
DERIVED CATEGORY OF PROJECTIVIZATION AND GENERALIZED
LINEAR DUALITY

QINGYUAN JIANG

Abstract. In this note, we generalize the linear duality between vector subbundles (or

equivalently quotient bundles) of dual vector bundles to coherent quotients V � L consid-

ered in [JL18c], in the framework of Kuznetsov’s homological projective duality (HPD). As

an application, we obtain a generalized version of the fundamental theorem of HPD for the

P(L )–sections and the respective dual sections of a given HPD pair.

1. Introduction

Let S be a fixed scheme, which for simplicity we assume to be smooth over an algebraically

closed field k of characteristic zero, and V be a vector bundle of rank N ≥ 2 over S. Denote

V ∨ := Hom(V,OS) the dual vector bundle. For a short exact sequence of vector bundles

0→ K → V → L→ 0,

over S, there is a dual short exact sequence of vector bundles

(1.1) 0→ L∨ → V ∨ → K∨ → 0.

The linear duality refers to the duality of subbundles {K ⊂ V } ↔ {L∨ ⊂ V ∨}, or equiva-

lently the quotient bundles {V � L} ↔ {V ∨ � K∨}. If we use Grothendieck convention

P(E ) := ProjS Sym•OS E for a coherent sheaf E on S, then linear duality equivalently refers

to the reflexive relationship between all projective linear subbundles of P(V ) and P(V ∨):

{P(L) ⊂ P(V )} ←→ {P(L)⊥ := P(K∨) ⊂ P(V ∨)}.

Question. What should be the dual of coherent quotient sheaves {V � L }, or equivalently

the subschemes {P(L ) ⊂ P(V )}, where L := coker(K → V ) is not necessarily locally free?

In this case we still have a short exact sequence of OS-modules 0 → K → V → L → 0;

however the sequence (1.1) is now replaced by a four-term exact sequence:

(1.2) 0→ L ∨ → V ∨ → K∨ → Ext1S(L ,OS)→ 0,

where L ∨ := HomS(L ,OS), and Ext1S(L ,OS) is supported on the singular locus Sing(L ) :=

{s ∈ S | rank L (s) > `} ⊂ S of L , where ` is the generic rank of L .

In this note, we answer the above question in the framework homological projective duality:

Theorem 1.1 (See Thm. 3.2). The homological projective dual (HPD) of P(L ) ⊂ P(V ) is

given by P̃(K∨)→ P(V ∨), the blowing up of P(K∨) along the P(Ext1S(L ,OS)) ⊂ P(K∨).
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The homological projective dual (HPD) of a Lefschetz variety X → P(V ), introduced by

Kuznetsov [K07], denoted by Y = X\ → P(V ∨), is a homological modification of the classical

projective dual variety X∨ ⊂ P(V ∨) of X → P(V ), see §2.5 for precise definitions.

The HPD relation is reflexive: (X\)\ ' X, see [K07, JLX17]; And HPD extends the

previously discussed linear duality {P(L) ⊂ P(V )} ↔ {P(L)⊥ := P(K∨) ⊂ P(V ∨)} between

projective subbundles: P(L)\ = P(L)⊥, see [K07, Cor. 8.3], [JLX17, Cor. 5.16], but notice

that our theorem (in the case when L is locally free) also provides a different proof of this

fact. Therefore, thanks to above theorem, it makes sense to denote:

P(L )⊥ := P̃(K∨) = P(L )\ → P(V ∨)

and regard it as the dual of P(L ) ⊂ P(V ). The relation P(L )↔ P(L )⊥ hence generalizes

the usual linear duality.

An immediate consequence of our theorem is the following generalization of the funda-

mental theorem of HPD from linear sections to the above generalized linear system V � L .

Theorem 1.2 (Fundamental theorem of HPD for V � L ). Let A be a P(V ∨)-linear Lef-

schetz category of length m with Lefschetz components Ai’s, and A\ be its HPD category,

which is a P(V )-linear Lefschetz category of length n with Lefschetz components A\j’s. Then

for 1 ≤ ` ≤ N , there are semiorthogonal decompositions

AP(L )⊥ =
〈

prim(AP(L )⊥), Aε1(H), . . . ,Aε`−1((`− 1)H),

〈A`,Aε`〉(`H), . . . , 〈Am−1,Aεm−1〉((m− 1)H)
〉
,

A\P(L ) =
〈
A\1−n((`− n)H ′), . . . ,A\−`(−H

′), (A\P(L ))
prim
〉
.

