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Abstract

Weak Feller property of controlled and control-free Markov chains lead to many
desirable properties. In control-free setups this leads to the existence of in-
variant probability measures for compact spaces and applicability of numerical
approximation methods. For controlled setups, this leads to existence and ap-
proximation results for optimal control policies. We know from stochastic con-
trol theory that partially observed systems can be converted to fully observed
systems by replacing the original state space with a probability measure-valued
state space, with the corresponding kernel acting on probability measures known
as the non-linear filter process. Establishing sufficient conditions for the weak
Feller property for such processes is a significant problem, studied under various
assumptions and setups in the literature. In this paper, we prove the weak Feller
property of the non-linear filter process (i) first under weak continuity of the
transition probability of controlled Markov chain and total variation continuity
of its observation channel, and then, (ii) under total variation continuity of the
transition probability of controlled Markov chain. The former result (i) has first
appeared in Feinberg et. al. [Math. Oper. Res. 41(2) (2016) 656-681]. Here,
we present a concise and easy to follow alternative proof for this existing result.
The latter result (ii) establishes weak Feller property of non-linear filter process
under conditions which have not been previously reported in the literature.
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1. Introduction

1.1. Preliminaries

We start with the probabilistic setup of the partially observed Markov pro-
cesses. Let X C R™ be a Borel set in which a control-free or controlled Markov

*This research was supported in part by the Natural Sciences and Engineering Research
Council (NSERC) of Canada.
**Some of the results in this paper are to be presented at the 2019 IEEE Conference on
Decision and Control.

Preprint submitted to Systems and Control Letters August 7, 2019


http://arxiv.org/abs/1812.05509v3

process {X;, t € Z, } takes its value. Here and throughout the paper, Z, de-
notes the set of non-negative integers and IN denotes the set of positive integers.
Let U, the action space, be a Borel subset of some Euclidean space RP. Let
Y C R™ be a Borel set, and let an observation channel @) be defined as a
stochastic kernel (regular conditional probability) from X x U to Y such that
Q(|z,u) is a probability measure on the Borel o-algebra B(Y) of Y for every
(z,u) € X x U and Q(4]|-): X x U — [0,1] is a Borel measurable function for
every A € B(Y). Let a decision maker (DM) be located at the output of an
observation channel @, with inputs (X;,U;—1) and outputs Y;. An admissible
policy 7 is a sequence of control functions {~;, t € Z} such that ~; is measur-
able with respect to the o-algebra generated by the information variables

I = {}/[O,t]a U[O,t—l]}a te IN) Iy = {}/0}7

where
U =n(ly), teZy (1)

are the U-valued control actions and
Yo ={Ys, 0< s <t}, U1y ={Us, 0 <5 <t —1}.

We define T" to be the set of all such admissible policies.
The joint distribution of the state, control, and observation processes is
determined by (Il) and the following system dynamics:

Pr((Xo, Yo) € B) = /BQO(dyo|:co)Po(d:co),B € B(X x V),

where Py is the prior distribution of the initial state Xy and Qg is the prior
control-free observation channel, and for ¢t € IN

Pr((Xt,Yt) eB \ (X,Y. U)oy = @,y,u)m”)

= / Q(dys|ze, ur—1)T (dwe|ai—1,u—1), B € B(X x Y),
B

where T (-], u) is a stochastic kernel from X x U to X. This completes the
probabilistic setup of the partially observed models.

Remark. Note that if U = {u} is a singleton, then we recover the control-free
setup. Therefore, results established in this paper also hold for control-free
setup.

Often, one is faced with an optimal control problem (or an optimal decision-
making problem when control is absent in the transition dynamics). For sake
of completeness, we present typical criteria in the following. Let a one-stage
cost function ¢ : X x U — [0, 00), which is a Borel measurable function from
X x U to [0,00), be given. Then, we denote by W(y) the cost function of the
policy v € ', which can be, for instance, discounted cost or average cost criteria
[1]. With these definitions, the goal of the control problem is to find an optimal
policy v* that minimizes W.



1.2. Markov Property of Filter Processes

It is known that any POMP can be reduced to a completely observable
Markov process |2], |3], whose states are the posterior state distributions or
beliefs* of the observer; that is, the state at time ¢ is

Zt() = Pr{Xt € - |Y05 B a}/taU07 . '7Ut71} € P(X)

We call this equivalent process the filter process . The filter process has state
space Z = P(X) and action space U. Note that Z is equipped with the Borel o-
algebra generated by the topology of weak convergence [4]. Under this topology,
Z is a Borel space [5]. The transition probability of the filter process can be
constructed as follows.

