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FAMILIES OF CURVES WITH HIGGS FIELD OF ARBITRARILY LARGE

KERNEL.

VÍCTOR GONZÁLEZ-ALONSO AND SARA TORELLI

Abstract. In this note we consider the flat bundle U and the kernel K of the Higgs field naturally

associated to any (polarized) variation of Hodge structures of weight 1. We study how strict the

inclusion U ⊆ K can be in the geometric case. More precisely, for any smooth projective curve C of

genus g ≥ 2 and any r = 0, . . . , g − 1, we construct non-isotrivial deformations of C over a quasi-

projecive base such that rkK = r and rkU ≤
g+1
2

.

1. Introduction and notations

The Hodge bundleH1,0 = f∗ωf of a one-parametric semistable family f : S → B of complex projective

curves of genus g (or more genenerally, of a polarized variation of Hodge structures of weight one)

carries two natural vector subbundles: the flat unitary summand U (cf. Fujita and Kollár decompo-

sitions [Fuj78, Kol87]) and the kernel K of the associated Higgs field (see Section 3 for more details).

By definition there is an inculsion U ⊆ K, which must be an equality if K = H1,0. Besides this trivial

case, it is not difficult to explicitly construct (non-geometric) variations of Hodge structure over a disk

where both rkU and rkK can be chosen arbitrarily (satisfying rkU ≤ rkK < g). However, it is not

clear whether this construction can provide geometric variations of Hodge structure, i.e. arising from

a semistable family of curves, or on the contrary such geometric variations have some restrictions on

the ranks of U and K. In particular it is not clear when the equality U = K holds in the geometric

case.

The main result of this note is that K can have any rank (between 0 and g − 1) also in geometric

cases, with families containing an arbitrarily chosen curve, and even over (quasi-)projective base. If

moreover the chosen curve has simple jacobian variety, the family can be chosen with U = 0. More

precisely, we prove:

Theorem 1.1. Let C be any smooth projective curve of genus g ≥ 2. Then for any 0 ≤ r < g there is

f : C → B, a non-isotrivial semistable one-dimensional family of deformations of C over a projective

base B, such that rkK = r and rkU ≤ g+1
2 .

Corollary 1.2. If C is a smooth projective curve of genus g ≥ 2 with simple jacobian variety, then

for 0 < r < g there is a deformation as in Theorem 1.1 with U = 0, hence U ( K.
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Our motivation to study this question stems from the classification of fibred (irregular) surfaces.

Indeed, in the recent work [GST17] an upper bound for the rank of U is obtained, depending on

geometric invariants of the fibres like their genus and the general Clifford index, generalizing a previous

result of [BGAN18] on the relative irregularity. A closer look at the proof of that result shows that in

some cases the upper bound is actually a bound for the rank of K. Therefore a better understanding

of the inclusion U ⊆ K could lead to improvements of the main result in [GST17]. We notice that any

K bigger than U is seminegative by a result of [Zuo00], highlighting how wild the behaviour of the

Kodaira-Spencer map can be also in cases where the local Torelli theorem holds, and therefore adding

importance to the study of those ranks as new numerical invariants.

A second possible application is the so called Coleman-Oort conjecture: roughly speaking, for high

enough genus, the Torelli locus in Ag should not contain positive-dimensional Shimura subvarieties.

In [CLZ16], Chen, Lu and Zuo proved that, if the variation of Hodge structure associated to a Shimura

curve X ⊂ Ag has flat unitary bundle U of rkU ≥ 4g+2
5 , then X is not generically contained in the

Torelli locus (i.e. X intersects the Torelli locus at most in isolated points). Recently in [CLZ18] the

same authors proved that the same holds if rkU ≤ 2g−22
7 . Therefore Shimura curves in the Torelli

locus cannot have U of too big or too small rank. Since both bundles U and K for a curve X in Ag

reflect the local structure of X ⊂ Ag, there could be a similar statement with rkK instead of rkU . The

relation between U and K with Massey products has also recently been used by Ghigi, Pirola and the

second author in [GPT19] to prove that any Shimura subvariety generically contained in the Torelli

locus can have dimension at most 7g−2
3 . Altogether this supports the idea that a better understanding

of the inculsion U ⊆ K might lead to new insights for the Coleman-Oort conjecture.

Let us devote a few words to our techniques. Our main tool to estimate the ranks of U and K is Lemma

3.2, which leads us to focus on families that are supported on relatively rigid divisors (see Definition

2.1). Roughly speaking, on a general fibre the first order infinitesimal deformation is described by

a rigid divisor of the fibre, and these divisors glue along the family. However, supporting divisors

are not canonically definable, not even the minimal ones. Indeed, any divisor of degree greater than

2g − 2 supports every deformation (e.g.D = (2g − 2)p for any point p), and thus any deformation

has a minimal supporting divisor concentrated at any given point (with multiplicity). Nonetheless,

for families obtained by deforming a branched finite covering, the theory developed by Horikawa in

[Hor73] allows to construct some natural minimal supporting divisors (see Lemma 2.3).

At first sight one might expect that U and K coincide locally, and that a strict inequality U ( K would

be caused by monodromy if the base is not simply connected. But this is false, as the local nature of

Lemma 3.2 shows. This fact is strongly highlighted in Theorem 3.4 where some ad hoc local examples

have been constructed. We notice that the set of rigid divisors of a given degree of a curve is open

and Zariski-dense in the Picard variety of the fixed degree, hence many families can be constructed in

this way.

