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Abstract

The Bernshtein-Kushnirenko-Khovanskii theorem provides a generic root count
for system of Laurent polynomials in terms of the mixed volume of their Newton
polytopes (i.e., the BKK bound). A recent and far-reaching generalization of
this theorem is the study of birationally invariant intersection index by Kaveh
and Khovanskii. This short note establishes a simple geometric condition on the
equality between the BKK bound and the intersection index for a system of vec-
tor spaces of Laurent polynomials. Applying this, we show that the intersection
index for the algebraic Kuramoto equations equals their BKK bound.

Keywords: BKK bound, Bernshtein-Kushnirenko-Khovanskii theorem,
Newton polytope, mixed volume, Kuramoto equations

1. Introduction

The Bernshtein-Kushinirenko-Khovanskii theorem [2, 8, 9, 11, 12] relates the
root counting problem for systems of polynomial equations and the theory of
convex bodies. In particular, it states that the generic (and hence maximum)
number of isolated solutions a system of Laurent polynomial equations has in
the algebraic torus (C∗)n = (C\{0})n equals the mixed volume of their Newton
polytopes. This is the Bernshtein-Kushnirenko-Khovanskii (BKK) bound.

Recently, a far-reaching generalization of this theorem is developed in a
series of works [5, 6, 7] by K. Kaveh and A. Khovanskii where the root counting
question is considered for much more general spaces of rational functions. Given
an irreducible n-dimensional complex algebraic variety X and n-tuple of finite
dimensional vector spaces (L1, . . . , Ln) of rational functions on X , for generic
elements fi ∈ Li for i = 1, . . . , n, the number of common solutions a system
f1 = · · · = fn = 0 has in X is closely related to the geometry of the Newton-
Okunkov bodies associated with L1, . . . , Ln. This generic root count is given the
name birationally invariant intersection index (or simply, intersection index).

In this short note we establish a simple geometric criterion on the equality
between the BKK bound and the more refined intersection index, even when
the space of functions are not generated by monomials.
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2. Preliminaries

For x = (x1, . . . , xn) and a =
[

a1 . . . an
]⊤

∈ Zn, we use the notation
xa = xa1

1 · · ·xan
n for the Laurent monomial. For a Laurent polynomial f(x) =

∑

a∈S cax
a, Newt(f) := conv(S) is its Newton polytope. With respect to a vector

v ∈ Rn, its initial form initv(f) is the expression
∑

a∈(S)v
cax

a where (S)v ⊂ S

is the subset on which the linear functional 〈v , ·〉 is minimized. C[x±
1 , . . . , x

±
n ]

denotes the set of all Laurent polynomials in x1, . . . , xn.
The natural space to study this root counting question is the algebraic torus

(C∗)n = (C \ {0})n. While the root count of a Laurent polynomial system can
vary greatly depending on the coefficients, for “generic” coefficients the (C∗)n-
root count remains a constant and only depends on its monomial structure. D.
Bernshtein showed this constant is precisely the mixed volume1 of their Newton
polytopes [2]. This is also an upper bound on the number of isolated C∗-zeros
such a Laurent polynomial system could have, and it is known as the Bernshtein-
Kushnirenko-Khovanskii (BKK) bound, after a circle of closely related works
by Bernshtein [2], Kushnirenko [9, 11, 12], and Khovanskii [8]. The arguably
more important part of Bernshtein’s paper [2] is his second theorem:

Theorem 1 (Bernshtein 1975 [2]). Given a Laurent polynomial system f =
(f1, . . . , fn) in x = (x1, . . . , xn), if for all 0 6= v ∈ Rn, the initial system initv(f)
has no zero in (C∗)n, then all zeros of f in (C∗)n are isolated, and the total num-
ber, counting multiplicity, is the mixed volume MVol(Newt(f1), . . . ,Newt(fn)).

Systems satisfying this condition are said to be Bernshtein-general. Bern-
shtein showed Bernshtein-generalness hold for generic choices of coefficients:

Lemma 2 (Bernshtein 1975 [2]). Given a Laurent polynomial system f =
(f1, . . . , fn) in x = (x1, . . . , xn), there is a nonempty Zariski-open set of the
coefficients for which the initial system initv(f) has no solution in (C∗)n for
any nonzero vector v ∈ Rn.

