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Abstract. Sparsification of neural networks is one of the effective complex-
ity reduction methods to improve efficiency and generalizability. We consider
the problem of learning a one hidden layer convolutional neural network with
ReLU activation function via gradient descent under sparsity promoting penal-
ties. It is known that when the input data is Gaussian distributed, no-overlap
networks (without penalties) in regression problems with ground truth can be
learned in polynomial time at high probability. We propose a relaxed variable
splitting method integrating thresholding and gradient descent to overcome the
non-smoothness in the loss function. The sparsity in network weight is real-
ized during the optimization (training) process. We prove that under `1, `0, and
transformed-`1 penalties, no-overlap networks can be learned with high proba-
bility, and the iterative weights converge to a global limit which is a transfor-
mation of the true weight under a novel thresholding operation. Numerical ex-
periments confirm theoretical findings, and compare the accuracy and sparsity
trade-off among the penalties.
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1 Introduction

Deep neural networks (DNN) have achieved state-of-the-art performance on many ma-
chine learning tasks such as speech recognition (Hinton et al., 2012 [8]), computer
vision (Krizhevsky et al., 2016 [10]), and natural language processing (Dauphin et al.,
2016 [3]). Training such networks is a problem of minimizing a high-dimensional non-
convex and non-smooth objective function, and is often solved by simple first-order
methods such as stochastic gradient descent. Nevertheless, the success of neural net-
work training remains to be understood from a theoretical perspective. Progress has
been made in simplified model problems. Shamir (2016) showed learning a simple one-
layer fully connected neural network is hard for some specific input distributions [20].
Recently, several works (Tian, 2017 [22]; Brutzkus & Globerson, 2017 [1]) focused on
the geometric properties of loss functions, which is made possible by assuming that
the input data distribution is Gaussian. They showed that stochastic gradient descent
(SGD) with random or zero initialization is able to train a no-overlap neural network in
polynomial time.
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Another notable issue is that DNNs contain millions of parameters and lots of redun-
dancies, potentially causing over-fitting and poor generalization [26] besides spend-
ing unnecessary computational resources. One way to reduce complexity is to sparsify
the network weights using an empirical technique called pruning [11] so that the non-
essential ones are zeroed out with minimal loss of performance [7,24,14]. Recently a
surrogate `0 regularization approach based on a continuous relaxation of Bernoulli ran-
dom variables in the distribution sense is introduced with encouraging results on small
size image data sets [12]. This motivated our work here to study deterministic regu-
larization of `0 via its Moreau envelope and related `1 penalties in a one hidden layer
convolutional neural network model [1].

Fig. 1. The architecture of a no-overlap neural network

Our contribution: We propose a new method to sparsify DNNs called the Relaxed
Variable Splitting Method (RVSM), and prove its convergence on a simple one-layer
network (Figure 1). Consider the population loss:

f(w) := Ex∼D
[
(L(x;w)− L(x;w∗))2

]
. (1)

where L(x,w) is the output of the network with input x and weight w in the hidden
layer. We assume there exists a ground truth w∗. Consider sparsifying the network by
minimizing the Lagrangian

Lβ(w) = f(w) + ‖w‖1 (2)

where the `1 penalty can be changed to `0 or Transformed-`1 penalty [15,27]. Empirical
experiments show that our method also works on deeper networks, since the sparsifica-
tion on each layer happens independently of each other.

The rest of the paper is organized as follows. In Section 2, we briefly overview
related mathematical results in the study of neural networks and complexity reduction.
Preliminaries are in section 3. In Section 4, we state and discuss the main results. The
proofs of the main results are in Section 5, and numerical experiments are in Section 6.