The joint conditional probability on next state and observation variables
given the current control action and the current state of the filter process is
given by

R(B X O|UO,ZQ) = /X/BQ(C|$1,U0)T(d$1|$0,’U,())Zo(dfbo), (2)

for all B € B(X) and C' € B(Y). Then, the conditional distribution of the next
observation variable given the current state of the filter process and the current
control action is given by

P(Cluo,zo):‘/X‘/XQ(CLTl,UQ)T(d$1|fEO,UQ)ZQ(d$O),

for all C' € B(Y). Using this, we can disintegrate R (see |6, Proposition 7.27])
as follows:

R(B X C|UQ,2’0) :/ F(B|y1,u0,ZO)P(dy1|uo,zo)
C

=/CZl(ylauo,zo)(B)P(dyﬂ“OvZO)’ (3)

where F' is a stochastic kernel from Z x Y x U to X and the posterior distribu-
tion of z1, determined by the kernel F', is the state variable z; of the filter pro-
cess. Then, the transition probability n of the filter process can be constructed
as follows (see also [7]). If we define the measurable function F(z,u,y) :=
F(-ly,u,z) =Pr{Xyy1 € -|Z, =2, U =u,Yiq41 =y} from Zx U x Y to Z and
use the stochastic kernel P(-|z,u) = Pr{Yi41 € -|Z, = 2,U;, = u} from Z x U
to Y, we can write 1 as

77( |Zuu) = ‘/Yl{F(zu,y)E}P(dquu) (4)

The one-stage cost function é: Z x U — [0, 00) of the filter process is given
by

&(z,u) = /Xc(:zz,u)z(dx),



which is a Borel measurable function. Hence, the filter process is a completely
observable Markov process with the components (Z, U, ¢, 7).
For the filter process, the information variables is defined as

it = {Z[O,t]u U[O,tfl]}u te ]N7 fO = {ZO}

It is a standard result that an optimal control policy of the original POMP will
use the belief Z; as a sufficient statistic for optimal policies (see |2], [3]). More
precisely, the filter process is equivalent to the original POMP in the sense that
for any optimal policy for the filter process, one can construct a policy for the
original POMP which is optimal.

1.8. Problem Formulation

Let us review two convergence notions for probability measures, and also,
we define the weak Feller property of Markov decision processes. Let ($,d) be
a separable metric space. A sequence {u,,n € IN} in the set of probability
measures P(3) is said to converge to p € P(S) weakly if

[ t@matdn) = [ f@miaa

for every continuous and bounded f : $ — R. The topology of weak convergence
on the set of probability measures on a separable metric space is metrizable. One
such metric is the bounded-Lipschitz metric. For any two probability measures
1 and v, the bounded-Lipschitz metric is defined as:

pBL(K, V) = sup
Ifller<1

AfuM@m—Afwwwm

where |f]|ps = || flloc +sup, 2, LREH and [fllo = sup,es | ()], Another

metric that metrizes the weak topology on P($) is the following:

plu,v) =Yy 270D
m=1

[ nl@ntan) = [ futawias).

where { f;, }m>1 is an appropriate sequence of continuous and bounded functions
such that || fmlleo < 1 for all m > 1 (see [3, Theorem 6.6, p. 47]).
For probability measures u, v € P($), the total variation norm is given by

[ @t - [ sapias).

lw—vlry =2 sup |u(B)—v(B)|= sup

BeB(S) Fillfllee<1
where the supremum is taken over all Borel measurable real f such that || f||e <
1. A sequence {pn,n € IN} in P(S) is said to converge in total variation to
p € P(S) if [ln — pllrv — 0.



Definition 1 (Weak Feller Property). We say that a Markov decision pro-
cess with transition kernel T (-|z,u) has weak Feller property if T is weakly
continuous in = and w; that is, if (2, un) — (z,u), then T(:|zn, un) — T (|2, u)
weakly.

With this definition, we can now state the problem that we are interested in
this paper.

(P) Under what conditions on the transition kernel and the observation chan-
nel of the partially observed model, the filter process has a weak Feller
property?

1.4. Significance of the Problem

In this section, we motivate the operational (in view of engineering applica-
tions) and the mathematical importance of the problem in view of existence and
invariance properties, approximations and computational results involving non-
linear filters and stochastic control, and related applications involving particle
filtering.

For finite-horizon problems and a large class of infinite-horizon discounted
cost problems, it is a standard result that an optimal control policy will use
the filter process as a sufficient statistic for optimal policies (see [2, 13, 1§]).
Hence, the partially observed model and the corresponding filter process are
equivalent in the sense of cost minimization. Therefore, results developed for
the standard controlled Markov process problems (e.g., measurable selection
criteria as summarized in [1, Chapter 3]) can be applied to the filter processes,
and so, to the partially observed models. In controlled Markov processes theory,
weak continuity of the transition kernel is an important condition leading to
both the existence of optimal control policies for finite-horizon and infinite-
horizon discounted cost problems as well as the continuity properties of the
value function (see, e.g., [9, Section 8.5]).

For partially observed stochastic control problems with the average cost cri-
terion, the conditions of existence of optimal policies stated in the literature
are somewhat restrictive, with the most relaxed conditions to date being re-
ported in |10, [11], to our knowledge. For such average cost stochastic control
problems, the weak Feller property can be utilized to obtain a direct method to
establish the existence of optimal stationary (and possibly randomized) control
policies. Indeed, for such problems, the convex analytic method ([12] and [13])
is a powerful approach to establish the existence of optimal policies. If one can
establish the weak Feller property of the filter process, then the continuity and
compactness conditions utilized in the convex program of [13] would lead to the
existence of optimal average cost policies.