The proof of Theorem 1.1 follows this line. We take a smooth projective curve C of genus g and for

any 1 ≤ d ≤ g we construct a ramified covering C → P1 suitably ramified on a chosen rigid divisor

D ⊂ C of degree d. Then we consider a family of coverings obtained by moving D, which can be

extended to a quasi-projective base. At this point the proof concludes as a straightforward application

of Lemmas 2.3 and 2.2.
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The proof of Corollary 1.2 follows immediately by Theorem 1.1 because the monodromy of the flat

bundle U of those families is finite by a result of [PT17]. Thus a non vanishing U would define a

subvariety of the jacobian of a general fibre, contradicting its simplicity.

Although the constructions as given in the proof are already very explicit, in Section 4 we study in

more detail some deformations of cyclic coverings inspired by the study on U done in [CD16, Lu18].

Our interest on these examples is motivated by the fact the corresponding U has infinite monodromy,

rank bigger than (g + 1)/2 and moreover K = U , hence they look very different from our case where

U is smaller than K, has rank less than (g + 1)/2 and finite monodromy. This kind of examples has

been intensively studied with different approaches and objectives (see [Moo10, Pet16, CFG15]). We

notice that they are also interesting in our study since they admit a non vanishing flat bundle, which

does not occur for a very general curve (see [FGP, Theorem 3.13]) and therefore we spend a few lines

rephrasing some of their results using our tools.

The paper is organized as follows. In Section 2 we relate the theories of supporting divisors and

deformations of maps and prove Lemma 2.3, which constructs a natural minimal supporting divisor

by means of Horikawa’s theory. In Section 3 we analyse the case of rigid supporting divisors (Lemma

2.2) and construct local families with any rkK (Theorem 3.4). In Section 4 we consider in more detail

deformations of cyclic coverings and compare them to those of [CD16, Lu18]. Finally in section 5 we

prove Theorem 1.1 and Corollary 1.2.

Acknowledgements: We want to thank Gian Pietro Pirola, Lidia Stoppino, Xin Lu and Anand

Deopurkar for some very fruitful discussions and enlightening ideas. Sara Torelli also thanks the

Riemann Center and the Institute of Algebraic Geometry of Leibniz Universität Hannover for their

warm hospitality and support during her stay as Riemann Fellow which originated this work.

2. Horikawa’s deformation theory and supporting divisors

In this section we relate the theories of supporting divisors (see [BGAN18]) and of deformation of maps

(see [Hor73]) to produce a somehow canonical supporting divisor for families of morphisms, which we

use to estimate the ranks of U and K. Let f : C → B be a smooth family of projective curves of genus

g ≥ 2 over a disk B.

Definition 2.1 (Supporting divisors). Let C be a smooth projective curve and ξ ∈ H1(C, TC) a

first-order infinitesimal deformation of C. An effective divisor D in C is a supporting divisor of ξ if

(2.1) ξ ∈ ker
(
H1 (C, TC)−→H1 (C, TC (D))

)
= im

(
H0
(
D,TC(D)|D

)
−→H1 (C, TC)

)
.

A minimal supporting divisor is a supporting divisor D with the extra property that any effective strict

subdivisor D′ < D does not support ξ.

A (minimal) supporting divisor of a smooth family of curves f : C → B is an effective divisor D ⊂ C

such that on a general fibre Cb = f−1(b) the restriction Db = D|Cb
is a (minimal) supporting divisor

of the infinitesimal defomation ξb of Cb induced by f .

In the case of a family, up to shrinking B we can always assume that a supporting divisor consists of

sections of f (possibly with coefficients).
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For any divisor D on a curve C we denote by r (D) = dim |D| = h0 (C,OC (D))− 1 the dimension of

its complete linear series, and by Cliff (D) = degD − 2r (D) its Clifford index.

The following result is our basic tool to estimate the ranks of U and K in terms of invariants of a

supporting divisor.

Lemma 2.2 ([BGAN18, Lemma 2.3 and Thm 2.4 in] or [GST17, Theorem 2.9]). Let C be a projec-

tive curve of genus g, ξ ∈ H1(C, TC ) a first-order infinitesimal deformation and ∪ξ : H0(C,ωC) →

H1(C,OC ) the map induced by cup-product.

(1) If D is a divisor (in C) supporting ξ, then H0(C,ωC(−D)) ⊆ ker(∪ξ) and hence

dimker(∪ξ) ≥ g − (degD − r(D)).

(2) If further D supports ξ minimally, then

dimker(∪ξ) ≤ g − (degD − 2r(D)) = g − Cliff(D).

We notice that in particular, when a minimal supporting divisor D is rigid, the estimates in Lemma

2.2 lead to the equality dimker∪ξ = g − degD.

This result is useful because U ⊆ K and at a general b ∈ B the Higgs field

θ(b) : f∗ωC/B ⊗ C(b) → R1f∗OC ⊗ C(b)⊗ T∨
B,b

coincides with ∪ξb (up to non-zero scalar, depending on the choice of an isomorphism T∨
B,b

∼= C).

In order to apply Lemma 2.2 one has to construct a divisor minimally supporting f , but unfortunately

such divisors are not unique and in general there is no canonical choice. In the case of families of curves

f arising as deformations of morphisms onto a fixed curve, Horikawa’s theory as developed in [Hor73]

gives a natural way to construct a supporting divisor using the so-called Horikawa characteristic class.