Convergence of RVSM 3

2 Related Work

In recent years, significant progress has been made in the study of convergence in neu-
ral network training. From a theoretical point of view, optimizing (training) neural net-
work is a non-convex non-smooth optimization problem, which is mainly solved by
(stochastic) gradient descent. Stochastic gradient descent methods were first proposed
by Robins and Monro in 1951 [18]. Rumelhart et al. introduced the popular back-
propagation algorithm in 1986 [19]. Since then, many well-known SGD methods with
adaptive learning rates were proposed and applied in practice, such as the Polyak mo-
mentum [16], AdaGrad [6], RMSProp [23], Adam [9], and AMSGrad [17].
The behavior of gradient descent methods in neural networks is better understood when
the input has Gaussian distribution. In 2017, Tian showed the population gradient de-
scent can recover the true weight vector with random initialization for one-layer one-
neuron model [22]. Brutzkus & Globerson (2017) showed that a convolution filter with
non-overlapping input can be learned in polynomial time [1]. Du et al. showed (stochas-
tic) gradient descent with random initialization can learn the convolutional filter in poly-
nomial time and the convergence rate depends on the smoothness of the input distribu-
tion and the closeness of patches [4]. Du et al. also analyzed the polynomial conver-
gence guarantee of randomly initialized gradient descent algorithm for learning a one-
hidden-layer convolutional neural network [5]. Non-SGD methods for deep learning
were also studied in the recent years. Taylor et al. proposed the Alternating Direction
Method of Multipliers (ADMM) to transform a fully-connected neural network into an
equality-constrained problem to solve [21]. A similar algorithm to the one introduced in
this paper was discussed in [13]. There are a few notable differences. First, their param-
eter % (respectively our parameter β) is large (resp. small). Secondly, the update on w
in our paper does not have the form of an argmin update, but rather a gradient descent
step. Lastly, their analysis does not apply to ReLU neural networks, and the checking
step will be costly and impractical for large networks. In this paper, we will show that
having β small is essential in showing descent of the Lagrangian, angle, and giving a
strong error bound on the limit point. We became aware of [13] lately after our work
was mostly done.

3 Preliminaries

3.1 The One-layer Non-overlap Network

In this paper, the input feature x ∈ Rn is i.i.d. Gaussian random vector with zero mean
and unit variance. Let G denote this distribution. We assume that there exists a ground
truth w∗ by which the training data is generated. The population risk is then:

f(w) = EG [(L(x;w)− L(x;w∗))2]. (3)

We define
g(u,v) = EG [σ(u · x)σ(v · x)]. (4)

Then:
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Lemma 1 [1,2] Assume x ∈ Rd is a vector where the entries are i.i.d. Gaussian ran-
dom variables with mean 0 and variance 1. Given u,v ∈ Rd, denote by θu,v the angle
between u and v. Then

g(u,v) =
1

2π
‖u‖‖v‖ (sin θu,v + (π − θu,v) cos θu,v) .

For the no-overlap network, the loss function is simplified to:

f(w) =
1

k2
[
a(‖w‖2 + ‖w∗‖2)− 2kg(w,w∗)− 2b‖w‖‖w∗‖

]
. (5)

where b = k2−k
2π and a = b+ k

2 .

3.2 The Relaxed Variables Splitting Method

Let η > 0 denote the step size. Consider a simple gradient descent update:

wt+1 = wt − η∇f(wt). (6)

It was shown [1] that the one-layer non-overlap network can be learned with high prob-
ability and in polynomial time. We seek to improve sparsity in the limit weight while
also maintain good accuracy. A classical method to accomplish this task is to introduce
`1 regularization to the population loss function, and the modified gradient update rule.
Consider the minimization problem:

l(w) = f(w) + λ‖w‖1. (7)

for some λ > 0. We propose a new approach to solve this minimization problem, called
the Relaxed Variable Splitting Method (RVSM). We first convert (7) into an equation
of two variables

l(w,u) = f(w) + λ‖u‖1.
and consider the augmented Lagrangian

Lβ(w,u) = f(w) + λ‖u‖1 +
β

2
‖w − u‖2. (8)

Let Sλ/β(w) := sgn(w)(|w|−λ/β)χ{|w|>λ/β} be the soft thresholding operator. The
RSVM is:

Algorithm 1 RVSM
Input: η, β, λ, maxepoch, maxbatch
Initialization: w0

Define: u0 = Sλ/β(w
0)

for t = 0, 1, 2, ...,maxepoch do
for batch = 1, 2, ...,maxbatch do

wt+1 ← wt − η∇f(wt)− ηβ(wt − ut)
ut+1 ← argminu Lβ(wt,u) = Sλ/β(w

t)
end for

end for
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3.3 Comparison with ADMM

A well-known, modern method to solve the minimization problem (7) is the Alternating
Direction Method of Multipliers (or ADMM). In ADMM, we consider the Lagrangian