These results have been generalized into the theory of birationally invariant
intersection index [6, 7]. Instead of considering generic linear combinations
of Laurent monomials, one could start with C-vector spaces L1, . . . , Ln each
spanned by finitely many rational functions on an irreducible toric variety X .
Then for generic choices of functions f1 ∈ L1, . . . , fn ∈ Ln, the number of
common zeros (f1, . . . , fn) has (away from base locus of the system) in X is a
constant that is independent of the choices. This is the intersection index of
L1, . . . , Ln and is denoted by [L1, . . . , Ln]. This grand theory relates the root
counting problem to the geometric properties of Newton-Okunkov bodies, and
the BKK bound is thus a special case of this intersection index in the situations
where each Li is spanned by Laurent monomials. In the following, we extend the
BKK bound to certain cases where each Li is spanned by Laurent polynomials.

1Here, we follow the convention that the mixed volume MVol(P1, . . . , Pn) of n convex
polytopes P1, . . . , Pn ⊂ Rn is the coefficient of the mixed term λ1 · · ·λn in the homogenous
polynomial Vol(λ1P1 + · · ·+ λnPn) [13], where Vol is the Euclidean volume form.
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3. The main theorem

The goal here is to show the equality of the intersection index and the BKK
bound under a simple geometric condition and thereby generalize the theory
of BKK bound. We focus on the cases where X = (C∗)n and L1, . . . , Ln are
spanned by finitely many Laurent polynomials. That is,

Li = spanC{Pij}
mi

j=1 (1)

where each Pij ∈ C[x±
1 , . . . , x

±
n ] is nonzero and mi ∈ Z+. This setup is a

generalization of the situation in Theorem 1 where each Li is only spanned
by a set of Laurent monomials. That is, if each Pij is a Laurent monomial,
then [L1, . . . , Ln ] is exactly the BKK bound. The main result of this note is
a geometric condition under which the BKK bound remains sharp even when
each Pij is a Laurent polynomial.

A generic element fi ∈ Li, is a Laurent polynomial fi =
∑mi

j=1 cijPij with
generic choice of the coefficients ci1, . . . , cimi

. It is easy to see that among the
terms within such a generic element, there are no cancellations and consequently
Newt(fi) = conv

(

∪mi

j=1 Newt(Pij)
)

. It is therefore reasonable to use the notation

Newt(Li) := conv
(

∪mi

j=1 Newt(Pij)
)

.

By Bernshtein’s Theorem [2],

[L1, . . . , Ln ] ≤ MVol(Newt(L1), . . . ,Newt(Ln)).

The equality does not hold in general. The main result of this note is a sufficient
condition on the equality between the two root counts stated in terms of the “ex-
posure” of each Newton polytope Newt(Pij) on the boundary of Newt(Li). This
condition is, intentionally, chosen to only rely on the geometric information that
can be obtained from the individual Newton polytopes Newt(L1), . . . ,Newt(Ln)
and does not require information from any of their mixed subdivisions. In other
words, the condition to be established here is purely polytopal, not tropical.

Theorem 3. Let L1, . . . , Ln be vector spaces of rational functions with Li =
spanC{Pij}

mi

j=1 where each Pij ∈ C[x±

1 , . . . , x
±
n ] and mi ∈ Z

+ as described above.
If for each i = 1, . . . , n, we have

1. dim(Newt(Li)) = n,

2. functions in Li have no common zeros in (C∗)n,

3. every positive-dimensional proper faces of Newt(Li) intersect Newt(Pij)
at no more than one point for each j = 1, . . . ,mi,

then
[L1, . . . , Ln ] = MVol (Newt(L1), . . . ,Newt(Ln) ). (2)

3



Proof. Let f1, . . . , fn be generic elements in L1, . . . , Ln respectively, i.e., fi =
∑mi

j=1 cijPij for generic coefficients {cij}. Since it is also assumed that Lau-
rent polynomials in each Li have no common roots in (C∗)n, the common root
count of the system f = (f1, . . . , fn) in (C∗)n equals the intersection index
[L1, . . . , Ln ]. It is therefore sufficient to show the root count of f in (C∗)n

matches the BKK bound, i.e., f satisfies the conditions in Theorem 1.
Let v ∈ Rn be a nonzero vector such that initv(f) does not contain a unit