In addition to existence of optimal policies, the weak Feller property has also
recently been shown to lead to (asymptotic) consistency in approximation meth-
ods for controlled Markov processes with uncountable state and action spaces.
In [14, 15], authors showed that optimal policies obtained from finite-model
approximations to infinite-horizon discounted cost controlled Markov processes



with Borel state and action spaces asymptotically achieve the optimal cost for
the original problem under weak Feller property. Hence, the weak Feller prop-
erty of filter process suggests that approximation results in |14, [15], which only
require weak continuity conditions on the transition probability of a given con-
trolled Markov model, are particularly suitable in developing approximation
methods for partially observed models (through their reduction to fully observed
models).

For control-free setups, the weak Feller property of the filter processes leads
to the existence of invariant probability measures when the hidden Markov
processes take their values in compact spaces or more general spaces under
appropriate tightness/regularity conditions [16, 17, 133].

For the empirical consistency and convergence results involving the very
popular particle filtering algorithms, weak Feller property of the filter processes
is a commonly imposed, implicit, assumption (see e.g. [18&, 19]). Finally, for
the study of ergodicity and asymptotic stability of nonlinear filters, weak Feller
property also plays an important role (see |20, [21), [17]).

2. Main Results and Connections with the Literature

2.1. Statement of Main Results

In this paper, we show the weak Feller property of the filter process under
two different set of assumptions.

Assumption 1.

(i) The transition probability 7 (-|x, u) is weakly continuous in (z,u), i.e., for
any (Inaun) - (Iau)v T(|Inaun) - T(|Iau) weakly.

(ii) The observation channel Q(-|x,u) is continuous in total variation, i.e., for

any (Tn,un) = (z,u), Q(-|zn, un) = Q(-|z,u) in total variation.
Assumption 2.

(i) The transition probability 7 (:|x,u) is continuous in total variation in
(xz,u), ie., for any (xn,un) — (x,u), T(|en,un) — T(|z,u) in total
variation.

(ii) The observation channel Q(-|z) is independent of the control variable.

We now formally state the main results of our paper.

Theorem 1 (Feinberg et. al. [26]). Under Assumption [Il the transition proba-
bility n(-|z,u) of the filter process is weakly continuous in (z,u).

Theorem 2. Under Assumption 2] the transition probability n(-|z, u) of the filter
process is weakly continuous in (z, u).

Theorem [ is originally due to Feinberg et. al. [26]. The contribution of
our paper is that the proof presented here is more direct and significantly more
concise. Theorem [l establishes that under Assumption [ (with no assumptions



on the measurement model), the filter process is weakly continuous. This result
has not been previously reported in the literature.
The proofs of these results are presented in Section

Remark. We note that there are examples where Assumptions Assumption [Tl or
2 are not satisfied (e.g. |26, Section 8.2]), however the filter kernel 7 is still weak
Feller. We refer the reader to the result [26, Theorem 7.1] which establishes weak
Feller property of the filter kernel under further sets of assumptions. We also
note that, after the first submission of this paper to Arxiv, |28, Theorem 4.4]
reported a result generalizing Theorem [2] to the channel Q(-|z,u) depending on
the control variable as well and being continuous in total variation in w.

2.2. FExamples

In this section, we give concrete examples for the system and observation
channel models which satisfy Assumption [Ilor Assumption[2l Suppose that the
system dynamics and the observation channel are represented as follows:

Xt+1 = H(XtthWt)a
}/t = G(Xt,Utfla‘/t)v

where W; and V; are i.i.d. noise processes. This is, without loss of general-
ity, always the case; that is, one can transform the dynamics of any partially
observed model into this form (see Lemma 1.2 in [31], or Lemma 3.1 of [32]).

(i) Suppose that H(z,u,w) is a continuous function in z and u. Then, the
corresponding transition kernel is weakly continuous. To see this, observe
that, for any ¢ € Cp(X), we have

[ et ol ) = [ el . wn))n(aun)
— /C(H(xo,uo,wo))u(dwo) = /c(:vl)T(d:vl|xo,uo),

where we use u to denote the probability model of the noise.

(ii) Suppose that G(z,u,v) = g(x,u)+v, where g is a continuous function and
V; admits a continuous density function ¢ with respect to some reference
measure v. Then, the channel is continuous in total variation. Notice
that under this setup, we can write Q(dy|z,u) = ¢(y — h(z,u))v(dy).
Hence, the density of Q(dy|zn,u,) converges to the density of Q(dy|x, u)
pointwise, and so, Q(dy|z,,, u,) converges to Q(dy|z,u) in total variation
by Scheffé’s Lemma [22, Theorem 16.12]. Hence, Q(dy|z, ) is continuous
in total variation under these conditions.

(iii) Suppose that we have H(z,u,w) = h(z,u) + w, where f is continuous
and W, admits a continuous density function ¢ with respect to some ref-
erence measure v. Then, the transition probability is continuous in total



variation. Again, notice that with this setup we have T (dx1|xo,up) =
o(x1 —h(xg,u0))v(dzy). Thus, continuity of ¢ and h guarantees the point-
wise convergence of the densities, so we can conclude that the transition
probability is continuous in total variation by again Scheffé’s Lemma.

