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Abstract

Using the embedding of the moduli space of generalized GL(n) Hitchin’s spectral cov-
ers to the moduli space of meromorphic Abelian differentials we study the variational for-
mulæ of the period matrix, the canonical bidifferential, the prime form and the Bergman
tau function. This leads to residue formulæ which generalize the Donagi-Markman for-
mula for variations of the period matrix. The computation of second derivatives of the
period matrix reproduces the formula derived in [2] using the framework of topological
recursion.
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1. INTRODUCTION

The geometry of spaces of Abelian differentials on Riemann surfaces has attracted in-
terest in relationship with the theory of Teichmüller flow [15, 16, 7]. Methods inspired by
the theory of integrable systems were applied to the study of these spaces in [14, 19, 12]
where an appropriate version of deformation theory of Riemann surfaces and the formal-
ism of tau functions was developed. In particular, variations of moduli and of various
canonical objects associated to a Riemann surface were computed in [14] (holomorphic
case) and in [12] (meromorphic case). The Bergman tau function introduced in [14] is a
natural generalization of Dedekind’s eta-function to higher genus.

The origin of Hitchin’s spectral covers and their moduli spaces is the dimensional re-
duction of self-dual Yang-Mills equations on a four-dimensional space represented as the
product of a Riemann surface and R

2 [10]. Such a dimensional reduction gives a family
of completely integrable systems associated to families of Riemann surfaces of arbitrary
genus [11]. Hamiltonians of such integrable systems (we consider here only the GL(n)
gauge group) are encoded in the n-sheeted spectral cover of a Riemann surface. The moduli
space of spectral covers for a base Riemann surface of given genus was also intensively
studied (see [1, 6]). In particular, the Donagi-Markman cubic describes variations of the
period matrix of the spectral cover for fixed base, answering the question posed in [1].
Variations of the canonical meromorphic bi-differential on these spaces were derived in
[2] using the formalism developed in [9].

The space of Hitchin’s spectral covers admits a natural embedding in a space of Abelian
differentials; this embedding was used in [18] to define a natural version of Bergman tau
functions on spaces of spectral covers (with variable or fixed base) and find the class of
the locus of degenerate covers (the universal Hitchin’s discriminant) in the Picard group
of the universal moduli space of spectral covers.

In this paper we further exploit this embedding to show how variational formulæ for
the period matrix, the canonical bidifferential and the prime form on the moduli spaces of
generalized Hitchin’s systems (when the coefficients of the equation defining the spectral
cover are allowed to be meromorphic differentials) can be deduced from variational for-
mulæ on moduli spaces of meromorphic Abelian differentials derived in [14, 12]. In the
special case of regular Hitchin’s systems we reproduce residue formulæ for the canonical
bidifferential obtained in [2] and for the period matrix (given by the Donagi-Markman cu-
bic [6]). We also derive residue formulæ for variations of Bergman tau function of spaces
of spectral covers for the holomorphic case.

The formulas for the second derivatives of the period matrix (in holomorphic case)
found in our formalism coincide with expressions derived in [2] using the formalism of
topological recursion of [8]. These formulæ are rather cumbersome in contrast to analo-
gous formulæ on spaces of Abelian differentials. This suggest a possibility of existence of
a natural simple structure on spaces of Abelian differentials which underlie the topologi-
cal recursion framework on spaces of spectral covers.
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2. SPACES OF GENERALIZED SPECTRAL COVERS

Denote by C a Riemann surface of genus g, with m marked points y1, . . . , ym on C and
associated corresponding multiplicities k1, . . . , km, kj ≥ 1. The Higgs bundle onC is a pair
(E,Φ) where E is a holomorphic vector bundle and Φ (the Higgs field) is a holomorphic
(or meromorphic, depending on the specific setting) AdE-valued 1-form on C [11, 6]. For
a given base curve C and a degree of the bundle E the space of pairs (E,Φ) is called the
moduli space of Higgs bundles.

Consider a meromorphic GL(n) Higgs field Φ with poles at yj’s of the corresponding
order kj , j = 1, . . . ,m. We also assume a generic form of the singular parts of Φ near these

poles. The spectral curve Ĉ is defined as a locus in T ∗C by the equation det(Φ − v Id) = 0,
which can be written as

(2.1) vn +Q1v
n−1 + · · ·+Qn = 0

where Qℓ is a meromorphic ℓ-differential on C with pole of order ℓkj at the point yj thanks
to the genericity assumption.

For fixedC and {yj}mj=1 we denote by Mn
H [k] the moduli space of curves (2.1) which can

be identified with the moduli space of sets of the differentials Qℓ with poles of appropriate
order at the points yj . Namely, denoting by Ωℓ the vector space of ℓ-differentials on C with
poles of order ℓkj at yj , we have

Mn
H [k] =

n⊕

ℓ=1

Ωℓ

Denote by π the projection Ĉ → C . Assuming that the branch points of Ĉ do not

coincide with yj we have π−1(yj) = {y(s)j }ns=1.

The meromorphic Abelian differential v has, on Ĉ , poles of order kj at all y
(s)
j . Denote

by χj a local coordinate on C near yj ; since we have assumed that yj is a not a branch

point of Ĉ we can use χj also as local coordinate near each y
(s)
j for s = 1, . . . , n. Consider

the singular parts of v at y
(s)
j :

(2.2) v(ζj) =


C

(s),kj
j

χ
kj
j

+
C

(s),kj−1
j

χ
kj−1
j

+ · · ·+
C

(s),1
j

χj
+O(1)


 dχj .

The discriminant W of the equation (2.1) is a meromorphic n(n − 1) differential on C
which has pole of order n(n − 1)kj at yj . Therefore, the total degree of poles of W is

n(n− 1)
∑m

j=1 kj and the number of its zeros (i.e. the number of branch points of Ĉ) is

(2.3) p = n(n− 1)


2g − 2 +

m∑

j=1

kj


 .
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It follows from the Riemann–Hurwitz formula that the genus of Ĉ equals

(2.4) ĝ = n2(g − 1) + 1 +
n(n− 1)

2

m∑

j=1

kj

The degree of the divisor of zeroes of the Abelian differential v on Ĉ is

(2.5) r = 2ĝ − 2 + n

m∑

j=1

kj

The dimension of Mn
H [k] equals to the sum of dimensions of spaces of coefficients of (2.1),

which is computed as
(∑

kj − 1 + g
)
+
(
2
∑

kj + 3(g − 1)
)
+ · · · +

(
n
∑

kj + (2n − 1)(g − 1)
)
.

