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STABILITY OF OVERSHOOTS OF ZERO MEAN RANDOM WALKS

ALEKSANDAR MIJATOVIĆ AND VLADISLAV VYSOTSKY

Abstract. We prove that for a random walk on the real line whose increments have zero
mean and are either integer-valued or spread out (i.e. the distributions of the steps of
the walk are eventually non-singular), the Markov chain of overshoots above a fixed level
converges in total variation to its stationary distribution. We find the explicit form of this
distribution heuristically and then prove its invariance using a time-reversal argument. If,
in addition, the increments of the walk are in the domain of attraction of a non-one-sided
α-stable law with index α ∈ (1, 2) (resp. have finite variance), we establish geometric (resp.
uniform) ergodicity for the Markov chain of overshoots. All the convergence results above
are also valid for the Markov chain obtained by sampling the walk at the entrance times
into an interval.

1. Introduction

Let S = (Sn)n≥0 with Sn = S0 +X1 + . . .+Xn be a one-dimensional random walk with
independent identically distributed (i.i.d.) increments X1, X2, . . . and the starting point S0

that is a random variable independent with the increments. Assume that

E|X1| ∈ (0,∞) and EX1 = 0, (1)

which implies that lim supn→∞ Sn = − lim infn→∞ Sn = ∞ a.s. Define the up-crossings times

of zero

T0 := 0, Tn := inf{k > Tn−1 : Sk−1 < 0, Sk ≥ 0}, n ∈ N, (2)

and let

On := STn
, Un := STn−1, n ∈ N; (3)

be the corresponding overshoots and undershoots; put O0 = U0 := S0. The choice of zero is
arbitrary and can be replaced by any fixed level. The sequence of overshoots O = (On)n≥0 is
a Markov chain. The sequence of undershoots U = (Un)n≥0 also forms a Markov chain. Both
statements can be checked easily, although the latter one is less intuitive. We are mostly
interested in the chain of overshoots, but our techniques also yield results for the chain of
undershoots.

Under assumption (1), consider the law

π+(dx) :=
2

E|X1|
1[0,∞)(x)P(X1 > x)λ(dx), x ∈ Z,

where Z is the state space of the walk S, defined as the minimal closed (in the topological
sense) subgroup of (R,+) containing the topological support of the distribution of X1, and
λ is the Haar measure on (Z,+) normalized such that λ([0, x) ∩ Z) = x for positive x ∈ Z.
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We will prove that the distribution π+ is invariant for the Markov chain of overshoots O
(Theorem 1). Our proof is based on a time reversal of the path of S between the up-crossings
of the level zero. Since this proof gives no insight into the form of π+, in Section 2.3 we
present a heuristic argument which we used to find this invariant distribution. The invariance
of π+ is also established in our companion paper [15, Corollary to Theorem 3] in a much more
general setting using entirely different methods based on infinite ergodic theory; the proof
presented here precedes the one in [15]. By [15, Corollary to Theorem 4], the assumption
in (1) implies that the law π+ is a unique (up to multiplicative constant) locally finite Borel
invariant measure of the chain of overshoots O on Z. Moreover, we will see in Section 2.1
that assumption (1) is the weakest possible ensuring that O has an invariant distribution
(i.e. probability measure).

The main goal of this paper is to study convergence of the Markov chain of overshoots
O to its unique invariant law π+. Our aim is to identify the conditions on the law of
the increments of S under which the total variation distance between the law of On and
π+ converges to zero as n → ∞ (Theorem 2) and study its rate of decay (Theorem 3).
Since the chain O is in general neither weak Feller ([15, Remark 5]) nor ψ-irreducible (see
Section 5), the total variation convergence requires additional smoothness assumptions on
the distribution of increments of S. In particular, Theorem 2 holds if the distribution of X1

is either arithmetic or spread out, which means respectively that either X1 is supported on
dZ for some d > 0 or the distribution of Sk is non-singular for some k ≥ 1. The geometric
rate of convergence in Theorem 3 is established under a further assumption that the law
of X1 is in the domain of attraction of a non-one-sided α-stable law with index α ∈ (1, 2).
For increments with finite variance we get a stronger version with the geometric rate of
convergence uniformly in the starting point of O. Section 5 concludes the paper by offering
a conjecture about the weak convergence of the Markov chain O to π+ without additional
assumptions on the law of X1 other than (1).

Our interest in the Markov chains of overshoots of random walks stems from their close
connection to the local time of the random walk at level zero (see Perkins [16]) and the
fact that they appear in the study of the asymptotics of the probability that the integrated
random walk (S1+ . . .+Sk)1≤k≤n stays positive (see Vysotsky [23, 24]). A detailed discussion
with applications and further connections to a special class of Markov chains called random

walks with switch at zero, is available in [15, Section 1.2]. Let us mention that distributions
of the same form as π+ appear on many occasions – this is discussed in Sections 2.1 and 2.2.

Finally, we note that our methods developed for establishing convergence of the chain
O of overshoots above zero work without any changes for the Markov chain of entrances into
the interval [0, h] with any h > 0. In Section 5.1 we show that all the results for O remain
valid for this new chain, whose stationary distribution, given in (48) below, is unique and
explicit; see also [15, Section 4].

2. Stationary distributions of overshoots

2.1. Setting and results. Consider the random walk S = (Sn)n≥0 from Section 1, and
define its version S ′ = (S ′

n)n≥0 with S ′
n := Sn − S0, which always starts at zero. We assume

that S, as well as all the other random elements considered in this paper, are defined on
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a generic measurable space equipped with a variety of measures: a probability measure P;
the family of probability measures {Px}x∈R given by Px(S ∈ ·) = P(x + S ′ ∈ ·) (satisfying
Px(S0 = x) = 1); and the measures of the form Pµ(·) :=

∫

R
Px(·)µ(dx), where µ is a Borel

measure µ on R. We do not necessarily assume that µ is a probability but we prefer to (ab)use
the probabilistic notation Pµ and the terms “law”, “expectation”, “random variable”, etc.,
by which we actually mean the corresponding notions of general measure theory. Under the
measure Pµ, the starting point S0 of the random walk S follows the “law” µ. Denote by E

and Ex the respective expectations under P and Px. All the measures on topological spaces
considered in the paper are Borel, that is defined on the corresponding Borel σ-algebras.

Recall that the state space Z of the random walk S was defined as the minimal closed
subgroup of (R,+) containing the support of the distribution of X1. Let us give a different
representation for Z assuming throughout that X1 is not degenerate. For any h ∈ [0,∞),
let Zh be the real line R if h = 0 and the integer lattice Z multiplied by h if h > 0:

Zh :=

{

R, if h = 0,

hZ, if h > 0.

We equip Zh with the discrete (resp. Euclidean) topology if h > 0 (resp. h = 0). Note that
any closed (in the topological sense) subgroups of (R,+) is of the form (Zh,+) for some
h ≥ 0. Finally, denote Z+

h := Zh ∩ [0,∞) and Z−
h := Zh ∩ (−∞, 0).

Define the span of the distribution of increments of S by

d := sup{h ∈ [0,∞) : P(X1 ∈ Zh) = 1}, (4)

and note that d ∈ [0,∞) and Z = Zd. We always assume that the random walk starts in
Zd, hence P(S0, S1, . . . ∈ Zd) = 1. The distribution of increments of S is called arithmetic

(with span d) if d > 0 and is called non-arithmetic if d = 0. We shall often use d > 0 and
d = 0 as synonyms for arithmetic and non-arithmetic, respectively. Define the measure λd
on Zd as follows: for any B ∈ B(Zd), put

λd(B) :=

{

λ0(B), if d = 0,

d ·#B, if d > 0,

where λ0 denotes the Lebesgue measure on R and # denotes the number of elements in a
set. Then λd is the normalized Haar measure on the additive group Zd = Z, as defined in
the Introduction. Define the measures λ+d (dy) := 1Z+

d
(y)λd(dy) and λ

−
d (dy) := 1Z−

d
(y)λd(dy)

on Zd. Put

π+(dx) := c1P(X1 > x)λ+d (dx) and π−(dx) := c1P(X1 ≤ x)λ−d (dx), x ∈ Zd, (5)

where c1 := 1 if E|X1| = ∞ and c1 := 2/E|X1| if E|X1| <∞. This extends the definition of
π+ given in the Introduction under assumption (1).

The classic trichotomy states that the (non-degenerate) random walk S either drifts
to +∞, drifts to −∞, or oscillates; see Feller [7, Section XII.2]. By definition, the latter
possibility means that lim supn→∞ Sn = ∞ a.s. and lim infn→∞ Sn = −∞ a.s. It is known
that S oscillates if and only if either EX1 = 0 and E|X1| ∈ (0,∞) or EX1 does not exist,
i.e. EX+

1 = EX−
1 = +∞, where x+ := max{x, 0} and x− := (−x)+ for a real x; cf. Feller [7,
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Theorems XII.2.1] and Kesten [12, Corollary 3]. In particular, oscillation holds when the
random walk S is topologically recurrent on Zd, which means that P0(Sn ∈ G i.o.) = 1 for
every open neighbourhood G ⊂ Zd of 0. This is because such random walks satisfy P0(Sn ∈
G i.o.) = 1 for every non-empty open set G ⊂ Zd; see Guivarc’h et al. [8, Theorem 24].

