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MUKAI PAIRS AND SIMPLE K-EQUIVALENCE

AKIHIRO KANEMITSU

Abstract. A K-equivalent map between two smooth projective varieties is
called simple if the map is resolved in both sides by single smooth blow-ups.
In this paper, we will provide a structure theorem of simple K-equivalent
maps, which reduces the study of such maps to that of special Fano manifolds.
As applications of the structure theorem, we provide examples of simple K-
equivalent maps, and classify such maps in several cases, including the case of
dimension at most 8.

Introduction

A K-equivalent map between two smooth projective varieties X1 and X2 is, by
definition, a birational map χ : X1 99K X2 that admits a resolution of indeterminacy

X̃
f1

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ f2

  ❅
❅❅

❅❅
❅❅

❅

X1
χ

//❴❴❴❴❴❴❴ X2

by a smooth projective variety X̃ with the condition f∗
1KX1 = f∗

2KX2 . Such
birational maps appear in several important situations of birational geometry of
algebraic varieties; for example, flops are K-equivalent birational maps, and any
two birational minimal varieties areK-equivalent. Also, it is checked or conjectured
that K-equivalence preserves many invariants of algebraic varieties; for example,
Kawamata’s DK-hypothesis predicts that K-equivalence of two algebraic varieties
implies their D-equivalence, i.e. their derived categories of coherent sheaves are
equivalent [Kaw02].

In this paper, we will focus on a class of K-equivalent birational maps, called
simple K-equivalent maps. A K-equivalent map is called simple, if we can choose a
resolution as above such that fi are smooth blow-ups [Li18]. At a first glance, the
assumption in this definition seems to be too strong. However, this class is very
interesting because it includes some important birational maps such as standard
flops and Mukai flops, and it provides nice examples for testing several conjectures
on K-equivalent birational maps. For example, D-equivalence for standard flops
and Mukai flops are proved in [BO95, Kaw02, Nam03]. Also, in [Seg16], it is proved
that (in a local setting) a simple K-equivalent map in dimension 5, called Abuaf’s
flop, induces D-equivalence (cf. [Har17]). A similar statement for a 7-dimensional
flop is also obtained by Ueda [Ued18].

Based on the above interesting phenomena, it is natural to wonder further ex-
amples of simple K-equivalent birational maps, and try to classify these birational
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2 A. KANEMITSU

maps. Such an attempt is started by [Li18], and it is proved that simple K-
equivalent maps in dimension at most 5 are only three types; standard flops, Mukai
flops and Abuaf’s flop. Also it is desirable to have a nice structure theorem for
simple K-equivalent maps. In the present paper, we go further in this direction.
More precisely, the purposes of this paper are

(1) to give a structure theorem of simpleK-equivalent maps, which relates such
maps to a special kind of Fano manifolds, which we call roofs ;

(2) to provide applications of the structure theorem. More precisely, we provide
examples of K-equivalent birational maps and classify such maps in several
cases.

0.1. Results. In order to state the structure theorem, we introduce some notions:

Definition 0.1 (Mukai pairs and roofs).

(1) [Muk88] A Mukai pair (V, E) of dimension n and rank r is a pair of a
Fano n-fold V and an ample vector bundle E of rank r which satisfies
c1(V ) = c1(E).

(2) A Mukai pair of rank r is called simple if the Picard number of V is one,
and the projectivization P(E) admits another Pr−1-bundle structure.

(3) A roof of Pr−1-bundles is a Fano manifold W that is isomorphic to the
projectivization of a simple Mukai pair with rank r.

Later we will see that a Fano manifold W is a roof of Pr−1-bundles if and
only if the following three conditions are satisfied (see Proposition 1.5 for several
characterizations of roofs):

(1) The Picard number of W is two.
(2) W admits two (different) Pr−1-bundle structures.
(3) The index of W is r, i.e. −KW = rHW for some Cartier divisor HW .

Now we can state the structure theorem of simple K-equivalent maps. Let
χ : X1 99K X2 be a simple K-equivalent map between two smooth projective vari-
eties, and let the following diagram

(0.1.1) E� _

��
g1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥

g2

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

X̃
f1

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ f2

  ❅
❅❅

❅❅
❅❅

❅

Y1
� � // X1

χ
//❴❴❴❴❴❴❴ X2 Y2? _oo

be its resolution by two smooth blow-ups along Y1 and Y2. We always assume
that χ is not an isomorphism. Note that by [Li18, Lemma 2.1] (see Lemma 1.1)
the exceptional divisors of f1 and f2 coincide, which we denoted by E, and that
dimY1 = dimY2. In the following, we will denote by r the codimension of Yi in
Xi and by CYi/Xi the conormal bundle of Yi in Xi. Thus dimX1 = dimX2 =
dimY1 + r = dim Y2 + r and E ≃ P(CYi/Xi).

Theorem 0.2 (Structure theorem). Let χ : X1 99K X2 be a simple K-equivalent
map between two smooth projective varieties and let the notation be as above. Then
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there exist a smooth projective manifold M and the following commutative diagram

(0.2.1) E� _

��
g1

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

g2

  ❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇

X̃
f1

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ f2

  ❇
❇❇

❇❇
❇❇

❇

Y1
� � //

h1

""❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊ X1

χ
//❴❴❴❴❴❴❴ X2 Y2? _oo

h2

||②②
②②
②②
②②
②②
②②
②②
②②
②②

M,

which satisfy the following conditions:

(1) hi (i = 1, 2) are smooth extremal contractions.
(2) For each hi-fiber Fi, the pair (Fi, CYi/Xi |Fi) is a simple Mukai pair.

(3) Each ψ-fiber is a roof of Pr−1-bundles, where ψ := hi ◦ gi.

Roughly speaking, the theorem says that a simple K-equivalent map is a family
of more simpler maps induced from simple Mukai pairs. This theorem is proved in
Section 3 after the preparation in Section 2.

Conversely, in Section 4, we will explain how we can construct simpleK-equivalent
maps from simple Mukai pairs. More generally, we will construct a simple K-
equivalent map X 99K X+ to a complex manifold X+ (which may not be projective
in general) from the following given data:

(1) X is a smooth projective variety, and Y ⊂ X is a smooth closed subvariety
of X .

(2) Y admits a smooth extremal contraction h : Y →M .
(3) Each h-fiber F is a Fano manifold with Picard number one, and the pair

(F, CY/X |F ) is a simple Mukai pair.

