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Signatures of paths transformed by polynomial maps
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Abstract

We characterize the signature of piecewise continuously differentiable paths trans-

formed by a polynomial map in terms of the signature of the original path. For this

aim, we define recursively an algebra homomorphism between two shuffle algebras

on words. This homomorphism does not depend on the path and behaves well with

respect to composition and homogeneous maps. It allows us to describe the relation

between the signature of a piecewise continuously differentiable path and the signature

of the path obtained by transforming it under a polynomial map. We also study this

map as a half-shuffle homomorphism and give a generalization of our main theorem

in terms of Zinbiel algebras.

Keywords: Signature tensors, iterated integrals, tensor algebra, shuffle product, poly-
nomial maps.

1 Introduction

In the 1950s, K. T. Chen introduced the iterated-integral signature of a piecewise continu-
ously differentiable path, which up to a natural equivalence relation, determines the initial
path. In general, the signature of a path can be seen as a multidimensional time series.
When the terminal time is fixed, the signature of a path can be seen as tensors and the
calculation of the signature becomes a standard problem in data science. In [PSS19], M.
Pfeffer, A. Seigal, and B. Sturmfels study the inverse problem: given partial information
from a signature, can we recover the path? They consider signature tensors of order three
under linear transformations and establish identifiability results and recovery algorithms
for piecewise linear paths, polynomial paths, and generic dictionaries.

Coming from stochastic analysis, the signatures are becoming more relevant in other
areas, such as algebraic geometry and combinatorics, and we would like to highlight some
recent work. For instance, in [DR19], J. Diehl and J. Reizenstein offer a combinatorial
approach to the understanding of invariants of multidimensional time series based on their
signature. Another reference is [AFS19], in which C. Améndola, P. Friz, and B. Sturmfels
look at the varieties of signatures of tensors for both deterministic and random paths,
focusing on piecewise linear paths and polynomials paths, among others. Answering one
of their questions, in [Gal19], F. Galuppi looks at rough paths, for which their signature
variety shows surprising analogies with the Veronese variety.

In stochastic analysis, the study of the signatures of paths arises in the theory of
rough paths, where [FV10, FH14] are textbook references. Iterated integrals and the non-
commutative series that encode them have also arisen in a variety of contexts in geometry
and arithmetic, including the work of R. Hain in [Hai02], M. Kapranov in [Kap09], and J.
Balakrishnan in [Bal13]. The results we derive in this paper have the potential for future
applications in all of these contexts.
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Let us now present our problem and our main two results, Theorems 1.1 and 1.2.
A piecewise continuously differentiable path X in R

d
is a map defined by d piecewise

smooth functions X
i(t) in a parameter t ∈ [0, L], for i = 1, . . . , d. Its signature stores the

collection of all the iterated integrals of the path X, which are of the form

∫ L

0

∫ rn

0

⋯∫ r2

0

dX
i1
r1 . . . dX

in
rn , (1)

where X
i
r ∶= X

i(r). The iterated integral (1) is a real number and it is associated to
the sequence (i1, i2 . . . , in), for which the order is relevant. Therefore, we consider the

signature σ(X) as an element of T((Rd)), the space of formal power series in words in
the alphabet {1, 2, . . . , d}. This space becomes an algebra with the concatenation product,

denoted by the symbol •. Its algebraic dual, denoted by T(Rd), is the space of non-
commutative polynomials in the same set of words. It is a commutative algebra with the
shuffle product, which is denoted by � and interleaves two words in all order-preserving
ways, [Reu93].

We also consider the following duality paring in T((Rd)) × T(Rd):
⟨ ∑
w∈Wd

aww, v⟩ = av, (2)

where Wd denotes the set of words in the alphabet {1, . . . , d}, together with the empty
word e.

Let X be a piecewise continuously differentiable path in R
d

and σ(X) be its signature.

Consider a polynomial map p from R
d

to R
m

. One can compute the image path p(X) and
ask for its signature, σ(p(X)). Then, the following question comes up:

How are both signatures, σ(X) and σ(p(X)), related?