Lβ(w,u, z) = f(w) + λ‖u‖1 + 〈z,w − u〉+
β

2
‖w − u‖2. (9)

and apply the updates: 
wt+1 ← arg minw Lβ(w,ut, zt)

ut+1 ← arg minu Lβ(wt+1,u, zt)

zt+1 ← zt + β(wt+1 − ut+1)

(10)

Although widely used in practice, the ADMM method has several drawbacks when it
comes to regularizing deep neural networks: First, the loss function f is often non-
convex and only differentiable in some very specific regions, thus the current theory of
optimizations does not apply [25]. Secondly, the update

wt+1 ← arg min
w
Lβ(wt+1,u, zt)

is not applicable in practice on DNN, as it requires one to know fully how f(w) be-
haves. In most ADMM adaptations on DNN, this step is replaced by a simple gradient
descent. Lastly, the Lagrange multiplier zt tends to reduce the sparsity of the limit of
ut, as it seeks to close the gap between wt and ut. In contrast, the RVSM method re-
solves all these difficulties presented by ADMM. First, we will show that in a one-layer
non-overlap network, the iterations will keep wt and ut in a nice region, where one can
guarantee Lipschitz gradient property for f(w). Secondly, the update of wt is not an
arg min update, but rather a gradient descent iteration itself, so our theory does not de-
viate from practice. Lastly, without the Lagrange multiplier term zt, there will be a gap
between wt and ut at the limit. The ut is much more sparse than in the case of ADMM,
and numerical results showed that f(wt) and f(ut) behave very similarly on deep net-
works. An intuitive explanation for this is that when the dimension of wt is high, most
of its components that will be pruned off to get ut have very small magnitudes, and are
often the redundant weights.

In short, the RVSM method is easier to implement (no need to keep track of the
variable zt), can greatly increase sparsity in the weight variable ut, while also main-
taining the same performance as ADMM. Moreover, RVSM has convergence guarantee
and limit characterization as stated below.

4 Main Results

Before we state our main results, the following Lemma is needed to establish the exis-
tence of a Lipschitz constant L:

Lemma 2 (Lipschitz gradient)
There exists a global constant L such that the iterations of Algorithm 1 satisfy

‖∇f(wt)−∇f(wt+1)‖ ≤ L‖wt −wt+1‖, ∀t. (11)
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An important consequence of Lemma 2 is: for all t, the iterations of Algorithm 1
satisfy:

f(wt+1)− f(wt) ≤ 〈∇f(wt),wt+1 −wt〉+
L

2
‖wt+1 −wt‖2.

Theorem 1. Suppose the initialization of the RVSM Algorithm satisfies:
(i) Step size η is small so that η ≤ 1

β+L ;
(ii) Initial angle θ(w0,w∗) ≤ π − δ, for some δ > 0;
(iii) Parameters k, β, λ are such that k ≥ 2, β ≤ δ sin δ

kπ , and λ
β <

1√
d

.
Then the Lagrangian Lβ(wt,ut) decreases monotonically; and (wt,ut) converges
sub-sequentially to a limit point (w̄, ū), with ū = Sλ/β(w̄), such that:
(i) 0 ∈ ∂uLβ(w̄, ū) and ∇wLβ(w̄, ū) = 0;
(ii)∇w Lβ(wt,ut) = O(ε) in O(1/ε2) iterations;
(iii) The limit point w̄ is close to the ground truth w∗ in the sense that θ(w̄,w∗) < δ
and ‖w̄ −w∗‖ = O(β).

The full proof of Theorem 1 is given in the next section. Here we overview the
key steps. First, we show that the iterations of Algorithm 1 will eventually bring wt

to within a closed annulus D of width 2M around the sphere centered at origin with
radius ‖w∗‖. In other words, there exists a T such that for all t ≥ T, ‖wt‖ ∈ [‖w∗‖ −
M, ‖w∗‖ + M ], for some 0 < M < ‖w∗‖. Then with no loss of generality, we can
assume that wt is in this closed strip, for all t.