This construction follows [Muk84, Section 3]. Also we will construct the local model
of simple K-equivalent map from a simple Mukai pair (cf. [Nam03, Section 1]).
Therefore, the study of simpleK-equivalence is (locally) equivalent to that of simple
Mukai pairs.

Then, in Section 5, we will construct several simple K-equivalent maps by using
the inverse construction. More precisely, we will construct eight types of such
maps, which we will denote by type Ar−1 × Ar−1, A

M
r , AG2r−2, C 3r

2 −1 (r even),

Dr, F4 (r = 3), G2 (r = 2) and G†
2 (r = 3) respectively. All of these examples

are deeply related to semi-simple algebraic groups. Indeed, the corresponding roofs

are all homogeneous, with one exception of type G†
2. Also, this exception, the

roof of type G†
2 has its origin to the geometry of the Cayley octonions and admits

the action of the exceptional group of type G2. In that section, we also collect
partial classification results of roofs, which are consequences of the classification of
Mukai pairs with large ranks [Fuj92, Pet90, Pet91, YZ90, Wís89, PSW92, NO07,
Kan17a, Kan18] (cf. [Occ05]) and the classification of Fano manifolds with Picard
rank two whose extremal contractions are P1-bundles [MOSC14, Wat14]. Then, by
combining these classification results with the structure theorem, we will prove the
following theorem:
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Theorem 0.3 (= Corollary 5.13). Let χ : X1 99K X2 be a simple K-equivalent map
in codimension r, and let the notation be as in Theorem 0.2. Assume one of the
following conditions:

(1) r ≥ dimYi − dimM − 2.
(2) r = 2.
(3) dimXi ≤ 8.

Then χ is one of the above eight types.

Remark 0.4. As mentioned above, we will construct eight examples of simple K-
equivalent maps in Section 5. Some of these examples are classical or well-known:
K-equivalent maps of type Ar−1 × Ar−1 and AMr are standard flops and Mukai
flops respectively. Abuaf’s flop in [Seg16] is of type C2, and the 7-dimensional flop
discussed in [Ued18] is of type G2. Also, though this author could not find them
in the literature, some of the other examples seem to be known to the experts; for
example, in response to the earlier version of this paper, Doctor Duo Li informed
this author that he also realized the idea to construct simple K-equivalence from
homogeneous varieties, and Hua-Zhong Ke had an idea to relativize Abuaf’s flop.

In the last section (=Section 6), as an application of Theorem 0.3, we will provide
an answer to a question of Daniel Huybrechts on simpleK-equivalence on symplectic
varieties.

Convention 0.5. We will work over the complex number field C. A smooth Pr−1-
fibration means a smooth projective morphism whose fibers are projective spaces
Pr−1, while a Pr−1-bundle means the projection of a projectivized vector bundle.
For a vector bundle E on a variety V , we will denote by P(E) the projectivization
Proj(S(E)) in the sense of Grothendieck.

Acknowledgements. The author wishes to express his gratitude to Professor
Yoichi Miyaoka for suggesting me the relation between Mukai pairs and flops, and
to Professor Shigeru Mukai for drawing the authors’s attention to [Li18] and for
his insightful comments and discussions. The author is also grateful to Professor
Yuki Hirano for his helpful comments and telling me about the paper [Ued18], and
to Doctor Sho Ejiri for helpful discussions on a variant of Theorem 2.2. He is
also grateful to Doctor Wahei Hara for his helpful comments. The author wishes
to thank Doctor Duo Li for his helpful comments and discussions on the earlier
version of this paper, and for permitting this author to include Theorem 6.2, which
is obtained by the discussion with him.

A part of this paper was written during the author’s stay at the University of
Trento. He is grateful to this institution for its hospitality and financial support.

1. Preliminaries

1.1. Fundamental properties of simple K-equivalence. Let χ : X1 99K X2 be
a simple K-equivalent map, and

E1 � o

  ❅
❅❅

❅❅
❅❅

❅

g1

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍

E2Oo

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

g2

��
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵

X̃
f1

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ f2

  ❅
❅❅

❅❅
❅❅

❅

Y1
� � // X1

χ
//❴❴❴❴❴❴❴ X2 Y2? _oo
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be its resolution of indeterminacy by smooth blow-ups along Yi ⊂ Xi. Here E1

and E2 are the exceptional divisors. In what follows, we will tacitly assume the
condition f∗

1KX1 = f∗
2KX2 .

Proposition 1.1 (Exceptional divisors [Li18, Lemma 2.1]). Let the notaion be as
above. Then E1 = E2 and codimX1 Y1 = codimX2 Y2.

Proof. Set ri := codimXi Yi. Then

KX̃ ∼ f
∗
i KXi + (ri − 1)Ei.

Thus the condition f∗
1KX1 = f∗

2KX2 together with the above equality yields our
assertions (note that Ei are exceptional divisors). �

Thus we have the following diagram as in (0.1.1):

(1.1.1) E := E1 = E2� _

��
g1

{{✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈

g2

##❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

X̃
f1

xxrr
rr
rr
rr
rr
rr

f2

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲

Y1
� � // X1

χ
//❴❴❴❴❴❴❴❴❴❴❴❴ X2 Y2? _oo

Definition 1.2 (Codimension and exceptional divisor). Let χ : X1 99K X2 be a
simple K-equivalent map, and the notation as above. Then its codimension r is
defined as codimX1 Y1 = codimX2 Y2. Its exceptional divisor E is the exceptional
divisor of fi.

As a corollary of Proposition 1.1, we have the following:

Corollary 1.3 (Two projective bundle structures). Let E be the exceptional divisor
of a simple K-equivalent map in codimension r. Then E admits two Pr−1-bundle
structures g1 and g2.

Set OE(1) := O(−E)|E and OE(m) := OE(1)⊗m. Since fi is a smooth blow-
up, we have E ≃ PYi(CYi/Xi), where CYi/Xi is the conormal bundle of Yi in Xi.
Moreover the line bundle OE(1) gives the relative tautological bundle of this pro-
jectivization. By an easy calculation, we have

rOE(1) + g∗i (−KXi |Yi) = −KE = rOE(1) + g∗i (−KYi − det(CYi/Xi)).

Thus, we have the following:

Proposition 1.4.

(1) OE(1) is the relative tautological divisor of the projective bundles g1 and
g2.

(2) c1(CYi/Xi) = −KYi +KXi |Yi .