We approach this question from an algebraic point of view. We consider the dual map
p
∗
∶ R[x1, . . . , xm] ⟶ R[x1, . . . , xd], where both sets of variables are commutative. It is

natural and common to embed the polynomial ring R[x1, . . . , xm] into the tensor algebra(T(Rm),�). For that we identify the variable xi with the letter i and we define the
embedding, denoted by ϕm (or ϕ), by sending the monomial xi1⋯xil to the shuffle product
i1�⋯� il, for 1 ≤ i1, . . . , il ≤ m, and extending by linearity. By construction, this map
is a morphism of commutative algebras, and it is injective but not surjective. For instance,
for t ≥ 2, ϕ(x1 ⋅ x2) = 1 � 2 = 12 + 21 and there is no other way to obtain the words
12 and 21 as ϕd(h), for any polynomial h ∈ R[x1, . . . , xd]. Therefore, we cannot find a
polynomial in R[x1, . . . , xd] with image 12.

Our first step is to define a map Mp ∶ (T(Rm),�) ⟶ (T(Rd),�), which is an algebra
homomorphism and that is unique in the following sense.

Theorem 1.1. There exists an algebra homomorphism Mp ∶ (T(Rm),�) ⟶ (T(Rd),�)
such that its restriction Mp∣Im(ϕm) is the unique algebra homomorphism that makes the
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following diagram commute:

R[x1, . . . , xm] p
∗

//
� _

ϕm

��

R[x1, . . . , xd]
_�

ϕd

��

Im(ϕm) Mp∣Im(ϕm)
// Im(ϕd)

∩ ∩(T(Rm),�) (T(Rd),�)

(3)

The map Mp has some further interesting properties and is the key to relate the signa-
ture of a path with the signature of its transformation under a polynomial map.

Theorem 1.2. Let X ∶ [0, L] ⟶ R
d

be a piecewise continuously differentiable path with

X(0) = 0 and let p ∶ R
d
⟶ R

m
be a polynomial map with p(0) = 0. Then, for all

w ∈ T(Rm),
⟨σ(p(X)), w⟩ = ⟨σ(X),Mp(w)⟩ .

Equivalently, σ(p(X)) = M
∗
p (σ(X)).

The paper is organized as follows. In Section 2, we introduce briefly the framework
of signatures of paths, as well as the basic notions that we need for our key combinato-
rial objects, the words. In Section 3, we define the map Mp and prove its properties in
Proposition 3.2. Moreover, we present our main theorems, Theorems 1.1 and 1.2, together
with a generalization of the last one, Corollary 3.3. In Section 3.1 we look at Mp as a
half-shuffle homomorphism and give a generalization of Theorem 1.2 in terms of Zinbiel
algebras. In Section 4, we also present two examples and a few consequences, Corollaries
4.4–4.7. Finally, Section 5 is dedicated to applications and future work.

2 Signatures of paths and words

Given a piecewise continuously differentiable path X ∶ [0, L] ⟶ R
d
, for any i1, . . . , in ∈{1, 2, . . . , d} the following integral is classically well-defined

∫ L

0

dX
i1 . . . dX

in ∶= ∫ L

0

∫ rn

0

⋯∫ r2

0

dX
i1
r1 . . . dX

in
rn = ∫ L

0

∫ rn

0

⋯∫ r2

0

Ẋ
i1
r1 . . . Ẋ

in
rndr1 . . . drn.

We would like to store the collection of all these integrals.

Definition 2.1. The signature of X is defined as the following formal power series

σ(X) = ∑
n≥0

∑
i1...in

∫ L

0

∫ rn

0

⋯∫ r2

0

dX
i1
r1 . . . dX

in
rnÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

∈R

⋅i1⋯in ∈ T((Rd)).

As we mention in the introduction, T((Rd)) is the space of formal power series in
words in the alphabet {1, . . . , d}, and we denote by e the empty word. It is an algebra
with the concatenation product, denoted by w•v (or simply wv), which is well-defined since
it respects the grading given by the number of letters appearing in each word. We also
consider its algebraic dual T(Rd), which is the set of polynomials in words in the same

alphabet. The algebra T(Rd) has the concatenation product, which is the same as for

T((Rd)) if we multiply two finite power series. However, we consider T(Rd) as an algebra
with the shuffle product, which we define recursively as follows.
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Definition 2.2. Let w, w1 and w2 be three words and a and b two letters. We define the
shuffle product of two words recursively by

e� w = w� e = w, and(w1 • a)� (w2 • b) = (w1� (w2 • b)) • a + ((w1 • a)� w2) • b.
Note that in the shuffle product, we distinguish duplicated letters. For instance, for

a letter a, we have a� a = 2 ⋅ aa. Notice that the concatenation is a non-commutative
operation, whereas the shuffle product is commutative.