Next, for the region D of the iterations, we will show there exists a global constant
L such that the Lipschitz gradient property in Lemma 2 holds.
Finally, the Lipschitz gradient property allows us to show the descent of angle θt and
Lagrangian Lβ(wt,ut). The conditions on η, β, λ are used to show θt+1 ≤ θt; and
an analysis of the limit point gives the bound on θ(w̄,w∗) and ‖w̄ − w∗‖. From the
descent property of Lβ(wt,ut), classical results from optimization [1] can be used to
show that after T = O

(
1
ε2

)
iterations, we have ∇wLβ(wt,ut) = O(ε), for some

t ∈ (0, T ]. This leads to the desired convergence rate and finishes the proof.
It should be noted that without the condition on β being small, one may not guar-

antee monotonicity of θt. However, it still can be shown that Lβ(wt,ut) decreases and
thus the iteration will converge to some limit point (w̄, ū). In this case, the limit point
may not be near the ground truth w∗; i.e. we may not have θ(w̄,w∗) < δ. Furthermore,
the bound on ‖w̄ −w∗‖ will also be weaker.

Corollary 1. Suppose the initialization of the RVSM Algorithm satisfies Theorem 1,
then the w̄ equation below holds:

w∗ =
kπ

π − θ
β(w̄ − Sλ/β(w̄)) + Cw̄, (12)

where θ := θ(w̄,w∗), constant C ∈ (0, 1
1−2kλ

√
d
). Since component-wise, w̄ −

Sλ/β(w̄) has the same sign as w̄, the ground truth w∗ is an expansion of C w̄, or
equivalently w̄ is (up to scalar multiple) a shrinkage of w∗.
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The proofs of Theorem 1 and Corollary 1.1 do not require convexity of the regulariza-
tion term λ‖u‖1, hence extend to other sparse penalties such as `0 and transformed `1
penalty [27]. We have:

Corollary 2. Under the conditions of Theorem 1 however with the l1 penalty replaced
by an `0 or transformed-`1 penalty, the RVSM Algorithm converges sub-sequentially
to a limit point (w̄, ū) satisfying ∇wLβ(w̄, ū) = 0. The Lagrangian and angle θt

also decrease monotonically, with the limit angle satisfying θ(w̄,w∗) < δ. Here ū is a
thresholding of w̄, and equation (12) holds with Sλ/β(·) replaced by the thresholding
operator of the corresponding penalty.

5 Proof of Main Results

The following Lemmas will be needed to prove Theorem 1:

Lemma 3 (Properties of the gradient, [1])
For the loss function f(w) of equation (5), the following holds:
1. f(w) is differentiable if and only if w 6= 0.
2. For k > 1, f(w) has three critical points:
(a) A local maximum at w = 0.
(b) A unique global minimum at w = w∗.
(c) A degenerate saddle point at w = −

(
k2−k

k2+(π−1)k

)
w∗.

For k = 1, w = 0 is not a local maximum and the unique global minimum w∗ is the
only differentiable critical point.
Given θ := θ(w,w∗), the gradient of f can be expressed as

∇f(w) =
1

k2

[(
k +

k2 − k
π

− k

π

‖w∗‖
‖w‖

sin θ − k2 − k
π

‖w∗‖
‖w‖

)
w − k

π
(π − θ)w∗

]
.

(13)

Lemma 4 (Lipschitz gradient with co-planar assumption, [1])
Assume ‖w1‖, ‖w2‖ ≥ M , w1,w2,w

∗ are on the same two dimensional half-plane
defined by w∗, then

‖∇f(w1)−∇f(w2)‖ ≤ L‖w1 − w2‖

for L = 1 + 3‖w∗‖
M .

Lemma 5 For k ≥ 1, there exists constants Mk, T > 0 such that for all t ≥ T , the
iterations of Algorithm 1 satisfy:

‖wt‖ ∈ [‖w∗‖ −Mk, ‖w∗‖+Mk]. (14)

where Mk < ‖w∗‖, and Mk → 0 as k →∞.

From Lemma 5, WLOG, we will assume that T = 0.

Lemma 6 (Descent of Lβ due to w update)
For η small such that η ≤ 1

β+L , we have

Lβ(ut+1,wt+1) ≤ Lβ(wt,ut).
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5.1 Proof of Lemma 2

By Algorithm 1 and Lemma 5, ‖wt‖ ≥ ‖w∗‖ −M > 0, for all t, and wt+1 is in some
closed neighborhood of wt. We consider the subspace spanned by wt,wt+1, and w∗,
this reduces the problem to a 3-dimensional space.
Consider the plane formed by wt and w∗. Let vt+1 be the point on this plane, closest
to wt, such that ‖wt+1‖ = ‖vt+1‖ and θ(wt+1,w∗) = θ(vt+1,w∗). In other words,
vt+1 is the intersection of the plane formed by wt,w∗ and the cone with tip at zero,
side length ‖wt+1‖, and main axis w∗ (See Figure 2). Then

Fig. 2. Geometry of the update of wt and the corresponding wt+1,vt+1.