1.2. Characterization of roofs. Let (V, E) be a simple Mukai pair with rank
r, and W the roof PV (E). We will denote by ξE the relative tautological divisor
of this projectivization PV (E). Then W admits another Pr−1-bundle structure
g+ : W → V +. Since −KW = rξE , the divisor ξE restricts to O(1) on each g+-
fiber Pr−1. Thus g+ : W → V + is given by the projectivization of the vector
bundle E+ := (g+)∗O(ξE ). By [NO07, Proposition 3.3], the pair (V +, E+) is also a
Mukai pair. Thus the situation is symmetric in (V, E) and (V +, E+). The following
proposition gives easy, but useful, characterizations of roofs of Pr−1-bundles:
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Proposition 1.5 (Roofs). Let W be a smooth projective Fano manifold of Picard
number two. Assume that every extremal contraction W → Vi (i = 1, 2) is a
smooth Pr−1-fibration. Then the following are equivalent:

(1) W is a roof of Pr−1-bundles.
(2) The index of W is r.
(3) There exists a divisor D on W such that OW (D) restricts to O(1) on all

fibers Pr−1 of both extremal contractions.

Proof. We have already seen (1) =⇒ (2) and (1) =⇒ (3). By [NO07, Proposi-
tion 3.3], (2) implies (1). Also, by adjunction, (2) =⇒ (3).

Assume (3). Then −KW ≡num rD, since they coincide on each gi-fiber and
N1(W ) is spanned by gi-fibers. Since numerical equivalence and linear equivalence
coincide on Fano manifolds, (2) holds. �

Remark 1.6. Let W be a Fano variety as in the assumption of Proposition 1.5. To
the best of the author’s knowledge, there are no examples W which do not satisfy
these equivalent conditions (1)–(3).

2. Manifolds with two projective bundle structures

Let χ : X1 99K X2 be a simple K-equivalent map in codimension r. Then, by
Corollary 1.3, the exceptional divisor E admits two Pr−1-bundle structures. In
this section we will study the structure of its Kleiman-Mori cone NE(E). Roughly
speaking, the results of this section show that, if a projective manifold admits two
projective bundle structures, then the corresponding rays R1 and R2 span a two-
dimensional extremal face in its Kleiman-Mori cone, and the contraction of this
face makes E a family of Fano manifolds with two projective bundle structures.

2.1. We start with a more general situation as follows: Let X be a normal projec-
tive variety. A basic diagram on X is a diagram of the following form:

U

π

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ e

  ❅
❅❅

❅❅
❅❅

❅

S X,

where U and S are normal projective varieties. In what follows, we will assume
π∗OU = OS for simplicity, and hence all the π-fibers are connected. Then the
S-equivalent relation on X is defined as follows: two points x1 and x2 are said to
be S-equivalent if these two points are contained in a connected chain of e-images
of π-fibers, i.e. there are (finite) points sj ∈ S such that xi ∈

⋃
e(π−1(sj)) and⋃

e(π−1(sj)) is connected. In this situation, it is known that there is a rational
map X 99K Y which gives, not on the whole variety X but on an open subset of X ,
the quotient map for this S-equivalent relation [Cam81, KMM92] (see also [Deb01,
Chapter 5], [Kol96, Chapter IV]). More precisely, we have:

Theorem 2.1. There exist a non-empty open subset X0 ⊂ X and a projective
morphism q : X0 → Y 0 such that each q-fiber is an S-equivalent class.

The above map q is called the S-equivalent quotient map. For accounts of this
topic, our basic references are [Deb01, Chapter 5], [Kol96, Chapter IV].

In general, the quotient map is not defined on the whole variety X . Thus it
is natural to ask when the quotient map is defined on the whole variety X . For
example, in [Kan17b, Section 2], it is proved that, if π and e are smooth P1-
fibrations and all varieties are smooth, then the quotient map is actually a smooth
morphism defined on the whole variety X . The following theorems 2.2 and 2.3
generalize this theorem.
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Theorem 2.2 (Quotient map). Let (S
π
←− U

e
−→ X) be a basic diagram on X.

Assume that e and π are equidimensional with irreducible fibers. Then there is a
projective morphism q : X → M onto a projective normal variety M whose fibers
are the S-equivalent classes. Moreover the map q is equidimensional with irreducible
fibers.

Theorem 2.3 (Smoothness of contraction [DPS94, Theorem 5.2], [SCW04, Theo-

rem 4.4]). Let (S
π
←− U

e
−→ X) be a basic diagram on X as in Theorem 2.2. Assume

moreover the following three conditions:

(1) X is smooth.
(2) π is a smooth P1-fibration.
(3) e∗TX is π-nef.

Then the quotient morphism q is smooth.

The proof of Theorem 2.2 relies on the theory of algebraic cycles and Chow
varieties. For a detailed account of families of algebraic cycles and Chow varieties,
we refer the reader to [Kol96, Chapter I].

Proof of Theorem 2.2. Consider the following diagram obtained by taking products
with X :

U ×X
Π:=π×id

yytt
tt
tt
tt
t

E:=e×id

%%❑
❑❑

❑❑
❑❑

❑❑
❑

S ×X X ×X.

Let V0 be the diagonal in X ×X and define inductively Vi+1 as

E(Π−1(Π(E−1(Vi))))

with its reduced strucure. We will consider Vi as a scheme over X via the second
projection pr2, and denote by Vi(x) the fiber Vi ∩ pr−1

2 (x). By the construction,
Vi(x) is the set of points that can be connected to x by an S-chain of length i.

Step 1. Here we will prove, by induction on i, that pr2 : Vi → X is a well-defined
family of irreducible algebraic cycles (see [Kol96, Chapter I, Section 3] for the defi-
nition and properties). Trivially pr2 : V0 → X is a well-defined family of irreducible
algebraic cycles. Assume that pr2 : Vi → X is a well-defined family of irreducible
algebraic cycles. Since E : U × X → X × X is equidimensional with irreducible
fibers, so is the map pr2 : E

−1(Vi)→ X . Thus pr2 : E
−1(Vi)→ X is a well-defined

family of irreducible algebraic cycles by [Kol96, Chapter I, Theorem 3.17]. Next
consider pr2 : Π(E

−1(Vi)) → X . Take ample divisors HS on S and HU on U , and
denote by d the relative dimension of pr2 : E

−1(Vi) → X . Then, for t ∈ R, the
number

(π∗HS + tHU )
d · (E−1(Vi) ∩ pr−1

2 (x))

is independent of x ∈ X by [Kol96, Chapter IV, Prop 2.10]. Thus the mor-
phism pr2 : Π(E

−1(Vi))→ X is equidimensional with irreducible fibers, and hence
pr2 : Π(E

−1(Vi))→ X is again a well-defined family of irreducible algebraic cycles.
By iterating this procedure, we see that pr2 : Vi+1 → X is a well-defined family of
irreducible algebraic cycles.