Clearly, oscillation is necessary and sufficient for S to cross a level infinitely often a.s.,
in which case the Markov chains of overshoots and undershoots of the zero level introduced
(2) and (3) are well-defined. Similarly, define the down-crossings times of the level zero

T ↓
0 := 0, T ↓

n := inf{k > T ↓
n−1 : Sk−1 ≥ 0, Sk < 0}, n ∈ N,

and the corresponding overshoots and undershoots at the down-crossings

O↓
n = ST ↓

n
, U↓

n := ST ↓
n−1, n ∈ N (6)

with O↓
0 = U↓

0 := S0. The random sequences in (3) and (6) are defined on the event that all
crossing times Tn are finite. Since S oscillates, this event occurs almost surely under P and
under Pµ with arbitrary measure µ on Zd.

The Markov chains of overshoots at up-crossings O = (On)n≥0 and at down-crossings
O↓ = (O↓

n)n≥0 take values in Z+
d and Z−

d , respectively. Both chains are started at O0 =

O↓
0 = S0 ∈ Zd. Note that there is asymmetry at zero. Namely, since −Z+

d 6= Z−
d , the down-

crossing times T ↓
n (resp. positions O↓

n and U↓
n) need not be equal to the up-crossing times

Tn (resp. positions −On and −Un) for the dual random walk (−Sn)n≥0. Our consideration
mostly concerns O, which for brevity will be called the chain of overshoots if there is no risk
of confusion with O↓.

Theorem 1. Let S be any random walk that oscillates. Then the measure π+ is invariant for

the Markov chains O and (−Un − d)n≥0 of overshoots and shifted sign-changed undershoots

at up-crossings of the zero level, i.e. Pπ+(On ∈ ·) = π+ and Pπ+(−Un − d ∈ ·) = π+ for all

n ∈ N. Similarly, π− is an invariant measure for the chains O↓ and (−U↓
n − d)n≥0.

Remark 1. We will show in Section 2.4.1 below that the laws of overshoots and undershoots
of the zero level at consecutive down- and up-crossings are related as follows:

Pπ+(O
↓
1 ∈ ·) = π−, Pπ−

(O1 ∈ ·) = π+, Pπ+(−U↓
1 − d ∈ ·) = π−, Pπ−

(−U1 − d ∈ ·) = π+.

We will prove these results using an argument based on a time reversal of the path of S
between the up-crossings of the level zero. Since this proof gives no insight about the form of
π+, we will also present a heuristic argument which we used to find this invariant distribution.
After these results were obtained, we found an entirely different proof of Theorem 1, which is
based on the methods of infinite ergodic theory and applies in a much more general setting;
see our companion paper [15].

The assumption that the random walk S oscillates is the weakest possible to consider
the Markov chains of overshoots and undershoots. By [15, Corollary to Theorem 4], the
chains of overshoots and undershoots of such random walks possess no other locally finite
invariant Borel measures (up to a multiplicative constant), including the ones singular with
respect to π+ and π−. Therefore, the probabilistic question of convergence of these chains
to stationarity can be posed only if the measures π+ and π− in Theorem 1 have total mass
one. This need not be the case in general since every non-degenerate symmetric random
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walk oscillates. However, by (5), both measures π+ and π− have finite mass if and only if
E|X1| ∈ (0,∞), in which case the oscillation assumption forces EX1 = 0 and the equalities
π+(Zd) = π−(Zd) = 1 follow. Thus, condition (1) is the weakest assumption under which
convergence to stationarity of the chains of overshoots and undershoots can be stated.

Probability measures of the same form as π+ and π− appear as limit distributions for
the following stochastic processes closely related to random walks. Assume that (1) holds.
First, π+ is the unique stationary distribution of the reflected random walk driven by an
i.i.d. sequence with the common non-arithmetic distribution P(X1 ∈ ·|X1 > 0); see Feller [7,
Section VI.11] and Knight [13]. Second, 1

2
π+ + 1

2
π− is an invariant distribution of a Markov

chain whose increments are distributed as P(X1 ∈ ·|X1 < 0) for all starting points in Z+
d

and as P(X1 ∈ ·|X1 > 0) for all starting points in Z−
d . This chain belongs to a special

type of Markov chains which we call random walks with switch at zero; see Borovkov [4] and
cf. Vysotsky [25]. Third, π+ is known as the stationary distribution, as well as the limit
distribution, for the non-negative residual lifetime in a renewal process with inter-arrival
times distributed according to P(X1 ∈ ·|X1 > 0); see Asmussen [1, Section V.3.3] or Gut [9,
Theorem 2.6.2]. For random walks this limit property can be interpreted as follows.

Denote by H−
1 the first strict descending ladder height of the random walk S ′, i.e. the

first strictly negative value of S ′. Similarly, denote by H+
1 the first strict increasing ladder

height of S ′. It is known that random variables H+
1 and H−

1 are integrable if EX1 = 0 and
EX2

1 < ∞; see Feller [7, Sections XVIII.4 and 5]. When this is the case, by the results of
renewal theory (e.g. by [9, Theorem 2.6.2] and (41) below), we have

Px(O
↓
1 ∈ dy)

d−→
x→∞, x∈Zd

1

−EH−
1

P(H−
1 ≤ y)λd(dy), y ∈ Z−

d . (7)

The r.h.s.’s of (7) is referred to as the distribution of the overshoot of the walk S above an
“infinitely remote” level at −∞. This distribution equals π− defined for H−

1 instead of X1.
Similarly, π+ corresponds to the non-strict overshoot of S above an “infinitely remote” level
at +∞, which is distributed as the strict overshoot above this level decreased by d:

Px(O1 ∈ dy)
d−→

x→−∞, x∈Zd

1

EH+
1

P(H+
1 > y)λd(dy), y ∈ Z+

d . (8)

2.2. An alternative representation for π+ and π−. Notice that the invariant measures
π+ and π− in Theorem 1, which are probabilities if and only if E|X1| ∈ (0,∞), are defined
only in terms of the tails of the distribution of increments of the random walk S. On the
other hand, it is natural to expect that π+ and π− are closely related to the distributions
of the overshoots above infinitely remote levels at ±∞ given by the r.h.s.’s of (7) and (8).
In this section we give such a representation. Note that since the limit distributions of
overshoots above infinite levels exist only for zero-mean random walks with finite variance,
before we proved Theorem 1 it was not clear at all to us why the chain of overshoots should
have a stationary distribution for walks with infinite variance.

Denote by H̃−
1 the first non-strict (weak) descending ladder height of S ′, i.e. the first

non-positive value of (S ′
n)n≥1.
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Lemma 1. For any random walk S that oscillates, we have

π+ = c1P(H̃
−
1 6= 0)

[

P(H−
1 ≤ x)λ−d (dx)

]

∗ P(H+
1 ∈ ·) on Z+

d .

Similarly,

π− = c1P(H̃
−
1 6= 0)

[

P(H+
1 > x)λ+d (dx)

]

∗ P(H−
1 ∈ ·) on Z−

d .

Remark 2. If EX2
1 <∞ (which implies (1)), the first identity can be interpreted as

π+(dy) = P(R− +H+
1 ∈ dy|R− +H+

1 ≥ 0),

where R− is a random variable having the distribution of the overshoot of S above an
“infinitely remote” level at −∞ (given by the r.h.s. of (7)) and independent with H+

1 .
Moreover,

P(R− +H+
1 ≥ 0) = − 1

c1P(H̃
−
1 6= 0)EH−

1

= − 1

c1EH̃
−
1

.

Combining this with the analogous probabilistic interpretation of π− and in the case
d = 0 using that any distribution function is continuous a.e. with respect to the Lebesgue
measure λ0 allows us to rewrite the above representations directly in terms of the random
walk as follows.

Proposition 1. For any random walk S satisfying EX1 = 0 and 0 < EX2
1 <∞, we have

Px

(

ST1 ∈ ·
∣

∣

∣
ST ↓

1
≥ ST ↓

1 +1, . . . , ST ↓
1
≥ ST1−1

)

d−→
x→∞, x∈Zd

π+.

and

Px

(

ST ↓
1
∈ ·

∣

∣

∣
ST1 ≤ ST1+1, . . . , ST1 ≤ ST ↓

1 −1

)

d−→
x→−∞, x∈Zd

π−.

The representations for π+ and π− in Lemma 1 were found in [25] by considering the
overshoots above zero for the Markov chain of the so-called switching ladder heights, which
is a particular example of random walks with switch at zero. Here we give a different
independent proof.

Proof of Lemma 1. From the Wiener–Hopf factorization

P(X1 ∈ ·) = P(H+ ∈ ·) + P(H̃−
1 ∈ ·)− P(H+

1 ∈ ·) ∗ P(H̃−
1 ∈ ·) (9)

(Feller [7, Chapter XII.3]) it follows that for any y ∈ Z+
d ,

P(X1 > y) = P(H+
1 > y)−

∫

(y,∞)

P(H̃−
1 > y−z)P(H+

1 ∈ dz) =

∫

(y,∞)

P(H̃−
1 ≤ y−z)P(H+

1 ∈ dz).