We also need a few notions on words. The length of a word w is denoted by ℓ(w)
and counts the number of letters in w. We extend this definition by linearity, defining
ℓ(w1 + w2) ∶= max{ℓ(w1), ℓ(w2)}, for any words w1 and w2. Therefore, ℓ(w1 • w2) = ℓ(w1) +
ℓ(w2) = ℓ(w1� w2). As an R-vector space, T(Rd) is graded by the length of the words:

T(Rd) = ⨁
n≥0

T
n(Rd),

where T
n(Rd) is the vector space spanned by the words of length n. We also denote by

T
≤n(Rd) the partial direct sum ⨁

k≤n

T
k(Rd). This notation extends to T((Rd)). The same

way, σ
(n)(X) denotes the partial sum of σ(X) for which all the appearing words have

length exactly n. We are ready to prove the following result.

Proposition 2.3. The shuffle product is associative.

Proof. The associativity is clear for the empty word since (e� e)� e = e = e� (e� e).
Now, we proceed by induction. Assume that for any words w1, v1, and u1 such that
ℓ(w1)+ ℓ(v1)+ ℓ(u1) = n, for some n ∈ N0, we have that (w1� v1)� u1 = w1� (v1� u1).
This is our inductive hypothesis.

Let w2, v2, u2 be arbitrary words with the property that ℓ(w2) + ℓ(v2) + ℓ(u2) = n + 1.
At least one of those words must thus be non-empty. If exactly two of the words are empty,
both (w2 � v2)� u2 and w2 � (v2 � u2) are obviously equal to the non-empty word. If
exactly one of the words is empty, both (w2 � v2)� u2 and w2 � (v2 � u2) are obviously
equal to the shuffle product of the two non-empty words. In the remaining case, if w2, v2, u2
are all non-empty, there are words w, v, u and letters i, j, k such that w2 = wi, v2 = vj and
u2 = uk. Then,

(w2� v2)� u2 = (wi� vj)� uk = ((w� vj) • i + (wi� v) • j)� uk

= ((w� vj)� uk) • i + ((wi� v)� uk) • j + (((w� vj)i+ (wi� v)j)� u) • k
= ((w� vj)� uk) • i + ((wi� v)� uk) • j + ((wi� vj)� u) • k

Analogously,

w2 � (v2� u2) = (w� (vj� uk)) • i + (wi� (v� uk)) • j + (wi� (vj� u)) • k.
Thus, since

ℓ(w) + ℓ(vj)+ ℓ(uk) = ℓ(wi) + ℓ(v) + ℓ(uk) = ℓ(wi) + ℓ(vj) + ℓ(u) = n,

we again get (w2 � v2)� u2 = w2� (v2� u2) due to the induction hypothesis.
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Going back to the signatures, the dual pairing (2) in T((Rd)) × T(Rd) allows us to
extract the coefficient of a word in the signature of a path in the following way:

⟨σ(X), i1i2 . . . in⟩ = ∫ L

0

dX
i1 . . . dX

in .

Both operations, the concatenation and the shuffle products, behave nicely with respect
to the signature, as the following two known results describe. The first result, known as
the shuffle identity, relates the signature of a path with the shuffle product.

Proposition 2.4 (Shuffle identity, [Ree58]). Let X ∶ [0, L] ⟶ R
d

be a piecewise contin-

uously differentiable path. Then, for every u, v ∈ T(Rd),
⟨σ(X), u⟩ ⟨σ(X), v⟩ = ⟨σ(X), u� v⟩ .

Another important result, known as Chen’s relation, describes the signature when we
concatenate paths. Let us see how the concatenation path is defined.

Definition 2.5. Let X,Y ∶ [0, L] ⟶ R
d

be two piecewise continuously differentiable

paths. We define the concatenation of X and Y as the path X ⊔ Y ∶ [0, 2L] ⟶ R
d

given
by X on [0, L] and by Y⋅−L − Y0 +XL on [L, 2L] (i.e. take Y , move it back to 0 and then
move it to the end of X).

The concatenation product interplays nicely with the concatenation of paths, as the
following proposition shows.