Furthermore, there is an equivalence of categories of the primitive components:

prim(AP(L )⊥) ' (A\P(L ))
prim.

If L is locally free, then the “correction terms” Aεi = ∅, and the theorem reduces to the

usual fundamental theorem of HPD (see [K07, JLX17, R17, P18]).

If L is not locally free, then there are nontrivial “correction terms”:

Aεi := (Ai)|P(Ext1(L ,O)) = Ai �S D(P(Ext1(L ,O))), for i = 1, . . . ,m− 1,

supported on Sing(L ) ⊂ S. Our theorem shows that, after taking these corrections into

consideration, the fundamental theorem of HPD still holds.
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2. Preliminaries

2.1. Conventions. Let S be a fixed scheme, for simplicity we assume to be smooth over an

algebraically closed field k of characteristic zero. All schemes considered in this paper will

be S-schemes. Let V be a fixed vector bundle of rank N ≥ 2 over S, and V ∨ be the dual

vector bundle. We use Grothendieck convention P(E ) := ProjS Sym•OS E for a coherent sheaf

E on S. We use D(X) := Db
coh(X) to denote the bounded derived categories of coherent

sheaves on a scheme X.

Let X, Y be S-schemes, and f : X → Y a proper S-morphism, then (whenever well

defined) denote Rf∗ and Lf ∗ the right and respectively left derived functors of usual push-

forward f∗ : cohX → cohY and pullback f ∗ : cohY → cohX. Denote by ⊗, Hom(−,−) the

tensor and sheaf (internal) Hom on cohX, and ⊗L and RHom(−,−) the derived functors.

A Fourier-Mukai functor is an exact functor between D(X) and D(Y ) of the form

ΦX→Y
P (−) = ΦP(−) := RπY ∗ (Lπ∗X (−)⊗L P) : D(X)→ D(Y ),

where P ∈ D(X × Y ) is called the Fourier-Mukai kernel, and πX : X × Y → X and

πY : X × Y → Y are natural projections.

2.2. Generalities. The readers are referred to [Huy, Căl, K14] for basic notations and

properties of derived categories of coherent sheaves, and semiorthogonal decompositions.

A full triangulated subcategory A of a triangulated category T is called admissible if

the inclusion functor i = iA : A → T has both a right adjoint i! : T → A and a left

adjoint i∗ : T → A. If A ⊂ T is admissible, then A⊥ = {T ∈ T | Hom(A, T ) = 0} and
⊥A = {T ∈ T | Hom(T,A) = 0} are both admissible, and T = 〈A⊥,A〉 = 〈A, ⊥A〉.

A semiorthogonal decompositions (SOD) for a triangulated category T , written as

T = 〈A1, . . . ,An〉.

a sequence of admissible full triangulated subcategoriesA1, . . . ,An, such that (i) Hom(aj, ai) =

0 for all ai ∈ Ai and aj ∈ Aj, j > i, and, (ii) they generate the whole D(X). Starting with a

semiorthogonal decomposition of T , one can obtain a whole collection of new decompositions

by functors called mutations. The functor LA := iA⊥i
∗
A⊥ (resp. RA := i⊥Ai

!
⊥A) is called the

left (resp. right) mutation through A. For any b ∈ T , by there are exact triangles

iAi
!
A(b)→ b→ LAb

[1]−→ , RAb→ b→ iAi
∗
A(b)

[1]−→ .

(LA) |A = 0 and (RA) |A = 0 are the zero functors; (LA) |⊥A : ⊥A → A⊥ and (RA) |A⊥ :

A⊥ → ⊥A are mutually inverse equivalences of categories. Staring with a semiorthogonal

decomposition T = 〈A1, . . . ,Ak−1,Ak,Ak+1, . . . ,An〉 of admissible subcategories, one can
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obtain other sods through mutations, for k ∈ [1, n]:

T = 〈A1, . . . ,Ak−2,LAk−1
(Ak),Ak−1,Ak+1, . . . ,An〉

= 〈A1, . . . ,Ak−1,Ak+1,RAk+1
(Ak),Ak+2, . . . ,An〉

We refer the reader to [BK, K07] for more about mutations.