Assuming that at least one kj > 0, the above gives

(2.6) dimMn
H [k] =

n(n+ 1)

2

∑
kj + n2(g − 1) = ĝ + n

m∑

j=1

kj − 1 .

On the moduli space Mn
H [k] we introduce the following local coordinates:

(2.7)
{
{Aα}ĝα=1, {C

(s),ℓ
j }, j = 1, . . . ,m, s = 1, . . . , n, ℓ = 1, . . . , kj , (j, s, ℓ) 6= (1, 1, 1)

}

where C
(s),ℓ
j are coefficients in singular parts of v near y

(k)
j (2.2) (these coefficients of course

depend on the choice of local coordinatesχj near yj on C), and Aα are a-periods of v under
an arbitrary choice of Torelli marking:

(2.8) Aα =

∫

aα

v .

The coefficient C
(1),1
1 is not an independent coordinate since the sum of residues of v on Ĉ

vanishes:

(2.9)
m∑

j=1

kj∑

s=1

C
(s),1
j = 0 .

We observe that the number of coordinates (2.7) coincides with the dimension (2.6) of
Mn

H [k].
Subordinate to the choice of Torelli marking we also define the normalized first-kind

Abelian differentials (holomorphic) vα with the property

(2.10)

∮

aβ

vα = δαβ .
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We similarly define the normalized second-kind differentials w
(s),l
j on Ĉ with prescribed

singular part:

(2.11)

∮

aα

w
(s),ℓ
j = 0, w

(s),ℓ
j (x) =

(
1

χl
j

+O(1)

)
dχj , x ∼ y

(s)
j , ℓ = 2, . . . , kj

and the normalized differentials of the third kind u
(s)
j (x) on Ĉ which have simple poles at

y
(1)
1 and y

(s)
j with residues −1,+1, respectively.

Since the moduli of the base curve C are kept constant, we can define unambiguously
the derivative with respect to the moduli of our space for any Abelian differential w on

Ĉ. To wit, we fix a local chart D on C with a local coordinate ξ and lift D to all sheets of

Ĉ. Then in any connected component of π−1(D) we can use ξ as a local coordinate away
from ramification points. We express the differential w in such coordinate w = f(ξ)dξ and
define

(2.12)
dw

dzk
=

df(ξ)

dzk
dξ

where the coordinate ξ remains fixed under differentiation. Clearly, the definition (2.12) is
independent of the choice of the local coordinate ξ because the moduli of the base curve
are kept constant. Keeping this in mind we formulate the following proposition.

Proposition 2.1. The following variational formulæ of v with respect to coordinates (2.7) on
Mn

H [k] hold:

(2.13)
∂v

∂Aα
= vα ,

(2.14)
∂v

∂C
(s),l
j

= w
(s),ℓ
j , ℓ = 2, . . . , kj

where w
(s),ℓ
j are normalized ( i.e. with

∫
aα

w
(s),ℓ
j = 0) differentials of second kind defined by (2.11)

and

(2.15)
∂v

∂C
(s),1
j

= u
(s)
j

where j = 1, . . . ,m and s = 1, . . . , n; u
(s)
j (x) are the normalized differentials of the third kind on

Ĉ defined after (2.11).

Proof. First notice that the differential v vanishes at all branch points xj of Ĉ ; generically
these zeros are of first order. This is due the fact that a coefficient Qk of equation (2.1) is a

k-differential on C . Being lifted from C to Ĉ, it gains a zero of order k at each branch point

since near the ramification point xj the local coordinate on Ĉ is given by (ξ− ξj)
1/2 where

ξ is the local coordinate on C near π(xj) (ξ is assumed to be independent of coordinates
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(2.7)) and ξj = ξ(π(xj)). In particular, the n-differential Qn, being lifted to Ĉ, has zeros of

order n at all branch points (as well as zeros lifted to Ĉ from its zeros on C).
Therefore, locally near xj ,t we have

v(ξ) = (ξ − ξj)
1/2(a0 + a1(ξ − ξj)

1/2 + . . . )d(ξ − ξj)
1/2 =

1

2
(a0 + a1(ξ − ξj)

1/2 + . . . )dξ .

Although ξ is independent of the moduli coordinates (2.7), the coordinate ξj of the branch
point π(xj) does depend on them, and differentiation with respect to any coordinate z
from the list (2.7) gives

∂v

∂z
=

1

4

(
− a1(ξj)z

(ξ − ξj)1/2
+O(1)

)
dξ = −1

2
(a1(ξj)z + o(1))d

√
ξ − ξj

which is holomorphic (although generically non-vanishing) at xj . It then follows that all
the differentials ∂v/∂z are holomorphic at the branch points, and can have poles only at

the y
(s)
j ’s.

The differentials ∂v/∂Aj are holomorphic since the coefficients of the singular parts of

v near all y
(s)
i are independent of Aj . Moreover, all a-periods of ∂v/∂Aj vanish except for

the period over aj , which equals 1. Therefore, we deduce (2.13).

Consider ∂v/∂C
(s),ℓ
j for l ≥ 2. The only singularity of this differential is at y

(s)
j and its

singular part there coincides with the one of w
(s)
j . Moreover, since the Aα and the C

(s),ℓ
j

coordinates are independent of each other, all a-periods of ∂v/∂C
(s),ℓ
j vanish; thus this

differential coincides with w
(s)
j .

Similarly, one verifies that the differential ∂v/∂C
(s),1
j coincides with the third kind dif-

ferential u
(s)
j . �

We are going to combine this proposition with the variational formulæ on moduli
spaces of meromorphic Abelian differentials obtained in [14, 12] which we discuss next.

3. VARIATIONAL FORMULÆ AND BERGMAN TAU FUNCTION ON MODULI SPACES OF

MEROMORPHIC ABELIAN DIFFERENTIALS

Denote by Hĝ[d1, . . . , dq] the moduli space of pairs (Ĉ, v) where Ĉ is a Riemann sur-

face of genus ĝ and v is a meromorphic differential on Ĉ with q poles y1, . . . , yq of orders
d1, . . . , dq , respectively, and simple zeros x1, . . . , xr where r = 2ĝ − 2 +

∑q
i=1 di. The nota-

tions Ĉ and ĝ are now used in agreement with the previous discussion. The dimension of

Hĝ[d1, . . . , dq] is the sum of: 3ĝ−3 moduli parameters of Ĉ, q positions of the singularities,∑q
j=1 dj − 1 coefficients of the singular parts and ĝ additional moduli corresponding to

the addition of an arbitrary holomorphic differential to v. Altogether, we get

(3.1) dimHĝ[d1, . . . , dq] = 4ĝ − 4 + q +

q∑

j=1

dj
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The dimension of Hĝ[d1, . . . , dq] coincides with the dimension of the relative homology
group

(3.2) H1(Ĉ \ {yj}qj=1, {xi}ri=1)

A set of generators of this group can be chosen as follows:

(3.3) {si}dimHg[d1,...,dq ]
i=1 =

{
{aα, bα}ĝα=1 , {ci}qi=2, , {li}r−1

i=1

}

where {aα, bα} form a Torelli marking on Ĉ , ci are small counter-clockwise contours
around yi and each contour li connects xr with xi.