Proposition 2.6 (Chen’s identity, [Che57]). Let X,Y ∶ [0, L] ⟶ R
d

be two piecewise

continuously differentiable paths and consider their concatenation X ⊔ Y ∶ [0, 2L] ⟶ R
d
.

Then,
σ(X ⊔ Y ) = σ(X) • σ(Y ).

We finish this section with an example on how to compute the first terms of the signa-
ture of a path.

Example 2.7. Consider the path X ∶ [0, 1] ⟶ R
2

given by X
1(t) = t and X

2(t) = t
2
.

We compute a few terms of its signature.

⟨σ(X), 1⟩ = ∫ 1

0

dX
1

r1 = ∫ 1

0

1dt = 1 ⟨σ(X), 2⟩ = ∫ 1

0

dX
2

r1 = ∫ 1

0

2tdt = 1

⟨σ(X), 11⟩ = ∫ 1

0

∫ r2

0

dX
1

r1
dX

1

r2
= ∫ 1

0

r2dX
1

r2
= ∫ 1

0

r2dr2 =
1

2

⟨σ(X), 12⟩ = ∫ 1

0

∫ r2

0

dX
1

r1dX
2

r2 = ∫ 1

0

r2dX
2

r2 = ∫ 1

0

2r
2

2dr2 =
2

3

⟨σ(X), 21⟩ = ∫ 1

0

∫ r2

0

dX
2

r1dX
1

r2 = ∫ 1

0

r
2

2dX
1

r2 = ∫ 1

0

r
2

2dr2 =
1

3

⟨σ(X), 22⟩ = ∫ 1

0

∫ r2

0

dX
2

r1dX
2

r2 = ∫ 1

0

r
2

2dX
2

r2 = ∫ 1

0

2r
3

2dr2 =
2

4
=

1

2

⟨σ(X), 222⟩ = ∫ 1

0

∫ r3

0

∫ r2

0

dX
2

r1dX
2

r2dX
2

r3 = ∫ 1

0

∫ r3

0

r
2

2dX
2

r2dX
2

r3 = ∫ 1

0

∫ r3

0

2r
3

2dr2dX
2

r3 =

∫ 1

0

r
4

3

2
dX

2

r3
= ∫ 1

0

r
5

3dr3 =
r
6

3

6

»»»»»»»»»
1

0

=
1

6

Therefore, the signature of X is of the form

σ(X) = 1 + 2 +
1

2
⋅ (11 + 22) + 1

3
⋅ (2 ⋅ 12 + 21) + 1

6
⋅ 222 + . . .
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3 Signatures under the action of polynomial maps

Let p ∶ R
d
⟶ R

m
be a polynomial map given by the polynomials pi(x1, x2, . . . , xd), for

i = 1, 2, . . . ,m, with the property that p(0) = 0. The degree of the polynomial map p is the
maximum of the degree of the polynomials that define it, deg(p) = maxi deg(pi). Moreover,
we say that a polynomial map is homogeneous if the polynomials pi are homogeneous of
the same degree. Finally, we denote by Jp the Jacobian matrix of format m×d with entries

J
ij
p = ∂jpi, for i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , d}.

Recall the algebra homomorphism ϕd defined by:

ϕd ∶ R[x1, x2, . . . , xd] ⟶ (T(Rd),�)
xi ⟼ i

xi1⋯xil ⟼ i1 � ⋅ ⋅ ⋅� il

As we mention above, by the properties of the shuffle product in T(Rd), this map is
injective but is not surjective.

We now consider maps Mp, ϕ, and p
∗

such that they complete the diagram (3) that
arises in our main question in the following way:

R[x1, . . . , xm] p
∗

//
� _

ϕm

��

R[x1, . . . , xd]
_�

ϕd

��(T(Rm),�) ∃Mp
// (T(Rd),�)

Notice that the map Mp is unique when restricted to the image of ϕm, but not the full Mp

on the tensor algebra T(Rm).
Definition 3.1. For any polynomial map p ∶ R

d
→ R

m
such that p(0) = 0, let k

ij
p =

ϕd (J ij
p ) ∈ T(Rd), where J

ij
p is the (i, j)-entry of the Jacobian matrix of p. We define the

map Mp ∶ T(Rm) ⟶ T(Rd) recursively as follows:

Mp(e) = e, for e the empty word, and

Mp(wi) = d

∑
j=1

(Mp(w)� k
ij
p ) • j, for any word w and any letter i ∈ {1 . . . , m}.