‖∇f(wt)−∇f(wt+1)‖
≤‖∇f(wt)−∇f(vt+1)‖+ ‖∇f(vt+1)−∇f(wt+1)‖
≤L1‖wt − vt+1‖+ L2‖vt+1 −wt+1‖ (15)

for some constants L1, L2. The first term is bounded since wt,vt+1,w∗ are co-planar
by construction, and Lemma 4 applies. The second term is bounded by applying Equa-
tion 13 with ‖wt+1‖ = ‖vt+1‖ and θ(wt+1,w∗) = θ(vt+1,w∗). It remains to show
there exists a constant L3 > 0 such that

‖wt − vt+1‖+ ‖vt+1 −wt+1‖ ≤ L3‖wt −wt+1‖

Let A,B,C be the tips of wt,vt+1,wt+1, respectively. Let P be the point on w∗ that
is at the base of the cone (so P is the center of the circle with B,C on the arc). We will
show there exists a constant L3 such that

|AB|+ |BC| ≤ L3|AC| (16)

Case 1: A,B, P are collinear: By looking at the cross-section of the plane formed by
AB,AC, it can be seen that AC is not the smallest edge in 4ABC. Thus there exists
some L3 such that Equation 16 holds.
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Case 2: A,B, P are not collinear: Translate B,C, P to B′, C ′, P ′ such that A,B′, P ′

are collinear and BB′, CC ′, PP ′//w∗. Then by Case 1:

|AB′|+ |B′C ′| ≤ L3|AC ′|

and AC ′ is not the smallest edge in 4AB′C ′. By back-translating B′, C ′ to B,C, it
can be seen that AC is again not the smallest edge in4ABC. This implies

|AB|+ |BC| ≤ L4|AC|

for some constant L4. Thus Equation 16 is proved. Combining with Equation 15,
Lemma 2 is proved.

5.2 Proof of Lemma 5

First we show that if ‖wt‖ < ‖w∗‖, then the update of Algorithm 1 will satisfy
‖wt+1‖ > ‖wt‖. By Lemma 3,

∇f(w) =
1

k2

[(
k +

k2 − k
π

− k

π

‖w∗‖
‖w‖

sin θ − k2 − k
π

‖w∗‖
‖w‖

)
w − k

π
(π − θ)w∗

]
=

1

k2
(C1w − C2w

∗)

so the update of wt reads

wt+1 = wt − ηC
t
1 + βk2

k2
wt + η

Ct2
k2

w∗ + ηβut+1,

where Ct2 > 0. Since ut+1 = Sλ/β(wt), the term ηβut+1 will increase the norm of
wt. For the remaining terms,

Ct1 = k +
k2 − k
π

− k

π

‖w∗‖
‖wt‖

sin θ − k2 − k
π

‖w∗‖
‖wt‖

≤ k +
k2 − k
π

(
1− ‖w

∗‖
‖wt‖

)
When ‖w

∗‖
‖wt‖ is large, Ct1 is negative. The update will increase the norm of ‖wt‖ if

Ct1 + βk2 ≤ 0 and ∥∥∥∥Ct1 + βk2

k2
wt

∥∥∥∥ > ∥∥∥∥Ct2k2 w∗
∥∥∥∥

This condition is satisfied when

−
[
k +

k2 − k
π

(
1− ‖w

∗‖
‖wt‖

)
+ βk2

]
>
k

π

‖w∗‖
‖wt‖

When ‖w
∗‖

‖wt‖ > 1, the LHS is O(k2), while the RHS is O(k). Thus there exists some
Mk such that wt will eventually stay in the region ‖wt‖ ≥ ‖w∗‖ −Mk. Moreover, as
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k →∞, we have Mk → 0.
Next, when ‖wt‖ > ‖w∗‖, the update of wt reads

wt+1 = wt − ηC
t
1

k2
wt + η

Ct2
k2

w∗ − ηβ(wt − ut+1)

the last term decreases the norm of wt. In this case, Ct1 is positive and

Ct1 ≥
kπ − k
π

+
k2 − k
π

(
1− ‖w

∗‖
‖wt‖

)
The update will decrease the norm of wt if

kπ − k
π

+
k2 − k
π

(
1− ‖w

∗‖
‖wt‖

)
>
k

π

‖w∗‖
‖wt‖

which holds when ‖w
∗‖

‖wt‖ < 1, and the Lemma is proved.

