
ar
X

iv
:1

81
2.

05
87

1v
3 

 [
m

at
h.

A
G

] 
 6

 D
ec

 2
01

9

HODGE-DELIGNE POLYNOMIALS OF SYMMETRIC PRODUCTS

OF ALGEBRAIC GROUPS

JAIME D. SILVA

Abstract. Let X be a complex quasi-projective algebraic variety. In this paper
we study the mixed Hodge structures of the symmetric products SymnX when
the cohomology of X is given by exterior products of cohomology classes with odd
degree. We obtain an expression for the equivariant mixed Hodge polynomials
µSn

Xn (t, u, v), codifying the permutation action of Sn as well as its subgroups. This
allows us to deduce formulas for the mixed Hodge polynomials of its symmetric
products µSymnX (t, u, v). These formulas are then applied to the case of linear
algebraic groups.

1. Introduction

Given a topological space X , its n-fold symmetric product is given by identifying
in its n-fold cartesian product Xn those tuples that can be obtained from each other
by permuting the entries. More concretely, it is given by the finite quotient

SymnX := Xn/Sn,

where Sn is the symmetric group on n letters that acts on Xn by permutation. When
X is a smooth complex algebraic curve, its symmetric products are also smooth
algebraic varieties [ST]. For example, when X is a compact Riemann surface C of
genus g, SymgC is birationally equivalent to the Jacobian J of C. Moreover, for
n > 2g − 2 the symmetric product SymnC is a projective fiber bundle over J - see
[Mac2]. If one assumes that dimC X > 1, then SymnX are no longer smooth but
they are still quasi-projective algebraic varieties - see [Mum].

The cohomology of a complex quasi-projective algebraic variety X is endowed
with a natural mixed Hodge structure [De2]. The mixed Hodge numbers of SymnX
can be obtained from a formula of J. Cheah [Ch], that generalized the work of I. G.
Macdonald on their Poincaré polynomials [Mac].

In this paper, we provide an alternative approach to the problem of determining
the mixed Hodge polynomials of symmetric products of certain classes of algebraic
varieties whose cohomologies are exterior algebras in a certain sense described below.

Mixed Hodge structures of X define a triply-graded structure

H∗(X,C) =
⊕

k,p,q

Hk;p,q (X,C) ,

satisfying the duality Hk;p,q (X,C) ∼= Hk;q,p (X,C). Fix m ∈ N and (r1, · · · , rm) ∈
Nm. We say that the cohomology of X is an exterior algebra generated in odd degree
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2 J. SILVA

if there are classes ωi
j ∈ Hdi;pi,qi (X,C), for i = 1, · · · , m and j ∈ {1, · · · , ri}, with

di ∈ 2N− 1, pi, qi ∈ N, such that

H∗;∗,∗ (X,C) =
∧

〈

ωi
j

〉m,ri

i,j=1
.(1.1)

The class of varieties whose cohomology is of this form includes all linear algebraic
groups and abelian varieties.

Our strategy follows by considering equivariant mixed Hodge polynomials µG
X (t, u, v),

codifying the triply-graded G-module [H∗;∗,∗ (X,C)]G associated to an algebraic ac-
tion of a finite group G on X . This gives the main result of the paper.

Theorem 1.1. Let X be a complex quasi-projective variety whose cohomology is an
exterior algebra generated in odd degree, of the form in (1.1). Then the equivariant
mixed Hodge polynomial for the natural Sn action on Xn is given by

µSn

Xn (t, u, v) =
m
⊗

i=1

[

n−1
∑

k=0

k
∧

St
(

(

tdiupivqi
)k

+
(

tdiupivqi
)k+1

)

]�ri

where St is the standard representation.

With this Theorem, the deduction of the mixed Hodge polynomial of µSymnX (t, u, v)
follows from the representation theory of the symmetric group Sn.

Theorem 1.2. Let X be a complex quasi-projective variety whose cohomology is an
exterior algebra generated in odd degree, as in (1.1). Then,

µSymnX (t, u, v) =
1

n!

∑

α∈Sn

m
∏

i=1

det
(

I + tdiupivqiMα

)ri

for Mα the permutation matrix associated to α.

To give an example, in the case of a complex torus Td of dimension d, we get the
formula

µSymnTd
(t, u, v) =

1

n!

∑

α∈Sn

det (I + tuMα)
d det (I + tvMα)

d(1.2)

where Mα is the matrix of permutation of α ∈ Sn.
The above formula also gives the Poincaré polynomial by setting u = v = 1. In

particular, for any algebraic variety as in Theorem 1.2, we get

PSymnX (t) =
1

n!