The analysis in the paper will provide weak Feller results for a large class of
partially observed control systems as reviewed in the aforementioned examples.
In particular, if the state dynamics are affected by an additive noise process
which admits a continuous density, we can guarantee weak Feller property of
the filter process by means of Theorem [2] without referring to the noise model
of the observation channel.

2.3. Comparison with the Prior Results

Weak Feller property of the control-free transition probability of the filter
processes has been established using different approaches and different condi-
tions. In [21] it has been shown that, for continuous-time filter processes, if the
signal process (state process of the partially observed model) is weak Feller and
the measurement channel is an additive channel in the form Y; = fot h(Xy)du+
Vi, where h is assumed to be continuous and possibly unbounded and V; is a
standard Wiener process, then the filter process itself is also weak Feller. In
[17], the authors study the discrete-time filter processes, where the state pro-
cess noise may not be independent of the observation process noise; it has been
shown that if the observation model is additive in the form Y; = h(X;) + V4,
where h is assumed to be continuous and V; is an i.i.d. noise process which
admits a continuous and bounded density function, then the observation and
filter processes (Y;, Z;) are jointly weak Feller. In [20], the weak Feller property
of the filter process has been shown for both discrete and continuous time se-
tups when the channel is additive, Y; = h(X:) + V;, where h is bounded and
continuous and V; is an i.i.d. noise process with a continuous, bounded and
positive density function.

|18, [19] have studied the consistency of the particle filter methods where the
weak Feller property of the filter process has been used to establish the conver-
gence results. In [18], it has been shown that the filter process is weak Feller
under the assumption that the transition probability of the partially observed
system is weak Feller and the measurement channel is an additive channel in
the form Y; = h(X;) + V;, where h is assumed to be continuous and V; is an
i.i.d. noise process, which admits a continuous and bounded density function
with respect to the Lebesgue measure. In [19], the weak Feller property of
the filter process has been established under the assumption that the measure-
ment channel admits a continuous and bounded density function with respect
to the Lebesgue measure; i.e., the channel can be written in the following form:
Qy € Alz) = [, g(z,y)dy for anyA € B(Y) and for any = € X, where g is a
continuous and bounded function.

Weak Feller property of the controlled transition probability of the filter
processes has been established, in the most general case to date, by Feinberg
et.al. [26]. Under the assumption that the measurement channel is continuous in



total variation and the transition kernel of the partially observed model is weak
Feller, the authors have established the weak Feller property of the transition
probability of the filter process. In Section [ we will give a detailed discussion
on the methods used by Feinberg et.al. [26], and also, we will compare their
approach with ours.

As reviewed above, the prior literature often used the additive channel model
Y: = h(Xs,Us—1) + Vi with various regularity assumptions on h and the noise
model V;. When the observation channel is additive Y; = h(X;,Ui—1) + V4,
where h is continuous and V; admits a continuous density function with respect
to some measure p, one can show that the channel also admits a continuous
density function, ie., Q(y € Alz,u) = [, g(x,u,y)u(dy) for any A € B(Y)
and for any (x,u) € X x U. When the observation channel has a continuous
density function, the pointwise convergence of the density functions implies the
total variation convergence by Scheffé’s Lemma [22, Theorem 16.12]. Thus,
g(xk,uk,y) = g(z,u, k) for some (xp,ur) — (z,u) implies that Q(-|xk, ug) —
Q("]z,u) in total variation, i.e., the observation channel is continuous in total
variation.

In the following, we develop a relationship between the total variation con-
tinuity of the channel (as required by [26] and in our Theorem [l and the more
restrictive density conditions on the measurement channels presented in the
prior works |21, 117, [19, [1§].

In the theorem below, we show that having a continuous density is almost
equivalent to the condition that the observation channel is continuous in to-
tal variation. To our knowledge, it is the first result in the literature making
the connection between channels which are continuous in total variation and
channels which admit a density function.

Theorem 3. Suppose that the observation channel Q(dy|z,w) is continuous in
total variation. Then, for any (z,u) € Z x U, we have, T(:|z,u)-a.s., that
Q(dy|z, u) < P(dylu, z) and

Q(dylz,u) = g(x,u,y) P(dy|z, u)

for a measurable function g, which satisfies for any A € B(Y) and for any
Tp —> T

/A lg(zr,u,y) — g(x, u,y)|P(dy|z,u) — 0.

Proof. Fix any (z,u). We first show that Q(dy|z,u) < P(dy|z,u), T(-|z, u)-a.s..
Note that Q(dy|z,u) < P(dy|z,u) if and only if, for all ¢ > 0, there exits § > 0
such that Q(A|z,u) < € whenever P(A|z,u) < §. For each n > 1, let K, C X
be compact such that 7 (K,|z,u) > 1—/3n. As Q(dy|x,u) is continuous in total
variation norm, the image of K, x {u} under Q(dy|z,u) is compact in P(Y).
Hence, there exist {v1,...,1} C P(Y) such that

max min l 1Q(|z,u) — vil|lrv < 1/3n.