For a S-scheme a : X → S be a, D(X) is naturally equipped with S-linear structure, given

by A ⊗ a∗F , for any F ∈ D(S) and A ∈ D(X). An admissible subcategory A ⊂ D(X) is

called S-linear if A⊗a∗F ∈ A for all A ∈ A and F ∈ D(S). Such an admissible subcategory

A will be referred as an S-linear category. An S-linear functor between S-linear categories

is an exact functor functorially preserving S-linear structures. An S-linear SOD D(X) =

〈A1, . . . ,An〉 for a S-scheme X is a SOD such that all Ai’s are S-linear subcategories. See

[K11] for more about linear categories. Many geometric operations (projective bundles,

blowing up, etc) can be performed on linear categories, see [JL18a]. See also [P18] for

discussions in the Lurie’s framework of stable ∞-categories.

2.3. Generalized universal hyperplane section and Orlov’s results. The references

are [T15, O05], see also [JL18c, §2.3], and [JL18a, §3.4] for noncommutative cases.

Let E to be a locally free sheaf of rank r on a regular scheme X, and s ∈ H0(X,E )

be a regular section. Denote Z := Z(s) the zero locus of the section s. Then through

H0(X,E ) = H0(P(E ),OP(E )(1)), the section s corresponds to a section fs of OP(E )(1) on

P(E ). The zero loci Hs := Z(fs) ⊂ P(E ) is called the generalized universal hyperplane,

which comes with projection π : Hs → X. The general fiber of this projection is a projective

space Pr−2, and the fiber dimensions of π jumps exactly over Z. If we denote i : Z ↪→ X the

inclusion, then its normal sheaf is Ni ' E |Z , and it is direct to see π−1(Z) = P(Ni).

The above situation is called Cayley’s trick. The situation is categorified by Orlov to

obtain relationships between D(Z) and D(Hs) (see also [JL18c, JL18a]).

Theorem 2.1 (Orlov, [O05, Prop. 2.10]). In the above situation, then the functors Rj∗ p∗ :

D(Z) → D(Hs) and Lπ∗(−) ⊗ OHs(k) : D(X) → D(Hs) are fully faithful, where k =

1, . . . , r − 1, OHs(k) := OP(E )(k)|Hs, and there is a semiorthogonal decomposition:

D(Hs) = 〈Rj∗ p∗D(Z), Lπ∗D(X)⊗ OHs(1), . . . , π∗D(X)⊗ OHs(r − 1)〉,

= 〈Lπ∗D(X)⊗ OHs(2− r), . . . ,Lπ∗D(X), Rj∗ p∗D(Z)〉.

2.4. Blowing up, and relation with Cayley’s trick. Suppose Z is a codimension r ≥ 2

locally complete intersection of a smooth variety X, the blowing up of Z along X is π :

BlZ X := P(IZ) → X, where IZ is the ideal sheaf of Z inside X. The exceptional divisor

is iE : E := BlZ X ×X Z ↪→ BlZ X. Since IZ |Z = N ∨
Z/X , therefore E = P(N ∨

Z/X). Denote

p : E → Z be the projection. The following is due to Orlov [O92] (see also [JL18a] for the

case without smoothness condition on Z and for the noncommutative case).
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Theorem 2.2 (Blowing up formula, Orlov [O92]). In the above situation, then the functors

Lπ∗ : D(X)→ D(BlZ X) and RiE∗ Lp∗(−)⊗O(−kE) : D(Z)→ D(BlZ X) are fully faithful,

k ∈ Z. Denote the image of the latter to be D(Z)k, then

D(BlZ X) = 〈Lπ∗D(X), D(Z)0, D(Z)1, . . . , D(Z)r−2〉;

= 〈D(Z)1−r, . . . , D(Z)−2, D(Z)−1, Lπ∗D(X)〉.

2.4.1. Relationship with Cayley’s trick. There is a wonderful geometry relating blowing ups

with Cayley’s trick [AW]. In the situation of Cayley’s trick (§2.3), if we pull back π : Hs → X

along the blow-up β : BlZ X → X of X along Z, then the fiber product BlZ X ×X Hs will

have two irreducible components: one is P(Ni)×ZP(N ∨
i ), the other is the strict transform of

Hs along the blow-up β, U := (Hs \P(Ni))×X BlZ X ⊂ BlZ X ×X Hs. Then the projection

πU : U → BlZ X will be a projective bundle of fiber Pr−2, and its restriction to P(N ∨
i )

is nothing but the fiberwise incidence quadric QZ ⊂ P(Ni) ×Z P(N ∨
i ), which is defined

fiberwisely over z ∈ Z by incidence relation {(n, n∨) ∈ P(Ni|z) × P(N ∨
i |z) | 〈n, n∨〉 = 0}.