The following result summarizes a few properties of the map Mp. We will use these
properties to show that the map that Mp as we construct it restricts according to what we
need.

Proposition 3.2. Consider two polynomial maps p ∶ R
d
⟶ R

m
and q ∶ R

m
⟶ R

s
, with

p(0) = 0 and q(0) = 0, and the algebra homomorphisms ϕm and ϕd. Then, we have the
following list of properties:

(I) Mp ∶ (T(Rm),�) ⟶ (T(Rd),�) is an algebra homomorphism.

(II) For i = 1, . . . , s, Mp (ϕm(qi)) = ϕd(qi◦p), where the qi’s are the polynomials defining
the polynomial map q.

(III) k
ij
q◦p =

m

∑
l=1

Mp(kilq )� k
lj
p .

6



(IV) Mq◦p = MpMq.

(V) If p is a polynomial map of degree n, then Mp (Tk(Rm)) ⊆ T
≤nk(Rd).

(VI) If p is an homogeneous polynomial map of degree n, Mp (Tk(Rm)) ⊆ T
nk(Rd)

Proof. (I) We need to show that, for any words w1 and w2 in T(Rm),
Mp(w1� w2) = Mp(w1)�Mp(w2).

We proceed by induction on ℓ(w1)+ ℓ(w2). For ℓ(w1)+ ℓ(w2) ≤ 1, at least one of the
two words is the empty word e, and so we assume that w2 = e. Therefore,

Mp(w1� w2) = Mp(w1� e) = Mp(w1) = Mp(w1)� e = Mp(w1)�Mp(w2).
Assume now that the statement is true for any pair of words with sum of lengths at
most n−1. Let u and v be two words such that ℓ(u)+ ℓ(v) = n−1 and a and b two
arbitrary letters. Then, using Definitions 2.2 and 3.1, and the inductive hypothesis
(IH),

Mp(ua� vb) Def.
=

2.2
Mp ((u� vb) • a + (ua� v) • b) Def.

=

3.1
d

∑
i=1

[Mp(u� vb)� k
ai
p +Mp(ua� v)� k

bi
p ] • i

Def.
=

3.1

d

∑
i=1

d

∑
j=1

[Mp(u)� ((Mp(v)� k
bj
p ) • i)� k

ai
p + ((Mp(u)� k

aj
p ) • j)�Mp(v)� k

bi
p ] • i (IH)

=

( d

∑
i=1

(Mp(u)� k
ai
p ) • i)� ( d

∑
i=1

(Mp(v)� k
bi
p ) • i) Def.

=

3.1
Mp(ua)�Mp(vb).

(II) Assume that Mp(i) = ϕd(pi), for all i. Then, for the monomial h(x1, . . . , xm) =

x
n1

1 ⋅ x
n2

2 ⋯x
nm
m , ϕm(h) = 1

�n1
� ⋅ ⋅ ⋅� m

�nm . Therefore, by the property (I),

Mp(ϕm(h)) = Mp(1)�n1
� ⋅ ⋅ ⋅�Mp(m)�nm

= ϕd(p1)�n1
� ⋅ ⋅ ⋅� ϕd(pm)�nm

=

ϕd(pn1

1 ⋯p
nm
m ) = ϕd(h ◦ p),

and the property (II) follows by linearity.

We prove now the claim Mp(i) = ϕd(pi), for all i. Since the two maps p ↦ Mp(i)
and p ↦ ϕd(pi) are linear, it is enough to prove the claim for the case when pi is a
monomial of the form pi = x

n1

1 ⋅ x
n2

2 ⋯x
nd

d , with at least one of the ni’s non-zero. In
this case,

Mp(i) = d

∑
j=1

(Mp(e)� k
ij
p ) • j =

d

∑
j=1

k
ij
p • j

∗
=

d

∑
j=1
nj≠0

nj (1�(n1−δ1j)
� ⋅ ⋅ ⋅� d

�(nd−δdj)) • j = 1
�n1
� ⋅ ⋅ ⋅� d

�nd
= ϕd(pi),

where ∗ follows by applying enough iterations of the recursive definition of the shuffle
product and the fact that i

�n+1
= (n + 1)i�n

• i.