We shortly recall the construction of the characteristic map and the relation to the Kodaira-Spencer

class. Let C ′ be a smooth projective curve. A family of morphisms of curves onto C ′ is a morphism

(f,Φ) : C → B × C ′ such that f : C → B is a family of curves, and for any b ∈ B the restriction

πb = Φ ◦ ib : Cb → C ′ given by the inclusion ib : Cb = f−1(b) →֒ C is a non constant morphism of

curves. For any fixed b ∈ B, the morphism π = πb : C = Cb → C ′ defines a short exact sequence

(2.2) 0 TC π∗TC′ Tπ 0.//
dπ

//
pπ

// //

We can fix local coordinate systems (Ui, (zi, t)) of C and (Vi, wi) of C ′ by choosing Stein open sets

such that Φ(Ui) ⊂ Vi and where t is the pull-back of a local coordinate of B around b. We denote by

Φi the local expression of Φ with respect to these coordinate systems, i.e. wi = Φi(zi, t), and define a

0-cochain of π∗TC′ by setting

si =

(
∂Φi

∂t

)

|t=b

∂

∂wi

on Ui = Ui∩C. By applying pπ we obtain a 0-cochain of Tπ given by τi = pπ (si) on Ui. These sections

turn out to agree in the intersections Ui ∩ Uj, giving rise to a section τ ∈ H0(C,Tπ) that is called

characteristic class of π. The characteristic map

τ : TbB → H0(C,Tπ)
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is the map that sends the generator ∂
∂t ∈ TbB to the characteristic class τ ∈ H0(C,Tπ) defined as

above. By [Hor73, Proposition 1.4], the characteristic map factors through the Kodaira-Spencer map

KS : T0B → H1(C, TC) as in

(2.3) T0B H0(C,Tπ)

H1(C, TC)

KS

%%
❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

τ
//

δ
��

where δ : H0(C,Tπ) → H1(C, TC ) is the connecting homomorphism associated to (2.2). By con-

struction this gives a one-to-one correspondence between the vector space H0(C,Tπ) and the set of

equivalence classes of first-order deformations of the morphism π : C → C ′ (leaving C ′ fixed).

The sheaf Tπ can be more explictly described through the ramification divisor R of π. Indeed, by

definition of the ramification divisor there is an isomorphism π∗TC′
∼= TC(R) identifying dπ with the

natural inclusion TC →֒ TC(R). This in turn induces an isomorphism Tπ ∼= TC(R)|R, which we use to

construct a divisor minimally supporting f in some cases.

In the previous setting, we say that the family f is obtained from some π = πo : C → C ′ by moving

some (distinct) branch points q1, . . . , qk ∈ C ′ (while keeping the remaining branch points qk+1, . . . , qn

fixed) if there are some maps q̃1, . . . , q̃k : B → C ′ injective around b = o and such that each πb : Cb → C ′

is ramified over q̃1(b), . . . , q̃k(b), qk+1, . . . , qn with the same ramification type as for b = o.

Lemma 2.3. Keeping the above notations, suppose furthermore that for i = 1, . . . , k there is only

one ramification point pi over qi, let ri + 1 be its ramification index and set D =
∑k

i=1 ripi. If

H0 (C, TC (D)) = 0, then any deformation of π obtained moving q1, . . . , qk is minimally supported in

D.

Proof. We consider the extension class ξ ∈ H1(C, TC ) induced by f on C = f−1 (o) and we prove that

this is minimally supported over D =
∑k

i=1 ripi. To do so, we compute ξ by using the Horikawa’s

characteristic map. Fix first a local coordinate t of B centered in o ∈ B and for each i = 1, . . . , k

choose local coordinates zi resp. wi, centered on pi ∈ C resp. qi = π(pi) ∈ C ′, such that wi =

f(zi, t) = zri+1
i + t. Then ξ is given as

ξ = KS

(
∂

∂t

)
= δ

(
k∑

i=1

∂

∂wi

)
= δ

(
k∑

i=1

1

(ri + 1)zrii

∂

∂zi

)
.

Since
∑k

i=1
1

(ri+1)z
ri
i

∂
∂zi

is an element in H0(D,TC(D)|D) ⊂ H0(R,TC(R)|R), this proves that

ξ ∈ Im(H0(C, TC (D)|D)−→H1(C, TC))

and so that D supports ξ. We now prove that D is minimally supporting ξ, i.e. that any effective

subdivisor D′ < D does not support it. To do this it is enough to consider a subdivisor D′ = D − pi

of D obtained by removing a point pi and then check this is not supporting f . We consider the

short exact sequences 0 → TC → TC(D
′) → TC(D

′)|D′ → 0 and 0 → TC → TC(D) → TC(D)|D → 0

induced by D and D′ and we compare them through the inclusion D′ < D. Since we have assumed

H0(C, TC(D)) = 0, the mapH0(C, TC (D)|D)−→H1(C, TC ) is injective, hence it is enough to check that
1
z
ri
i

∂
∂zi

does not lie in H0(D′, TC(D
′)|D′) ⊆ H0(D,TC(D)|D). Indeed with the induced trivializations,



6 VÍCTOR GONZÁLEZ-ALONSO AND SARA TORELLI

the map H0(D′, TC(D
′)|D′) → H0(D,TC(D)|D) is given by multiplication with zi, and sends the subset

< 1, zi, . . . , z
ri−2
i > ⊗{ 1

z
ri−1
i

∂
∂zi

} of H0(D′, TC(D
′)|D′) to the subset < zi, z

2
i , . . . , z

ri−1
i > ⊗{ 1

z
ri
i

∂
∂zi

} ⊂

H0(D,TC(D)|D), which obviously does not contain 1
z
ri
i

∂
∂zi

. �

Remark 2.4. Note that in the above setting, if k ≥ 1, there is a non-zero minimal supporting divisor.