∑

α∈Sn

m
∏

i=1

det
(

I + tdiMα

)ri
.

Formulas of this type are also important in the theory of character varieties, which
are algebraic varieties of the form XΓG := Hom(Γ, G)//G for a finitely presented
group Γ and a complex reductive group G. In the special case of Γ = Zr, the
Poincaré polynomials and, more generally, the mixed Hodge polynomials of XΓG
were computed in [St] and in [FS]; for example in the case G = GL(n,C), they
correspond to setting di = pi = qi = 1.
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The formulas obtained here for mixed Hodge polynomials agree with Cheah’s
formula (see Remark 4.1), which provides the generating series of the compactly
supported mixed Hodge polynomials of SymnX ,

∑

n≥0

µc
SymnX(t, u, v) z

n =
∏

p,q,k

(

1− (−1)kupvqtkz
)(−1)k+1hk,p,q

c (X)
(1.3)

yielding a similar formula for the usual mixed Hodge numbers when Poincaré duality
applies. This formula can then be used to recover µc

SymnX , being given by the
coefficient of zn in the right-hand side.

We now outline the contents of the article. In Section 2, we prove the main
results (Theorem 2.3 and Theorem 2.6). We start by deducing the equivariant mixed
Hodge polynomial by analyzing the induced action of Sn on H∗ (Xn,C). Afterwards,
by some simple considerations involving only the Schur orthogonality relations, we
deduce a general formula for µSymnX . In Section 3, we apply the results in Section
2 to several families of examples. Most important among those are linear algebraic
groups, that motivated this study. In section 3.3, we also consider the case of real
topological Lie groups. Finally, in Section 4 we compare our result with the above
formula of J. Cheah, leading to some interesting combinatorial identities (Theorem
4.3) generalizing those of [FS, Section 5.5].

2. Equivariant Polynomials of Permutation Actions

Let X be a complex quasi-projective variety and Sn the symmetric group on n
letters acting on Xn by permutation. In this Section, we explore the induced action
Sn y Hk;p,q (Xn,C) when the cohomology of X is an exterior algebra generated in
odd degree. We will do so by determining the equivariant mixed Hodge polynomial
µSn

Xn . From it, we will be able to deduce a general formula for µSymnX by a simple
calculation on characters. We start by giving an overview on mixed Hodge structures
and their relations to actions of finite groups.

2.1. Equivariant mixed Hodge structures for finite group actions. The co-
homology of a complex quasi-projective algebraic variety X is endowed with a mixed
Hodge structure [De1, De2]. Briefly, its cohomologyH∗ (X,C) admits two natural fil-
trations: an increasing filtration, called the weight filtration W ∗, that can be defined
over the rationals H∗ (G,Q), and a decreasing filtration, denoted F∗, generalizing
the Hodge filtration of smooth projective varieties. The name of these structures is
motivated from the fact that the Hodge filtration F∗ induces a pure Hodge structure
on the graded pieces of the weight filtration. This leads to a bi-graduation of the
cohomology ring, whose pieces are called mixed Hodge components and are denoted
by

Hk;p,q (X,C) := GrpFGrWC

p+qH
k (X,C) .

Since the Hodge filtration induces a pure Hodge structure on GrWC

p+qH
k (X,C), these

pieces satisfy the duality Hk;p,q (X,C) ∼= Hk;q,p (X,C). Their dimensions are called
mixed Hodge numbers and are denoted by

hk;p,q (X) := dimHk;p,q (X,C) .
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These numbers are usually codified as a polynomial in three variables

µX (t, u, v) :=
∑

k,p,q

hk;p,q (X) tkupvq

known as mixed Hodge polynomial (MHP) or Hodge-Deligne polynomial of X . We
recall that mixed Hodge structures also exist in the compactly supported cohomol-
ogy. Moreover, when X is smooth (or an orbifold) Poincaré duality is compatible
with mixed Hodge structures, so

hk;p,q (X) = h2d−k;k−p,k−q
c (X)

where d = dimC X . In here and below the subscript (or superscript, for the Hodge
polynomials) c means we are referring to the compactly supported cohomology. Also
important will be the E -polynomial, given by µX (−1, u, v) for the usual cohomology
and µc

X (−1, u, v) for the compactly supported version

Ec
X (u, v) :=

∑

k,p,q

(−1)k hk;p,q
c (X) upvq.