From blowing up closure lemma, U is the blowing up of Hs along P(Ni):

U = BlP(Ni)Hs, jQ : QZ ↪→ U is the exceptional divisor.

Therefore we have a commutative diagram

U Hs

BlZ X X

πU

γ

π

β

relating the projection π : Hs → X from the universal hyperplane with the projection πU of a

projective bundle, via the two blow-ups β and γ. Notice the pullback q̃ : BlZ X ×X P(E )→
BlZ X of projective bundle q along β is also projective bundle over BlZ X, and also the

divisor inclusion ιU : U ↪→ BlZ X×X P(E ) is defined by fiberwise quadric incidence relation

(between BlZ X ⊂ P(E ∨) and P(E )), i.e. U is the universal hyperplane for BlZ X ⊂ P(E ∨)

over X in the language of HPD §2.5.

Remark 2.3. Another way of understanding this picture ([AW]) is: BlZ X is the connected

component of Hilbert scheme parametrizing the deformations of a general fiber Pr−2 inside

Hs; U is the universal family, therefore a projective bundle with fiber Pr−2 over BlZ X.

Lemma 2.4 ([CT15, Prop. 3.4], [JL18c, Lem. 2.9]). In the situation of blowing up formula

Thm. 2.2, for any E• ∈ D(X), k ∈ Z, we have the following equalities in D(BlZ X):

LD(Z)k(Lπ
∗E• ⊗ O(−(k + 1)E)) = Lπ∗E• ⊗ O(−kE),

RD(Z)k(Lπ
∗E• ⊗ O(−kE)) = Lπ∗E• ⊗ O(−(k + 1)E).
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2.5. Lefschetz varieties and HPD. Lefschetz categories are the key ingredients for HPD

theory. A variety X → P(V ) is said to admit a (right) Lefschetz decomposition with respect

to OP(V )(1) if there is a semiorthogonal decomposition of the form:

D(X) = 〈A0,A1(1), . . . ,Am−1(m− 1)〉,

with A0 ⊃ A1 ⊃ · · · ⊃ Am−1 a descending sequence of admissible subcategories, where

A∗(k) = A∗ ⊗ OP(V )(k) denotes the image of A∗ under the autoequivalence ⊗OP(V )(k) for

k ∈ Z. Dually, a left Lefschetz decomposition of D(X) is a SOD of the form:

D(X) = 〈A1−m(1−m), . . . ,A−1(−1),A0〉,

with A1−m ⊂ · · · ⊂ A−1 ⊂ A0 an ascending sequence of admissible subcategories.

The variety X → P(V ) is said to be a Lefschetz variety, or to admit a Lefschetz structure if

D(X) admits both right and left Lefschetz decompositions (with same A0 and m) as above.

If X is a smooth S-scheme, then X is a Lefschetz variety if it admits either a right or a left

Lefschetz decomposition. The number m is called the length of the Lefschetz structure. See

[K07, K08, JLX17, P18, JL18a] for more about Lefschetz decompositions.

Let Q = {(x, [H]) | x ∈ H} ⊂ P(V ) ×S P(V ∨) be the universal quadric for P(V ) (or

equivalently for P(V ∨)). Then the universal hyperplane HX for X → P(V ) is defined to be

HX := X ×P(V ) Q ⊂ X ×S P(V ∨).

Denote ιH : HX → X ×S P(V ∨) the inclusion, then it is easy to show there is a P(V ∨)-linear

semiorthogonal decomposition (see [K07, T15, JLX17]):

D(HX) =
〈
C , ι∗H(A1(1) �S D(P(V ∨))), . . . , ι∗H(Am−1((m− 1)) �S D(P(V ∨)))

〉
.

Definition 2.5. The category C is called the HPD category of D(X), denoted by D(X)\.

If there exists a variety Y with Y → P(V ∨), and a Fourier-Mukai kernel P ∈ D(Y ×P(V ∨)

HX) such that the P(V ∨)-linear Fourier Mukai functor ΦY→HX
P : D(Y ) → D(H) induces

an equivalence of categories D(Y ) ' D(X)\, then Y → P(V ∨) is called the homological

projective dual variety or HPD variety of X → P(V ).

The HPD is a reflexive relation: (X\)\ ' X, see [K07, JLX17]. The primary output of the

HPD theory is the Kuznetsov’s fundamental theorem of HPD for linear sections [K07]; we

refer the readers to the references [K07, K14, T15, JLX17, JL18a] for the precise statement

of the theorem and its various applications.