This implies that the family is not isotrivial, since the infinitesimal deformation is not zero.

3. The case of rigid supporting divisors

In this section we study the ranks of the flat and kernel bundles for families supported on (relatively)

rigid divisors and we also analyse the monodromy of the flat bundle. In particular, we construct

families of curves with K of any given rank between 0 and g − 1. On the other hand, we show that

rkU ≤ g+1
2 , hence in particular we can construct (local) families with U ( K. Note that rkK = g

happens if and only if the family is isotrivial, and hence also U = K.

We start recalling the basic definitions around these bundles. Let B be a complex curve and f : C → B

be a non-isotrivial semistable family of projective curves of genus g ≥ 2. Consider the Hodge bundle

f∗ωf , where ωf = ωC⊗f
∗ω∨

B. The Fujita decomposition [Fuj78] factors it as a direct sum f∗ωf = U⊕A,

with U unitary flat and A ample. If Γ ⊂ B denotes the set of critical values (corresponding to singular

fibers) and Υ = f∗Γ, we can also consider the short exact sequence

0 → f∗ωB(log Γ) → Ω1
C(log Υ) → Ω1

C/B(log Υ) → 0.

Pushing it forward and using the canonical isomorphism f∗ωf ≃ f∗Ω
1
C/B(log Υ) we obtain a long exact

sequence with connecting homomorphism

θ : f∗Ω
1
C/B (log Υ) → R1f∗f

∗ωB(log Γ) ≃ R1f∗OC ⊗ ωB(log Γ).

It is a morphism of vector bundles whose kernel K = ker θ is a vector subbundle of f∗ωf .

Definition 3.1. We call the bundles U and K as defined above the flat bundle and kernel bundle of

f , respectively.

On the smooth locus of f the objects as introduced above are naturally defined by the polarized

variation of the Hodge structure. With a little abuse of notation, suppose for a moment that f is

smooth. In this case the Hodge bundle is

H1,0 = f∗ωf ⊂ H1 = R1f∗C⊗C OB ,

where ωf = ωC ⊗ f∗ω∨
B

∼= Ω1
C/B because f is smooth. The Gauß-Manin connection restricts to

∇H1,0 : H1,0 → H1 ⊗ ωB, the flat local system over H1,0 is U = ker∇H1,0 and the flat subbundle is

U = U⊗C OB . The Higgs field

θ = p ◦ ∇H1,0 : H1,0 → H1 → H1/H1,0 ⊗ ωB
∼= R1f∗OC ⊗ ωB

coincides with the connecting homomorphism

θ : H1,0 = f∗Ω
1
C/B → R1f∗(f

∗ωB) = R1f∗OC ⊗ ωB
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arising by pushing forward the exact sequence 0 → f∗ωB → Ω1
C → Ω1

C/B → 0, and the kernel bundle

is K = ker θ. In the non-smooth case, the extensions of these over the singular locus of f define the

same bundles as above.

By construction there are inclusions U ⊆ K ⊆ f∗ωf , which combined with the splitting f∗ωf
∼= U ⊕A

give an exact sequence

0 → K/U → A → f∗ωf/K → 0,

exhibiting K/U as a vector subbundle of A. If U 6= K, K/U has negative curvature by [Zuo00], hence

f∗ωf/K has bigger degree than A.

Our main tool in order to understand how K can be larger than U is given by the following

Lemma 3.2. Let f be minimally supported on a divisor D with D ·Cb = d and h0(Cb,OCb
(D|Cb

)) = 1

for general b ∈ B (i.e. D is relatively rigid). Then 1. rkK = g − d and 2. rkU ≤ g+1
2 .

The proof follows the line of [GST17].

Proof. 1. It follows from Lemma 2.2. For a general b ∈ B, we indeed have

K ⊗ C (b) = ker
(
∪ξb : H

0 (Cb, ωCb
) −→ H1 (Cb,OCb

)
)
.

Since h0(Cb,OCb
(D|Cb

)) = 1, then

rkK = dimK ⊗C(b) = dimker(∪ξb) = g − deg(D|Cb
) = g − d.

2. The argument follows the line of [GST17, section 3.1, case 1] (see also [PT17, Lemma 3.2]). Assume

that rankU ≥ 2, otherwise there is nothing to prove. By assumption f is supported on a relatively

rigid divisor, meaning that the divisor restricts to a rigid divisor on any smooth fibre. Then, we can lift

a basis η1, . . . , ηuf
of flat sections of U ⊆ K, to a set ω1, . . . , ωuf

∈ H0
(
C,Ω1

C

)
of linearly independent

closed 1-forms with the property that any two of these forms wedge to zero. Applying the “Tubular

Castelnuovo-de Franchis” (see [GST17, Theorem 1.4]), we get a family ϕb : Cb → C of morphisms

from the general fibre Cb of f to a fixed curve C of genus g(C) ≥ uf = rkU . By the Riemann-Hurwitz

formula,

2g − 2 = degϕb(2g(C) − 2) + degRb ≥ 2 degϕb(uf − 1),

where Rb is the ramification divisor of ϕb. In particular,

g − 1 ≥ degϕb(uf − 1),

and so for uf >
g+1
2 and g ≥ 2, one has degϕb = 1 and hence a isotrivial family. �

Lemma 3.3. Let f be minimally supported on a relatively rigid divisor. Then U has finite monodromy.