5.3 Proof of Lemma 6

Proof. By the update of ut, Lβ(wt,ut+1) ≤ Lβ(wt,ut). For the update of wt, notice
that

∇f(wt) =
1

η

(
wt −wt+1

)
− β(wt − ut+1)

Then for a fixed u := ut+1, we have

Lβ(wt+1,u)− Lβ(wt,u)

=f(wt+1)− f(wt) +
β

2

(
‖wt+1 − u‖2 − ‖wt − u‖2

)
≤〈∇f(wt),wt+1 −wt〉+

L

2
‖wt+1 −wt‖2

+
β

2

(
‖wt+1 − u‖2 − ‖wt − u‖2

)
=

1

η
〈wt −wt+1,wt+1 −wt〉 − β〈wt − u,wt+1 −wt〉

+
L

2
‖wt+1 −wt‖2 +

β

2

(
‖wt+1 − u‖2 − ‖wt − u‖2

)
=

1

η
〈wt −wt+1,wt+1 −wt〉+

(
L

2
+
β

2

)
‖wt+1 −wt‖2

+
β

2
‖wt+1 − u‖2 − β

2
‖wt − u‖2

−β〈wt − u,wt+1 −wt〉 − β

2
‖wt+1 −wt‖2

=

(
L

2
+
β

2
− 1

η

)
‖wt+1 −wt‖2

Therefore, if η is small so that η ≤ 2
β+L , the update on w will decrease Lβ .
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5.4 Proof of Theorem 1

We will first show that if θ(w0,w∗) ≤ π − δ, then θ(wt,w∗) ≤ π − δ, for all t. We
will show θ(w1,w∗) ≤ π− δ, the statement is then followed by induction. To this end,
by the update of wt, one has

= Cw0 + η
π − θ(w0,w∗)

kπ
w∗ + ηβu1

for some constant C > 0. Since u1 = Sλ/β(w0), θ(u1,w0) ≤ π
2 . Notice that the sum

of the first two terms on the RHS brings the vector closer to w∗, while the last term
may behave unexpectedly. Consider the worst case scenario: w0,w∗,u1 are co-planar
with θ(u1,w0) = π

2 , and w∗,u1 are on two sides of w0 (See Figure 3). We need

Fig. 3. Worst case of the update on wt

δ
kπw

∗ + βu1 to be in region I. This condition is satisfied when β is small such that

sin δ ≥ β‖u1‖
δ
kπ‖w∗‖

=
kπβ‖u1‖

δ

since ‖u1‖ ≤ 1, it is sufficient to have β ≤ δ sin δ
kπ .

Next, consider the limit of the RVSM algorithm. Since Lβ(wt,ut) is non-negative,
by Lemma 6, Lβ converges to some limit L. This implies (wt,ut) converges to some
stationary point (w̄, ū). By Lemma 3 and the update of wt, we have

w = c1w + ηc2w
∗ + ηβu (17)

for some constant c1 > 0, c2 ≥ 0, where c2 = π−θ
kπ , with θ := θ(w̄,w∗), and ū =

Sλ/β(w̄). If c2 = 0, then we must have w̄// ū. But since ū = Sλ/β , this implies all
non-zero components of w̄ are either equal in magnitude, or all have magnitude smaller
than λ

β . The latter case is not possible when λ
β < 1√

d
. Furthermore, c2 = 0 when

θ(w̄,w∗) = π or 0. We have shown that θ(w̄,w∗) ≤ π − δ, thus θ(w̄,w∗) = 0.
Thus, w̄ = w∗, and all non-zero components of w∗ are equal in magnitude. This has
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probability zero if we assume w∗ is initiated uniformly on the unit circle. Hence we
will assume that almost surely, c2 > 0. Expression (17) implies

c2w
∗ + βū//w̄ (18)