reKy i=1,...,



Define the following stochastic kernel v, (-|z,u) = argmin,, |Q(-|x, u) — v;||7v.
Then, we define P, (-|z,u) = [y vn(:|z,u)T (dz|z,u). One can prove that || P(-|z,u)—
P,(-|z,u)||7v < 1/n. Moreover, since P, (+|z,u) is a mixture of finite probabil-
ity measures {vq,...,v}, we have that v,(-|z,u) < P,(:|z,u) for all z € C,,
where T(Cplz,u) = 1. Let C = (), Cy, and so, T(C|z,u) = 1. We claim
that if z € C, then Q(dy|z,u) < P(dy|z,u), which completes the proof of the
first statement. To prove the claim, fix any € > 0 and choose n > 1 such
that € > 2/3n. Then, there exists 6 > 0 such that v, (A|z,u) < €/2 whenever
P, (A|z,u) < . This implies that Q(A|x,u) < &€ whenever P(A|z,u) <+ 1/n.
Hence, Q(dy|z,u) < P(dy|z,u).

To show the second claim, for any A € B(Y) and for any z — x , we define

AW = {y e At glar,u,y) > g(z,u,y)},

AW =y € At gar,uy) < g(@,u,y)}.
With these sets, we have

B /(k) 9(@r, u,y)Pldylz, u) _/m 9(x, u,y) P(dy|z,u)
AL Al

+ [ s Pz - [ gonug) Pyl
AY A”

< 1QAP g, u) — QAW |z, u)| + QAW |z, w) — QAW |2, )|
< 2(|Q(-|zk, w) — Q(-|a, w)| v — 0.

O

We again emphasize that weak Feller property of the filter process under As-
sumption [T has been first established by [26] using different method compared to
ours. Our method is significantly more concise and direct. It is also important to
note that Assumption 2lcompletely eliminates any restriction on the observation
channel to establish the weak Feller property of filter process. This relaxation is
quite important in practice since modelling the noise on the observation chan-
nel in control problems is quite cumbersome, and in general, infeasible. But,
in many problems that arise in practice, the transition probability has a con-
tinuous density with respect to some reference measure, which directly implies,
via Scheffé’s Lemma, the total variation continuity of the transition probability.
We also note that the weak Feller property under only Assumption 2}(i) cannot
be established. Indeed, Example 4.1 of [26] shows that the total variation conti-
nuity assumption on the observation channel cannot be relaxed even when the
transition kernel is continuous in total variation to prove weak Feller property
of the filter process under a controlled observation channel model: A careful
look at the counterexample shows that it indeed uses the discontinuity of the
observation channel in the control action to prove that the filter process cannot

10



be weak Feller when the observation channel is not continuous in total variation
and the transition kernel is continuous in total variation.

3. Proofs

The following result will play a key role for the proofs of main results. The
proof can be found on the appendix.

Lemma 1. Let X be a Borel space. Suppose that we have a family of uniformly

bounded real Borel measurable functions {f, x}n>1,2ea and {fx}rea, for some
set A. If, for any z,, — = in X, we have

nle Sup |fn )x(xn) f)\(x)l =0 (5)
fim_sup |f(zn) = fx(#)] =0, (6)

then, for any pu,, — p weakly in P(X), we have

/X Fur (@) (d) — /X f(@)(dz)

In Theorem [I and Theorem 2] we need to show that, for every (z§,u,) —
(z0,u) in Z x U, we have

/le (dz1]28 s un) /le (dz1]z0,u)| =

lim sup
n—r oo AEA

7

|\f||BL<1

where we equip Z with the metric p to define bounded-Lipschitz norm || f| pL
of any Borel measurable function f : Z — RR. We can equivalently write this as

— 0.

(7)

sup
IfllBr<1

/ S (a8t 1)) P(din 28 1) — /Y £(21 (20, 4, 92)) P(dyn 20, )

The term in equation (@) can be upper bounded as follows:

/f 21(20's Un, Y1) P(dy1| 2o, un) /f 21(20,u,y1)) P(dy1 |20, u)

||f|\BL<1
< sup / F G128ty y2)) Py 28, ) — / F (128 iy 52)) Py 20, )
Ifller <1
sup / f(z21(28 tn, 1)) — f(21(20,w,91)) | P(dy| 20, w)
HJ‘||BL<1
< |P(|zgs wn) — P(+|20,u) |l 7v
sup_ [ £ (e ) = £ e | Pl 20,0, (s)
HJ‘||BL<1

where, in the last inequality, we have used ||f|lcc < ||fllzr < 1. To prove that
@) (and so (@) goes to 0, it is sufficient to establish the following results:

11



(i) P(dy1|z0,u0) is continuous in total variation,

(11) limy, 00 fY p(zl(z{f,un,yl),zl(zo,u,yl))P(dy1|zo,u) =0 as (Z(Slaun) -
(20, u).

Indeed, suppose that (i) and (ii) hold. Then, the first term in (&) goes to 0 as
P(+|z0,u) is continuous in total variation. For the second term in (§), we have

sup / | (21 (2 s 1)) — £ (2120, 0)) | P |20, 1)
fllBr<1JY

S/p(zl(zgaunayl)vZl(ZOauvyl))P(dy1|Zovu)
Y
—0asn— oo (by (ii)).