Then from the identity P(H̃−
1 ≤ u) = P(H̃−

1 6= 0)P(H−
1 ≤ u) for u ∈ Z−

d , we get

c1P(X1 > y) = c1P(H̃
−
1 6= 0)

∫

Zd

P(H−
1 ≤ y − z)1Z−

d
(y − z)P(H+

1 ∈ dz).

The l.h.s. is the density of π+ with respect to λd, and for the r.h.s. it remains to use the
following formula (10) for the density of convolutions. For any random variable H supported
on Zd and any measure µ on Zd with a bounded density g with respect to λd, we have

(µ ∗ P(H ∈ ·))(dx) = [Eg(x−H)]λd(dx), x ∈ Zd. (10)
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This is evident for d > 0. For the absolutely continuous case d = 0, see e.g. Cohn [5,
Proposition 10.1.12]. �

2.3. Derivation of π+. Let us present a simple probabilistic argument that we used to
guess the form of π+. Assume that EX1 = 0, the variance of increments σ2 = EX2

1 is finite
and positive, and the random walk S is integer-valued and aperiodic, i.e. the distribution of
X1−a is arithmetic with span 1 for every a ∈ Z. In this case Z+

d = N0, where N0 := N0∪{0}.
Consider the number of up-crossings of the zero level by time n:

L↑
n :=

n−1
∑

i=0

1(Si < 0, Si+1 ≥ 0) = max{k ≥ 0 : Tk ≤ n}.

Assume that the chain O has an ergodic stationary distribution µ. Then by the ergodic
theorem, for any x, y ∈ {z ∈ N0 : P(X1 > z) > 0},

lim
n→∞

1

n

n
∑

i=1

1(Oi = y) = lim
n→∞

1

L↑
n

L↑
n

∑

i=1

1(Oi = y) = µ(y), Px-a.s. (11)

On the other hand,

Ex

[

L↑
n√
n
· 1

L↑
n

L↑
n

∑

i=1

1(Oi = y)

]

=
1√
n

n−1
∑

i=1

Px(Si < 0, Si+1 = y)

=
1√
n

n−1
∑

i=1

∞
∑

k=1

Px(Si = −k)P(X1 = y + k)

=
∞
∑

k=1

P(X1 = y + k)
1√
n

n−1
∑

i=1

Px(Si = −k).

By the local central limit theorem, there exists a constant c > 0 such that for every integer
i and k ≥ 1 we have Px(Si = −k) ≤ c/

√
n, and also Px(Si = −k) ∼ 1√

2πiσ
as i → ∞. Hence

from (11) and the dominated convergence theorem, we obtain

µ(y) lim
n→∞

Ex

[

L↑
n√
n

]

=

∞
∑

k=1

P(X1 = y + k)
(

lim
n→∞

1√
n

n−1
∑

i=1

1√
2πiσ

)

=

√

2

πσ2
P(X1 > y).

Thus, µ = π+ in the special case considered above.
Therefore it is feasible that the distribution π+ is stationary for the chain of overshoots

O for general random walks but of course we need to prove this directly, and even for the
case considered here.

2.4. Proof of Theorem 1. The main result of the section, Proposition 3 below, reveals a
distributional symmetry hidden in the trajectory of an arbitrary oscillating random walk,
which is key for the proof of Theorem 1.
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Define new Markov transition kernels P and Q on Zd as follows:

P (x, dy) := Px(−U1 − d ∈ dy), Q(x, dy) := P(X1 − d ∈ dy + x|X1 − d ≥ x), x, y ∈ Zd,
(12)

with the convention that Q(x, dy) := δ0(dy) in the case when P(X1 − d ≥ x) = 0; the choice
of the delta measure is arbitrary and will not be relevant for what follows. The kernel P is
defined in terms of the sign-changed first undershoot U1, given in (3) above, which is shifted
by d to ensure that −U1 − d may take value zero in the arithmetic case. The kernel Q
corresponds to up-crossings of the zero level by the walk S. Clearly, for every x ∈ Zd, the
transition probabilities P (x, dy) and Q(x, dy) are supported on Z+

d .
The transition kernels of the Markov chains of overshoots (On)n≥0 and shifted sign-

changed undershoots (−Un − d)n≥0 equal PQ and QP , respectively. More precisely, for any
probability measure µ on Zd and any n ∈ N,

Pµ(On ∈ dy) = [µ(PQ)n](dy), Pµ(−Un − d ∈ dy) = [µP (QP )n−1](dy), y ∈ Zd. (13)

Here for any transition kernel T on Zd, by µT we denoted the measure on Zd given by
µT (dy) :=

∫

Zd
T (z, dy)µ(dz), and put T 0(x, dy) = δx(dy).

In the arithmetic case, we clearly have the equality λd(dx)P(X1 − d ∈ dy + x) =
λd(dy)P(X1 − d ∈ dx + y) of measures on Zd × Zd; we will also prove this identity for
d = 0. Combined with the equality of measures P(X1 − d ≥ z)λ+d (dz) = π+(dz) on Zd, this
implies that the transition kernel Q is reversible with respect to π+. Put differently, the
detailed balance condition

π+(dx)Q(x, dy) = π+(dy)Q(y, dx), x, y ∈ Zd

holds true for the measures on Zd×Zd (which are supported on Z+
d ×Z+

d ). Surprisingly, the
kernel P shares the same property. Put together, we have the following statement, which we
will prove in full below in Section 2.4.1.

Proposition 2. For any random walk S that oscillates, the kernels P and Q are reversible

with respect to π+.

A direct corollary of this proposition is the invariance of the measure π+ for the Markov
chains (On)n≥0 and (−Un − d)n≥0 asserted by Theorem 1. A similar argument yields the
invariance of π− for the chains (O↓

n)n≥0 and (−U↓
n −d)n≥0 (use (16) from Section 2.4.1 below

and a kernel decomposition for these chains analogous to (13)). Thus Theorem 1 follows
from Proposition 2, which in turn is a direct corollary of Proposition 3 (see Section 2.4.1).

2.4.1. The time reversal argument. We now present a result concerning the entire trajectory
of the random walk between up-crossings of the level zero. Our proof is based on a generali-
sation of the argument from Vysotsky [24, Lemma 1]. It may be regarded as an illustration
of the conclusion of Remark 5 in [15, Section 5.2] on general state-space Markov chains.

Proposition 3. For any random walk S that oscillates, for any m ∈ N we have

Pπ+

(

(S0, S1, . . . , STm−1, 0, . . .) ∈ ·
)

= Pπ+

(

(−STm−1 − d,−STm−2 − d, . . . ,−S0 − d, 0, . . .) ∈ ·
)

(14)
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and

Pπ+

(

(S0, S1, . . . , ST ↓
m−1, 0, . . .) ∈ ·

)

= Pπ−

(

(−STm−1 − d,−STm−2 − d, . . . ,−S0 − d, 0, . . .) ∈ ·
)

. (15)

The choice of the value 0 in the random sequences in (14) and (15) is arbitrary and could
be substituted by any constant. However, we stress that the equalities in (14) and (15) cease
to hold if this constant value is substituted by the remaining part of the path of S. Note
that (14) can be stated more elegantly as

(

S0, S1, . . . , STm−1

) d
=

(

−STm−1 − d,−STm−2 − d, . . . ,−S0 − d
)

under Pπ+.

Remark 3. Similarly, we have

Pπ−

(

(S0, S1, . . . , ST ↓
m−1, 0, . . .) ∈ ·

)

= Pπ−

(

(−ST ↓
m−1 − d,−ST ↓

m−2 − d, . . . ,−S0 − d, 0, . . .) ∈ ·
)

(16)

and

Pπ−

(

(S0, S1, . . . , STm−1, 0, . . .) ∈ ·
)

= Pπ+

(

(−ST ↓
m−1 − d,−ST ↓

m−2 − d, . . . ,−S0 − d, 0, . . .) ∈ ·
)

. (17)

We first prove two simple corollaries of Proposition 3.

Proof of Propositions 2. Reversibility of the P -kernel follows immediately by (14) with
m = 1 since U1 = ST1−1.

As explained above, reversibility of the Q-kernel follows from the equalities of measures

λd(dx)P(X1 − d ∈ dy + x) = λd(dy)P(X1 − d ∈ dx+ y)

on Zd × Zd and P(X1 − d ≥ z)λ+d (dz) = π+(dz) on Zd. The latter equality is trivial. The
former one is equivalent to

λd(dx)P(x+X1 ∈ dy) = λd(dy)P(y −X1 ∈ dx), x, y ∈ Zd, (18)

as follows from substituting y by y − d using the invariance of λd under tshifts in Zd and
substituting x by −x using the central symmetry of λd; cf. (26) below for the meaning of (18).