Although this polynomial codifies less information than µX , it satisfies some very
nice properties. Being an example of a motivic measure on the category of complex
quasi-projective varities, the E-polynomial for the compactly supported cohomology
is additive for locally closed stratifications. In certain contexts, it also provides a
link with arithmetic geometry. An important result of this nature is one by N.
Katz in the Appendix of [HRV]. Also, the E-polynomial is also multiplicative for
fibrations with trivial monodromy (see [LMN]). For some type of varieties, this
polynomial is enough to recover the mixed Hodge polynomial. This is the case of
smooth projective varieties, but also of separably pure varieties - a family of varieties
studied in [DiLe], and also essential in [FS].

Now, letX be a complex quasi-projective variety endowed with an algebraic action
of a finite group G. Since G acts algebraically, the induced action G y H∗ (X,C)
preserves mixed Hodge structures. Then the mixed Hodge components are endowed
with a G-module structure, that we denote by

[

Hk;p,q (X,C)
]

G
. This way, we can

think of H∗;∗,∗ (X,C) as a triply graded G-module. Following a standard procedure,
we codify this action in a polynomial.

Definition 2.1. Let X be a complex quasi-projective G-variety, for G a finite group.
We define the equivariant mixed Hodge polynomial of G y X as

µG
X (t, u, v) =

∑

k,p,q

[

Hk;p,q (X,C)
]

G
tkupvq.

The polynomials codifying actions of finite groups on the mixed Hodge compo-
nents were firstly introduced in [DK]. The equivariant mixed Hodge polynomial
encodes all numerical information related to this action. For instance, one can re-
cover µX by taking

µX (t, u, v) = dimC µ
G
X (t, u, v) .

One can also recover the mixed Hodge polynomial of the quotient by applying the
isomorphism

H∗;∗,∗ (X/G,C) ∼= H∗;∗,∗ (X,C)G(2.1)
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[Gro], that tells us µX/G equals the coefficient of the trivial representation when µG
X

is written in a irreducible basis. By restricting the action to a subgroup H →֒ G,
we get

µH
X (t, u, v) = µG

X (t, u, v) |H

=
∑

k,p,q

[

Hk;p,q (X,C)
]

G
|Ht

kupvq.

Then we can also get information on the quotient by any subgroup. For a more
detailed account on mixed Hodge structures, see [PS].

2.2. Permutation Actions. Let X be a complex quasi-projective variety and con-
sider the permutation action of G = Sn on Xn. We are interested in the cases where
the cohomology of X is an exterior algebra, as follows.

Definition 2.2. Fix m ∈ N and (r1, · · · , rm) ∈ Nm. We say that the coho-
mology of X is an exterior algebra generated in odd degree if there are classes
ωi
j ∈ Hdi;pi,qi (X,C), for i = 1, · · · , m and j ∈ {1, · · · , ri}, with di ∈ 2N − 1,

pi, qi ∈ N0, such that

H∗;∗,∗ (X,C) =
∧

〈

ωi
j

〉m,ri

i,j=1
.

We will start by obtaining an expression for the equivariant mixed Hodge poly-
nomial µSn

Xn .

Theorem 2.3. Let X be a complex quasi-projective variety whose cohomology is
generared in odd degree. Assuming the conventions in Definition 2.2, the equivariant
mixed Hodge polynomial for the natural Sn action on Xn is given by

µSn

Xn (t, u, v) =
m
⊗

i=1

[

n−1
∑

k=0

k
∧

St
(

tdiupivqi
)k (

1 + tdiupivqi
)

]�ri

where St is the standard representation.

Proof. We will start by a suitable description of the cohomology of Xn. By the
Künneth isomorphism

H∗;∗,∗ (Xn,C) ∼=
[

∧

〈

ωi
j

〉m,ri

i,j=1

]�n

∼=

[

m
⊗

i=1

∧

〈

ωi
1, · · · , ω

i
ri

〉

C

]�n

∼=

n
⊗

j=1

m
⊗

i=1

∧

〈

ωi,j
1 , · · · , ωi,j

ri

〉

C

∼=

m
⊗

i=1

n
⊗

j=1

∧

〈

ωi,j
1 , · · · , ωi,j

ri

〉

C

where ωi,j
k is the image of ωi

k in the j-th component of Xn. Moreover, Sn acts on
⊗n

j=1

∧
〈

ωi,j
1 , · · · , ωi,j

ri

〉

C
∼=
∧⊗n

j=1

〈

ωi,j
1 , · · · , ωi,j

ri

〉

C
by permutation on j, so

µSn

Xn (t, u, v) =

m
⊗

i=1

[

n−1
∑

k=0

k
∧

ρSn

(

tdiupivqi
)k

]�ri
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where ρSn
= T+ St, for T the trivial and St the standard representations. Then

n−1
∑

k=0

k
∧

ρSn
tdiupivqi =

n−1
∑

k=0

k
∧

[St + T]
(

tdiupivqi
)k

=

n−1
∑

k=0

[

k
∧

St +

k−1
∧

St

]