The homology group dual to (3.2) is

(3.4) H1(Ĉ \ {xi}rj=1, {yj}qj=1)

and the set of generators dual to the set (3.3) with the intersection index

s∗i · sj = δij

is given by

(3.5) s∗i =
{
{−bα, aα}gα=1 , {−l̃i}qi=2, , {c̃i}r−1

i=1

}

where l̃i is the contour connecting the pole y1 with yi; c̃i is a small counter-clockwise
contour around xi.

The set of homological, or period coordinates on Hĝ[d1, . . . , dq] is given by integrals of v
over the basis {si} (3.3):

(3.6) Pi =

∫

si

v , i = 1, . . . ,dimHĝ[d1, . . . , dq] .

Introduce the following objects on Ĉ : the prime-form E(x, y), canonical bidifferen-
tial B(x, y) (see for example [9], Ch. II, for the definition and properties of E and B),
holomorphic Abelian differentials vα normalized via

∫
aα

vβ = δαβ and the period matrix

Ωαβ =
∫
bα

vβ .

Choose a fundamental polygon of Ĉ with vertex at xr and dissected along paths con-
necting xr with poles yj (having only xr as common point); denote the resulting simply

connected domain by C̃; on it we define the ”flat” coordinate

(3.7) z(x) =

∫ x

xr

v

which can be used as local coordinate on Ĉ outside of zeros and poles of v.

Proposition 3.1. [14, 12] The following variational formulæ for the period matrix Ω on the space
Hĝ[d1, . . . , dq] hold:

(3.8)
∂Ωαβ

∂Pj
=

∫

s∗j

vαvβ
v

.
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To present variational formulæ for vα, B and E we need to define their variations: for
vα we define

(3.9)
∂vα
∂Pj

(x) =
∂

∂Pj

(
vα(x)

v(x)

) ∣∣∣
z(x)=const

v(x) .

The result is a differential in C̃ with discontinuities across all the dissecting cuts of Ĉ
where the discontinuity is the addition of a constant depending which boundary compo-
nent of the dissection we are crossing. Analogously we define variations of B(x, y) and
E(x, y) in Pj .

Proposition 3.2. [14, 12] The following variational formulæ on the space Hĝ[d1, . . . , dq] hold

(3.10)
∂vα(x)

∂Pi
=

1

2πi

∫

t∈s∗i

vα(t)B(x, t)

v(t)
,

(3.11)
∂B(x, y)

∂Pi
=

1

2πi

∫

t∈s∗i

B(x, t)B(t, y)

v(t)
,

(3.12)
∂

∂Pi
ln
(
E(x, y)

√
v(x)

√
v(y)

)
= − 1

4πi

∫

t∈s∗i

1

v(t)

[
dt ln

E(x, t)

E(y, t)

]2
.

In the next section we show to deduce variational formulæ on spaces of spectral covers
by restriction of the above ones.

On the subspace of H0
ĝ[d1, . . . , dq] of Hĝ[d1, . . . , dq] defined by the vanishing of the

residues of v we define the Bergman tau-function via the system of differential equations
[14, 12]:

(3.13)
∂

∂Pj
ln τB(Ĉ, v) =

∫

s∗j

Bv
reg(x, x)

v(x)

where

(3.14) Bv
reg(x, x) =

(
B(x, y)− v(x)v(y)

(
∫ y
x v)2

) ∣∣∣
x=y

.

We refer to [14, 12] for explicit formula for τB and to [19, 12] for its properties and appli-
cations.

4. VARIATIONAL FORMULÆ ON SPACES OF GENERALIZED HITCHIN’S COVERS

We first discuss the variations of the period matrix Ω̂ of Ĉ on the moduli space Mn
H [k]

of spectral covers: these formulæ are obtained by pullback of the variational formulæ on
the space Hĝ(d) of Abelian differentials on Riemann surfaces of genus ĝ where the vector
d is given by

(4.1) d = (k1, . . . , k1, k2, . . . , k2, . . . . . . , kn, . . . , kn)
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where each ki is repeated n times. Thus in the context of previous section we have k = nm,

and the set of poles {yj} coincides with the set {y(s)j }, j = 1, . . . ,m, s = 1, . . . , n.

Assume that the branch points of Ĉ, i.e., zeros of the discriminant W of (2.1), are also

simple. We have (v) = Dbr +D0 where Dbr is the divisor of ramification points of Ĉ. The
projection of Dbr on C coincides with the divisor of the discriminant W : π(Dbr) = (W ).
The projection of D0 on C coincides with the divisor of the n-differential Qn: π(D0) =
(Q0). Then degD0 = n(2g − 2) + n

∑n
j=1 kj i.e. degDbr + degD0 = m as expected. Let us

enumerate their points as follows:

Dbr = {xi}degDbr

i=1 , D0 = {xi}mdegDbr+1 .

We now consider first the case of variations of the period matrix.
The map of Mn

H [k] to Hĝ(d1, . . . , dmn) is defined by assigning to a point of Mn
H [k] the

pair (Ĉ, v); for a generic point of Mn
H [k] all zeros of v are simple.

Theorem 4.1. The variations of the period matrix Ω with respect to the coordinates (2.7) on
Mn

H [k] are given by:

(4.2)
∂Ωαβ

∂Aγ
= −2πi

∑

xi∈Dbr

vγ
d ln(v/dξ)

(xi) res
xi

vαvβ
v

,

(4.3)
∂Ωαβ

∂C
(s),l
j

= −2πi
∑

xi∈Dbr

w
(s),l
j

d ln(v/dξ)
(xi) res

xi

vαvβ
v

,

(4.4)
∂Ωαβ

∂C
(s),1
j

= −2πi
∑

xi∈Dbr

u
(s)
j

d ln(v/dξ)
(xi) res

xi

vαvβ
v

where in these formulæ ξ denotes a local coordinate on C near xi
3; the right-hand side of (4.5) is

independent of the choice of these coordinates near xi.