It suffices to check the equality of measures (18) only for rectangular sets with Borel
sides A,B ⊂ Zd. By Fubini’s theorem and the mentioned shift invariance of λd,

[

λd(dx)P(x+X1 ∈ dy)
]

(A× B) =

∫

Z2
d

1(x ∈ A, x+ z ∈ B)λd(dx)⊗ P(X1 ∈ dz)

=

∫

Zd

λd(A ∩ (B − z))P(X1 ∈ dz)

=

∫

Zd

λd
(

B ∩ (A− z)
)

P(−X1 ∈ dz)

=
[

λd(dx)P(x−X1 ∈ dy)
]

(B ×A),

where the last equality follows from the first two. This is exactly (18). �
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Recall that Remark 1 asserts that

Pπ+(O
↓
1 ∈ ·) = π−, Pπ−

(O1 ∈ ·) = π+, Pπ+(−U↓
1 − d ∈ ·) = π−, Pπ−

(−U1 − d ∈ ·) = π+.

Proof of Remark 1. Fix m = 1. By (14), the random variables −O↓
1 − d = −ST ↓

1
− d

and U↓
1 = ST ↓

1 −1 have the same law under Pπ+, hence Pπ+(O
↓
1 ∈ ·) = Pπ+(−U↓

1 − d ∈ ·).
By (15), the law of −U↓

1 − d = −ST ↓
1 −1 − d under Pπ+ is the same as the law of S0 under

Pπ−
, i.e. Pπ+(−U↓

1 − d ∈ ·) = π−, and hence Pπ+(O
↓
1 ∈ ·) = π−. Similarly, by (16), we find

Pπ−
(O1 ∈ ·) = Pπ−

(−U1 − d ∈ ·). Finally, by (17), we have Pπ−
(−U1 − d ∈ ·) = π+. �

We now prove the main statement of the section.

Proof of Proposition 3. Consider equality (14) in the case m = 1. Pick an arbitrary
k ∈ N and define the time-reversal mapping Rk : Rk+1 → R

k+1 by

Rk(x0, . . . , xk) := (−xk − d, . . . ,−x0 − d).

Introduce the random vector K := (S0, . . . , Sk) and note that (14) follows if we establish the
equality of measures on (Zd)

k+1:

Pπ+(K ∈ ·, T1 = k + 1) = Pπ+(Rk(K) ∈ ·, T1 = k + 1). (19)

Put

Z̃+
d :=

{

Z+
d \ {0}, if d = 0,

Z+
d , if d > 0,

and denote Ck := ∪k−1
i=0 (Z̃+

d )
i× (Z−

d )
k−1−i. Then C ′

k := Z̃+
d ×Ck ×Z−

d is the set of sequences

of length k + 1 that start from Z̃+
d , down-cross the level zero exactly once, and in the

non-arithmetic case have no zeroes.
Note that Rk is an invertible mapping on R

k+1, and it is an involution. Further,
Rk(Ck) = Ck since −Z̃+

d − d = Z−
d in both cases d = 0 and d > 0. Similarly, Rk(C

′
k) = C ′

k,
implying that Rk(R

k+1 \ C ′
k) = R

k+1 \ C ′
k. This gives

Pπ+

(

Rk(K) ∈ R
k+1 \ C ′

k, T1 = k + 1
)

= Pπ+

(

K ∈ R
k+1 \ C ′

k, T1 = k + 1
)

= 0. (20)

The second equality is trivial in the arithmetic case. In the non-arithmetic case, it is due
to the fact that K has density with respect to the Lebesgue measure on R

k+1, which in
turn holds true since in this case the measure π+ has density with respect to the Lebesgue
measure on R.

By (20), if suffices to check equality (19) on rectangles of the form B0 × B × Bk with

Borel sides B0 ⊂ Z̃+
d , Bk ⊂ Z−

d and B ⊂ Ck. Using the definition of π+ and the fact that
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Xk+1 is independent with K under Px0 for every x0 ∈ Zd, we obtain

Pπ+

(

K ∈ B0 ×B × Bk, T1 = k + 1
)

=

∫

B0

Px0

(

(S1, . . . , Sk) ∈ B × Bk, T1 = k + 1
)

π+(dx0)

=

∫

B0

∫

Bk

[

Px0

(

(S1, . . . , Sk−1) ∈ B, T1 = k + 1
∣

∣Sk = xk
)

P(X1 > x0)
]

Px0(Sk ∈ dxk)λd(dx0)

=

∫

B0×Bk

fB(x0, xk)Pλd
((S0, Sk) ∈ dx0 ⊗ dxk), (21)

where

fB(x0, xk) := Px0

(

(S1, . . . , Sk−1) ∈ B
∣

∣Sk = xk
)

P(X1 > x0)P(X1 ≥ −xk)
for (x0, xk) ∈ Z̃+

d ×Z−
d . Then we use equality (21) to get

Pπ+

(

Rk(K) ∈ B0 × B × Bk, T1 = k + 1
)

= Pπ+

(

K ∈ (−Bk − d)× Rk−2(B)× (−B0 − d), T1 = k + 1
)

=

∫

(−Bk−d)×(−B0−d)

fRk−2(B)(x0, xk)Pλd
((S0, Sk) ∈ dx0 ⊗ dxk)

=

∫

B0×Bk

fRk−2(B)(R1(x0, xk))Pλd

(

R1(S0, Sk) ∈ dx0 ⊗ dxk
)

, (22)

where in the last equality we used the change of variables formula, the fact that Rk is an
involution, and the equality (−Bk − d)× (−B0 − d) = R1(B0, Bk).

Let us simplify the integrand under the last integral in (22). We have

P−xk−d

(

(S1, . . . , Sk−1) ∈ Rk−2(B)
∣

∣Sk = −x0 − d
)

= P0

(

(S1 − xk − d, . . . , Sk−1 − xk − d) ∈ Rk−2(B)
∣

∣Sk = xk − x0
)

= P0

(

Rk−2(S1 − Sk − x0 − d, . . . , Sk−1 − Sk − x0 − d) ∈ B
∣

∣Sk = xk − x0
)

= P0

(

(Sk − Sk−1 + x0, . . . , Sk − S1 + x0) ∈ B
∣

∣Sk + x0 = xk
)

.

The well-known duality principle for random walks states that the random vectors (S1, . . . , Sk)
and (Sk − Sk−1, . . . , Sk − S1, Sk) have the same law under P0. By a conditional version of
this distributional identity, for every x0 ∈ Zd and Px0(Sk ∈ ·)-a.e. xk ∈ Zd,

P−xk−d

(

(S1, . . . , Sk−1) ∈ Rk−2(B)
∣

∣Sk = −x0 − d
)

= Px0

(

(S1, . . . , Sk−1) ∈ B
∣

∣Sk = xk
)

. (23)

By the definition of fB, this gives

fRk−2(B)(R1(x0, xk)) = fRk−2(B)(−xk − d,−x0 − d))

= Px0

(

(S1, . . . , Sk−1) ∈ B
∣

∣Sk = xk
)

P(X1 > −xk − d)P(X1 ≥ −x0 − d).

Thus, using in the non-arithmetic case the fact that a distribution function can have at most
countably many jumps, we get

fB(x0, xk) = fRk−2(B)(R1(x0, xk)), Pλd
((S0, Sk) ∈ ·)-a.e. (x0, xk). (24)
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Hence by (21), (22), and (24) combined with (20), equality (19) will follow once we show
the following equality of measures on Z+

d × Z−
d :

Pλd
((S0, Sk) ∈ ·) = Pλd

(R1(S0, Sk) ∈ ·). (25)

By translation invariance of λd under shifts in Zd,

Pλd
(R1(S0, Sk) ∈ ·) = Pλd

((−Sk − d,−S0 − d) ∈ ·) = Pλd
((−Sk,−S0) ∈ ·),

and thus the claim (25) reduces to

Pλd
((S0, Sk) ∈ ·) = Pλd

((−Sk,−S0) ∈ ·), (26)

which means that the random walk −S is dual to S with respect to λd. To prove this
property, note that by the shift invariance of λd under shifts in Zd, the equality (26) of
measures on Z2

d = Zd × Zd is equivalent to Pλd
((S0, Sk) ∈ ·) = Pλd

((S0 − S ′
k, S0) ∈ ·). This

is exactly (18) with X1 replaced by S ′
k.

Thus, (14) is proved for m = 1. The general case m ∈ N follows analogously, with the
only difference that the set C ′

k shall account for 2m− 1 crossings of the level zero.
Consider now (15). We need to prove that the law of (S0, S1, . . . , ST ↓

m−1) under Pπ+

equals the law of (−STm−1 − d,−STm−2 − d, . . . ,−S0 − d) under Pπ−
. Similarly to the proof

of (14), by the duality principle for random walks this reduces to the equality

Pπ+((S0, Sk) ∈ ·, Sk+1 < 0) = Pπ−
(R1(S0, Sk) ∈ ·, Sk+1 ≥ 0)

of measures on Z̃+
d × Z̃+

d for k ∈ N0. Use the definitions of π+, π−, and R1 to write this as

Pλd
((S0, Sk) ∈ dx0 ⊗ dxk)P(X1 > x0)P(X1 < −xk)

= Pλd
(R1(S0, Sk) ∈ dx0 ⊗ dxk)P(X1 ≥ x0 + d)P(X1 ≤ −xk − d).