Remark 2.6. The HPD theory can be set up in the noncommutative setting for a P(V )–

linear Lefschetz category A, which is a P(V )–linear category (with proper enhancement)

together with a right and left Lefschetz decomposition as above, see [P18, JL18a]. Then one

can similarly define the HPD category A\ of A, and the fundamental theorem of HPD still

holds for dual linear sections of A and A\, see [JLX17, R17, P18].
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3. Generalized linear duality

As in the introduction, let V and K be vector bundles over S of rank N ≥ 2 and k ≤ N

respectively, σ ∈ HomS(K,V ) be an injective OS-module morphism and L = coker(σ) be

the cokernel. Denote ` = rank L , therefore k = N − `. There is a short exact sequence:

0→ K → V → L → 0,

and the dual sheaves fit into a four-term exact sequence given by (1.2). Further denote

Z := P(Ext1(L ,OS)) ⊂ P(K∨),

which is a desingularization of the degeneracy locus Sσ = Sing(L ) ⊂ S, and denote by

P̃(K∨) := BlZ P(K∨)→ P(V ∨)

the blowing up of P(K∨) along Z ⊂ P(K∨).

Lemma 3.1 (Lefschetz decomposition). The blowing up P̃(K∨)→ P(V ∨) admits a S-linear

Lefschetz decomposition with respect to the action of OP(V ∨)(1):

(3.1) D(P̃(K∨)) =
〈
A0,A1(1) . . . ,Ar−2(r − 2)

〉
, r = max{N, k + 1},

where (i) denotes the twist by OP(V ∨)(i), i ∈ Z, A0 ⊃ A1 ⊃ . . . ⊃ Ar−2 are given by:

A0 = . . . = Ak−1 = 〈Lπ∗D(S), D(Z)0〉, Ak = . . . = AN−2 = D(Z)0, if k ≤ N − 1,

A0 = . . . = Ak−2 = 〈Lπ∗D(S), D(Z)0〉, AN−1 = Lπ∗D(S), if k = N.

where D(Z)0 is the image of D(Z) under fully faithful embedding Rj∗ Lp∗.

Proof. This follows directly from performing right mutations Lem. 2.4 to Orlov’s formula

Thm. 2.2 for the blowing up P̃(K∨). (Cf. [CT15, Prop. 3.1], [JL18a, Prop. 4.4]). �

Our main result is the following generalization of linear duality:

Theorem 3.2 (Generalized linear duality). The S-linear scheme P(L ) ↪→ P(V ) is homo-

logical projective dual to P̃(K∨)→ P(V ∨) with respect to the Lefschetz decomposition (3.1).

The HPD relation between P̃(K∨) → P(V ∨) and P(L ) ↪→ P(V ) of the theorem can be

visualized in the following diagram using Kuznetsov’s convention [K07]:

The SOD for D(P(L )) obtained from HPD theory applied to Lem. 3.1 agrees with

the projectivization formula of [JL18c, Thm. 3.1] (up to mutations). Therefore the above

7



theorem shows the duality between the projectivization formula of [JL18c] and the blowing

up formula of [O92], and one can deduce one formula from the other based on results of

“chess game” [JLX17].

If L is locally free, then the above theorem reduces to the usual linear duality” P(L)\ =

P(L)⊥ ≡ P(K∨). If K = OS, and σ = s : O → V a regular section, then this is the HP

duality between generalized universal hyperplane Hs ⊂ P(V ) and blowing up BlZ S ⊂ P(V ∨)

(cf. [CT15, Prop. 3.2]), which can be visualised using Kuznetsov’s convention as

BlZ S = P(IZ) D(Z) D(Z)

D(S) D(S)
Hs = P(L ).

If N = k, then theorem implies S+
σ = P(L ) ⊂ P(V ) is homological projective dual to

BlS−σ P(K∨) → P(V ∨), the blowing up along a (in general) different resolution S−σ = Z of

singularities of the degeneracy locus Sσ. If k = N − 1, then Sσ ⊂ S is a Cohen-Macaulay

subscheme of codimension 2, and P(L ) = BlSσ S is the blowing up along Sσ. The theorem

states the HPD between the two blowing–ups BlSσ S ⊂ P(V ) and BlZ P(K∨)→ P(V ∨).