Step 2. In this step, we construct the quotient morphism. Since pr2 : Vi → X is a
well-defined family of irreducible algebraic cycles, the total space Vi is irreducible.
Hence there exists an integer k such that

V0 ( V1 ( · · · ( Vk = Vk+1 = · · · =: V∞.

By definition of Vi, the fiber V∞(x) := V∞ ∩ pr−1
2 (x) is the S-equivalent class of

x ∈ X . Since pr2 : V∞ → X is a well-defined family of irreducible algebraic cycles,
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we have a morphism q : X → Chow(X) by the universal property of Chow varieties.

Let X
q
−→ M → Chow(X) be the Stein factorization of q. Then, since X and

Chow(X) are projective, the morphism q and M are projective. By construction
each fiber of the morphism q is an S-equivalent class. This completes the proof.

�

Proof of Theorem 2.3. The proof is essentially the same as the proofs of [DPS94,
Theorem 5.2] and [SCW04, Theorem 4.4]. Here we will only provide the outline of
the proof, based on the proof of [SCW04, Theorem 4.4]. Note that q is equidimen-
sional with irreducible fibers. Then, by arguing as in the proof of [SCW04, Lemma
4.12], we know that the following are satisfied:

(1) Every q-fiber with its reduced structure, denoted by F , is a smooth Fano
manifold.

(2) By restricting the basic diagram (S
π
←− U

e
−→ X), we have a basic diagram

(SF
πF←−− UF

eF−−→ F ) such that πF is a smooth P1-fibration, F is chain-
connected with respect to these families and the bundle e∗F (NF/X) is trivial
on each πF -fibers.

Then, Lemma 2.4 below shows that NF/X is trivial. Hence the contraction q is
smooth by [SCW04, Lemma 4.13]. �

Lemma 2.4 ([AW01, Proposition 1.2]). Let F be a smooth Fano variety and E be a

vector bundle on F . Assume that there exists a basic diagram (S
π
←− U

e
−→ F ) such

that π is a smooth P1-fibration, F is chain-connected with respect to this family
and E is trivial on each π-fiber. Then E is trivial.

Proof. This lemma follows from a similar argument as in the proof of [AW01, Propo-
sition 1.2].

Consider the bundle e∗E . Then, since e∗E is trivial on each π-fiber, the push-
forward F := π∗e

∗E is a vector bundle on S and we have an isomorphism e∗E ≃
π∗F . Thus we have the following commutative diagram by taking projectivizations:

S̃ := P(F)

��

Ũ := P(e∗E)

��

ẽ //π̃oo P(E)

��

S U
e //πoo F.

Then, by considering (S̃
π̃
←− Ũ

ẽ
−→ P(E)) as a basic diagram on P(E), we have the

S̃-equivalent relation on P(E).

Consider an S̃-equivalent class F̃ . Then, by the assumption on E and the fact

that F is chain-connected with respect to S, we see that the map F̃ → F is
surjective. On the other hand, by [Kol96, Chapter IV, Proposition 3.13.3], the

image of the map N1(F̃ ) → N1(P(E)) is a one-dimensional vector space spanned

by the class of π̃-fibers. Thus the map F̃ → F is finite and surjective, and hence

dim F̃ = dimF . Therefore the image Q of the S̃-quotient map P(E) 99K Q has
dimension rankE − 1. Now the assertion follows from [NO07, Lemma 4.1]. �

Corollary 2.5 (Two projective bundles). Let U , S1 and S2 be smooth projective
varieties and pi : U → Si be smooth Pri−1-fibrations (i = 1, 2). Denote by Ri
the extremal ray of pi. Then R1 and R2 span a two dimensional extremal face in
NE(U). Moreover its contraction is smooth and each fiber of the contraction is a
Fano manifold with Picard number two.
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Proof. By the assumption, we have the following diagram

(2.5.1) U
p1

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦ p2

  ❆
❆❆

❆❆
❆❆

❆

S1 S2.

Considering this diagram as a basic diagram on S2 and applying Theorem 2.2,
we have the quotient morphism q2 : S2 → M . Then, by rigidity lemma (see for
instance [Deb01, Lemma 1.15]), we have a morphism q1 : S1 → M , which makes
the following diagram commutative:

(2.5.2) U
p1

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤ p2

!!❇
❇❇

❇❇
❇❇

❇

S1

q1
!!❇

❇❇
❇❇

❇❇
S2

q2
}}⑤⑤
⑤⑤
⑤⑤
⑤

M.

By symmetry, the morphism q1 : S1 →M is also the quotient map for S2-equivalent
relation on S1 that is induced by the diagram (2.5.1). Note that the relative Picard
rank ρ(Si/M) is one by [Kol96, Chapter IV, Proposition 3.13.3]. Thus the morphism
U →M is a contraction of a two dimensional face in NE(U), and hence we have the
first assertion. By considering the family of lines in p1-fibers, we have the following
diagram:

Ũ

p̃1

��

e1 // U

p1

��

p2 // S2

S̃1
// S1,

where p̃1 : Ũ → S̃1 is the universal family of lines in the p1-fibers and e1 : Ũ → U is

the evaluation map for this family. Then, by considering (S̃1
p̃1
←− Ũ

p2◦e1
−−−→ S2) as a

basic diagram on S2, we have the S̃1-equivalent relation on S2, which coincides with

the S1-equivalent relation on S2. Thus the map q2 is the S̃1-quotient morphism.
Since p2 is smooth, we have the surjection TU → p∗2TS2. Since TU is p1-nef, the

bundle p∗2TS2 is also p1-nef. Therefore, the bundle (p2 ◦ e2)
∗TS2 is p̃1-nef. Hence,

by Theorem 2.3, the contraction q2 is smooth. By symmetry, q1 is also smooth.