This equality holds by (25) and the fact that P(X1 > x) = P(X1 ≥ x+ d) for λd-a.e. x. �

3. Convergence to the stationary distribution

For the rest of the paper we assume (1) and investigate convergence in total variation
of the law of On to the probability distribution π+ as n→ ∞.

In the non-arithmetic case convergence in the total variation norm requires additional
assumptions on the law of the increments of S. We say that the distribution of the increment
X1 is spread out if P0(Sk ∈ ·) is non-singular with respect to the Lebesgue measure for some
k ≥ 1. It is clear that this assumption is necessary for the total variation convergence to π+
of the law of the chain On starting from a point. In fact, if this assumption is violated in the
non-arithmetic case, then ‖Px(On ∈ ·)− π+(·)‖TV = 1 for every x ∈ R and n ≥ 1 since π+
has density. In this sections we will show that that the spread out assumption is actually
sufficient for the total variation convergence. Let us mention that spread out distributions
arise often in the context of renewal theory, see Asmussen [1, Section VII].

Theorem 2. Assume (1) and that the distribution of X1 is either arithmetic or spread out.

Then

lim
n→∞

‖Px(On ∈ ·)− π+(·)‖TV = 0 for all x ∈ Zd.
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A standard application of the dominated convergence theorem yields another proof of the
fact (given in full generality by [15, Theorem 4]) that, under the assumptions of Theorem 2,
π+ is the unique stationary distribution of the chain (On)n≥0 in the class of all probability
laws on Zd, including the ones singular with respect to π+.

The convergence in Theorem 2 may fail for every starting point x ∈ Z0 in the case
of general non-arithmetic distributions of increments, e.g. for discrete non-arithmetic dis-
tributions, but π+ remains the unique stationary distribution of O by [15, Corollary to
Theorem 4]. Therefore one may argue that the total variation metric is too fine for the
study of convergence of the chain of overshoots for general zero mean random walks. It is
feasible that the convergence holds in other metrics under less restrictive assumptions than
those in Theorem 2 but we did not succeed in proving results of such type; see the discussion
in Section 5 below.

It is well known that under the spread out assumption on the increments of a random
walk, a successful coupling of the walks started at arbitrary distinct points x, y ∈ Z0 can be
defined, implying in particular limn→∞ ‖Px(Sn ∈ ·)−Py(Sn ∈ ·)‖TV = 0, see e.g. Theorem 6.1
of Chapter 3 in Thorisson [22]. However, this coupling yields only a shift-coupling [22,
Section 3.1] of the chains of overshoots started at x and y. Thus only the Cesaro total
variation convergence [22, Section 3.2] of O can be deduced from these results, which is
weaker than the convergence stated in Theorem 2. Our proof of Theorem 2 rests on the
crucial property of the Markov chain (On)n≥0 stated below in Proposition 4, implying that a
successful coupling of the chains of overshoots started at any distinct levels can be constructed
for any span d ∈ [0,∞). We do not exhibit the coupling construction in this paper but instead
apply Theorem 4 in Roberts and Rosenthal [18], which is established using this coupling.

For any measure µ on Zd, denote respectively by µa and µs its absolutely continuous and
singular components with respect to λd. We will slightly abuse this notation for distributions
of random variables and write, say, Pa

x(O1 ∈ ·) instead of (Px(O1 ∈ ·))a. We reserve the term
“density” to mean the density with respect to the Lebesgue measure λ0 without referring to
the measure. The set X+ := [0,M+) ∩ Zd, where M+ := sup(supp(X1)), is the actual state
space of the Markov chain of overshoots: for any x ∈ Zd and n ∈ N we have Px(On ∈ X+) = 1.
Moreover, the equality π+(X+) = 1 holds true.

Proposition 4. Assume (1) and that the distribution of X1 is either arithmetic or spread

out. Then the measures Pa
x(O1 ∈ ·) and π+(·) are equivalent for any x ∈ Zd. Put differently,

for any x ∈ Zd there exists a version of the density d
dλd

P
a
x(O1 ∈ dy) that is strictly positive

for all y ∈ X+.

Proof of Theorem 2. Proposition 4 implies that with positive probability, the chain of
overshoots visits in a single step any Borel set A ⊆ Zd satisfying π+(A) > 0. This means
that the Markov chain (On)n≥0 is π+-irreducible and aperiodic in the sense of Meyn and
Tweedie [14, Sections 4.2 and 5.4]. By Theorem 1 above, (On)n≥0 has a stationary distri-
bution π+. Then Theorem 4 in Roberts and Rosenthal [18], which applies to ψ-irreducible
aperiodic Markov chains with a stationary distribution on a general state space with a count-
ably generated σ-algebra, implies the total variation convergence in Theorem 2 for π+-a.e.
x ∈ Zd.
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Since Px(O1 ∈ X+) = 1 for every x ∈ Zd, we will conclude the proof of Theorem 2 if we
show that the non-convergence set N := {x ∈ X+ : lim supn→∞ ‖Px(On ∈ ·)− π+(·)‖TV > 0}
is empty. In the arithmetic case (d > 0) this is clear by the fact that every point of X+ has
positive π+-measure and π+(N) = 0. In the non-arithmetic case (d = 0) first note that since
the Borel σ-algebra on X+ is countably generated, the function x 7→ ‖Px(On ∈ ·)− π+(·)‖TV

is measurable for every n ∈ N by Roberts and Rosenthal [17, Appendix], making the set
N measurable. Thus the claim will follow by a standard application of the strong Markov
property and the dominated convergence theorem if we show that the chain (On)n≥0 hits the
convergence set X+ \N with probability one when started in N . Put differently, we need to
prove that Px(On ∈ N, ∀n ∈ N) = 0 for every x ∈ N .

Since π+(N) = λ0(N) = 0 we have Px(Sm ∈ N) = P
s
x(Sm ∈ N) for all m ∈ N. Hence,

Px(On ∈ N, ∀n ∈ N) ≤ lim inf
n→∞

Px(On ∈ N)

≤ lim inf
n→∞

∞
∑

m=2n

Px(Sm ∈ N) ≤ lim inf
n→∞

∞
∑

m=2n

P
s
x(Sm ∈ R), (27)

where in the second inequality we used the identity On = STn
and the fact that Tn ≥ 2n

for x ≥ 0, cf. (2) and (3). By the definition of spread out distributions, we have P
s
x(Sk ∈

R) = P
s(S ′

k ∈ R) < 1 for some k ≥ 1. Then, using that the convolution of an absolutely
continuous measure with any other measure is absolutely continuous, we get

P
s(S ′

m ∈ R) =
(

(

P
s(S ′

k ∈ ·) + P
a(S ′

k ∈ ·)
)∗⌊m/k⌋ ∗ P(S ′

m−k⌊m/k⌋ ∈ ·)
)s

(R) ≤
(

P
s(S ′

k ∈ R)
)⌊m/k⌋

for any integer m ≥ 1, where ⌊c⌋ denotes the largest non-negative integer smaller or equal
to a c ≥ 0. Hence the sequence P

s
x(Sm ∈ R), which equals Ps(S ′

m ∈ R), decays exponentially
fast to zero as m→ ∞, and it follows that the last bound in (27) is zero. �

Proof of Proposition 4. Pick any x ∈ Zd and and denote by y an arbitrary element in
X+. Consider two cases.

Arithmetic distributions. We need to prove that Px(O1 = y) > 0.
Since y < M+, there exists a z ∈ Z+

d such that z > y and P(X1 = z) > 0. Further,
according to the definition of Zd, there exists an integer k ≥ 1 such that Px(Sk = y− z) > 0;
see, e.g., Spitzer [20, Propositions 2.1 and 2.5]. Then

Px(O1 = y) ≥ Px(Sk = y − z, T1 > k) · P(X1 = z), (28)

and it remains to show that the first factor in the r.h.s. is positive.
Denote by Sym(k) the symmetric group on the set {1, . . . , k}. For any permutation

σ ∈ Sym(k), define a new random walk S(σ) = (Sn(σ))n≥0 by Sn(σ) := S0+Xσ(1)+. . .+Xσ(n)

for 1 ≤ n ≤ k and Sn(σ) := Sn for n ≥ k. Denote by T1(σ) the first up-crossing time of the
level zero by S(σ) (cf. (2)), and let ξ be the number of negative terms among X1, . . . , Xk.

Note that on the event Aσ := {ξ ≥ 1, Xσ(1) < 0, . . . , Xσ(ξ) < 0} ∪ {ξ = 0} the sequence
(Sn(σ))n∈{σ(ξ),...,k} is non-decreasing (on {ξ = 0}, we define σ(ξ) := 0). Then, since y− z < 0
and Sk = Sk(σ), we have

{Sk = y − z} ∩ Aσ ⊂ {Sk(σ) = y − z, T1(σ) > k}. (29)
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Recall that the cardinality of Sym(k) is k! and note that

1

k!