(i.e., no component of f is a single Laurent monomial term). Since Newt(fi) =
Newt(Li) is assumed to be full-dimensional for i = 1, . . . , n, v must be a com-
mon inner normal vector for n proper positive dimensional faces F1, . . . , Fn of
Newt(f1), . . . ,Newt(fn) respectively.

For each i = 1, . . . , n, let Aij = Fi∩Newt(Pij), then, by assumption, eachAij

contains at most one point. Without loss of generality, after re-indexing Pij ’s,
we can assume that for a fixed i, Aij = {aij} for j = 1, . . . ,m′

i and Aij = ∅

for j = m′
i + 1, . . . ,mi where m′

i ∈ Z+ and m′
i ≤ mi (since Fi ∩Newt(Pij) may

be empty for some j). With this definition, {ai,1, . . . , ai,m′

i
} =

⋃mi

j=1 Aij , and
consequently,

initv(fi) ∈ spanC{x
ai1 , . . . ,x

aim′

i }.

Moreover, the set of coefficients is a subset of the coefficients in fi. Indeed,

initv(fi) =

m′

i
∑

j=1

cijx
ai,j

with the exponent vectors ai1, . . . , aim′

i
all lie in a proper face of Newt(Li) and

the coefficients cij ’s being independent from one another. By lemma 2, there
exists a nonempty Zariski open set in the coefficient space {cij} for which the
initial system initv(f) has no solution in (C∗)n.

Note that there are only finitely many distinct initial systems for f . By
taking the intersection of a finite number of nonempty Zariski open set, we
can see that there remains a nonempty Zariski open set in the coefficient space
{cij} such that for all choices in this set, initv(f) either contains a unit or has
no solution in (C∗)n for any nonzero vector v ∈ Rn.

By Theorem 1, for generic choices of the coefficients {cij}, the BKK bound
for f is exact, i.e., the common root count in (C∗)n for this system is exactly
MVol(Newt(f1), . . . ,Newt(fn)). Recall that each fi is a generic member of Li.
This shows

[L1, . . . , Ln ] = MVol(Newt(L1), . . . ,Newt(Ln) ).

Remark 4. Condition 2 of Theorem 3 is needed because the root count of a
system in (L1, . . . , Ln) may include points at which all functions in Li vanish for
some i, while these points are excluded from the intersection index [L1, . . . , Ln].

Neither condition 1 nor 3 are necessary. In this note, we focus on the
problem of detecting the equality between the BKK bound and the intersec-
tion index using geometric information of the individual Newton polytopes in
Newt(L1), . . . ,Newt(Ln), rather than the more refined tropical information. In
Remark 6, we highlight some more general results.
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4. Generic root count of Kuramoto equations

The Kuramotomodel [10] is a ubiquitous model for studying the phenomenon
of spontaneous synchronization of networks of coupled oscillators. It has long
been known that when simple harmonic oscillators are coupled with one an-
other, complicated collective behaviors emerge. Biological examples include
pacemaker cells in the heart and the formation of circadian rhythm in the brain.
Such models have since found important applications in many other seemingly
independent research fields.

An oscillator can be modeled as a moving point on the complex plane circling
0. A swarm of such points interacting with one another thus form a network of
coupled oscillators. For weakly coupled and nearly identical oscillators, Winfree
intuited that there is natural separation of timescales: On the short timescale,
oscillators are approximated by their limit cycles and thus can be represented by
their phases [14]. This is derived rigorously by Kuramoto [10] using perturbation
methods. Kuramoto singled out the simplest case with the governing equations

θ̇i = ωi −

n
∑

j=0

kij sin(θi − θj) for i = 0, . . . , n, (3)

in which θ0, . . . , θn ∈ [0, 2π) are the phases of the oscillators, ωi’s are their nat-
ural frequencies (i.e., their limit cycle frequencies), where kij = kij are constant
coupling coefficients. This model has since been called the Kuramoto model.