Proof. We can assume rankU ≥ 2 (in the case of rank 1, the monodromy is finite since the line bundle

must be torsion, proven e.g. in [Bar00]). Repeating the argument given in 2. of the proof of Lemma

3.2, we have that our bundle satisfies the assumptions of [PT17, Theorem 0.2] and thus has finite

monodromy. �

We end this section by providing a way to construct non-isotrivial local families of curves with K of

any given rank between 1 and g − 1.
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Theorem 3.4. Let C be any curve of genus g ≥ 3. Then for any 0 ≤ r ≤ g − 1 there are one-

dimensional deformations of C with rkK = r.

Proof. Let us first consider a more geometric interpretation of supporting divisors. Let C be a curve

of genus g and φ : C → P(H0(C,ω⊗2
C )∨) ∼= P3g−4 its bicanonical embedding. Given an effective divisor

D in C, we define its span as

〈D〉 := ∩D≤φ∗HH = P
(
H0(C,ω⊗2

C (−D))⊥
)
,

i.e., the intersection of all hyperplanes cutting out a divisor on C that contains D, which coincides with

the projectivization of the annihilator of H0(C,ω⊗2
C (−D)). In particular, if degD < degωC = 2g − 2

then Riemann-Roch gives dim 〈D〉 = degD − 1.

Let now ξ ∈ H1(C, TC ) be a non-zero first-order infinitesimal deformation, which defines a point

[ξ] ∈ P(H1(C, TC)) ∼= P(H0(C,ω⊗2
C )∨). It is just a reformulation of the definitions that a divisor D

supports ξ if and only if [ξ] ∈ 〈D〉. Thus first-order deformations supported on a divisor D correspond

to points in 〈D〉. Furthermore, 〈D′〉 ( 〈D〉 for any 0 ≤ D′ < D if and only if ω⊗2
C (−D) has no base

points, e.g. if degD ≤ 2g − 4. In this case, the first-order deformations minimally supported in D

form a non-empty Zariski-open subset 〈D〉◦ of 〈D〉, namely the complement of the spans of the finitely

many strict subdivisors of D.

We want to focus on the deformations supported on rigid divisors of a given degree d ∈ {1, . . . , g}.

For any such d, the map C(d) = Divd(C) → Picd(C) is generically one-to-one, thus the rigid divisors

form a non-empty Zariski-open set Vd ⊆ C(d). Let

Xd = {(D, [ξ]) | degD = d, [ξ] ∈ 〈D〉} =
⋃

D∈C(d)

{D} × 〈D〉 ⊂ C(d) × P(H0(C,ω⊗2
C )∨)

be the obvious incidence variety, which is irreducible of dimension 2d− 1 because dim 〈D〉 = d− 1 for

d < 2g − 2. The subset

X◦
d =

⋃

D∈Vd

{D} × 〈D〉◦ ⊂ Xd

is a dense open subset. Indeed, its complement Xd \X
◦
d is contained in the union of

(1) the Zariski-closed strict subset (Vd \ Vd−1)× P(H0(C,ω⊗2
C )∨), and

(2) the image of Xd−1 × C → Xd, defined by (D′, [ξ], p) 7→ (D′ + p, [ξ]), which has dimension at

most

dimXd−1 + dimC = 2(d− 1)− 1 + 1 = 2d− 2 < dimXd.

Set also Yd = p2(Xd) ⊂ P(H0(C,ω⊗2
C )∨), which by the above discussion corresponds to the (closed)

set of infinitesimal deformations supported on some divisor of degree d. Of course, Yd coincides with

the d-th secant variety of C ⊂ P(H0(C,ω⊗2
C )∨). Define also the dense subset

Y ◦
d = p2(X

◦
d ) ⊂ Yd,

which corresponds to the first-order deformations minimally supported on some divisor of degree d.

Thus, for any [ξ] ∈ Y ◦
d , there is some minimal supporting divisor D of degree d and r(D) = 0, and

hence by Lemma 2.2

dimker(∪ξ : H0(C,ωC) → H1(C,OC )) = g − d.
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Let now π : C → ∆ be a semiuniversal deformation of C over some (3g − 3)-dimensional polydisk

∆, P = P∆(π∗ω
⊗2
π ) → ∆ and φ : C → P the relative bicanonical map. We can mimick the above

construction on every fibre of π and obtain a non-empty locally closed subset Y◦
d ⊂ P that surjects

onto ∆. Indeed, if C
(d)
∆ = Divd (C/∆) denotes the relative symmetric d-th product of C, we can consider

the Zariski-open subset Vd ⊆ C
(d)
∆ corresponding to rigid divisors and the incidence subvariety

Xd =
{
(D, ξ, t) | t ∈ ∆,D ∈ Divd (Ct) , ξ ∈ H1 (Ct, TCt) , [ξ] ∈ 〈D〉

}
⊆ C

(d)
∆ ×∆ P.

The announced Y◦
d is then the image by the projection to P of the (non-empty) open subset

X o
d = (Xd \ (Xd−1 ×∆ C)) ∩ (Vd ×∆ P) .