(

tdiupivqi
)k

=
n−1
∑

k=0

k
∧

St
(

(

tdiupivqi
)k

+
(

tdiupivqi
)k+1

)

and so the result follows. �

Remark 2.4. The fact that cohomological forms of even degree ω satisfy ω∧α = α∧ω
for any class α, explains why we have to require that the generators of H∗ (X,C)
have odd degree.

In order to recover µSymnX from µSn

Xn , we will need some simple facts from rep-
resentation theory of finite groups. Since this Theorem expresses the equivariant
polynomial µSn

Xn as a tensor product, we require a suitable way to obtain the coeffi-
cient of the trivial representation from the product of two representations. This is
provided by the following Lemma.

Lemma 2.5. Let G be a finite group and a =
[

∑k
l=1 alTl

]

, b =
[

∑k
l=1 blTl

]

the

decomposition into irreducibles of two G-representations. Then the coefficient of the
trivial representation of a � b is given by

1

|G|

k
∑

l=1

|[cl]| (c1,la1 + · · ·+ ck,lak) (c1,lb1 + · · ·+ ck,lbk)

where CG = (ci,j)i,j is the character table of G and |[cl]| is the order of the conju-
gation class corresponding to the l-th column. We conclude, in particular, that the
coefficient of the trivial representation of a�n, for n ≥ 2, is given by

1

|G|

k
∑

l=1

|[cl]| (c1,la1 + · · ·+ ck,lak)
n .

Proof. Denote by χa�b χa�nand the characters of a � b and a�n. Then

χa�b ([cl]) = (c1,la1 + · · ·+ ck,lak) (c1,lb1 + · · ·+ ck,lbk)

χa�n ([cl]) = (c1,la1 + · · ·+ ck,lak)
n

by the linear and multiplicative property of characters. So we can recover their
coefficient of the trivial representation by taking the first entry of the vectors v =
C−1

G (χa�b ([cl]))
k
l=1 and u = C−1

G (χan ([cl]))
k
l=1. Explicitly, for v we have

(v)1 =

(

|[c1]|

|G|
, · · · ,

|[ck]|

|G|

)

× vt

=
1

|G|

k
∑

l=1

|[cl]| (c1,la1 + · · ·+ ck,lak) (c1,lb1 + · · ·+ ck,lbk)

where the first equality follows from Schur orthogonality relations for columns. By
the same reasoning, we also deduce the coefficient of a�n. �
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We now proceed to the deduction of µSymnX . From the isomorphism (2.1), we know
the mixed Hodge polynomial equals the coefficient of the trivial representation when
one writes µSn

Xn in a basis of irreducible representations of Sn. Since the equivariant
polynomial in Theorem 2.3 is expressed in terms of exterior products of the standard
representation, that are irreducible, the previous Lemma will suffice.

Theorem 2.6. Let X be a complex quasi-projective variety whose cohomology is an
exterior algebra generated in odd degree, as in Defnition 2.2. Then,

µSymnX (t, u, v) =
1

n!

∑

α∈Sn

m
∏

i=1

det
(

I + tdiupivqiMα

)ri

for Mα the permutation matrix associated to α.

Proof. In this proof, we will follow the notations of the previous Lemma. We start
by applying the second equality in Lemma 2.5 to the equivariant polynomial in
Theorem 2.3. We obtain

µSymnX (t, x) =
1

n!

p(n)
∑

l=1

|[cl]|
m
∏

i=1

pl
(

tdi , upi, vqi
)ri

where pl (t, u, v) = (c1,la1 (t, u, v) + · · ·+ ck,lak (t, u, v)). In here, the polynomials
ai (t, u, v) are the coefficients of the irreducible representations in

n−1
∑

k=0

(

(tuv)k + (tuv)k+1
)

k
∧

St.