Therefore, to complete the proof of Theorem [Il and Theorem 2], we will prove
(i) and (ii).
3.1. Proof of Theorem [l

We first prove (i); that is, P(dyi|zo,u) is continuous in total variation. To

this end, let (28, un) — (20,u). Then, we write

sup ’P(A|zg,un) - P(A|zo,u)’
AEB(Y)

= sup
AeB(Y)

/ QAl1, wn) T (A |28 1) — / QAler, )T (d1 |20,w)],
X X

where T (dx1|28,un) = [ T(dz1|zo, un)z§ (dxo). Note that, by Lemma [I we
can show that T (dz1|z8, un) — T (dz1]20, u) weakly. Indeed, if g € Cp(X), then
we define r,(z0) = [ 9(x1)T (dz1|zo,un) and r(zo) = [ g(x1)T (dzy|zo, u).
Since T (dx1|zo,w) is weakly continuous, we have r,, (z) — r(x0) when zf§ — zo.
Hence, by Lemma [Il we have

lim
n—oo

=0.

/Xrn(:bo)zg(dxo)—/ r(z0) 20 (dxo)

X

Hence, T (dz1|zl, un) — T(dz1]20,u) weakly. Moreover, the families of func-
tions {Q(A| -, un)}n>1,4e80v) and {Q(A|-,u)} acp(y) satisfy the conditions of
Lemma [ as @ is continuous in total variation distance. Therefore, Lemma [II
yields that

lim sup
n=0 AcB(Y)

=0.

/ QAle1, wn) T (A |28 1) — / Q(Alz1, u)T(da1 |20, w)
X X

Thus, P(dy1|z0,u) is continuous in total variation.
To prove (ii), we write

/ p(zl(zgvunvyl)a 21(207u5 yl))P(dy1|Zoa U)
Y

12



_ = —m-+1
2

/ Fon1)21 (28 4, 1) (A1)
X

_/Xfm(xl)zl(zo,%yl)(dxl) P(dyi|z0,u)
:mZ:12_m+l s /Xfm(;pl)zl(zg,un,yl)(dxl)
_/Xfm(xl)zl(zo,%yl)(dxl) P(dyi|z0,u),

where we have used Fubini’s theorem with the fact that sup,, || fm|lc < 1. For
each m, let us define

1= fn e ¥ [ utenale i@ > [ fueatoumnn) |

1= fnevs [ ftea@ummnidn) < [ fatoumidn) |
)

Then, we can write

/fm(xl)zl(zgvumyl)(dfﬂl)—/ fm(@1)21(20, w, y1)(dx1) | P(dya |20, u)

= /(n) </ Jm(21)21(20 Un, y1)(dx1) / fm(21)21(20, 1, y1)(d$1))P(dy1|Zo,u)
+ /ﬂ") (/X fm(x1)21 (20, u, y1)(dz1) — /Xfm(xl)zl(z{)‘,un,yl)(dg;l)>p(dyl|2,0,u).

In the sequel, we only consider the term with the set IEL”). The analysis for the
other one follows from the same steps. We have

/(n) (/ Fn(21)21 (58, y1) (A1) / Fnl1)21 (20,1, yl)(dx1)>P(dy1|zo,u)
/(n)/ Fmn(@1)21 (28, uny y1) (dey ) P(dy1 |20, w)
—/(n)/ Fon(1)21 (28, U, y1) (dzy ) P(dy |28 un )
# f [ e e Pl )

/(n)/ Jm(x1)21(20, u, y1)(dey ) P(dy1 |20, u)

< [1P(dyi|zo,u) = P(dys |z, un)llTv

13



+ /x‘/[(") fm(l‘l)Q(dy1|$1,un)T(d$1|Zg7un)
_/ /(n) Jm(21)Q(dy1|z1, u)T (dx1|20,u),
X IJr

where we have used || f]|oo < 1 in the last inequality. The first term above goes
to 0 since P(dy1|z0,u) is continuous in total variation. For the second term,
we use Lemma [Il Indeed, families of functions {f,(")Q(A|-,un) :n > 1,4 €
B(Y)} and {fmn(-)Q(A|-,u) : A € B(Y)} satisfy the conditions in Lemma [] as
() is continuous in total variation. Hence, the second term converges to 0 by
Lemma [ since T (dz1|2§,un) — T (dz1|20,u) weakly. Hence, for each m, we
have

lim
n—o0 Y

/fm(wl)zl(zg,umyl)(dwl)
X
—/ fm(21)21(20,w, y1)(dz1)| P(dy1 |20, u) = 0.
X
By the dominated convergence theorem, we then have

lim p(zl(zgaunvyl)a21(207u5y1))P(dy1|Z05u)
Y

n—oo
<3 27 dim / Frm(@1)21(25 tn, 1) (da )
— n—oo Y X

— Afm(xl)zl(zo,u,yl)(dxl) P(dy1|z0,u) = 0.

This establishes (ii), which completes the proof together with (i).