Expression (18) implies w̄, ū, and w∗ are co-planar. Let γ := θ(w̄, ū). From expres-
sion (18), and the assumption that ‖w∗‖ = 1, we have

(〈c2w∗ + βū, w̄〉)2 = ‖c2w∗ + βū‖2‖w̄‖2

or

‖w̄‖2(c22 cos2 θ + 2c2β‖ū‖ cos θ cos γ + β2‖ū‖2 cos2 γ)

=‖w̄‖2(c22 + 2c2β‖ū‖ cos(θ + γ) + β2‖ū‖2)

This reduces to

c22 sin2 θ − 2c2β‖ū‖ sin θ sin γ + β2‖ū‖2 sin2 γ = 0,

which implies π−θ
kπ sin θ = β‖ū‖ sin γ. By the initialization β ≤ δ sin δ

kπ , we have
π−θ
kπ sin θ < δ

kπ sin δ. This implies θ < δ.
Finally, the limit point satisfies ‖∇f(w̄) + β(w̄ − ū)‖ = 0. By the initialization re-
quirement, we have ‖β(w̄ − ū)‖ < β ≤ δ sin δ

kπ . This implies ‖∇f(w̄)‖ ≤ δ sin δ
kπ . By

the Lipschitz gardient property in Lemma 2 and critical points property in Lemma 3, w̄
must be close to w∗. In other words, ‖w̄ − w∗‖ is comparable to the chord length of
the circle of radius ‖w∗‖ and angle θ:

‖w̄ −w∗‖ = O

(
2 sin

(
θ

2

))
= O(sin θ)

= O

(
kπβ‖ū‖ sin γ

π − θ

)
= O(kβ sin γ).

6 Numerical Experiments

First, we experiment RVSM with VGG-16 on the CIFAR10 data set. Table 1 shows the
result of RVSM under different penalties. The parameters used are λ = 1.e − 5, β =
1.e − 2, and a = 1 for T`1 penalty. It can be seen that RVSM can maintain very
good accuracy while also promotes good sparsity in the trained network. Between the
penalties, `0 gives the best sparsity, `1 the best accuracy, and T`1 gives a middle ground
between `0 and `1. Since the only difference between these parameters is in the pruning
threshold, in practice, one may simply stick to `0 regularization and just fine-tune the
hyper-parameters.

Secondly, we experiment our method on ResNet18 and the CIFAR10 data set. The
results are displayed in Table 2. The base model was trained on 200 epochs using stan-
dard SGD method with initial learning rate 0.1, which decays by a factor of 10 at the
80th, 120th, and 160th epochs. For the RVSM method, we use `0 regularization and



Convergence of RVSM 13

set λ = 1.e-6, β = 8.e-2. For ADMM, we set the pruning threshold to be 60% and
ρ =1.e-2. The ADMM method implemented here is per [28], an “empirical variation”
of the true ADMM (Eq. 10). In particular, the arg min update of wt is replaced by a
gradient descent step. Such “modified” ADMM is commonly used in practice on DNN.

It can be seen in Table 2 that RVSM runs quite effectively on the benchmark deep
network, promote much better sparsity than ADMM (93.70% vs. 47.08%), and has
slightly better performance. The sparsity here is the percentage of zero components
over all network weights.

Table 1. Sparsity and accuracy of RVSM under different penalties on VGG-16 on CIFAR10.

Penalty Accuracy Sparsity
Base model 93.82 0
`1 93.7 35.68
T`1 93.07 63.34
`0 92.54 86.89

Table 2. Comparison between ADMM and RVSM (`0) for ResNet18 training on the CIFAR10
dataset.

ResNet18 Accuracy Sparsity
SGD 95.07 0
ADMM 94.84 47.08
RVSM (`0) 94.89 93.70

7 Conclusion

We proved the global convergence of RVSM to sparsify a convolutional ReLU network
on a regression problem and analyzed the sparsity of the limiting weight vector as well
as its error estimate from the ground truth (i.e. the global minimum). The proof used
geometric argument to establish angle and Lagrangian descent properties of the itera-
tions thereby overcame the non-existence of gradient at the origin of the loss function.
Our experimental results provided additional support for the effectiveness of RVSM
via `0, `1 and T`1 penalties on standard deep networks and CIFAR-10 image data. In
future work, we plan to extend RVSM theory to multi-layer network and structured
(channel/filter/etc.) pruning.
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