Up to shrinking ∆, we can find a section σ : ∆ → Y◦
d , which thus at every point b ∈ B defines (up to

scalar) a first-order deformation ξb minimally supported on a divisor of degree d.

Since Tb∆ ∼= H1(Cb, TCb
) for any b ∈ ∆, the relative bicanonical space P can be identified with the

projectivization of the tangent bundle of ∆. In this way, any section σ : ∆ → Y◦
d can be thought of

as a rank-one (hence automatically integrable) distribution on ∆. If B ⊂ ∆ is any integral curve of a

given σ, the restriction f = πB : π−1(B) → B gives the desired family. �

These families are constructed over a disk. One could thus wonder, if such examples can exist over a

quasi-projective base B. The answer is yes, as our main results and also some more explicit examples

contructed in section 4 show.

4. Semistable families of cyclic coverings of P1 with K larger than U .

In this section we construct semistable families of curves over a projective base with U ( K by moving

few branch points of a low degree covering. The largest range for rkK is achieved by families of

hyperelliptic curves. Our main tool is the following

Proposition 4.1. Let π : C → P1 be a simple cyclic covering of degree n with reduced branch divisor

B = q1 + . . .+ qm (n | m) and suppose g (C) = g ≥ 2. Let f : C → ∆ be a deformation of C obtained

by moving the branch points q1, . . . , qk. If k < m
n , then

rkK = g − (n − 1)k =
(n− 1)(m− 2− 2k)

2
and rkU ≤

g + 1

2
.

In particular, if k < g−1
2(n−1) =

mn−2n−m
4(n−1) , then U ( K.

Proof. For each i = 1, . . . , k let pi = π−1 (qi) be the ramification point above qi, and set D =

(n− 1) (p1 + . . .+ pk), the variable ramification divisor. We will show that D is a rigid divisor that

supports f minimally, and Lemma 3.2 gives the final assertions.

In order to show thatD is a rigid divisor, let us consider first the divisorD′ = n
n−1D = n(p1+. . .+pk) =

π∗(q1 + . . . + qk). It holds then

H0
(
C,OC

(
D′
))

= H0 (C, π∗OP1 (q1 + . . .+ qk))
π∗

∼= H0
(
P1,OP1 (q1 + . . .+ qk)⊗ (π∗OC)

)
∼=

∼=

n−1⊕

i=0

H0
(
P1,OP1 (q1 + . . .+ qk)⊗OP1

(
−i
m

n

))
= H0

(
P1,OP1 (q1 + . . . + qk)

)
,
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where the last equality follows from the hypothesis k < m
n , hence

deg
(
OP1 (q1 + . . .+ qk)⊗OP1

(
−i
m

n

))
< 0

for any i > 0.

This shows that any meromorphic function in H0(C,OC(D
′)) is the pull-back of a meromorphic

function in H0(P1,OP1(q1+ . . .+ qk)). In particular, any non-constant function in H0(C,OC (D
′)) has

poles of order exactly n at some pi, and hence H0(C,OC (D)) ⊆ H0(C,OC(D
′)) consists only of the

constant functions, i.e. D is rigid.

It remains to show that D is a minimal supporting divisor of f . The genus of C is g = (m−2)(n−1)
2 ,

and thus deg (TC (D)) ≤ 0 with equality if and only if n = k = g = 2 (hence m = 6). In this last case

an argument along the lines above shows that H0 (C, TC (D)) = 0. Lemma 2.3 can thus be applied in

any case, giving that D is a minimal rigid supporting divisor. �

We now construct a family of deformations as in Proposition 4.1 over a projective base as follows. Fix

two points 0,∞ ∈ P1 and integers 2 ≤ n < m such that n | m, and 1 ≤ k < m
n . For each i = 1, . . . , k

let L′
i ⊂ P1 × P1 be a curve of bidegree (1, 1) with L′

i ∩ {0} × P1 = {(0, qi)}, or equivalently, the

graph of an automorphism φi : P
1 → P1 with φi(0) = qi. For i = k + 1, . . . ,m let L′

i = P1 × {qi} ⊂

P1 × P1. For a general choice of the lines L′
i we can assume that all of them intersect transversely in

k(m − k) + 2
(k
2

)
= k(m − 1) different points t1, . . . , tk(m−1), none of them lying on M ′ = {∞} × P1.

In this case the divisor M ′ +
∑m

i=1 L
′
i has simple normal crossings. For each i = 1, . . . , k(m − 1) let

si = π1(ti), where π1 : P
1 × P1 → P1 denotes the projection onto the first factor.

Our idea is to define a degree n cyclic covering of P1 × P1 branched along the lines L′
i, so that the

family defined by the projection onto the first P1 looks like the deformations in Proposition 4.1 around

the smooth fibres. By degree considerations we need to introduce branch also over rM ′, where r ∈ Z≥0

is such that k+ r is a multiple of n. However, the minimal desingularization of such a cyclic covering

does not lead to a semistable fibration over P1. One can indeed check this explicitly from the equations

of such a covering, noticing that some non-reduced components appear over the singularities.

In order to solve this problem, let σ : B → P1 be the (normalization of the) cyclic covering of

degree n branched over s1 + . . . + sk(m−1) + k∞, set σ̃ = σ × id : B × P1 → P1 × P1 and define

Li = σ̃∗L′
i ⊆ B × P1. The new divisor D =

∑m
i=1 Li has no longer simple normal crossings, but each

singular point has local equations of the form y(y − xn) = 0. We can anyway construct the minimal

desingularization Z → B ×P1 of the cyclic covering of degree n ramified over D ⊂ B× P1, and define

f : Z → B as the induced fibration. Note that in this case no extra ramification is needed. Indeed, D

is a section of the line bundle

L = σ̃∗OP1×P1(k,m) = σ∗OP1(k)⊠OP1(m),

which has an n-th root because its bidegree is (nk,m), a multiple of n.