In the study of this model, one important problem is the classification of
“frequency synchronization configurations”, which correspond to the equilibria
of (3). Although the equilibrium equations are not algebraic, through a change
of variables and a relaxation to include complex configurations, we can consider
the algebraic synchronization equation [1], given by

0 = fi(x) = ωi −

n
∑

j=0

aij

(

xi

xj

−
xj

xi

)

for i = 1, . . . , n (4)

where aij =
kij

2 are complex constants, x0 = 1, and xi = eiθi . The complex zero
set of (f1, . . . , fn) captures the equilibria of (3) which correspond to the syn-
chronization configurations. The problem of counting such configurations thus
relaxes to a root counting problem. Since each fi in (4) is a linear combination
of 1 and Laurent polynomials xix

−1
j − xjx

−1
i , it is natural to view the generic

root count for this system as the intersection index [L1, . . . , Ln ] where

Li = spanC{1} ∪ {xix
−1
j − xjx

−1
i }nj=0 for i = 1, . . . , n. (5)

Through a “modified Bézout technique”, Baillieul and Byrnes first computed
this intersection index ([1, Theorem 4.1]). Their proof employed some rather
deep results in modern algebraic geometry. In the following, we demonstrate
the potential usefulness of Theorem 3 by providing a simple alternative proof.

Proposition 5. Let Li be the vector spaces of Laurent polynomials as defined
in (5). Then [L1, . . . , Ln ] equal to the BKK bound of (4).
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Proof. For each i ∈ {1, . . . , n} and j ∈ {0, . . . , n} we define

Pij =
xi

xj

−
xj

xi

.

Then each Pij is a Laurent polynomial in the variables x = (x1, . . . , xn), and
Newt(Pij) = conv{ei − ej , ej − ei} where e0 = 0. So for each pair (i, j),
Newt(Pij) is a line segment through the origin.

For each i = 1, . . . , n, we consider the vector space of rational functions

Li = spanC {1} ∪ {Pij}
n
j=0.

Then functions in Li have no common zeros in (C∗)n It is easy to verify that
fi ∈ Li for each i = 1, . . . , n. Therefore, the statement to be proved is equivalent
to the claim that [L1, . . . , Ln] equals the BKK bound of the system (f1, . . . , fn).

By definition,

Newt(Li) = conv(0 ∪ {ei − ej , ej − ei}
n
j=0),

and, in it, 0 is an interior point. For n > 1, Newt(Li) is the convex hull of n
affinely independent line segments through the origin, and thus dim(Newt(Li)) =
n for every i. Moreover, fixing i, for each j = 0, . . . , n and j 6= i, Newt(Pij) is a
line segment passing though an interior point, the origin, of Newt(Li). There-
fore, for each proper positive dimensional face F of Newt(Li), F ∩Newt(Pij) is
either empty or a single point. By theorem 3, the generic root count in (C∗)n,
i.e., [L1, . . . , Ln] is exactly the BKK bound.

Remark 6. Though Kuramoto originally only considered complete networks,
in which every oscillator is influenced by every other oscillator, recent research
activities have shifted toward sparse networks. Sparsity corresponds to the re-
quirement that certain coefficients in (4) are zero. The generalizations of this
result to sparse networks are developed in Refs. [3, 4] using other tools.

5. Conclusions

In this short note, we established a sufficient geometric condition under
which the intersection index of a system of vector spaces of Laurent polyno-
mials equals its BKK bound. This condition is stated purely in terms of the
geometric information in the Newton polytopes of the polynomials involved and
can be checked easily using simple algorithms from convex geometry without
the information from corresponding tropical intersection. It shows that certain
algebraic relations among the coefficients have no effect on the exactness of the
BKK bound. The usefulness of this result is demonstrated through an applica-
tion to the algebraic Kuramoto equations — a well studied family of equations
used to model spontaneous synchronization phenomenon in many fields. With
this theorem, we easily established the equality between the BKK bound and
the more refined intersection index of the algebraic Kuramoto equations, even
though this system has inherent algebraic relations among the coefficients.
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