So ai = 0 unless i corresponds to a exterior product of the standard representation.
Let ρSn

= St + T. Since

det (I + xρSn
(cl)) =

∞
∑

k=0

χ∧k ρSn
([cl])x

k

=

∞
∑

k=0

[

χ∧k St + χ∧k−1 St

]

([cl])x
k

=
n−1
∑

k=0

[

χ∧k St ([cl])
(

xk + xk+1
)

]

the result follows. �

3. Applications to Algebraic Groups

In this Section, we explore some applications of the main results in the previous
one (Theorem 2.3 and Theorem 2.6). We will focus on the case of algebraic groups
and complex tori. This article focus on the complex algebraic case, where symmetric
products have interesting properties, such as their connections to motivic theory,
local Zeta functions or to the Hilbert scheme of points. As will be observed, the
techniques employed in here also adapt to the case of Lie groups, and we will study
those in the final subsection.



8 J. SILVA

3.1. Complex Tori. A complex torus Td of dimension d is a complex manifold of
the form Cd/L, where L is a lattice (subgroup of (Cd,+) isomorphic to Z2d). Being
compact and Kähler manifolds, the cohomology of Td is endowed with a pure Hodge
structure.

Remark 3.1. Whenever L satisfies the Riemann bilinear relations, we get an embed-
ding of Cd/L into some projective space. Then in these cases Td forms an abelian
variety of dimension d.

Theorem 3.2. Let X = Td be a complex torus of dimension d. The equivariant
mixed Hodge polynomial related to the permutation action Sn y Xn is given by

µSn

Tn
d
(t, u, v) =

[

n−1
∑

k=0

k
∧

St (tu)k (1 + tu)

]�d

�

[

n−1
∑

k=0

k
∧

St (tv)k (1 + tv)

]�d

.

Proof. The singular cohomology of a complex torus X is characterized by

H∗ (X,Q) ∼=
∧

H1 (X,Q) .

The pure Hodge structure in H∗ (X,Q) is completely determined by the previous
equality

Hp,q (X) ∼=

(

p
∧

H1,0 (X)

)

�

(

q
∧

H0,1 (X)

)

.

Moreover, sinceH1 (Td,Z) can be identified with the lattice of Td, we haveH
1,0 (Td) ∼=

〈ω1, · · · , ωd〉C
∼= H0,1 (Td) for certain cohomological classes ωi of degree 1. Then we

can apply the conditions in Theorem 2.3, that gives us

µSn

Tn
d
(t, u, v) =

[

n−1
∑

k=0

k
∧

St
(

(tu)k + (tu)k+1
)

]�d

�

[

n−1
∑

k=0

k
∧

St
(

(tv)k + (tv)k+1
)

]�d

,

as wanted. �

Corollary 3.3. For X = Td a complex torus of dimension d we have:

µSymnTd
(t, u, v) =

1

n!

∑

α∈Sn

det (I + tuMα)
d det (I + tvMα)

d

where Mα is the matrix of permutation of α.

Proof. This follows immediately from the Theorem and from Theorem 2.6. �

3.2. Linear algebraic groups. We now proceed to the case of linear algebraic
groups. These are subgroups of some GL (n,C) given by polynomial equations.
If G is a Lie group, besides the usual cup product the cohomology ring is also
endowed with a natural co-product. This is given by the pullback of the product
map composed with the Künneth isomorphism,

∆ : H∗ (G,C) → H∗ (G×G,C) ∼= H∗ (G,C) � H∗ (G,C) .

We also have an antipode map, given by the pullback of the inverse map g 7→ g−1. It
is a well known fact that the cohomology with these three operations forms a finitely
generated Hopf algebra1. From Hopf’s Theorem (see [Hop]), we know there exists

1Actually the cohomology - or homology, since Hopf algebras are self-dual - of Lie groups were
the inspiration behind the definition of Hopf algebra.
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a set {ω1, · · · , ωk} of classes of homogeneous elements of odd degree that generate
H∗ (G,C) for the cup product. Since these elements have odd degree, one has

H∗ (G,C) ∼=
∧

〈ω1, · · · , ωk〉C .(3.1)

These elements ωi are the primitive elements of H∗ (G,C) - those satisfying ∆ (x) =
x� 1+ 1� x. To obtain the characterization of the mixed Hodge structure on their
symmetric products, we will use a result by Deligne on the seminal paper on mixed
Hodge structures of singular varieties [De2].

Theorem 3.4. Let G be a complex linear algebraic group. Then there exists m ∈ N

and r1, · · · , rm ∈ Nm
0 s.t.

µSn

Gn (t, u, v) =

m
⊗

i=1

[

n−1
∑

k=0

k
∧

St
(

(

t2i−1uivi
)k

+
(

t2i−1uivi
)k+1

)

]�ri

where St is the standard representation. Consequently,

µSymnG (t, u, v) =
1

n!