∑

σ∈Sym(k)

1(Aσ) = 1(ξ = 0) + 1(ξ > 0)ξ!(k − ξ)!/k! = 1/

(

k

ξ

)

≥ 1/

(

k

⌊k/2⌋

)

. (30)

Since the laws of the random walks S an S(σ) coincide for all σ ∈ Sym(k), we get

Px(Sk = y − z, T1 > k) =
1

k!
Ex

∑

σ∈Sym(k)

1(Sk(σ) = y − z, T1(σ) > k)

≥ 1

k!
Ex1(Sk = y − z)

∑

σ∈Sym(k)

1(Aσ)

≥ Px(Sk = y − z)/

(

k

⌊k/2⌋

)

> 0, (31)

where the first inequality holds by (29) and the second by (30). Combined with (28), this
proves Px(O1 = y) > 0, and hence the proposition holds in the arithmetic case.

Spread out distributions. We say that measures µ and ν on Z0 = R satisfy

µ(du) ≥ ν(du) on an interval I ⊂ R

if µ(B) ≥ ν(B) for any Borel set B ⊂ I. Note that µ(du) ≥ cλ0(du) on I implies µa(du) ≥
cλ0(du) on I. In this case there exists a version of the density of µa which is bounded from
below on I by the positive constant c.

Since the distribution of X1 is spread out, there exist ε1, h > 0, an integer k1 ≥ 1, and
a real a such that P0(Sk1 ∈ du) ≥ ε1λ0(du) on [a, a + 2h]; see the proof of Proposition 5.3.1
in Meyn and Tweedie [14]. By the Chung–Fuchs theorem, the zero mean random walk S
is topologically recurrent. Hence for any b ∈ R (to be specified later) there exists k2 =
k2(b− x) ∈ N such that

ε2 = ε2(b− x) := Px

(

Sk2 ∈ [b− a− h, b− a]
)

> 0. (32)

Let k = k(b − x) := k2(b − x) + k1. Then, for any v ∈ [b − a − h, b − a], we have P0(Sk1 ∈
du − v) ≥ ε1λ0(du) on [b, b + h], since u − v ∈ [a, a + 2h] and the Lebesgue measure λ0 is
invariant under translations. Hence on the interval [b, b+ h] the following holds:

Px(Sk ∈ du) ≥ Px(b− a− h ≤ Sk2 ≤ b− a, Sk ∈ du)

=

∫

[b−a−h,b−a]

Px(Sk2 ∈ dv)P0(Sk1 ∈ du− v) ≥ ε1ε2λ0(du).

In particular, the density of Pa
x(Sk ∈ ·) is bounded below by ε1ε2 on [b, b+ h].

Since y < M+, we can choose z > y such that ε3 = ε3(y) := P(X1 ∈ [z, z + h/2]) > 0.
Set b′ := y − z − 3h/4 and h′ := min(h, y − z − 3h/4), and let k′ := k2(b

′ − x) + k1 and
ε′2 := ε2(b

′ − x) as in (32). Then Px(Sk′ ∈ du) ≥ ε1ε
′
2λ0(du) on [b′, b′ + h]. Moreover,

substituting the events {Sk = y − z} and {Sk(σ) = y − z}, where σ ∈ Sym(k), in the
proof of the arithmetic case above by {Sk′ ∈ [b′, b′ + h′)} and {Sk′(σ) ∈ [b′, b′ + h′)}, where
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σ ∈ Sym(k′) and b′ + h′ ≤ 0, yields a bound analogous to (31):

Px(Sk′ ∈ du, T1 > k′) ≥ ε1ε
′
2

(

k′

⌊k′/2⌋
)λ0(du) on [b′, b′ + h′). (33)

On the event {Sk′ ∈ [b′, b′ + h′), T1 > k′, Xk′+1 ≥ z} we have O1 = Sk′ +Xk′+1. The Markov
property at k′ implies that on the interval [y − h/4,min(z, y + h/4)) we have

Px(O1 ∈ dv) ≥
∫

[z,z+h/2]

Px(Sk′ ∈ dv − u, T1 > k′)P(Xk′+1 ∈ du)

≥ ε1ε
′
2

(

k′

⌊k′/2⌋
)P(X1 ∈ [z, z + h/2])λ0(dv). (34)

The second inequality holds by (33) and the translation invariance of λ0 since, for v ∈
[y − h/4,min(z, y + h/4)) and u ∈ [z, z + h/2], we have v − u ∈ [b′, b′ + h′). Since we can
partition X+ by a countable subcollection of the intervals {[y−h/4,min(z, y+h/4)) : y ∈ X+},
by (34) there exists a version of the density p(x, ·) of Pa

x(O1 ∈ ·) satisfying

p(x, y) ≥ ε1ε
′
2ε3

(

k′

⌊k′/2⌋
) > 0 for all y ∈ X+. (35)

�

4. Rate of convergence to the stationary distribution

In this section we present results on the rate of convergence in Theorem 2. We will use
the following norm: for any function f : Z+

d → [1,∞), the f -norm of a signed measure µ on
Z+

d is

‖µ‖f := sup
g:|g|≤f

∫

Z+
d

g(x)µ(dx).

In particular, for f ≡ 1 the following relationship with the total variation norm holds:
‖µ‖f = 2‖µ‖TV. Clearly, convergence in any f -norm is stronger than the total variation
convergence. We will only need the Vγ-norms, where Vγ(x) := 1 + xγ with γ ≥ 0.

Further, define the set of bivariate parameters

I := {(α, β) : 1 < α < 2, |β| < 1}.
For a random variable X , we write X ∈ D(α, β) for a pair (α, β) ∈ I if the distribution of X
belongs to the domain of attraction of a strictly stable law with the characteristic function

χα,β(t) = exp
(

−c|t|α(1− iβ sign(t) tan(πα/2))
)

for some c > 0. Denote D := ∪(α,β)∈ID(α, β). The quantity

p := 1/2 + (πα)−1 arctan(β tan(πα/2)),

which is called the positivity parameter of the stable law, ranges over the open interval
(1− 1/α, 1/α) on I, see in Bertoin [2, Section 8.1].



STABILITY OF OVERSHOOTS OF ZERO MEAN RANDOM WALKS 17

Theorem 3. Assume (1) and that the distribution of X1 is either arithmetic or spread out.

In addition, assume either EX2
1 <∞ with γ ∈ {0, 1} or X1 ∈ D with γ ∈ (0,min{αp, α(1−

p)}). Then there exist constants r ∈ (0, 1) and c1 > 0 such that

‖Px(On ∈ ·)− π+(·)‖Vγ
≤ c1(1 + xγ)rn, x ∈ Z+

d . (36)

Equation (36) with γ = 0 translates to a uniform (in x) convergence at a geometric
rate in the total variation norm. Thus the chain of overshoots is uniformly ergodic if the
increments have finite variance; see Meyn and Tweedie [14, Theorem 16.0.2].

Our proof of Theorem 3 rests on two statements. The first can be viewed as a uniform
version of Proposition 4 stated in a slightly different form to avoid measurability issues.

Proposition 5. Under the assumptions of Theorem 3, for any K > 0 in the case X1 ∈ D
and for K = ∞ in the case EX2

1 <∞, there exists a measurable function gK : X+ → (0,∞)
such that

Px(O1 ∈ B) ≥
∫

B

gK(y)λd(dy) for all x ∈ Z+
d ∩ [0, K) and Borel sets B ⊂ X+. (37)

Remark 4. Note that (37) implies Px(O1 ∈ B) ≥
∫

B
gK(y)λd(dy) > 0 for any Borel set

B with λd(B) > 0. In particular, every compact set C ⊂ Z+
d with non-empty interior in

Z+
d (or the whole set Z+

d in the finite variance case) is small with respect to the measure
gdiam(C)(y)1X+(y)λd(dy); see Meyn and Tweedie [14, Section 5.2] for the definition of small
sets. The proposition also yields that the Markov chain (On)n≥0 is strongly aperiodic and
satisfies the minorization condition, cf. Sections 5.4 and 5.1 in [14], respectively.

Remark 5. Our proof, based on Stone’s local limit theorem, actually implies that the inequal-
ity in (37) with finite K is also valid for asymptotically stable distributions of increments
with 1 < α < 2, |β| = 1 and with α = 2. Moreover, it is plausible that (37) holds un-
der assumptions of Proposition 4, i.e. without any assumptions on the tail behaviour of X1

beyond (1).

Second, we need the following geometric drift condition. We will prove it using results
of renewal theory.

Proposition 6. Under the assumptions of Theorem 3, there exist constants ρ ∈ (0, 1) and

L > 0 such that

ExO
γ
1 ≤ ρxγ + L, x ∈ Z+

d . (38)

Put together, Propositions 5 and 6 imply Theorem 3 via Theorems 15.0.1 and 16.0.2
and Proposition 5.5.3 in Meyn and Tweedie [14].