Each fiber F2 of q2 is a smooth projective variety, and it is an S̃1-equivalent class.
Thus the Picard number of F2 is one by [Kol96, Chapter IV, Proposition 3.13.3].
Thus, for each fiber F of U →M , the Picard number ρ(F ) is two. This completes
the proof. �

3. Building blocks of simple K-equivalent maps

In this section, we completes the proof of Theorem 0.2. Let χ : X1 99K X2

be a simple K-equivalent map in codimension r and consider the resolution of
indeterminacy as in (0.1.1). Then gi are Pr−1-bundles by Corollary 1.3. Thus, by
applying Corollary 2.5, we have smooth extremal contractions hi : Yi → M with
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the following commutative diagram:

E� _

��
g1

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤⑤

g2

  ❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇

X̃
f1

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤ f2

  ❇
❇❇

❇❇
❇❇

❇

Y1
� � //

h1

""❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊ X1

χ
//❴❴❴❴❴❴❴ X2 Y2? _oo

h2

||②②
②②
②②
②②
②②
②②
②②
②②
②②

M.

We will denote by ψ the composite h1◦g1 = h2◦g2. Then, for eachm ∈M , the fiber
ψ−1(m) is a Fano manifold with Picard number two whose extremal contractions
are Pr−1-bundles:

ψ−1(m)
g1|ψ−1(m)

yytt
tt
tt
tt
t g2|ψ−1(m)

%%❑
❑❑

❑❑
❑❑

❑❑

h−1
1 (m) h−1

2 (m).

Note that each projective bundle structure is given by P(CYi/Xi |h−1
i

(m)).

The following lemma asserts that the canonical bundle of Xi is trivial on each
hi-fiber, and hence the situation is very similar to the case of flops.

Lemma 3.1. For a point m ∈M , we have KXi |h−1
i

(m) = 0.

Proof. By symmetry, we may assume i = 1. Since the fiber h−1
1 (m) is a Fano

manifold with Picard number one, it is enough to check that KX1 is trivial on one
curve in h−1

1 (m). Take a curve C2 ⊂ ψ−1(m) in a g2|ψ−1(m)-fiber and consider the
push-forward C1 := (g1|ψ−1(m))∗(C2). Then

KX1 · C1 = g∗1KX1 · C2 = g∗2KX2 · C2 = 0.

Thus the assertion follows. �

The following completes the proof of Theorem 0.2:

Proposition 3.2. The pair (h−1
i (m), CYi/Xi |h−1

i
(m)) is a simple Mukai pair.

Proof. It remains to check that CYi/Xi |h−1
i

(m) is ample and c1(CYi/Xi |h−1
i

(m)) =

c1(h
−1
i (m)). The first assertion follows from Proposition 1.4 and the second asser-

tion follows from Lemma 3.1 and Proposition 1.4. �

4. Construction of simple K-equivalence

By Theorem 0.2, simple K-equivalent maps are related to simple Mukai pairs:
such a map can be seen as a family of simpler maps induced from simple Mukai
pairs. In this section, we discuss the inverse construction following [Muk84, Nam03],
and explain how we can construct a simple K-equivalent map from a simple Mukai
pair (or a family of simple Mukai pairs).

Let X be a projective manifold and Y ⊂ X a smooth subvariety of codimension
at least two that satisfies the following conditions:

(1) Y admits a smooth extremal contraction h : Y →M .
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(2) For each h-fiber F , the pair (F, CY/X |F ) is a simple Mukai pair.

Denote by X̃ the blow-up of X along Y , E the exceptional divisor, g : E → Y
the natural projection and ψ the composite h ◦ g. Note that E is isomorphic to
P(CY/X) and the bundle OX̃(−E)|E gives the relative tautological divisor of the
projective bundle P(CY/X).

Lemma 4.1. Let the notation be as above. Then E admits another Pr−1-bundle
structure g+ : E → Y +, with the following commutative diagram:

E
g

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ g+

!!❉
❉❉

❉❉
❉❉

❉

Y

h   ❆
❆❆

❆❆
❆❆

❆ Y +

h+
}}③③
③③
③③
③③

M.

Moreover, OX̃(−E)|E gives a relative tautological divisor of g+.

Proof. By our assumption, each fiber of the morphism ψ : E → M is a Fano man-
ifold with Picard number two which admits two Pr−1-bundle structures. Thus
−KE is ψ-ample. Note that ρ(E/M) = 2. Therefore, by [KM98, Theorem 3.25]
or [KMM87, Theorems 3-2-1, 4-2-1], there exists the other extremal contraction
g+ : E → Y + with the following commutative diagram:

E
g

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ g+

!!❉
❉❉

❉❉
❉❉

❉

Y

h   ❆
❆❆

❆❆
❆❆

❆ Y +

h+
}}③③
③③
③③
③③

M.

Take a pointm ∈M . By [Wís91, Proposition 1.3], g+|ψ−1(m) is not finite, and hence

the Stein factorization of g+|ψ−1(m) gives the other projective bundle structure.

In particular, g+ is equidimensional. Moreover, if m ∈ M is general, then the
morphism g+|ψ−1(m) gives the other projective bundle structure. Thus general g+-

fiber is a projective space Pr−1. Moreover, Proposition 1.5 shows that O(−E)|E
restricts to O(1) on general fibers Pr−1. Therefore, by [Fuj87, Lemma 2.12], g+ is
a Pr−1-bundle and O(−E)|E gives a relative tautological bundle of this projective
bundle structure. �

Proposition 4.2 (Construction of simple K-equivalent map). Let the notation be

as above. Then the blow-up X̃ admits another morphism f+ : X̃ → X+ onto a
smooth complex manifold X+ (may not be projective) with the following conditions:

(1) X+ contains Y + as a closed subvariety.

(2) The morphism f+ : X̃ → X+ restricts to g+ on E.
(3) f+ is the smooth blow-up along Y + ⊂ X+.
(4) f∗KX = (f+)∗KX+ .

Proof. The first three conditions follow from [Nak71, FN72]. The last condition
follows from adjunction. �

As is well-known, X+ can be non-projective, and hence the map χ : X 99K X+

is, in general, not a map between projective varieties. The following lemma gives a
sufficient condition for the projectivity of X+ (cf. [LLW10, Proposition 1.3]).
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Proposition 4.3. In Proposition 4.2, assume moreover that X admits a birational
contraction ϕ : X → Z to a projective variety Z that satisfies the following condi-
tions:

(1) The exceptional locus of ϕ is Y .
(2) The Stein factorization of ϕ|Y gives the contraction h : Y →M .

Then the contraction ϕ is a contraction of KX-trivial ray, X+ is projective and the
map X 99K X+ is the flop of ϕ.

