebraic extension of valued fields K C
E we can without loss of generality replace K by E and K' by B/ = K'®@x E
in the proof of the lemma if the element z cannot be approximated closer
by elements in E than by elements in K. Indeed, the latter approximation
property implies that the conditions of Proposition [A.10] also hold for the
extension F'/E.

Step 1: Replace K by K" (henselization)

This is feasible because K is dense in K*. So given yp € K" find yx € K
with |yg — yx| < |yg — z|. Then |x — yg| = | — yk/|, so & cannot be
approximated closer in K" than in K.

Step 2: Replace K by the splitting field E of a(()") +-- 4+ a;n)lXp_l € K[X]

Note that the splitting field is independent of n and that d = [F : K] is
prime to p. Given yp € E set yx = tr(yg)/d. Then

> ol@—yr)| < |z -yml

o€Gal(E/K)

ISHR

|z —yk| =

so x cannot be approximated closer in E than in K. Here we used that K
is henselian which implies that |oz| = |z| for any z € F and 0 € Gal(E/K).

(n)

Now we can assume without loss of generality that the polynomials ay ’ +

o4 a;n_)lXp_l decompose into linear factors over K. Then Lemma [A.11]is

a consequence of [GR0O3, Lemma 6.1.9]. O
If we write
z z
v= a(()n) + (awp)— + - + (agl_)lwﬁ_l)(—n)p_l
W, Wn,

the coefficients satisfy |al(.n)wfl| < (Jwn|/|2n])*|v| for n > 0 by Lemma [AT1l
But
lim (M)’\v\ = |v| <1,

n—00" | zy |

so v € V[(z — ypn)/wy] for n > 0. O
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