Proof of Proposition 5. The case X1 ∈ D(α, β). In the arithmetic case the set Z+
d ∩[0, K)

has a finite number of elements and the claim follows from Proposition 4. For spread out
distributions we have d = 0, implying Z+

0 ∩ [0, K) = [0, K), and it is clearly sufficient to
prove that there exist a measurable function gK : X+ → (0,∞) and for every x, a version
p(x, y) of the density of Pa

x(O1 ∈ dy) such that

inf
x∈[0,K)

p(x, y) ≥ gK(y) > 0 for all y ∈ X+. (39)
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We will do this by refining the argument in the proof of Proposition 4.
Pick y ∈ X+ and consider the estimate in (35). Note that ε1 does not depend on x

and y while ε3 depends only on y through the choice of z > y. By decomposing X+ into a
pair-wise disjoint collection of countably many bounded half-open intervals and choosing the
same z for all y in each of the intervals makes y 7→ ε3(y) = P(X1 ∈ [z, z+h/2]) a measurable
function of y. Therefore it suffices to check that ε′2 can be bounded away from zero and k′

can be bounded from above, both uniformly in x ∈ [0, K) and y in each of the intervals in
the partition of X+. These claims will follow once we establish a refined version of (32): for
any compact interval I in R and h > 0, there exists an integer m ≥ 1 such that

inf
x∈[0,K),u∈I

Px(Sm ∈ [u, u+ h]) > 0. (40)

Possibly the easiest way to prove (40) is to apply Stone’s local limit theorem which
holds for non-lattice asymptotically stable distributions [21, Corollary 1]: if the sequence
(bn)n≥1 tending to infinity is such that Sn/bn converges weakly to a strictly stable law with
the characteristic function χα,β given above, then

Px(Sn ∈ [u, u+ h)) = P0(Sn ∈ [u− x, u− x+ h)) = (hpα,β(0) + o(1))b−1
n

uniformly in x ∈ [0, K) and u ∈ I as n → ∞, where pα,β, the density of the stable law
defined by χα,β, is strictly positive and continuous at 0 for (α, β) ∈ I. Hence the inequality
in (40) holds for all n sufficiently large.

The case EX2
1 <∞. Note that in this case the above proof implies (37) for any finite

K > 0. In order to construct g∞ : (0,∞) → X+, let T(−∞,L) := min{n ≥ 0 : Sn < L}
be the moment of the first entrance of the walk (Sn)n≥0 to the half-line (−∞, L), where
L := d+ 1 > 0. For any Borel set B in X+ we have

Px(O1 ∈ B) =

∫

(−∞,L)

Pz(O1 ∈ B)Px(ST(−∞,L)
∈ dz) ≥

∫

(0,L)

Pz(O1 ∈ B)Px(ST(−∞,L)
∈ dz)

≥ Px(ST(−∞,L)
∈ (0, L))

∫

B

gL(y)λd(dy) = Px−L(O
↓
1 ∈ (−L, 0))

∫

B

gL(y)λd(dy),

where gL is the lower bound in (39) that corresponds to the interval (0, L) and the equality

Px(ST(−∞,L)
∈ (0, L)) = Px−L(O

↓
1 ∈ (−L, 0)) holds by the definition of O↓

1 in (6). By (7),

under the assumption EX2
1 < ∞, Px(O

↓
1 ∈ ·) converges weakly as x → ∞ to a distribution

which assigns positive mass to (−L, 0). Hence there exist constants c0, K0 > 0 such that
Px(O1 ∈ B) ≥ c0

∫

B
gL(y)λd(dy) for all x ≥ K0 and all Borel sets B in X+. The positive

function g∞ := min{gK0, c0gL} satisfies the inequality in (37) for K = ∞. This concludes
the proof of the proposition. �

Proof of Proposition 6. We will require a representation of the overshoots O1 and O↓
1

as residual lifetimes of renewal processes of ladder heights. The sequence of descending
ladder heights (H−

k )k≥0 of the random walk S ′ (recall that S ′
0 = 0) satisfies H−

0 = 0 and its
increments Yk := H−

k −H−
k−1 are negative i.i.d. random variables distributed as H−

1 , the first

strictly negative value of S ′. For any x ≥ 0, denote by R−(x) := sup{H−
k + x : k ≥ 1, H−

k <
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−x} the overshoot at down-crossing of the level −x. Then, by definition (6), we have

O↓
1 = R−(S0) on {S0 ≥ 0}. (41)

In particular, this implies (7) under the assumption EX2
1 <∞.

Clearly, there is a similar representation for the overshoot O1 at the first up-crossing:

O1 = R̃+(−S0) on {S0 < 0},

where R̃+(x) := inf{H+
k − x : k ≥ 1, H+

k ≥ x} is the non-negative residual lifetime at
time x > 0 for the ascending ladder height process (H+

k )k≥1 of the random walk S ′. The
increments of this process are i.i.d. and have the same common distribution as H+

1 , the first
strictly positive value of S ′.

The case X1 ∈ D(α, β). We need to estimate ExO
γ
1 and we start with the following

bounds. For any x > 0, denote T (x) := inf{k ≥ 1 : |H−
k | > x} and T ′(x) := inf{k ≥ 1 :

|Yk| > x} with the convention inf∅ := ∞. By the assumption |β| < 1 the distribution of |Y1|
has unbounded support, implying T ′(x) < ∞ a.s. for any real x. Since |R−(x)| < |YT (x)| ≤
|YT ′(x)| a.s., we have

Ex|O↓
1|γ = E|R−(x)|γ < E|YT (x)|γ ≤ E|YT ′(x)|γ.

Clearly, a similar estimate applies for E−xO
γ
1 . Since the law of |YT ′(x)| equals that of |H−

1 |
conditioned to be greater than x, we have

Ex|O↓
1|γ ≤

E
[

|H−
1 |γ1{|H−

1 |>x}
]

P(|H−
1 | > x)

and E−xO
γ
1 ≤

E
[

(H+
1 )

γ
1{H+

1 ≥x}
]

P(H+
1 ≥ x)

. (42)

Note that the r.h.s.’s of these inequalities are monotone in x since YT ′(x) is non-decreasing
in x a.s.

Recall that, since |β| < 1, we have αp < 1 and αq < 1, where p is the positivity
parameter introduced in the beginning of the section and q := 1 − p. By Theorem 9 of
Rogozin [19] we have |H−

1 | ∈ D(αq, 1). Hence the renewal theorem of Dynkin [6, Theorem 3]

applies to the residual lifetime process (|R−(x)|)x>0 and so the distributions Px(−O↓
1/x ∈ ·)

converge weakly as x→ ∞ to the distribution with the density

gαq(t) = π−1 sin(παq)t−αq(1 + t)−1, t > 0,

supported on the positive half-line. Recalling that γ ∈ (0, αq), we will obtain that

lim
x→∞

Ex|O↓
1|γ

xγ
=

∫ ∞

0

tγgαq(t)dt =
sin(παq)

sin(π(αq − γ))
=: cα,q(γ) (43)

once we check the uniform integrability of the distributions Px(|O↓
1/x|γ ∈ ·).

Consider the numerator in the first estimate in (42). Using Karamata’s theorem (see
Bingham et al. [3, Proposition 1.5.10]) and the fact that the tail probability P(|H−

1 | > x) is
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regularly varying at infinity with index −αq, we get

E
[

|H−
1 |γ1{|H−

1 |>x}
]

=

∫ ∞

x+

tγP(|H−
1 | ∈ dt)

= xγP(|H−
1 | > x) +

∫ ∞

x

γtγ−1
P(|H−

1 | > t)dt ∼ αq

αq − γ
xγP(|H−

1 | > x)

as x→ ∞. Hence, by (42), we have

lim sup
x→∞

Ex(|O↓
1|/x)γ ≤ αq

αq − γ
.

Since the above computations work for any γ ∈ (0, αq), the lim supx→∞ Ex(|O↓
1|/x)γ0 is finite

for any γ0 ∈ (γ, αq). This yields the required uniform integrability, and (43) follows.

Further, consider E−xO
γ
1 = E(R̃+(x))γ . The result [6, Theorem 3] used above applies

only to (positive) residual times R+(x) := inf{H+
k − x : k ≥ 1, H+

k > x}, where H+
1 ∈

D(αp, 1) by [19, Theorem 9]. However, it gives the weak convergence of R+(x)/x as x→ ∞
to the distribution with density gαp(t). This yields the weak convergence of P−x(O1/x ∈ ·)
to the same limit since R+(x) = R̃+(x) on the event {R+(x − 1) > 1} whose probability
tends to 1 as x → ∞. Then, recalling that γ ∈ (0, αp), we obtain the following analogue
of (43):

lim
y→∞

E−yO
γ
1

yγ
=

sin(παp)

sin(π(αp− γ))
= cα,p(γ). (44)

We now apply the strong Markov property of the random walk S at T ↓
1 : for any R > 0,

ExO
γ
1 =

∫ R

0+

E−yO
γ
1 · Px(O

↓
1 ∈ −dy) +

∫ ∞

R+

[E−y(O1/y)
γ]yγPx(O

↓
1 ∈ −dy). (45)

The first term is bounded uniformly in x for any fixed R:

∫ R

0+

E−yO
γ
1 ·Px(O

↓
1 ∈ −dy) ≤ sup

0<y≤R
E−yO

γ
1 ≤

E
[

(H+
1 )

γ
1{H+

1 ≥R}
]

P(H+
1 ≥ R)

≤ E
[

(H+
1 )

γ
]

P(H+
1 ≥ R)

<∞, (46)

where in the second inequality we used the second inequality in (42), whose r.h.s. is monotone.
For the second term in (45), by (44), we make the expression E−y(O1/y)

γ in the integrand
arbitrarily close to cα,p(γ) by taking R sufficiently large. Finally, for any fixed R,

lim sup
x→∞

∫ R

0+

yγPx(O
↓
1 ∈ −dy) ≤ lim

x→∞
Rγ

Px(−O↓
1 ≤ R) = 0.