Proof. By considering the push-forward via the inclusion map Y → X , we have the
half line Rh ⊂ NE(X) corresponding to the extremal ray of h : Y →M .

Arguing as in the proof of [Kol96, Chapter III, Theorem1.6], we have an irre-
ducible divisor D ⊂ X such that D · Rh < 0. Thus, for sufficiently small ε > 0,
the pair (X, εD) is Kawamata log terminal, and −KX − εD is ϕ-ample. Thus,
by [KMM87, Lemma 3-2-5], the half line Rh is actually an (KX + εD)-negative
extremal ray of NE(X) and the contraction ϕ is associated to Rh.

The relative Picard number ρ(X̃/Z) is two by [KMM87, Lemma 3-2-5] again,

and, since −KX̃ is ψ-ample, we have the other contraction of X̃ over Z by the cone
theorem. This contraction is nothing but the morphism f+. Thus X+ is projective,
and the map χ : X 99K X+ is the flop. �

Finally, we construct a local model of simple K-equivalence from a simple Mukai
pair, or a family of simple Mukai pairs (see [Nam03, Section 1]).

Proposition 4.4. Let h : Y →M be a smooth extremal contraction between smooth
projective varieties Y and M . Assume that there is a vector bundle E on Y such
that, for each h-fiber F , the pair (F, E|F ) is a simple Mukai pair. Then there exists a
smooth projective variety X that contains Y as in the assumption of Proposition 4.3.

Proof. Set X := P(E ⊕O). Then the surjection E ⊕O → O gives a section Y ′ of the
projection π : X → Y . We will denote by h′ : Y ′ →M the composite Y ′ ≃ Y →M ,
and by θ the composite h ◦ π.

By construction, CY ′/X ≃ E via the identification Y ′ ≃ Y . Thus it remains to
show that X admits a contraction ϕ : X → Z as in Proposition 4.3.

Each fiber of θ is isomorphic to P(E|F ⊕ OF ), where F is a fiber of h. Then,
by using the definition of Mukai pairs, it is easy to check that P(E|F ⊕ OF ) is a
weak Fano variety, i.e. −KP(E|F⊕OF ) is nef and big. Thus −KX is θ-nef and θ-big.
Thus, by the relative basepoint-free theorem [KM98, Theorem 3.24] or [KMM87,
Theorem 3-1-1], −KX defines a contraction ϕ : X → Z over M :

X
ϕ

//

π

��

θ

  ❆
❆❆

❆❆
❆❆

❆ Z

��

Y
h

// M

Then the exceptional locus of ϕ is Y ′, and ϕ|Y ′ determines the contraction
Y ′ →M . This completes the proof. �

5. Examples and classification

In this section, we firstly present examples of roofs of Pr−1-bundles and simple
K-equivalent maps. Secondly, we review the classification results of roofs. Finally,
by using the classification results and the structure theorem, we prove Theorem 0.3.

5.1. Examples of roofs and simple K-equivalence.
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5.1.1. Homogeneous cases. A rational homogeneous variety is, by definition, a ho-
mogeneous variety of the form G/P , where G is a semi-simple algebraic group and
P is a parabolic subgroup. Such a variety is uniquely determined from its com-
binatoric data, called its marked Dynkin diagram: Let G be a semi-simple group
G and B a Borel subgroup of G. Then we can attach a Dynkin diagram D of
a reduced root system by considering its Lie algebra. Then there is a one-to-one
correspondence between the set of parabolic subgroups contained in B and the set
of subsets I ⊂ D (see for instance [MOSC+15, 2.2]). Our notation is compatible
with [MOSC+15, 2.2]. Thus the correspondence is inclusion-reversing. We will call
the pair (D, I) the marked Dynkin diagram for the homogeneous variety G/P .

Fix a semi-simple group G, and denote by D its Dynkin diagram. Then, by the
above correspondence, we have the parabolic subgroup P (I) for each subset I ⊂ D.
It is known that the Picard number of a rational homogeneous manifold G/P (I)
is #I. Also, by construction, if I ⊂ J , then we have the contraction G/P (J) →
G/P (I), whose fibers are the rational homogeneous manifold corresponding to the
marked Dynkin diagram (D \ I, J \ I) (here the Dynkin diagram D \ I is obtained
by removing the nodes in I and the edges touching the nodes in I). In particular,
a subset of D with one element gives a maximal parabolic subgroup, and hence it
gives a rational homogeneous variety with Picard number one. For such varieties,
its dimension and index are determined from the combinatoric data (see e.g. [Sno93,
Corollary 2.4]). Thus, by combining with the Kobayashi-Ochiai theorem [KO73],
we can see that a rational homogeneous variety G/P is isomorphic to a projective
space Pr−1, if and only if its marked Dynkin diagram is the following two types:

(1) •
1
◦
2
◦··· ◦
r − 1

(2) •
1
◦
2
◦··· ◦

r/2
oo

Here the marking is specified by the black circle.
Let W be a rational homogeneous manifold W = G/P and (D, I) be its marked

Dynkin diagram. Assume that W is a roof of Pr−1-bundles. Then I consists
of two elements i and j. Since it admits two Pr−1-bundle structures, the marked
Dynkin diagrams (D\{i}, {j}) and (D\{j}, {i}) are one of the two marked Dynkin
diagrams as above. Conversely, if we are given a marked Dynkin diagram (D, {i, j})
as above, then the corresponding rational homogeneous variety is a roof of Pr−1-
bundles. Thus, by checking for each cases, we have the following seven examples of
homogeneous roofs, and hence seven examples of simple K-equivalent maps.

Example 5.1 (Type Ar−1 ×Ar−1). Set W := Pr−1 ×Pr−1. Then W is a roof of
Pr−1-bundles. Note that the variety W is a homogeneous variety whose automor-
phism group is a semi-simple group of type Ar−1×Ar−1, and it corresponds to the
following marked Dynkin diagram.

•
1
◦
2
◦··· ◦
r − 1

•
1
◦
2
◦··· ◦
r − 1

We will call this variety a roof of type Ar−1×Ar−1. A simple K-equivalent map
is called type Ar−1×Ar−1, if each ψ-fiber in the diagram (0.2.1) is isomorphic to the
roof of type Ar−1×Ar−1. Note that simple K-equivalent maps of type Ar−1×Ar−1

are nothing but so-called standard flops (see Remark 5.8).