∑

α∈Sn

m
∏

i=1

det
(

I + t2i−1 (uv)i Mα

)ri
.

Proof. Being a quasi-projective algebraic variety, the cohomology of G is endowed
with a mixed Hodge structure, that was characterized in [De2, Theorem 9.1.5].
This result states that the vector space P ∗ = 〈ω1, · · · , ωk〉C generated by primitive
elements is a sub-mixed Hodge structure of H∗ (X,C). Then the isomorphism 3.1
preserves mixed Hodge structures. Moreover, Deligne also showed that for every
i = 0, · · · , dimCG, P 2i ∼= 0 and the mixed Hodge structure on each P 2i−1 is pure of
weights (i, i). If we divide P ∗ in its graded components, we get

H∗;∗,∗ (G,C) ∼=

m
⊗

i=1

∧

〈ωi,1, · · · , ωi,ri〉C

where on the right hand side we use the only multi-grading compatible with the ten-
sor and exterior products obtained by letting ωi,k ∈ H2i−1,i,i (G,C), ∀k = 1, · · · , ri.
From this isomorphism, we can read the mixed Hodge polynomial of G,

µG (t, u, v) =

m
∏

i=1

(

1 + t2i−1 (uv)i
)ri

.

If we apply Theorem 2.3, we get an expression for the equivariant polynomial of the
permutation action Sn y Gn:

µSn

Gn (t, u, v) =

m
⊗

i=1

[

n−1
∑

k=0

k
∧

St
(

(

t2i−1uivi
)k

+
(

t2i−1uivi
)k+1

)

]�ri

.

By Theorem 2.6, we can also obtain a formula for the mixed Hodge polynomial of
the quotient

µSymnG (t, u, v) =
1

n!

∑

α∈Sn

m
∏

i=1

det
(

I + t2i−1 (uv)i Mα

)ri
(3.2)

where Mα is the matrix of permutation of α. �

Remark 3.5. We have the following remarks concerning this example:
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(1) If we consider the particular case G = (C∗)r, we recover the result in [FS,
Proposition 5.8]. In here, we obtained the mixed Hodge polynomial of the
free abelian character variety MrGL (n,C) ∼= Symn (C∗)r ([FL2, Sik]). So
Theorem 3.4 provide an alternative proof of this result;

(2) The cohomology ring of a connected linear algebraic group G coincides with
a product of Cm\ {0}. For this reason, the formula above also calculates the
mixed Hodge polynomial of the symmetric product of arbitrary products of
punctured complex vector spaces.

3.3. The topological case. In the final part of this Section, we deal with the
Poincaré polynomial related to the singular cohomology of symmetric products of
real topological Lie groups. The cohomology of Lie groups is an old theme of re-
search, where much is known, but we could not found these formulas in the literature.

As mentioned in the Introduction, the results in the Theorems 3.2 and 3.4 allows
us to deduce the Poincaré polynomial of these spaces by setting

PX (t) = µX (t, 1, 1) .

On the other hand, the techniques employed in the proofs of the Theorems 2.3 and
2.6 are combinatorial, and adapt well to the topological case. In this setting, we
are concerned with those topological spaces X whose singular cohomology satisfies
a similar property to that of Definition 2.2: to say that the cohomology of X is an
exterior algebra generated in odd degree we require the existence of a finite set of
cohomology classes of odd degree whose exterior products generate the cohomology
ring, as in that definition. We now formalize this in a way that allows us to keep
track of the grading.

Definition 3.6. Fix m ∈ N and (r1, · · · , rm) ∈ Nm. We say that the singular
cohomology of a topological space X is an exterior algebra generated in odd degree if
there are classes ωi

j ∈ Hdi (X), for i = 1, · · · , m and j ∈ {1, · · · , ri}, with di ∈ 2N−1,
such that

H∗ (X) =
∧

〈

ωi
j

〉m,ri

i,j=1
.

In this definition ri counts the number of generators of degree di: similarly, in Def-
inition 2.2 ri counted the number of generators of odd degree di and weights (pi, qi).
Lie groups form an important class of real topological spaces whose cohomology is
as in this definition - see the first remarks in 3.2.

Theorem 3.7. Let G be a topological Lie group and admit the permutation action
of Sn in its cartesian product Gn. Then there exists m ∈ N and r1, · · · , rm ∈ Nm

0

such that

PSymnG (t) =
1

n!

∑

α∈Sn

m
∏

i=1

det
(

I + t2i−1Mα

)ri

where Mα is the permutation matrix associated to α.