3.2. Proof of Theorem[2
We first show (i); that is, P(dyi|z0,u0) is continuous total variation. Let

(28, un) = (20, u). Then, we have

sup |P(A|zf, un) — P(Alzo,u)|
AEB(Y)

= sup
AEB(Y)

/X/XQ(A|$1)T(dx1|x07un)zg(dxo)

—/ / Q(Alz1)T (dz1|z0,w)20(dxo)|.
X /X

For each A € B(Y) and n > 1, we define

foa (o) = /X QA1) T (das |, )

14



and

falzo) = / Q(Al1) T (da1 |0, ).
X
Then, for all zff — xo, we have

lim  sup |fn,a(25) — fa(zo)l
n—=00 AcB(Y)

= lim sup

[ @) T a0 - [ Qe T (a0,
N0 AcB(Y) | JX X

< lim [T (d |z un) — T(das |0, w)|rv = 0

and

lim sup |fa(zg) — fa(zo)]
n—00 AcR(Y)

= lim sup

[ @) T - [ Qualn) T,
N0 AeB(Y) | JX X

< nlgx;o |7 (dz1|zg,u) — T (dz1|zo, w)|lrv = 0.

Then, by Lemma [Tl we have

lim sup
n=00 AcB(Y)

/fn,A(IO)ZS(d$0)—/ fa(wo)zo(dxo)
X X

= lim sup
nN=0 AcB(Y)

//Q(A|:E1)7'(dac1|xo,un)zg(d:to)
x /X

_/ / Q(A|z1)T (dw1|zo, u)z0(dzo)
X Jx

=0.

Hence, P(dyi|zo,uo) is continuous in total variation.
Now, we show (ii); that is, for any (z{, un) — (20, u), we have

lim [ p(21(20, tn, Y1), 21 (20, w, y1)) P(dys |20, u) = 0.

n—oo Y

From the proof of Theorem [ it suffices to show that

n—00

i [ [ Qe T (125,

_ / Fn(2)Q(dyn [22) T (A1 |20,u) = 0. (10)
X Ii")
Indeed, we have

}/X/ﬂf) fm(@1)Q(dy1 |z1) T (dz1 |20, un) — /X/Ji") Fn (1) Q(dy1 |21)T (d21| 20, v)

15



< } [ e QU o) T(drl0,10)2% (o)
X?

- [ 1)@ o) Tz . )2 (o)

+

[ @) QU ) T (a0, )53 (o)

= |, fm(@)QUL 20 T (dar]wo, w)zo(do)

S/ |7 (dz1|zo, un) — T (dz1|z0, w)||7v 28 (dzo)
X

; \ [ dmle) QU )T s 0, )2 )
X2

)

—/X2 Fn (1) QUM |21) T (d1 |0, u) 2o (dao)

where we have used sup,,>; sup,, cx | fm (xl)Q(Ig_")|x1)} < 1 in the last inequal-
ity. If we define ry,(xo) = || T (dx1|xo, un) — T (dx1|x0, w)||Tv, then r,(xf) — 0
whenever zj — x9. Then, the first term converges to 0 by Lemma [ as
2y — zo weakly. The second term also converges to 0 by Lemma [I since
{/x f(xl)Q(L(r")|x1)T(d:v1|-,u) :n > 1} is a family of uniformly bounded and
equicontinuous functions by total variation continuity of T (dzi|zo,w). This
proves (ii) and completes the proof together with (i).

4. A Technical Generalization

In this section, we prove the weak Feller property of the filter process under
more general condition than those in Theorem [ and Theorem But, we
note that it is indeed generally infeasible to establish this condition without
imposing assumptions similar to the assumptions in Theorem [Tland Theorem [2
Therefore, although this condition is more general than those in Theorem [I] and
Theorem 2] this generalization is not excessively important in practice.

We first note that our proof technique brings to light the main ingredients
that is necessary to prove the weak Feller property of the filter process via the
item (i) and eq. ([0); that is,

e P(dy1|z0,u0) is continuous in total variation,

n—oo

o lim [ foulz)QU |2)T (dr |28, un)— / Fn(20)QU |21) T (dae1 |20, u) =
X X

This observation suggests the following condition that generalize the conditions
in our previously stated main results. Let F = { f,,,};m>1 C Cp(X) be a countable
set of continuous and bounded functions such that || fi|lcc < 1 for all m > 1,
1x € I, and T metrizes the weak topology on P(X) via the metric p introduced
in Section [[L3l Then, we state the following assumption:

16



(M) For each f € IF, the family of functions

(ZQ,’LLQ)'—>‘/Xf(fEl)Q(AkUl,UQ)T(d(E1|ZO,UO)

is equicontinuous when indexed by A € B(Y).

Using Lemmal[l] it is fairly straightforward to prove that conditions in Theorem/[]
and Theorem 2] both imply the assumption (M). Hence, assumption (M) is more
general than those in Theorem [l and Theorem

Theorem 4. Under assumption (M), the transition probability n(-|z,u) of the
filter process is weakly continuous in (z, u).

Proof. Recall that it is sufficient to prove the following:
(i) P(dy1|z0,u0) is continuous in total variation,

(11) hmn‘)OO fY p(zl(zgaunayl)vZl(ZOauvyl))P(dy1|Zovu) =0 as (Zgaun) -
(z0,u).