Example 5.2 (Type AMr ). Consider the flag variety W := Fl(1, r; r + 1), which
parametrizes the flags of subspaces (V1 ⊂ Vr) with dimVi = i in a vector space
Cr+1. Then W is a roof of Pr−1-bundles.
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The roofW admits two natural projections pr1 : Fl(1, r; r+1)→ Gr(1, r+1) and
pr2 : Fl(1, r; r + 1) → Gr(r, r + 1). The fibers of these projections are isomorphic
to Pr−1.
W is a homogeneous variety whose automorphism group is a semi-simple group

of type Ar. The marked Dynkin diagram of W is the following.

•
1
◦
2
◦··· •

r

We will call this variety a roof of type AMr . A simple K-equivalent map is called
type AMr , if each ψ-fiber in the diagram (0.2.1) is isomorphic to the roof of type AMr .
Note that this flag variety W is isomorphic to the projectivized tangent bundle of
a projective space P(TPr ), and hence simple K-equivalent maps of type AMr are
so-called Mukai flops (see Remark 5.8).

Example 5.3 (Type AG2r−2 (r ≥ 3)). Consider the flag varietyW := Fl(r−1, r; 2r−
1). Then, similarly to Example 5.2, W is a roof of Pr−1-bundles. The images of
projections are the Grassmannian varieties Gr(r − 1; 2r − 1) and Gr(r; 2r − 1)
respectively. W is a rational homogeneous variety whose marked Dynkin diagram
is the following.

◦
1
◦··· •
r − 1

•
r
◦ ◦
2r − 2
···

We call this variety a roof of type AG2r−2. A simple K-equivalent map is called type

AG2r−2, if each ψ-fiber in the diagram (0.2.1) is isomorphic to the roof of type AG2r−2.

Example 5.4 (Type C 3r
2 −1 (r even)). Let r ≥ 2 be an even integer and fix a

symplectic bilinear form on a vector space C3r−2. Consider the symplectic flag
variety SFl(r − 1, r; 3r − 2), which parametrizes the flags of isotropic subspaces
(Vr−1 ⊂ Vr) with dimVi = i. Then W is a roof of Pr−1-bundles. The images of
projections are the symplectic Grassmannians SG(r − 1; 3r − 2) and SG(r; 3r − 2)
respectively. W is a rational homogeneous variety whose marked Dynkin diagram
is the following.

◦

1

◦··· •

r − 1

•

r

◦ ◦··· ◦

3r

2
− 1

oo

We will call this variety a roof of type C 3r
2 −1. A simple K-equivalent map is called

type C 3r
2 −1, if each ψ-fiber in the diagram (0.2.1) is isomorphic to the roof of type

C 3r
2 −1. Note that Abuaf’s flop in [Seg16] is a K-equivalent map of type C2.

Example 5.5 (Type Dr (r ≥ 4)). Fix a non-degenerate quadratic form on a
vector space C2r and consider the orthogonal Grassmann variety OG(r − 1; 2r),
which parametrizes the r−1-dimensional isotropic subspaces. ThenW is a rational
homogeneous variety whose marked Dynkin diagram is the following.

◦
1
◦··· ◦

•
r − 1
✈✈✈

•
r❍❍❍

ThusW gives a roof of Pr−1-bundles. The images of projections are the orthogonal
Grassmannians OG+(r; 2r) and OG−(r; 2r), which are the connected components
of the orthogonal Grassmannian OG(r; 2r). We will call this variety a roof of type
Dr. A simple K-equivalent map is called type Dr, if each ψ-fiber in the diagram
(0.2.1) is isomorphic to the roof of type Dr.
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Example 5.6 (Type F4 (r = 3)). Consider a rational homogeneous variety W
whose marked Dynkin diagram is the following.

◦ • •// ◦

Then W is a roof of P2-bundles. We will call this variety a roof of type F4. A
simple K-equivalent map is called type F4, if each ψ-fiber in the diagram (0.2.1) is
isomorphic to the roof of type F4.

Example 5.7 (Type G2 (r = 2)). Consider a rational homogeneous variety W
whose marked Dynkin diagram is the following:

• •//

Then W gives a roof of P1-bundles. We will call this variety a roof of type G2. A
simple K-equivalent map is called type G2, if each ψ-fiber in the diagram (0.2.1) is
isomorphic to the roof of type G2. Note that the flop studied in [Ued18] is of type
G2.

Remark 5.8. The definition of standard flops (type Ar−1 ×Ar−1) and Mukai flops
(type AMr ) are slightly different from the definition in [Li18]; In our definition, we
do not assume that the morphisms hi are projective bundles, i.e. it comes from the
projectivization of a vector bundle. In fact, there are simple K-equivalent maps of
these types, where the morphisms hi are not projective bundles (see the following
example).

Example 5.9. Consider a smooth Pr−1-fibration h : Y →M , which is not a Pr−1-
bundle (note that such an example exists already in dimension 3 over a surface M ,
see e.g. [BOSS96]). Then by letting E := O⊕r or Th (the relative tangent bundle)
and applying the construction in Section 4, we obtain a simple K-equivalent map
of type Ar−1 × Ar−1 or AMr . For this example, the flopping locus is isomorphic to
h : Y →M , which is not a Pr−1-bundle.

5.2. Non-homogeneous roof. Here we will provide one example of roof, which
is not homogeneous, based on [Ott88, Ott90, Kan16].

Let Q5 be a smooth 5-dimensional hyperquadric. Then the Chow group Ai(Q
5)

is isomorphic to the group Z for all i ∈ {0, 1, 2, 3, 4, 5}. We will identify an element
Ai(Q

5) with an integer.

Definition 5.10. A vector bundle G of rank 3 on Q5 is called an Ottaviani bundle
if it is stable and (c1(G), c2(G), c3(G)) = (2, 2, 2).

Such a bundle is constructed and studied in [Ott88]. Herein, we include one de-
scription of the projectivization of this bundle. See [Ott88, Ott90, Kan16, Kan17a]
for other properties of this bundle and several characterizations.

In [Kan16, Section 2], it is proved that the projectivization P(G) is a roof of
P2-bundles and P(G) is isomorphic to the following manifold (cf. [Ott90]):

Example 5.11 (Type G†
2 (r = 3)). Let O be the Cayley octonions, and denote by

−·− be its Cayley product. Let W be a closed submanifold of P(ImO)×P(ImO)
defined as follows:

{(x, y) ∈ P(ImO)×P(ImO) | x · x = x · y = y · y = 0}.