7



(III) By the chain rule, J
ij
q◦p =

m

∑
l=1

(J il
q ◦ p) ⋅ J lj

p . For one term of that sum, by (II),

ϕd(J il
q ◦ p) = Mp (ϕm(J il

q )) = Mp(kilq ). Thus,

k
ij
q◦p = ϕd (J ij

q◦p) = ϕd ( m

∑
l=1

(J il
q ◦ p) ⋅ J lj

p ) =

m

∑
l=1

ϕd (J il
q ◦ p)� ϕd(J lj

p ) = m

∑
l=1

Mp(kilq )� k
lj
p .

(IV) We proceed by induction on ℓ(w). For a letter i,

Mp ◦Mq(i) = Mp(Mq(i)) = Mp

⎛⎜⎝
m

∑
j=1

k
ij
q • j

⎞⎟⎠ =

m

∑
j=1

Mp (kijq • j) =
m

∑
j=1

( d

∑
l=1

Mp(kijq � k
jl
p ) • l =

d

∑
l=1

⎛⎜⎝
m

∑
j=1

Mp(kijq � k
jl
p

⎞⎟⎠ • l
(III)
=

d

∑
l=1

k
il
q◦p • l = Mq◦p(i).

Now, we assume that the statement is true for all the words of length at most n and
we refer to it as (IH). Let w be one of these words and i any letter. Then,

Mp ◦Mq(wi) = Mp (Mq(wi)) = Mp

⎛⎜⎝
⎛⎜⎝

m

∑
j=1

Mq(w)� k
ij
q

⎞⎟⎠ • j
⎞⎟⎠ =

m

∑
j=1

Mp ((Mq(w)� k
ij
q ) • j) = m

∑
j=1

d

∑
l=1

[Mp (Mq(w)� k
ij
q )� k

jl
p ] • l (I)

=

m

∑
j=1

d

∑
l=1

[Mp(Mq(w))�Mp(kijq )� k
jl
p ] • l

(IH)
=

m

∑
j=1

d

∑
l=1

[Mq◦p(w))�Mp(kijq )� k
jl
p ] • l =

d

∑
l=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣Mq◦p(w))� ⎛⎜⎝
m

∑
j=1

Mp(kijq )� k
jl
p

⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎦ • l

(III)
=

d

∑
l=1

[Mq◦p(w)� k
il
q◦p] • l = Mq◦p(wi).

(V) We start by noticing that since the polynomial map p has degree n, then deg(pi) ≤ n,

for all i. Thus, deg(J ij
p ) ≤ n − 1 and ℓ (ϕd(J ij

p )) ≤ n − 1, for all i and j.

Now, we proceed by induction on k. For k = 1, T
1 (Rm) is the set of letters {1, . . . , m}.

Since for a letter i in this set Mp(i) = d

∑
j=1

k
ij
p • j, then ℓ(Mp(i)) = max

j
{ℓ(kijp • j)} ≤ n.

Thus, Mp(i) ∈ T
≤n(Rd).

Assume that the statement is true for k. Any word w
′
∈ T

k+1(Rm) can be written

as w
′
= w • i, with w ∈ T

k(Rm) and i a letter. We analyze the length of Mp(w • i).
Since Mp(w • i) = d

∑
j=1

(Mp(w)� k
ij
p ) • j, it is enough to upper bound the length of

the terms appearing in the sum. By the inductive hypothesis, ℓ(Mp(w)) ≤ nk, and

since ℓ(kijp ) ≤ n − 1, ℓ(Mp(w) � k
ij
p ) ≤ nk + n − 1. Therefore, ℓ(Mp(w • i)) ≤

nk + n− 1 + 1 = n(k + 1).
(VI) In this case, since p is homogeneous of degree n, then deg(pi) = n, for all i. Moreover,

deg(J ij
p ) = n− 1, if the variable xj appears in pi, or zero, otherwise.
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We proceed by induction on k. For k = 1, let i be a letter in {1, . . . , m}. Then,

Mp(i) = d

∑
j=1

k
ij
p • j. This sum contains only terms k

ij
p • j, which has length exactly

n, otherwise k
ij
p is zero according to our observation about the Jacobian entries

above. Therefore, the statement follows.

Now, assume the statement is true for k. Let w ∈ T
k(Rm) be a word and i a letter.