The formula (4.2) can be written alternatively in the following more familiar form:

(4.5)
∂Ωαβ

∂Aγ
= −2πi

∑

xi∈Dbr

res
xi

vαvβvγ
dξ d(v/dξ)

and analogous versions of (4.3) and (4.4) where vγ is replaced by w
(s),ℓ
j and u

(s)
j , respec-

tively.
On the submanifold Mn

H [k] of Hĝ(d) we use the set of independent coordinates given
by (2.7) so that the period coordinates (3.3) on Mn

H [k] become functions of (2.7) defined
implicitly by the condition that the moduli of the base curve C are constants.

For the proof of Theorem 4.1 we need the following Lemma.

3We did not carry in the notation the dependence on i for brevity of notation.
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Lemma 4.2. Denote by sk a contour from the list (3.3) which does not coincide with with a contour
connecting xr with xi with xi ∈ Dbr ( a branchpoint). The derivatives of the integrals of v over
the basis (3.3) with respect to the coordinates (2.7) are then given by

(4.6)
∂(
∫
sk
v)

∂zj
=

∫

sk

∂v

∂zj

where zj is any coordinate from the list (2.7) and the periods of the right-hand side are given by
standard formulæ taking into account (2.13), (2.14), (2.15).

If xi is a branch point then the derivatives have the following additional contributions:

(4.7)
∂(
∫ xi

xr
v)

∂Aα
=

∫ xi

xr

vα − vα
d ln(v/dξ)

(xi) ,

(4.8)
∂(
∫ xi

xr
v)

∂C
(s),ℓ
j

=

∫ xi

xr

w
(s),ℓ
j −

w
(s),ℓ
j

d ln(v/dξ)
(xi) ,

(4.9)
∂(
∫ xi

xr
v)

∂C
(s),1
j

=

∫ xi

xr

u
(s)
j −

u
(s)
j

d ln(v/dξ)
(xi)

where the coordinate ξ is assumed to be invariant under the deformation. The expressions (4.7)-
(4.9) are independent of the choice of local coordinate ξ on C .

Proof. We start from (4.6): if the contour s is closed (i.e. coincides with one of a- or

b-cycles or a small contour around one of y
(s)
k ) then the differentiation commutes with

integration. If s connects xr with another zero xj which is not a branch point of Ĉ then
s can be projected on C , and in a local coordinate on C the integrand vanishes at both
endpoints. Therefore, the differentiation commutes with integration in this case, too.

The only case when the dependence of the endpoint on the differentiation variable
gives a non-trivial contribution is the case when s connects xr with one of the branch

points xi of Ĉ . Below we prove (4.7); the proof of (4.8) and (4.9) is almost identical.

Let xi ∈ Ĉ be a ramification point of Ĉ and ξi = ξ(π(xi)) ∈ C be the corresponding
critical value in some local coordinate ξ on C which remains fixed under deformation of

Ĉ; let ζ = ξ − ξi be a coordinate on C vanishing at π(xi) (the coordinate ζ deforms when

Ĉ varies). A suitable local coordinate on Ĉ near xi can then be chosen to be ζ̂(x) = ζ1/2.
Then the differentiation with respect to Aα of the endpoint also gives a contribution to

∂zk/∂Aα and we get

(4.10)
∂(
∫ xi

xr
v)

∂Aα
=

∫ xi

xr

vα +
∂ξi
∂Aα

v

dξ
(ξi)

for k = 1, . . . ,degDbr.
To compute the derivative ∂ξi/∂Aα we follow [3] and we write v(ξ) near ξi in the form

(4.11) v = (a+ b
√

ξ − ξi + . . . )dξ
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(recall that v has simple zero in the local parameter
√
ξ − ξi and dξ has already a simple

zero). Thus

(4.12) b =
d(v/dξ)

dζ̂i

∣∣∣
ξ=ξi

=
d(v/dξ)

d
√
ξ − ξi

∣∣∣
ξ=ξi

and

(4.13) vα =
∂v

∂Aα
=

(
aAα − ξiAα

2
√
ξ − ξi

b+ . . .

)
dξ .

Therefore,

(4.14) − vα
d
√
ξ − ξi

∣∣∣
ξ=ξi

= b
∂ξi
∂Aα

and,

(4.15)
∂ξi
∂Aα

= − vα/dζ̂i
(v/dξ)ζ̂i

(xi) .

Now (4.10) takes the form

(4.16)
∂
∫ xi

xr
v

∂Aα
=

∫ xi

xr

vα − vα/dζ̂i
[ln(v/dξ)]ζ̂i

(xi)

for i = 1, . . . ,degDbr . This proves the lemma. �

Proof of Theorem 4.1. Let us prove (4.2); the proofs of (4.3) and (4.4) are parallel.

On the space Mn
H [k] the periods Bγ and

∫ xi

xr
v become functions of {Aγ}ĝγ=1. Therefore

one can compute derivatives of the period matrix using the chain rule:

(4.17)
∂Ωαβ

∂Aγ
=

∂Ωαβ

∂Aγ

∣∣∣
Bγ ,(

∫ xi
xr

v)=const
+

ĝ∑

δ=1

∂Ωαβ

∂Bδ

∂Bδ

∂Aγ
+

r−1∑

i=1

∂Ωαβ

∂(
∫ xi

xr
v)

∂(
∫ xi

xr
v)

∂Aγ

(since Aα and the residues of v are independent coordinates we omit the term involving
these derivatives). Using (2.13), (4.7) together with variational formulæ (3.8)

(4.18)
∂Ωαβ

∂Aγ
= −

∫

bγ

vαvβ
v

,
∂Ωαβ

∂Bγ
=

∫

aγ

vαvβ
v

,
∂Ωαβ

∂(
∫ xi

xr
v)

= 2πi res
xi

vαvβ
v

(where xi runs through the set of all zeros of v) we rewrite (4.17) as follows:

∂Ωαβ

∂Aγ
=

ĝ∑

δ=1

[
−
(∫

aδ

vγ

)(∫

bδ

vαvβ
v

)
+

(∫

bδ

vγ

)(∫

aδ

vαvβ
v

)]
+

+2πi

r−1∑

i=1

(∫ xi

xr

vγ

)(
res
xi

vαvβ
v

)
− 2πi

degDbr∑

i=1

vγ
d ln(v/dζ)

(xi) res
xi

vαvβ
v

(4.19)

Due to the Riemann bilinear identity the sum of the first three terms in (4.19) vanishes.
The remaining terms give (4.2).
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The formulas (4.3) and (4.4) are obtained in a similar way by applying Riemann bilinear

identities to the pairs (w
(s),ℓ
j ,

vαvβ
v ) and (u

(s)
j ,

vαvβ
v ), respectively.