Then, the image of each projection pri |W is isomorphic to a smooth hyperquadric
Q5 in P(ImO) ≃ P6. Moreover the projection pri |W : W → Q5 is a P2-bundle,
and these define the structure of a roof on W . Note that the automorphism group
of O is a semi-simple group of type G2, and, by the construction, W admits the
action of a semi-simple group of type G2. We will call this variety W a roof of

type G†
2. A simple K-equivalent map is said to be of type G†

2, if each ψ-fiber in the
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diagram (0.2.1) is isomorphic to the roof of type G†
2. Note that this variety W is

not homogeneous (see e.g. [Kan16, Theorem 2.2]).

5.2.1. List of roofs. Let W be a roof of Pr−1-bundles. Then we have the following
diagram with two Pr−1-bundle structures:

W
p1

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥ p2

!!❇
❇❇

❇❇
❇❇

❇

V1 V2.

So far we have constructed eight examples of roofs Ar−1×Ar−1, A
M
r , AG2r−2, C 3r

2 −1,

Dr, F4, G2 and G†
2. The following is the list of these examples. The second column

lists the marked Dynkin diagrams for homogeneous roofs, and the last column lists
the triples (dim Vi, rV1 , rV2), where rVi is the index of Vi:

Type Marked Dynkin diagram (dim Vi, rV1 , rV2)

Ar−1 ×Ar−1 •
1
◦
2
◦··· ◦
r − 1

•
1
◦
2
◦··· ◦
r − 1

(r − 1, r, r)

AMr •
1
◦
2
◦··· •

r
(r, r + 1, r + 1)

AG2r−2 ◦
1
◦··· •
r − 1

•
r
◦ ◦
2r − 2
··· (r(r − 1), 2r − 1, 2r − 1)

C 3r
2 −1 (r even) ◦

1

◦··· •

r − 1

•

r

◦ ◦··· ◦

3r

2
− 1

oo (3r(r−1)
2 , 2r, 2r − 1)

Dr ◦
1
◦··· ◦

•
r − 1
✈✈✈

•
r❍❍❍

( r(r−1)
2 , 2r − 2, 2r − 2)

F4 (r = 3) ◦ • •// ◦ (20, 5, 7)
G2 (r = 2) • •// (5, 3, 5)

G†
2 (r = 3) (5, 5, 5)

5.3. Classification results of roofs. By combining classification results of roofs,
we have the following:

Theorem 5.12. Let W be a roof of Pr−1-bundes with dimension n+ r − 1. Then
W is isomorphic to one of the above examples, if one of the following holds:

(1) r ≥ n− 2.
(2) r = 2.
(3) dimW ≤ 7.

More precisely, the following hold:

(1) If (1) holds, then W is of type Ar−1 ×Ar−1, A
M
r , C2, D4 or G†

2.
(2) If (2) holds, then W is of type A1 ×A1, A

M
2 , C2, G2.

(3) If (3) holds, then W is of type Ar−1 × Ar−1 (r ≤ 3), AMr (r ≤ 3), C2, G2

or G†
2.

Proof. In the first case, the assertion follows from the classification of Mukai pairs
with large rank [Fuj92, Pet90, Pet91, YZ90, Wís89, PSW92, NO07, Kan17a, Kan18]
(cf. [Occ05]). In the second case, the assertion follows from the classification of
Fano manifolds with Picard rank two whose extremal contractions are P1-bundles
[MOSC14, Wat14]. The last assertion is a consequence of (1) and (2). �
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As a corollary of the above classification and the structure theorem, we have the
following:

Corollary 5.13. Let χ : X1 99K X2 be a simple K-equivalent map in codimension
r as in (0.2.1). Then the following hold:

(1) If r ≥ dimYi − dimM − 2, then χ is of type Ar−1 ×Ar−1, A
M
r , C2, D4 or

G†
2.

(2) If r ≤ 2, then χ is of type A1 ×A1, A
M
2 , C2 or G2.

(3) If dimXi ≤ 8, then χ is of type Ar−1 ×Ar−1 (r ≤ 3), AMr (r ≤ 3), C2, G2

or G†
2.

Proof. This follows from Theorem 0.2 and Theorem 5.12. �

Remark 5.14. In Theorem 5.12 and Corollary 5.13, we have shown that, in several
cases, simpleK-equivalent maps or roofs are one of the examples constructed above.
To the best of the author’s knowledge, these are the all known examples of roofs,
and hence of simple K-equivalence.

6. Symplectic varieties

Mukai flops (or simple K-equivalent maps of type AMr in our terminology) are
introduced by Mukai in the context of the geometry of symplectic varieties [Muk84].
I learned from Duo Li that the following question is raised by Daniel Huybrechts:

Question 6.1. If χ : X 99K X+ is a simple K-equivalent map between symplectic
varieties X , then is χ a Mukai flop?

In his paper [Li18, Theorem 1.7], Li obtained a positive answer for this question
if the Picard rank of the center of the birational map is one. The following theorem
is obtained via the discussion with Duo Li, which answers positively the above
question:

Theorem 6.2. Let X be a projective symplectic manifold of dimension 2n, i.e. a
smooth projective variety that admits a symplectic form ω ∈ H0(Ω2

X), and χ : X 99K

X+ a simple K-equivalent map. Then χ is a Mukai flop, or equivalently a simple
K-equivalent map of type AMr .

Proof. We will use a similar notation as in Theorem 0.2. Then, by arguing as
in the proof of [Muk84, Proposition 3.1], we see that r = codimX Y ≥ dimF =
dimY −dimM and F is isotropic, where F is a fiber of h. Then, by Corollary 5.13,
χ is of type Ar−1 ×Ar−1 or AMr .

In any case, F is isomorphic to a projective space PdimF . Since F is isotropic,
the tangent bundle TF is a subbundle of CF/X . Note that CY/X |F is isomorphic to

OF (1)⊕ dimF+1 or TF , and there is the following exact sequence:

0→ CY/X |F → CF/X → CF/Y ≃ O
⊕ dimY−dimM
F → 0.

Since there are no non-trivial morphisms from TF to CF/Y ≃ O
⊕ dimY−dimM
F ,

the subbundle TF ⊂ CF/X is contained in CY/X |F . Also there are no non-trivial

morphisms from TF to OF (1)⊕ dimF+1. Thus CY/X |F ≃ TF . This completes the
proof. �
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