In this case, Mp(w • i) = d

∑
j=1

(Mp(w)� k
ij
p ) • j. Again, the terms appearing in this

sum have length nk + n− 1 + 1 = n(k + 1), which concludes the proof.

Once we have these properties, we recall Theorem 1.1 and prove it.

Theorem 1.1. There exists an algebra homomorphism Mp ∶ (T(Rm),�) ⟶ (T(Rd),�)
such that its restriction Mp∣Im(ϕm) is the unique algebra homomorphism that makes the
following diagram commute:

R[x1, . . . , xm] p
∗

//
� _

ϕm

��

R[x1, . . . , xd]
_�

ϕd

��

Im(ϕm) ∃!Mp∣Im(ϕm)
// Im(ϕd)

Proof. By (I) in Proposition 3.2, the restriction of Mp to the image Im(ϕm) is an algebra
homomorphism. Moreover, due to (II), we have that Mp (Im(ϕm)) ⊆ Im(ϕd). Since we
restrict to their images, ϕm and ϕd are isomorphisms and the map Mp is the unique one
making the diagram commute.

Let us see now the answer to our main question, which is stated as Theorem 1.2

Theorem 1.2. Let X ∶ [0, L] ⟶ R
d

be a piecewise continuously differentiable path with

X0 = 0 and let p ∶ R
d
⟶ R

m
be a polynomial map with p(0) = 0. Then, for all w ∈ T(Rm),

⟨σ(p(X)), w⟩ = ⟨σ(X),Mp(w)⟩ .
Equivalently, σ(p(X)) = M

∗
p (σ(X)).

Proof. Denote by Y = p(X) and by Ẏ =

d

∑
j=1

J
ij
p (X) ⋅ Ẋj

. Notice that each component X
j

of the path equals the first signature component, σ
1(X) = X, and therefore, the entries of

the Jacobian matrix can be seen as coefficients of the signature of X,

J
ij
p (Xt) = ⟨σ (X∣[0,t]) , kijp ⟩ . (4)

We proceed by induction on the length of the word w. For a letter i, we have that

⟨σ(Y ), i⟩ = ∫ L

0

⟨σ (Y ∣[0,t]) , e⟩ dẎ i
t = ∫ L

0

dẎ
i
t =

d

∑
j=1

∫ L

0

J
ij
p (Xt)Ẋj

t dt =

d

∑
j=1

∫ L

0

J
ij
p (Xt)dXj

t

(4)
=

d

∑
j=1

∫ L

0

⟨σ (X∣[0,t]) , kijp ⟩ dXj
t =

d

∑
j=1

⟨σ(X), kijp • j⟩ = ⟨σ(X),Mp(i)⟩ .
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Now, assume that the statement is true for all the words of length at most n. Let w be
any of these words and i any letter. By the definition of the signature,

⟨σ(Y ), wi⟩ = ∫ L

0

⟨σ (Y ∣[0,t]) , w⟩ dY i
t = ∫ L

0

⟨σ (Y ∣[0,t]) , w⟩ ˙
Y i
t dt =

d

∑
j=1

∫ L

0

⟨σ (Y ∣[0,t]) , w⟩ J ij
p (Xt)Ẋj

t dt =

d

∑
j=1

∫ L

0

⟨σ (Y ∣[0,t]) , w⟩J ij
p (Xt)dXj

t

(4)
=

d

∑
j=1

∫ L

0

⟨σ (Y ∣[0,t]) , w⟩ ⟨σ (X∣[0,t]) , kijp ⟩ dXj
t . (5)

Now, apply the inductive hypothesis to ⟨σ (Y ∣[0,t]) , w⟩ in (5), and then by Chen’s identity,
Proposition 2.6,

⟨σ(Y ), wi⟩ = d

∑
j=1

∫ L

0

⟨σ (X∣[0,t]) ,Mp(w)⟩ ⟨σ (X∣[0,t]) , kijp ⟩ dXj
t =

d

∑
j=1

∫ L

0

⟨σ (X∣[0,t]) ,Mp(w)� k
ij
p ⟩ dXj

t =

d

∑
j=1

⟨σ(Xt), (Mp(w)� k
ij
p ) • j⟩ = ⟨σ(X),Mp(wi)⟩ .

We finish this section with a generalization of Theorem 1.2 to polynomial maps that
do not satisfy the condition p(0) = 0 and paths that do not start at the origin.