We give below the computation leading to (4.4); the proof of (4.3) requires only minimal

modifications. Taking into account (4.9) we get (recall that all a-periods of u
(s)
j vanish)

(4.20)
dΩαβ

dC
(s),1
j

=
∂Ωαβ

∂C
(s),1
j

+

ĝ∑

δ=1

[
∂Ωαβ

∂Aδ

∂Aδ

∂C
(s),1
j

+
∂Ωαβ

∂Bδ

∂Bδ

∂C
(s),1
j

]
+

r−1∑

k=1

∂Ωαβ

∂(
∫ xi

xr
v)

∂(
∫ xi

xr
v)

∂C
(s),1
j

.

We have ∂Aδ/∂C
(s),1
j = 0 since all a-periods of u

(s)
j vanish; according to (3.8),

∂Ωαβ

∂C
(s),1
j

= −2πi

∫ y
(s)
j

y
(1)
1

vαvβ
v

,

which gives

(4.21)
dΩαβ

dC
(s),1
j

= −2πi

∫ y
(s)
j

y
(1)
1

vαvβ
v

+

ĝ∑

δ=1

[(∫

bδ

u
(s)
j

)(∫

aδ

vαvβ
v

)]

(4.22) + 2πi
r−1∑

i=1

(
res
xi

vαvβ
v

)(∫ xi

xr

u
(s)
j

)
− 2πi

degDbr∑

i=1

u
(s)
j

d ln(v/dζ)
(xi) res

xi

vαvβ
v

.

Again, the Riemann bilinear identities applied to the pair of differentials of third kind

u
(s)
j and

vαvβ
v prove the vanishing of the sum of all terms except the last one, leading to

(4.4) (we notice that these two differentials have different positions of poles).

4.1. Variations of Abelian differentials. Here we are going to use variational formulæ
(3.10)-(3.12) on moduli spaces of Abelian differentials to derive the following analogs of
Theorem 4.1.

Theorem 4.3. The variations of canonical differentials vα with respect to coordinates (2.7) on
Mn

H [k] are expressed by the following formulæ:

(4.23)
∂vα(x)

∂Aγ
= −

∑

xi∈Dbr

vγ
d ln(v/dξ)

(xi) res
t=xi

vα(t)B(t, x)

v(t)

(4.24)
∂vα(x)

∂C
(s),ℓ
j

= −
∑

xi∈Dbr

w
(s),ℓ
j

d ln(v/dξ)
(xi) res

t=xi

vα(t)B(t, x)

v(t)

(4.25)
∂vα(x)

∂C
(s),1
j

= −
∑

xi∈Dbr

u
(s)
j

d ln(v/dξ)
(xi) res

t=xi

vα(t)B(t, x)

v(t)

where ξ is a local coordinate on C near xi as in Theorem 4.1. The right-hand side of (4.5) is
independent of the choice of these coordinates near xr.
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Proof. Let us show how to derive (4.23) from the variational formulæ (3.10). In compar-
ison with the variational formulæ for Ω proven above it is essential to carefully consider

the dependence of vα on the point of Ĉ, since the latter is deforming. Moreover, the vari-
ation of vα with respect to Pj used in (3.10) is defined by (3.9) where the “flat” coordinate
is kept fixed, while in (4.23) the differentiation is performed according to the rule (2.12)

where ξ is a local parameter lifted to Ĉ from C which is assumed to be independent of
moduli coordinates on Mn

H [k].
Taking into account these differences, one can compute the left-hand side of (4.23) as

follows. Let fα(x) = vα/v: then the left-hand side of (4.23) is rewritten as

∂vα(x)

∂Aγ
=

∂(vfα(x))

∂Aγ
=

∂fα(x)

∂Aγ

∣∣∣
ξ(x)

v(x) + fα(x)
∂v(x)

∂Aγ

∣∣∣
ξ(x)

=
∂fα(x)

∂Aγ

∣∣∣
z(x)

v(x) +
∂fα(x)

∂z(x)

∂z(x)

∂Aγ

∣∣∣
ξ(x)

v(x) + fα(x)vγ(x)

(4.26) =
∂fα(x)

∂Aγ

∣∣∣
z(x)

+Aγ(x)d
(vα
v

)
+

vαvγ
v

(x)

where Aγ(x) =
∫ x
xr

vγ is the component γ ∈ {1, . . . , ĝ} of the Abel map.
The computation of the first term in (4.26) can then be performed in complete analogy

to (4.19) with the differential
vαvβ
v (t) replaced by the differential 1

2πi
vα(t)B(x,t)

v(t) . Applying

the Riemann bilinear relations to the differentials vγ and 1
2πi

vα(t)B(x,t)
v(t) we obtain the sum

of terms entering the right-hand side of (4.23) minus the residue of 1
2πi

vα(t)B(x,t)
v(t)

∫ t
xr

vγ at

t = x. This residue is equal to the sum of the last two terms in (4.26) with opposite sign.
This gives (4.23). The proofs of the formulæ (4.24) and (4.25) are parallel.

4.2. Variations of prime-form and canonical bidifferential. Variational formulæ for E(x, y)
and B(x, y) can be proven in parallel to Th.4.3.

As in the case of normalized canonical differential, we define the derivative of B(x, y)
and E(x, y) with respect to any coordinate zi on Mn

H [k] as

(4.27)
∂B(x, y)

∂zi
=

∂

∂zi

(
B(x, y)

dξ(x)dξ(y)

)
dξ(x)dξ(y)

(4.28)
∂E(x, y)

∂zi
=

∂

∂zi

(
E(x, y)[dξ(x)dζ(y)]1/2

)
[dξ(x)dζ(y)]−1/2

where ξ(x) and ξ(y) are local coordinates lifted to Ĉ from moduli-independent local coor-
dinates on C , and these coordinates remain fixed under differentiation.