We have thus constructed families over a projective base with ranks described by proposition 4.1 as

claimed. By Lemma 3.3, we can furthermore conclude that the monodromy of U is always finite in

these cases.

Summing up, we have the following
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Theorem 4.2. The fibraton f : Z → B constructed above is semistable. The general fibre is a degree

n cyclic covering of P1 ramified over m points (of which k vary with b ∈ B). The genus of a general

fibre is g = (n−1)(m−2)
2 . There are k(m− 1) singular fibres, which consist of the transverse union of a

curve of genus g − 1 and an elliptic curve. They have

rkK = g − (n− 1)k = (n−1)(m−2−2k)
2 and U has finite monodromy group and rank at most g+1

2 .

Our constructions are inspired by a series of examples studied by Caanese and Dettweiler in [CD16],

where also degree n cyclic coverings are considered, but ramified only over 4 points (with multiplicities).

Although they do a more general analysis, we will here focus on what they call “standard case”, which

have gcd(n, 6) = 1, three of the branch points have multiplicity one and the fourth one has multiplicity

n− 3. Moving one of the ramification points defines a family over P1, which becomes semistable after

a degree n covering of the base (and a desingularization). Let f : S → B be the resulting fibration.

The genus of the smooth fibres is g = n − 1 and the singular fibres consist of two curves of genus
n−1
2 meeting transversely in one point. It holds q(S) = g(B) = n−1

2 , hence f is the Albanese map

of S. More details can be found in [CD16, Section 4]. These families provide examples where U has

non finite monodromy group, so they behave very different from ours, where we have seen that the

monodromy is finite.

The rank of their flat unitary summand U has been studied by Lu in [Lu18], where arbitrary n ≥ 4 is

are also consiedered, proving the lower bounds

(4.1) rkU ≥





⌊
2g+1
3

⌋
if n ≡ 1 mod 3

⌊
2g−2
3

⌋
if n 6≡ 1 mod 3.

With our techniques we are able to prove furthermore the following.

Proposition 4.3. Let f : S → B be as in the “standard cases” of [CD16]. Then U = K and equality

holds in (4.1).

Proof. Since U ⊆ K, we only have to prove rkK ≤
⌊
2g+1
3

⌋
if n ≡ 1 mod 3, and rkK ≤

⌊
2g−2
3

⌋

otherwise.

By construction, f is a family obtained by moving one branch point of a morphism from a general

fibre to P1. So we can apply Lemma 2.3 to obtain a minimally supporting divisor D = (n− 1)P ⊆ S,

where P is the section defined by moving the branch point. By Lemma 2.2 we have that

rkK ≤ g − degD + 2r(D) = 2r(D),

where D = D|C = (n − 1)P is the restriction to a general fibre C of f . In order to compute r(D) =

r((n − 1)P ) note first that r((n − 1)P ) = r(nP ) − 1 because P is not a base point of |nP |. Indeed,

since nP = π∗Q for some Q ∈ P1, the pull-back of any other Q′ ∈ P1 is a divisor linearly equivalent

to nP not contaning P . Secondly, since C → P1 is a morphism of degree n ramified over a divisor of

the form R = (n − 3)0 + 1 +Q +∞, i.e. also of degree n, we can apply [EV92, Corollary 3.11] with

L = OP1(1) and obtain

π∗OC =
n−1⊕

i=0

OP1

(
−i+

⌊
i

n
R

⌋)
=

n−1⊕

i=0

OP1

(
−i+

⌊
i(n− 3)

n

⌋)
=

n−1⊕

i=0

OP1

(⌊
−3i

n

⌋)
.
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This implies

h0(OC(nP )) = h0(π∗OP1(1)) = h0(π∗π
∗OP1(1)) = h0(OP1(1) ⊗ π∗OC) =

=

n−1∑

i=0

h0
(
OP1

(
1 +

⌊
−3i

n

⌋))
=
⌊n
3

⌋
+ 2,

and thus r(D) = r(nP )−1 =
⌊
n
3

⌋
. Explicitly writing

⌊
n
3

⌋
in each case leads to the desired upper-bound

for rkK. �

5. Proof of the main theorems

In this section we give the proof of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. We say that a ramified covering π : C → P1 is simply ramified at p ∈ P1 if p is

the only ramification point on its fibre and its ramification index is 2.

We first show that for any subset {p1, . . . , pg} of g distinct points of C there is a covering π : C → P1

simply ramified at each p1, . . . , pg. To this aim, we fix an embedding C →֒ Pn = P
(
H0 (C,L)

)
given

by a complete linear system |L| of degree d ≥ 5g + 3 and consider morphisms πH : C → P1 given by

projection from a linear subspace H ⊂ Pn of codimension 2 and disjoint from C.