Proof. The isomorphism (2.1), identifying the cohomology of a finite quotient with
its invariant part, applies whenever we are working in a sheaf cohomology theory
with values in a field of characteristic 0 (actually, any field whose characteristic does
not divide the order of the finite group in question). Since the singular cohomology
of a topological Lie group G can be identified with their sheaf cohmology with Q-
coefficients, to prove this result it suffices to mirror the proofs of Theorems 3.2,
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3.4 and 3.4, replacing the equivariant mixed Hodge polynomial by an equivariant
Poincaré polynomial

P Sn

Gn (t) :=
∑

k

[

Hk (Gn)
]

Sn
tk

codifying the induced action of Sn on the cohomology groups Hk (Gn). �

Remark 3.8. This formula agrees with the formula in [St, Theorem 1.4], that includes
the case G = (C∗)r. Observe that the Theorem above is valid for any topological
space where the isomorphism (2.1) applies.

4. Combinatorial identities

In this last Section we will use Theorem 2.3 and a formula of J. Cheah ([Ch])
to introduce some combinatorial identities, in a similar way to [FS, Theorem 5.31].
Since the equalities we will obtain only deal with the Betti numbers, we will focus
on the case of linear algebraic groups, covered here in Theorem 3.4. For this, we
will follow the same procedure as in [FS, Sections 5.5 and 5.6]. As for this result,
we could not find out whether these identities were noticed before.

Let us start by reviewing the key ideas covered in [FS, Sections 5.5]. As in here,
fix X as a quasi-projective algebraic variety with given compactly supported Hodge
numbers hk;p,q

c . The mentioned formula of J. Cheah is given by

(4.1)
∑

n≥0

µc
SymnX(t, u, v) z

n =
∏

p,q,k

(

1− (−1)kupvqtkz
)(−1)k+1hk,p,q

c (X)
,

so it gives the generating function of the mixed Hodge polynomials of all symmetric
products SymnX . If one assumes that X satisfies a version of Poincaré duality com-
patible with mixed Hodge structures, as it happens for smooth varieties or orbifolds,
a first simple observation is that this formula maintains unaltered when passing from
µc to µ and from hk,p,q

c to hk,p,q

(4.2)
∑

n≥0

µSymnX(t, u, v) z
n =

∏

p,q,k

(

1− (−1)kupvqtkz
)(−1)k+1hk,p,q(X)

(see [FS, Proposition 5.22]).

Remark 4.1. As remarked in the Introduction, the formulas obtained in Theorem
2.6 can be obtained from Cheah’s identity. Indeed, following the notations in the
proof of this Theorem, we have

m
∏

i=1

det
(

I + tdiupivqiρSn
(n)
)ri

=

m
∏

i=1

pn
(

tdi , upi, vqi
)ri

=
m
∏

i=1

n
∏

j=1

(

1−
(

−tdiupivqi
)j
)ajri

=
n
∏

j=1

[

m
∏

i=1

(

1 +
(

− (−t)j
)pi

ujpivjqi
)ri

]aj

=
n
∏

j=1

µX

(

− (−t)j , uj, vj
)aj

.
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On the other hand, the equality

µSymnX (t, u, v) =
∑

n∈Pn

n
∏

j=1

1

aj ! jaj
µX

(

− (−t)j , uj, vj
)aj

can also be deduced by extracting the zn term in Cheah’s formula (4.2) (see also
[FS]). The approach we follow in this article is independent of Cheah’s formula, and
is designed to obtain more concrete and elegant formulas for the case of varieties
whose cohomology is an exterior algebra generated in odd degree.

Now fix G as a connected complex linear algebraic group with mixed Hodge poly-
nomial µG (t, x) =

∏m
i=1 (1 + t2i−1xi)

ri. By comparing this formula with the equality
3.2, one obtains

(4.3)
∑

n≥0

1

n!

∑

σ∈Sn

m
∏

i=1

det
(

In + t2i−1xiMσ

)ri zn =
∏

p,k

(

1− (−1)kxptkz
)(−1)k+1hk,p,p(G)

The notation here is the same as the ones used on that example. Let us focus for
a while in the particular case (C∗)r, handled in [FS]. The related mixed Hodge
polynomial (MHP) is given by µ(C∗)r (t, x) = (1 + tx)r, so (C∗)r is a round variety.
In particular, its Betti numbers bk ((C

∗)r) coincide with its only non-trivial mixed
Hodge numbers hk,k,k ((C∗)r). Moreover, given the form of the MHP of (C∗)r, we
have

(4.4) bk ((C
∗)r) = hk,k,k ((C∗)r) =

(

r
k

)

.