Theorem 4.4. The variations of the canonical bidifferential B(x, y) with respect to the coordinates
(2.7) on Mn

H [k] are given by:

(4.29)
∂B(x, y)

∂Aγ
= −

∑

xi∈Dbr

vγ
d ln(v/dξ)

(xi) res
t=xi

B(x, t)B(t, y)

v(t)
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(4.30)
∂B(x, y)

∂C
(s),ℓ
j

= −
∑

xi∈Dbr

w
(s),ℓ
j

d ln(v/dξ)
(xi) res

t=xi

B(x, t)B(t, y)

v(t)

(4.31)
∂B(x, y)

∂C
(s),1
j

= −
∑

xi∈Dbr

u
(s)
j

d ln(v/dξ)
(xi) res

t=xi

B(x, t)B(t, y)

v(t)

where ξ is a local coordinate on C near xi; the right-hand side of (4.5) is independent on the choice
of these coordinates near xr.

Theorem 4.5. The variations of the prime-form with respect to coordinates (2.7) on Mn
H [k] are

given by:

(4.32)
∂ lnE(x, y)

∂Aγ
= −1

2

∑

xi∈Dbr

vγ
d ln(v/dξ)

(xi) res
t=xi

1

v(t)

[
dt ln

E(x, t)

E(y, t)

]2

(4.33)
∂ lnE(x, y)

∂C
(s),ℓ
j

= −1

2

∑

xi∈Dbr

w
(s),ℓ
j

d ln(v/dξ)
(xi) res

t=xi

1

v(t)

[
dt ln

E(x, t)

E(y, t)

]2

(4.34)
∂ lnE(x, y)

∂C
(s),1
j

= −1

2

∑

xi∈Dbr

u
(s)
j

d ln(v/dξ)
(xi) res

t=xi

{
1

v(t)

[
dt ln

E(x, t)

E(y, t)

]2}

where ξ is a local coordinate on C near xi; the right-hand side of (4.5) is independent of the choice
of these coordinates near xi.

4.3. The Bergman tau-function on spaces of spectral covers. The Bergman tau func-
tion on the moduli spaces of Abelian differentials is a natural higher genus analog of
Dedekind’s eta-function [17, 14, 19]. One can define two natural tau functions associated
to the moduli space of spectral covers; in the case of holomorphic v these tau functions
were introduced in [18] and used to study the Picard group of the moduli spaces (in [18]
we considered the tau functions on universal spaces of spectral covers i.e. we allowed the
base curve C to vary).

Here we restrict ourselves to the case of holomorphic v, namely, to moduli space Mn
H of

spectral covers of the ordinary Hitchin systems. In this case the equations for the Bergman
tau functions take a similar form to the variational formulæ for the canonical objects con-
sidered above.

Denote the moduli space of ordinary Hitchin’s spectral covers by Mn
H ; in this case

all coefficients Qk of the equation (2.1) are holomorphic k-differentials, the genus of the
spectral cover is ĝ = n2(g − 1) + 1, the number of branch points is p = n(n − 1)(2g − 2)
and the total number of zeros of v is r = 2ĝ − 2 = p + 2n(g − 1). The differential v is
holomorphic, and the local coordinates on Mn

H are given by the a-periods Aγ =
∫
aγ

v.
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Considering Mn
H as a subspace of the space of holomorphic Abelian differentials with

simple zeros Hĝ we define the Bergman tau function on Mn
H by restriction of the Bergman

tau function (3.13) from Hĝ.
The resulting equations for τB (this tau function is defined by the formula (4.3) of [18])

as function of periods Aγ can be derived from (3.13) in analogy to (4.2):

Proposition 4.6. The Bergman tau-function τB(Ĉ, v) on the space Mn
H satisfies the following

system of equations

(4.35)
∂ ln τB
∂Aγ

= −2πi
∑

xi∈Dbr

vγ
d ln(v/dξ)

(xi) res
xi

(
Bv

reg

v

)
− πi

8

r∑

i=1

res
x=xi

(
vγ(x)∫ x
xi
v

)
.

Proof. In parallel to (4.19) we have, applying the chain rule to the equations (3.13) and
using (2.13), (4.7):

∂ ln τ

∂Aγ
=

ĝ∑

δ=1

[
−
(∫

aδ

vγ

)(∫

bδ

Breg

v

)
+

(∫

bδ

vγ

)(∫

aδ

Breg

v

)]

(4.36) + 2πi

r−1∑

i=1

(∫ xi

xr

vγ

)(
res
xi

Breg

v

)
− 2πi

degDbr∑

i=1

vγ
d ln(v/dζ)

(xi) res
xi

Breg

v

Using Riemann bilinear relations the first sum in (4.36) equals to the sum of the residues
as follows

(4.37) − 2πi
r∑

i=1

res
xi

(
Breg

v

∫ x

xr

vγ

)
.

The main difference with the proof of the variational formula (4.2) for the period matrix

is that the poles of
Breg

v are of order 3 (as we see below) which leads to extra terms while
computing the residues. Let us now represent Breg via difference of two projective con-
nections [14]:

(4.38) Breg(x, x) =
1

6
(SB − Sv)

where SB is the Bergman projective connection (this projective connection is holomorphic;
it equals to the constant term in the asymptotics of B(x, y) on the diagonal equals (1/6)SB )
and Sv is the meromorphic projective connection given by the Schwarzian derivative

Sv(ξ) =

{∫ x

v, ξ

}
=

(
v′

v

)′

− 1

2

(
v′

v

)2

in any local coordinate ξ on Ĉ . In a neighbourhood of a zero xi of v we choose ξ such that
v = ξdξ; then near xi we have

1

6

SB − Sv

v
=

(
1

4ξ3
+

1

6ξ
SB(ξ)

)
dξ
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and

res
xi

(
Breg

v

∫ x

xr

vγ

)
=

(∫ xi

xr

vγ

)
res
xi

Breg

v
+

1

8

(
vγ
dξ

)

ξ

(xi)

=

(∫ xi

xr

vγ

)
res
xi

Breg

v
+

1

16
res
x=xi

(
vγ(x)∫ x
xi
v

)

and (4.36) equals to

−2πi

degDbr∑

i=1

vγ
d ln(v/dζ)

(xi) res
xi

Breg

v
− πi

8

r∑

i=1

res
x=xi

(
vγ(x)∫ x
xi
v

)

which gives (4.35). �

5. HIGHER ORDER DERIVATIVES ON Hĝ AND Mn
H

5.1. Space Hĝ. The higher order derivatives with respect to moduli on the space Hĝ can
be obtained by a simple iteration of first derivatives.