Proof of Thm. 3.2. The situation can be regarded as a relative situation of [CT15, JL18a],

and a similar strategy can be applied. Apply the construction of §2.3 to the scheme X =

P(K∨) and the zero locus i : Z ↪→ P(K) of the canonical regular section of vector bundle

E = V �OP(K∨)(1), then the generalized universal hyperplane ι : H := Hs ⊂ P(V )×S P(K∨)

is a divisor of the line bundle OP(V )(1) � OP(K∨)(1). Consider the blowing up β : P̃(K∨) →
P(K∨). Its exceptional divisor is given by P(N ∨

i ) = P(V ∨) ×S Z. Apply the geometry

of §2.4.1, we get that the blowing up γ : U → H of H along j : P(V ) ×S Z ↪→ H is the

universal hyperplane for P̃(K∨)→ P(V ), i.e. ιU : U = HP̃(K∨) ↪→ P̃(K∨)×S P(V ), and the

exceptional locus of γ is jQ : QZ ↪→ U , where QZ ⊂ P(V )×S P(V ∨)×S Z is the base-change

of the universal quadric Q ⊂ P(V )×SP(V ∨) along map Z → S. The situation is summarized

in the following diagram, with notation of maps as indicated:

(3.2)

P(V )×S Z H P(V )×S P(K∨)

QZ U P(V )×S P̃(K∨)

Z P(K∨)

P(V ∨)×S Z P̃(K∨)

p

j

πH

ι

q

π̌Q

πQ γ

jQ ιU

β̃

q̃

i

p̌

ǰ

β

πU
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In the rest of the proof we will write derived functors as underived, for simplicity of

notations. From blowing up formula for γ : U → H, we have

(3.3) D(U ) =
〈
γ∗D(H), D(P(V )×S Z)0, . . . , D(P(V )×S Z)N−3

〉
.

whereD(P(V )×SZ)k = jQ∗ π
∗
QD(P(V )×SZ)⊗O(−kEQ) (whereQZ is the exceptional divisor

and EQ denotes the divisor class of QZ). It follows directly from O(−EQ) = OP(V ∨)(1) ⊗
OP(K∨)(−1) and the diagram that

D(P(V )×S Z)k = D(Z)k �S P(V )|U .

On the other hand, as observed in [JL18c], H is also the generalized universal hyperplane

for the scheme X1 = P(V ) and the zero locus i1 : P(L ) ↪→ P(V ) of a canonical section of the

vector bundle E1 = K∨⊗OP(V )(1). Denote π1 : H → P(V ) the projection, j1 : PP(L )(Nj1) ↪→
H the inclusion and p1 : PP(L )(Nj1)→ P(L ) the projection. Then by Thm. 2.1,

(3.4) D(H) =
〈
Φ1(D(P(Cσ)), π∗1D(P(V ))⊗ OP(K∨), . . . , π

∗
1D(P(V ))⊗ OP(K∨)(k − 2)

〉
,

where Φ1 = j1∗ p
∗
1(−)⊗ OP(K∨)(−1). From diagram (3.2) we have

(3.5) γ∗(π∗1D(P(V ))⊗ OP(K∨)(k)) = (π∗D(S)⊗ OP(K∨)(k)) �S P(V )|U .

By Lem. 2.4, each time one right mutates (3.5) passing through some D(P(V )×S Z)k′ inside

(3.3) will result in tensoring (3.5) with O(−EQ) and thus gets(
π∗D(S)⊗ OP(K∨)(k − 1)⊗ OP(V ∨)(1)

)
�S D(P(V ))|U .

Repeating this process of mutations inside (3.3) and substitute the category D(H) by (3.4),

we end up with the following SOD:

D(U ) =
〈
Ψ (D(P(Cσ))), (A1(1) �S D(P(V )))|U , . . . , (Ar−2(r − 2) �S D(P(V )))|U

〉
,

where Ai’s are given by Lem. 3.1, and Ψ = Lγ∗Rj1∗Lp∗1(−) ⊗ OP(V ∨)(1) ⊗ OP(K∨)(−1) :

D(P(L )) ↪→ D(U ). By definition of HPD (Def. 2.5), we are done. �

Proof of Thm. 1.2. Apply the categorical Plücker formula of [JLX17] to the two HPD pairs

(A/P(V ∨),A\/P(V )) and (P(L ) ⊂ P(V ∨),P(L )⊥ := P̃(K∨) → P(V )), then the theorem

1.2 immediately follows. 1 �

1Notice that one could also apply the nonlinear HPD theorem of [KP18, JL18b] to our theorem 3.2 and

obtain similar results in a slightly different formulation.
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