Hence by (45) there exists a constant CR > 0, such that
∣

∣ExO
γ
1 − cα,p(γ)Ex|O↓

1|γ
∣

∣ ≤ CR for
all x > 0. By (43) and (44) we obtain

lim
x→∞

Ex(O1)
γ

xγ
=

sin(παq)

sin(π(αq − γ))
· sin(παp)

sin(π(αp− γ))
=: ρ0. (47)
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Since 0 < γ < 1 < α < 2, the following implies ρ0 < 1:

sin(παq) sin(παp)− sin(π(αq − γ)) sin(π(αp− γ)) =
1

2
cos(π(α− 2γ))− 1

2
cos(πα)

= sin(πγ) sin(π(α− γ)) < 0.

Thus the inequality in (38) holds for any ρ ∈ (ρ0, 1) since ExO
γ
1 is locally bounded by (45),

(46), and the fact that for all R sufficiently large and any K > 0,

sup
0≤x≤K

∫ ∞

R+

[E−y(O1/y)
γ]yγPx(O

↓
1 ∈ −dy) ≤ (1+cα,p(γ)) sup

0≤x≤K
Ex|O↓

1|γ ≤ (1 + cα,p(γ))E|H−
1 |γ

P(|H−
1 | > K)

,

where we used (44) for the first inequality and (42) for the second one as we did in (46).
The case EX2

1 <∞. The case γ = 0 is trivial so take γ = 1. It is well known that the

ladder heights of random walks with finite variance of increments are integrable; see Feller [7,
Sections XVIII.4 and 5]. Moreover, we have the following versions of (43) and (44):

lim
x→∞

Ex|O↓
1|

x
= lim

y→∞

E−yO1

y
= 0,

see Gut [9, Theorem 3.10.2]. The rest of the proof is exactly as in the first case: by (45),
the value of the l.h.s. of (47) is now zero and ExO1 is locally bounded.

�

5. Concluding remarks

5.1. The entrance chain into an interval. The methods of this paper developed for
establishing convergence the chain O of overshoots above zero work without any changes for
the Markov chain of entrances into the interval [0, h] for any h > 0, defined analogously to O

(cf. (2) and (3)): put O
(h)
n := S

T
(h)
n

for n ∈ N0, where

T
(h)
0 := 0, T (h)

n := inf{k > T
(h)
n−1 : Sk−1 6∈ [0, h], Sk ∈ [0, h]}, n ∈ N.

By [15, Theorem 3],

πh := ch1[0,h](x)(1− P(x− h ≤ X1 ≤ x))λd(dx), x ∈ Zd, (48)

where ch > 0 is a normalizing constant, is the unique stationary distribution of the chain O(h)

on Zd. The assertions of Theorems 2 and 3 remain valid if we replace On and π+ respectively

by O
(h)
n and πh, with γ = 0 in Theorem 3.
To see this, recall that the proof of Theorem 2 was based on Proposition 4 describing

Px(O1 ∈ ·), which was actually used only for starting points x in X+ = supp(π+), where
X+ = [0,M+) ∩ Zd with M+ = sup(suppX1). For the chain O(h), we need to consider only
x ∈ supp(πh), where supp(πh) = ([0,M+)∪(h+M−, h])∩[0, h]∩Zd withM− := inf(suppX1).
The case x ∈ [0,M+)∩ [0, h]∩Zd (which gives the claim ifM+ ≥ h+d) is actually covered in

the proof of the proposition, where we can replace throughout O1 by O
(h)
1 without any other

changes. The remaining case x ∈ (h+M−, h]∩ [0, h]∩Zd follows by considering the random
walk −S. Finally, Theorem 3 immediately follows from Proposition 5, which is simply the
uniform version of Proposition 4, and Proposition 6, which trivially holds with L = h.
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5.2. Convergence of the chain of overshoots under minimal assumptions. By [15,
Corollary to Theorem 4], the probability law π+ is the unique stationary distribution for the
chain of overshoots O of any random walk satisfying (1). By Theorem 2, the laws of On

converge to π+ in the total variation distance for random walks with either arithmetic or
spread out distributions of increments. Our intuition coming from renewal theory suggests
that the following hypothesis is plausible.

Conjecture 1. Under assumption (1), we have Px(On ∈ ·) d→ π+ as n→ ∞ for any x ∈ Z0.

Below we discuss the difficulties of proving convergence of On in other metrics on proba-
bility distributions under the minimal assumptions in (1). Let us start with two observations.

First, the total variation norm is clearly inappropriate since it requires the spread out
assumption, as explained in the beginning of Section 3. Moreover, in the non-spread out
non-arithmetic case the chain of overshoot is not ψ-irreducible and thus not Harris recurrent,
placing it outside of the scope of the well-established classical convergence theory (see Meyn
and Tweedie [14]). In fact, the spread out assumption on the distribution of X1 is equivalent
to ψ-irreducibility of O (and S, of course). To see this, recall that any ψ-irreducible Markov
chain on R has a finite period p by Theorems 5.2.2 and 5.4.4 in Meyn and Tweedie [14].
Then, by Theorem 4 in Roberts and Rosenthal [18], which we used in the proof of Theorem 2,
the ψ-irreducibility of O implies that the aperiodic chain (Opn)n≥0 converges to π+ in the
total variation distance. But this can only be true when the distribution of X1 is spread out.

Second, recall from Section 2.4 that stationarity of π+ for the chain O can be established
by factorizing the transition kernel of O into the Markov kernels P and Q, defined in (12),
both having π+ as their stationary distribution (see (13)). Unfortunately, this representation
appears to be of a very limited use for studying the questions of convergence. In fact, the
following example shows that the chain generated by Q may have an invariant distribution
other that π+, hence it may fail to converge to π+ starting from an arbitrary point.

Example 1. Let X1 satisfy P(X1 = a|X1 > 0) = 1 for some a > d. Then for any x ∈ (0, a)
we have Q(x, dy) = δa−x(dy) and hence 1

2
δx +

1
2
δa−x is a stationary distribution of Q. An

analogous phenomenon occurs for any non-arithmetic distribution of X1 whose restriction
to Z+

0 is atomic with finitely many atoms.

The next candidate is convergence in L2(π+). First of all, here we can work only with
initial distributions (of O0 = S0) that are absolutely continuous with respect to π+. Given
that the transition operator of the chain of overshoots O is the product of two reversible
transition operators (see Section 2.4 above), it is tempting to apply the methods of the
theory of self-adjoint operators. We would need to show that either P or Q has a spectral
gap. A plausible way to prove this is to check that the operator is compact, with 1 being an
eigenvalue of multiplicity one, and that −1 is not an eigenvalue.

The operator Q appears to be more amenable for the analysis, but it seems that Q
may be non-compact for a general distribution of increments. In addition, Example 1 above
shows that 1 can be a multiple eigenvalue of Q, since the Q-chain can in general have more
than one stationary distribution on Z+

d . We are not aware of any works that establish com-
pactness of Markov transition operators on infinitely-dimensional functional spaces without
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assuming some form of absolute continuity (as in this paper with spread out distributions of
increments).

Regarding the weak convergence of Markov chains, the only technique we are aware of
is based on the so-called ε-coupling for continuous-time Markov chains; see Thorisson [22,
Section 5.6]. This does not seem to be applicable in the non-arithmetic case: even though,
for any distinct real values x1 and x2, the walks x1 + S ′ and x2 + S ′ enjoy a version of
ε-coupling (see Thorisson [22, Theorem 2.7.1]), the level zero will be crossed at different
times by the two walks making it hardly possible to deduce that the corresponding chains
of overshoots are eventually only a small distance away from each other.

Our last candidate are Wasserstein-type metrics with a carefully chosen distance on
Z+

0 = [0,∞). Here there is a promising approach, introduced by Hairer and Mattingly [10,
11], which works under a significantly relaxed version of the restrictive ψ-irreducibility as-
sumption and allows one to prove convergence of Markov chains whose transition probabilities
can even be mutually singular. Our problem with non-arithmetic distributions that are not
spread out appears to be in this category, but we were unable to apply these ideas in our
context because of the analytical intrectability of the transition kernel of the chain O.
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Aleksandar Mijatović, Department of Statistcis, University of Warwick & The Alan

Turing Institute

E-mail address : a.mijatovic@warwick.ac.uk

Vladislav Vysotsky, Department of Mathematics, University of Sussex and St. Peters-

burg Department of Steklov Mathematical Institute

E-mail address : v.vysotskiy@sussex.ac.uk


	1. Introduction
	2. Stationary distributions of overshoots
	2.1. Setting and results
	2.2. An alternative representation for + and -
	2.3. Derivation of +
	2.4. Proof of Theorem ??

	3. Convergence to the stationary distribution
	4. Rate of convergence to the stationary distribution
	5. Concluding remarks
	5.1. The entrance chain into an interval
	5.2. Convergence of the chain of overshoots under minimal assumptions

	References
	Acknowledgements