Let us consider first the multiple derivatives of the Bergman tau function. Using the

coordinates Pi =
∫
si
v, where si ∈ H1(Ĉ, {xi}ri=1), and referring to (3.13) and (3.11) we

find:

(5.1)
∂2

∂Pi∂Pj
ln τB =

1

2πi
symmi,j

∫

s∗i

∫

s∗j

B2(x, y)

v(x)v(y)

where the symmetrization is 1/2 of the sum of the (ij) and (ji) terms. The symmetrization
is necessary if the contours s∗i and s∗j have non-zero intersection index (see formulas (3.5)
and (3.6) of [14] for details about the extra term associated to the intersection point if the
symmetrization is not assumed).

Further differentiation using (3.11) gives

(5.2)
∂3

∂Pi∂Pj∂Pk
ln τB =

2

(2πi)2
symm(i,j,k)

∫

x∈s∗i

∫

y∈s∗j

∫

t∈s∗k

B(x, y)B(x, t)B(t, y)

v(x)v(y)v(t)

where the symmetrization is again understood as averaging over the 6 permutations of
(i, j, k). The nth derivatives of τB are given by

(5.3)
∂(n)

∂Pi1 . . . ∂Pin

ln τB =
1

(2πi)n−1
symm(i1,...,in)

∫

s∗i1

· · ·
∫

s∗in

Qn(z1, . . . , zn)

where the completely symmetric multi-differential Qn is given by

(5.4) Qn(z1, . . . , zn) = 2
∑

all Γ

∏n
j=1B(zkj , zkj+1

)
∏n

j=1 v(zj)

The sum runs over all (n− 1)!/2 permutations Γ = (k1, . . . , kn) of z1, . . . , zn which form a
cycle of length n (two such permutations are considered equivalent if they are related by
cyclic permutation i.e. we do not distinguish between (1234) and (2341)); kn+1 is identi-
fied with k1.
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The multi-differentials Qn(z1, . . . , zn) satisfy the relations

(5.5)
∂

∂Pi
Qn(z1, . . . , zn) =

1

2πi

∫

t∈s∗i

Qn+1(z1, . . . , zn, t) .

Another natural hierarchy of multi-differentials (although no longer completely sym-
metric) which are given by combinations of B(x, y) can be obtained by differentiation of
B(x, y) itself. Namely, using the variational formula (3.11) on the space Hĝ we get

(5.6)
∂n

∂Pi1 . . . ∂Pin

B(x, y) =
1

(2πi)n
symm(i1,...,in)

∫

s∗i1

· · ·
∫

s∗in

Rn+2(x, z1, . . . , zn, y)

where the multi-differentials Rn with n arguments are given by

(5.7) Rn(z1, . . . , zn) =
∑

all Γ̃

∏n−1
j=1 B(zkj , zkj+1

)
∏n−1

j=2 v(zj)

where in all products entering this sum, the indices k1, kn are given by k1 = 1 and kn = n;

the sum goes over all (n − 2)! paths Γ̃ connecting z1 with zn which go only once through
every vertex representing the other arguments z2, . . . , zn−1.

The multi-differentials Rn are symmetric is under permutations of the intermediate
arguments x2, . . . , xn−1, but not fully symmetric, in contrast to Qn.

The families of multi-differentials Qn and Rn as well as their variational formulæ re-
semble the structures arising in the framework of topological recursion of [8] (the genus
of the base curve C equals zero in the constructions of [8]). Moreover, both Qn’s and Rn’s
have second order poles when any two arguments coincide (in addition to generically
simple poles at the branch points), while the multi-differentials Wn of [8] have poles only
at the ramification points of the cover.

The formula (5.6) implies the following expression for the multiple derivatives of the

period matrix Ω of Ĉ on Hĝ:

(5.8)
∂(n)

∂Pi1 . . . ∂Pin

Ωαβ =
1

(2πi)n−1
symm(i1,...,in)

∫

s∗i1

· · ·
∫

s∗in

Rαβ
n (z1, . . . , zn)

where

Rαβ
n (z1, . . . , zn) =

∫

x∈bα

∫

y∈bβ

Rn+2(x, z1, . . . , zn, y)

or

(5.9) Rαβ
n (z1, . . . , zn) = vα(z1)vβ(zn)

∑

all Γ̃

∏n−1
j=1 B(zkj , zkj+1

)
∏n

j=1 v(zj)

where, as before, in all products entering this sum k1 = 1 and kn = n; the sum goes

over all (n − 2)! paths Γ̃ connecting x1 with xn which go only once through every vertex
representing other arguments x2, . . . , xn−1.
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5.2. The space Mn
H . On the spaces of spectral covers Mn

H the multi-differentials Qn are
related to Qn+1 by formulæ which can be derived from (5.5) in parallel to the proof of
(4.23):

(5.10)
∂

∂Aγ
Qn(z1, . . . , zn) = −

∑

xi∈Dbr

vγ
d ln(v/dξ)

(xi) res
t=xi

{
1

v(t)
Qn+1(z1, . . . , zn, t)

}

Similarly, the multi-differentials Rn and Rn+1 are related by

(5.11)
∂

∂Aγ
Rn(z1, . . . , zn) = −

∑

xi∈Dbr

vγ
d ln(v/dξ)

(xi) res
t=xi

{
1

v(t)
Rn+1(z1, . . . , zn−1, t, zn)

}

Integrating (5.10) over two b-cycles with respect to z1 and z2 we get similar formulæ for

Rαβ
n (5.9).
While higher derivatives of the period matrix, tau-function and canonical bidifferential

on the space Hĝ are given by a simple formulæ (5.3), (5.6) and (5.8) their restriction to the
space Mn

H is much less trivial. As an example of such computation we find below the
second derivatives of the period matrix.

5.2.1. Second derivatives of Ωαβ . The period matrix on the space Ωαβ is known to be given
by second derivatives of a single function (the ”prepotential”)

F0 =
1

2

ĝ∑

γ=1

AγBγ :

(5.12) Ωαβ =
∂2F0

∂Aα∂Aβ
.

We recall the proof of (5.12): using the relation ∂Bγ/∂Aα = Ωαβ we get

∂F0

∂Aα
=

1

2


Bα +

ĝ∑

γ=1

AγΩαγ




and

∂2F0

∂Aα∂Aβ
= Ωαβ +

1

2

ĝ∑

γ=1

Aγ
∂Ωαγ

∂Aβ
.