Firstly, (i) is true since 1x € F. For (ii), it suffices to show that

lim [ fo(20) QU |21) T (der |28, ) — / Fr(20)QUS™ |21) T (a1 |20, ) = 0.
X X

n—r oo

But this immediately follows from assumption (M). O

A careful look at the proof of the weak Feller property of the filter process
in Feinberg et. al. [26] reveals that they have first established the weak Feller
property under a condition somewhat similar to the assumption (M), and then,
establish Theorem [ by proving that assumptions in Theorem [ imply this
more general condition. Indeed, let 7, = {O;} C X be a countable base for the
topology on X such that X € 7,. Then, under the following assumption:

(F) For each finite intersection O = ﬂﬁ[:l O;, , where O;, € 13, the family of
functions

(zo,uo)»—)/X/Xlo(xl)Q(A|x1,uo)T(dx1|xo,u0)zo(dx0)

is equicontinuous when indexed by A € B(Y),

they have proved that the weak Feller property of the filter process holds (see
[26, Lemma 5.3] and |25, Theorem 5.5]). We observe that (F) is very similar to
(M) except that, in (F), Feinberg et. al. use open sets instead of continuous
and bounded functions. However, proving that conditions in Theorem [ imply
the assumption (F) as in [26] requires quite tedious mathematical methods. By
using open sets instead of continuous and bounded functions, one needs to work
with inequalities and limit infimum operation as a result of Portmanteau theo-
rem [4, Theorem 2.1] (and the associated proof program involving generalized
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Fatou’s lemma [24, [27]), in place of equalities and limit operation, which are
significantly easier to analyze than the former leading to a much more concise
analysis that we have presented in this paper. For instance, |26, Theorem 5.1]
is the key result to prove that the weak Feller condition of the transition prob-
ability and the total variation continuity of the observation channel imply the
assumption (F). We note that if one states this result using continuous and
bounded functions in place of open sets, then this version of |26, Theorem 5.1]
becomes a corollary of Lemma [Tl which has a concise and easy to follow proof.
But, the proof of |26, Theorem 5.1] with open sets requires quite tedious mathe-
matical concepts from topology and weak convergence of probability measures.
In view of this discussion, we also note that Theorem [l can also be proved us-
ing the condition (F) rather than our approach building on (M) through some
additional argumentation.

In summary, our approach allows for a more direct and concise approach
which also makes the proof of Theorem [Tl more accessible. Once again, we note
that Theorem 2] has not been reported in the literature.

5. Conclusion

In this paper, there are two main contributions: (i) the weak Feller property
of the filter process is established under a new condition, which assumes that the
state transition probability is continuous under the total variation convergence
with no assumptions on the measurement model, and (ii) a concise and easy to
follow proof of the same result under the weak Feller condition of the transition
probability and the total variation continuity of the observation channel, which
was first established in [26], is also given. Implications of these results have also
been presented.
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Appendix
6.1. Proof of Lemma Il

Note that since, for any z,, — = in X, we have

lim sup |fa(zn) — fa(z)] =0, (11)
eA

n—00 )

we see that {fy}rea is an equicontinuous family of functions. Thus, by the
Arzela-Ascoli Theorem [29], for any given compact set K C X and € > 0, there
is a finite set of continuous and bounded functions F := {fi,..., fx}, so that,
for any A € A, there is f; € IF with

sup [fa(z) = fi(z)| < e
reK
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Now, we claim that, for the same f; € I, we have sup, ¢ i | fna(2)— fi(2)] < 3€/2
for large enough n, which is independent of A\. To see this, observe the following;:

sup [ fnx(2) = fi(2)| < sup [fax(x) = fx(@)] + sup [fa(z) = fi(2)].
reK zeK zeK

Note that the second term is less than e and the first term can be made arbi-
trarily small as f,, x» — fx uniformly on compact sets and on A, which can be
easily proved using the assumptions in the lemma.

Note that p, — p weakly. Hence, {u,} is a tight family of probability
measures by Prokhorov theorem [30, Theorem 5.2]. Therefore, for any € > 0,
there exists a compact subset K. of X such that, for all n,

pn(Ke) > 1 —e

Now, we fix any € > 0 and choose a compact set K. such that, for all n,
pn(Ke) > 1—e. We also fix a finite family of continuous and bounded functions
I :={f1,..., fn} such that, for any A\, we can find f; € F with sup,cx_[fr(2)—
fi(x)| < e. Moreover, we choose a large N such that sup,e g, | fn,(2) — fi(z)] <
3e/2 for all n > N.

With this setup, we go back to the main statement:

sup‘/fny)\(x),un(dx)—/fA(aj),u(daj)

AEA

< sup
AEA

/ Fon (@) (d) — / f(@)p(dz)
X\ K.

X\ K.

+ sup
AEA

/K (@) = i) ) + /K o) - /K iwm(as)
4 / (@) — Fr(2)) u(da)

/K () - /K (@)

< 2eC' + sup
A€A

€

<2C + \ /| o) ~ / () + 52

szec+} [ttt = [ fi@nla)

+] F@ulds) = [ fi@yun(ds)| +5¢/2
Ke Ke

s4ec+5e/z+\ [ @t [ syt

where C is the uniform bound on {f, A} and {fx}. Since € is arbitrary and pu,
converges weakly to u, the result follows.
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