The condition on the degree assures that h0 (C,L (−D)) = h0 (C,L) − degD for any effective divisor

D with degD ≤ 3g + 2. In particular, for any p ∈ C the tangent line Lp = TpC and the osculating

plane Πp are given by

Lp = P
(
H0 (C,L (−2p))⊥

)
∼= P1 and Πp = P

(
H0 (C,L (−3p))⊥

)
∼= P2,

where ⊥ denotes the annihilator inside H0 (C,L)∨. Moreover, for any distinct p1, . . . , pg, p ∈ C the

osculating planes Πp1 , . . . ,Πpg and the tangent line Lp are independent, in the sense that the linear

span
〈
Πp1 , . . . ,Πpg , Lp

〉
⊂ Pn

has dimension 2g + 1, the maximal possible.

Consider now a linear subspace H ⊂ Pn of codimension 2 and disjoint from C. Then πH is ramified

at p if and only if Lp ⊆ 〈p,H〉, (i.e. if Lp ∩H 6= ∅) and the ramification index is exactly 2 if and only

if Πp 6⊂ 〈p,H〉 (i.e. if Πp ∩H = Lp ∩H). On the other hand, it holds πH (p) = πH (q) for p 6= q if and

only if 〈p,H〉 = 〈q,H〉, or equivalently H intersects the line pq.

Let now p1, . . . , pg ∈ C be arbitrary distinct points and for each i = 1, . . . , g pick qi ∈ Lpi, qi 6= pi. It

is now easy to show that the set of codimension-2 linear subspaces H containing q1, . . . , qg and such

that πH is ramified at each pi with index 2 and πH (pi) 6= πH (pj) for i 6= j form a Zariski-open subset

of the Grassmannian G of codimension-2 subspaces containing the q1, . . . , qg. It remains to achieve

the simple ramification at each p1, . . . , pg, i.e. no other ramification point has the same image as any

pi. By the above discussion, the covering πH is ramified at another given point p ∈ C if and only

Lp ∩ H 6= ∅, which is a codimension-2 condition on G (because of the condition degL ≥ 5g + 3).

By moving p ∈ C we see that the set of “bad” subspaces H (such that πH is not simply ramified at
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p1, . . . , pg) has codimension at least 1 in G, hence a general H ∈ G defines a covering simply ramified

at p1, . . . , pg, as wanted.

Suppose now in addition that the points p1, . . . , pg form a rigid divisor on C (which happens for a

set of g points in general position on C) and pick a covering π : C → P1 as above, simply ramified at

p1, . . . , pg. Denote by b1 = π (p1) , . . . , bg = π (pg) , bg+1, . . . , bk the branch points of π. To finish the

proof we construct a one-dimensional family f : C → B of deformations of C over a quasi-projective

base B, moving r of the branch points b1, . . . , bg as follows.

For i = 1, . . . , r let ∆i ⊂ P1 be a disk centred in bi, small enough so that ∆i ∩ ∆j = ∅ for i 6= j,

and also bj 6∈ ∆i for i = 1, . . . , r and j = r + 1, . . . , k. By the Riemann-existence theorem, for any

t = (t1, . . . , tr) ∈
∏r

i=1 ∆i = ∆ there is a covering πt : Ct → P1 branched on {t1, t2, . . . , tr, qr+1, . . . , qk}

with the same ramification data as π. These coverings vary holomorphically over the polydisk ∆, and

thus define an r-dimensional family f : C → ∆ with f−1(t) = Ct. Because of monodromy reasons, this

family might not extend automatically over the quasi-projective variety X = (P1)r \ Z, where

Z = {(t1, . . . , tr) ∈ (P1)r | ti = tj or ti = bj for some i 6= j}

is the set where two branch points collide. We can anyway extend it over any simply connected open

set containing ∆ and so in particular over the universal covering ψ : X̃ → X, which is however not

quasi-projective.

Nevertheless, for given t ∈ X there are only finitely many coverings (up to isomorphism) branched

over {t1, t2, . . . , tr, br+1, . . . , bk}, and the fundamental group π1 (X) acts naturally on this finite set.

The kernel G of the induced group homomorphism ρ : π1(X) → ΣN into the symmetric group ΣN

(for some appropriate N) has therefore finite index in π1 (X) and is independent of t ∈ X general.

The family over X̃ induces thus a family f : C → Y over Y = X̃/G, which is a finite covering of the

quasi-projective variety X, hence quasi-projective itself.

To finish the proof we consider a quasi-projective curve B ⊂ Y through a point t0 of Y above

(b1, . . . , br) ∈ X corresponding to π, and transverse to the “coordinate hypersurfaces” {ti = bi}.

Possibly after a finite base change this family can be extended to a semistable one over a projective

base. The fact that rkK = g− r follows directly from Lemmas 2.3 and 2.2. Indeed, Lemma 2.3 shows

that for t0 ∈ B the infinitesimal deformation is minimally supported on D = p1 + . . . + pr, hence in

particular is not isotrivial (see Remark 2.4). By construction of π, the divisor D is rigid and Lemma

3.2 gives both rkK = g − r and rkU ≤ g+1
2 . �

Proof of Corollary 1.2. The proof is a straightforward application of Theorem 1.1 together with the

following argument about the monodromy of the flat summand. Since C is a smooth curve with

simple Jacobian variety J (C), the flat bundle U of any one-dimensional family f : C → B through

C must be either zero or have infinite monodromy. Otherwise, U would become trivial after a finite

étale base change, defining an abelian subvariety of J (C) and contradicting its simplicity. However

the family f : C → B as contructed in the proof of Theorem 1.1 is minimally supported on a relatively

rigid divisor. Lemma 3.3 implies that U has finite monodromy, hence it must be zero by the above

discussion. �
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