The last sum in this formula equals zero: indeed the formula (4.5) for ∂Ωαβ/∂Aγ implies
that this tensor is invariant under permutations of the indices α, β, γ and thus we have

(5.13)

ĝ∑

γ=1

Aγ
∂Ωαγ

∂Aβ
=




ĝ∑

γ=1

Aγ
∂

∂Aγ


Ωαβ.

The last expression vanishes because it is the action of the scaling operatorE =
∑ĝ

γ=1Aγ
∂

∂Aγ

generating the map v 7→ λv (λ ∈ C
×) and the period matrix is clearly invariant under such

rescaling.
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Due to (5.12) all higher derivatives of Ωαβ in Aγ ’s are also completely symmetric with
respect to all indices. It is convenient to use the following notation:

y =
v

dξ

which is a function defined on the union of small disks on Ĉ around ramification points
xi depending on the choice of local parameter ξ on C near each branch point xi. Since
v has a simple zero at xi, in a neighbourhood of xi y is a holomorphic function of the

corresponding local parameter ξ̂i =
√

ξ − ξ(xi).
To compute second derivatives of Ωαβ on Mn

H one can differentiate the formula (4.5)

(5.14)
∂Ωαβ

∂Aγ
= −2πi

∑

xi∈Dbr

res
xi

vαvβvγ
dξ dy

with respect to the coordinate Aδ using (2.13) and (4.23). Then due to (4.23) we have

∂(dy)

∂Aδ
= d

(
vδ
dξ

)

which has second order pole at xi (dξ has a simple zero at the ramification point, and,
therefore, vδ/dξ has a simple pole at xi). We have then

∂2Ωαβ

∂Aδ∂Aγ
=2πi

∑

xi,xj∈Br

res
t=xi

res
t̃=xj

{
B(t, t̃)

vδ(t̃)vγ(t̃)vα(t)vβ(t) + (perm of (α, β, γ))

(dy dξ)(t) (dy dξ)(t̃)

}
+

+2πi
∑

xi∈DBr

res
xi

{
vαvβvγ
(dy)2dξ

d

(
vδ
dξ

)}
.(5.15)

It is natural to treat the terms corresponding to i = j in this double sum separately.
First, we compute the residue at the first order pole arising from zero of dξ at xi. Namely,

we have dξ = 2ξ̂dξ̂ near each xi and using the notation vα(xi) = vα/dξ̂(xi) we have

res
t̃=xi

B(t, t̃)
vδ(t̃)vγ(t̃)

(dy dξ)(t̃)
=

1

2

B(t, xi)vδ(xi)vγ(xi)

y′(xi)

where, for any differential u on Ĉ , the notation u(xi) is used to denote (u/dξ̂)(xi) and the

prime denotes the derivative with respect to ξ̂i.
The resulting expression has a third order pole at xi (arising from the double pole of

B(t, xi) and the simple zero of dξ):

res
t=xi

{
B(t, xi)

(dydξ)(t)
vα(t)vβ(t)

}
=

1

2
Bdξ̂

reg(xi)
vαvβ
y′

(xi) +
1

4

(
vαvβ
y′

)′′

where

Bdξ̂
reg(xi) =

(
B(x, y)− dξ̂(x)dξ̂(y)

(ξ̂(x)− ξ̂(y))2

)∣∣∣
x=y=xi

is equal to 1/6 of the Bergman projective connection computed at xi in the coordinate ξ̂.
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To compute the last residue in (5.15) we notice that the corresponding expression has a
pole of third order at xi. Starting from

vδ =

(
vδ(xi) + v′δ ξ̂i +

v′′δ
2
ξ̂2 + . . .

)
dξ̂i , dξ = 2ξ̂idξ̂i

and
1

dξ
d

(
vδ
dξ

)
= − vδ

4ξ̂3i
+

v′′δ
8ξ̂

+ . . . .

the last term in (5.15) can be computed as follows:

res
xi

{
vαvβvγ
(dy)2

(
− vδ

4ξ̂3i
+

v′′δ
8ξ̂

+ . . .

)}
= −1

8

(
vαvβvγ
(y′)2

)′′

vδ +
1

8

vαvβvγv
′′
δ

(y′)2
.

Now the formula (5.15) can be written as

1

2πi

∂2Ωαβ

∂Aδ∂Aγ
=

1

4

∑

xi 6=xj∈Br

{
B(xi, xj)

vδ(xi)vγ(xi)vα(xj)vβ(xj) + (cycl of (α, β, γ))

y′(xi) y′(xj)

}

+
1

4

∑

xi∈Br

Bdξ̂
reg(vαvβvγvδ + (cycl(α, β, γ))

y′2
(xi)+

1

8

∑

xi∈Br

(
vγvδ
y′

(
vαvβ
y′

)′′

(xi) + (cycl(α, β, γ))

)

+
1

8

∑

xi∈Br

[
−
(
vαvβvγ
(y′)2

)′′

vδ +
vαvβvγv

′′
δ

(y′)2

]
.

A straightforward computation by expanding the derivatives above, shows that the sum
of the last two terms is equal to

−1

8

∑

xi∈Br

y′′′

y′3
vαvβvγvδ +

1

8

∑

xi∈Br

1

y′2
(v′′αvβvγvδ + (cycl (α, β, γ, δ)) .

Therefore we get the following proposition:

Proposition 5.1.

1

2πi

∂2Ωαβ

∂Aδ∂Aγ
=

1

4

∑

xi 6=xj∈Br

[
B(xi, xj)

vδ(xi)vγ(xi)vα(xj)vβ(xj) + (cycl (α, β, γ))

y′(xi) y′(xj)

]

(5.16) +
1

8

∑

xi∈Br

[(
6Bdξ̂

reg

y′2
− y′′′

y′3

)
vαvβvγvδ(xi) +

1

y′2
(v′′αvβvγvδ + cycl (α, β, γ, δ))

]
.

The formula (5.16) coincides with the expression obtained in Theorem 7.5 of [2] using

the framework of topological recursion of [8] (notice that 6Bdξ̂
reg is nothing but the Bergman

projective connection SB which enters the formula (7.4) of [2].
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To conclude, we have shown that the deformation calculus on spaces of Hitchin’s spec-
tral covers can be naturally induced from a much more transparent deformation theory
on moduli spaces of holomorphic or meromorphic Abelian differentials on Riemann sur-
faces. In consideration of the close relationship between deformations of spectral covers
and the theory of topological recursion of [8], it is natural to expect that the topological
recursion itself could be a manifestation of a much less involved structure associated to
moduli spaces of Abelian differentials.
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