Then replacing in equality 4.3, we get the combinatorial identity of [FS, Theorem
5.31]. For the case of a general linear group G, not only we do not have an equality
between mixed Hodge and Betti numbers, we also do not have a nice combinatorial
interpretation as that of equations 4.4. But for some groups, such as G = GL (n,C),
we do manage to interpret the Betti numbers in a combinatorial fashion, justifying
the next result.

Lemma 4.2. Let G be a connected complex linear algebraic group whose mixed
Hodge polynomial is µG (t, x) =

∏m
i=1 (1 + t2i−1xi)

ri. Denote by Mσ the permutation
matrix (in some basis) associated to a permutation σ ∈ Sn. Then

∑

n≥0

∑

σ∈Sn

zn

n!

m
∏

i=1

det
(

In + t2i−1Mσ

)ri =
∏

k

(

1− (−1)ktkz
)(−1)k+1bk(G)

where bk (G) are the Betti numbers of G.

Proof. The equality 4.3 specified at x = 1 becomes

∑

n≥0

∑

σ∈Sn

zn

n!

m
∏

i=1

det
(

In + t2i−1Mσ

)ri =
∏

p,k

(

1− (−1)ktkz
)(−1)k+1hk,p,p(G)

=
∏

k

(

1− (−1)ktkz
)(−1)k+1

∑
p hk,p,p(G)

=
∏

k

(

1− (−1)ktkz
)(−1)k+1bk(G)

as wanted. �
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The Betti number bk (G) equals the coefficient of tk in PG (t) =
∏m

i=1 (1 + t2i−1)
ri,

so our idea is to consider those groups where this coefficient can be interpreted in a
combinatoric fashion. As mentioned, this is the case of G = (C∗)r, where the Betti
numbers equal the binomial coefficient

(

r
k

)

. Another such example is G = GL (m,C).
In this case,

PGL(m,C) (t) =
m
∏

i=1

(

1 + t2i−1
)

and so bk (GL (m,C)) equals the number of partitions of k with only odd parts, no
parts being repeated or surpassing 2m − 1. Denoting this number by pnodd (k), we
obtain:

Theorem 4.3. Let m ∈ N. Then, for formal variables x, z (or for z, x ∈ C where
the series and products converge), we have:

∑

n≥0

∑

σ∈Sn

zn

n!

m
∏

i=1

det
(

In − t2i−1Mσ

)

=
∏

k

(

1− tkz
)(−1)k+1pm

odd
(k)

where, as above, pmodd (k) stands for the number of partitions of k with only odd parts,
no parts being repeated or surpassing 2m− 1.

Remark 4.4. Let G be a connected linear algebraic group with Poincaré polyno-
mial

∏m
i=1 (1 + t2i−1)

ri. Being the coefficient of
∏m

i=1 (1 + t2i−1)
ri , the Betti numbers

bk (G) can be interpreted in a combinatorial fahsion for any connected linear alge-
braic group. Let m ∈ N and rm = (r1, · · · , rm) ∈ Nm

0 . Consider the disjoint union
U rm

m =
⊔m,ri

i,j=1 {2i− 1} and to each subset L ⊆ U rm

m , associate a number kL =
∑

j∈L j

(0 if L = ∅). Then bk (G) can be interpreted as the number of different subsets L
such that kL = k.
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[De2] P. Deligne, Théorie de Hodge III. Publ. Math. I.H.E.S. 44 (1974) 5-77.
[DiLe] A. Dimca and G. I. Lehrer, Hodge-Deligne equivariant polynomials and monodromy of

hyperplane arrangements. Configuration Spaces CRM Series 14, Ed. Norm., Pisa (2012)
231-253.

[DiLe2] A. Dimca and G. I. Lehrer, Purity and equivariant weight polynomials. Algebraic groups
and Lie groups 9 (1997) 161-181.

[FL1] C. Florentino and S. Lawton, The topology of moduli spaces of free group representations,
Math. Annalen 345 (2009) 453-489.

[FL2] C. Florentino and S. Lawton, Topology of character varieties of Abelian groups. Topology
and its Applications 173 (2014) 32-58.

[FS] C. Florentino and J. Silva, Hodge-Deligne polynomials of abelian character varieties,
Preprint arxiv:1711.07909.

[Gro] A. Grothendieck, Sur quelques points dalgèbre homologique, I. Tohoku Mathematical Jour-
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