Corollary 3.3. Let X ∶ [0, L] ⟶ R
d

be a piecewise continuously differentiable path and

let p ∶ R
d
⟶ R

m
be a polynomial map. Consider the map p̃ given by p̃(y) = p(y +X0) −

p(X0). Then, for all w ∈ T(Rm),
⟨σ(p(X)), w⟩ = ⟨σ(X),Mp̃(w)⟩ .

Proof. The statement follows using the same argument as in the proof of Theorem 1.2 if
we take into account that in this case, at the end of the step (4),

J
ij
p (Xt)Ẋj

t dt = J
ij

p̃ (Xt −X0)dXj
t = ⟨σ (X∣[0,t]) , kijp̃ ⟩ .

3.1 Mp as a half-shuffle homomorphism

The shuffle product can be seen as the symmetrization of the right half-shuffle, which we

define in the following way. Let T
≥1(Rd) = ⨁

n≥1

T
n(Rd) denote the vector space spanned

by the non-empty words built from d letters.

Definition 3.4. [Sch58, Eq. (S2)],[FP13, Def. 1],[EM53, Sect. 18] The right half-shuffle

≻ ∶ T
≥1(Rd) × T

≥1(Rd) → T
≥1(Rd) is recursively given on words as

w ≻ i ∶= wi,

w ≻ vi ∶= (w ≻ v + v ≻ w) • i,
where w, v are words and i is a letter.
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Therefore, for any non-empty words w, v

w� v = w ≻ v + v ≻ w.

Indeed, for non-empty words w, v and letters i, j, we have

i ≻ j + j ≻ i = ij + ji,

wi ≻ j + j ≻ wi = wij+ (j ≻ w + w ≻ j) • i, and

wi ≻ vj + vj ≻ wi = (wi ≻ v + v ≻ wi) • j+ (vj ≻ w + w ≻ vj) • i,

in accordance with Definition 2.2. Thus, the second equation in Definition 3.4 can be
rewritten as

w ≻ vi = (w� v) • i. (6)

It turns out that the right half-shuffle is an example of a more general type of algebras,
the Zinbiel algebras.

Definition 3.5. [Sch58, Eq. (S0)], [FP13, Eq. (4)] A (right) Zinbiel algebra is a vector
space Z together with a bilinear map ⋟ ∶ Z × Z → Z such that, for all a, b, c ∈ Z,

a ⋟ (b ⋟ c) = (a ⋟ b + b ⋟ a) ⋟ c.

We include here the proof of the next result since it is interesting.

Theorem 3.6. [Lod95, Proposition 1.8] (T≥1(Rd),≻) is a Zinbiel algebra, i.e. for any
non-empty words w, v, and u,

w ≻ (v ≻ u) = (w� v) ≻ u. (7)

Proof. Let w, v, and u be non-empty words and i be an arbitrary letter. By the definition
of the half-shuffle and Equation (6), we have

w ≻ (v ≻ i) = w ≻ vi = (w� v) • i = (w� v) ≻ i.

Using Equation (6) and associativity of the shuffle product, Proposition 2.3, we obtain
that

w ≻ (v ≻ ui) = w ≻ ((v� u) • i) = (w� (v� u)) • i = ((w� v)� u) • i = (w� v) ≻ ui.

In fact, it is known that (T≥1(Rd),≻) is free in this case.

Theorem 3.7. [Sch58, page 19][Lod95, Proposition 1.8] Indeed, (T≥1(Rd),≻) is the free

Zinbiel algebra over R
d
.

This means that for any Zinbiel algebra (Z,⋟) and any linear map B ∶ R
d
→ Z, there

is a unique homomorphism ΛB ∶ (T≥1(Rd),≻) → (Z,⋟) such that B = ΛB ◦ ι, where

ι ∶ R
d
→ T

≥1(Rd) is the canonical embedding. This is known as the universal property of
the free Zinbiel algebra and is described in Diagram 3.1. We call ΛB the unique extension
of B to a Zinbiel homomorphism.

11



R
d (T≥1(Rd),≻)

(Z,⋟)

ι

B
ΛB

Diagram 3.1: Universal property of the free Zinbiel algebra

Proof. Define the linear map ΛB ∶ T
≥1(Rd) → Z recursively by

ΛBi ∶= Li, ΛBvi ∶= ΛBv ⋟ ΛBi,

where we identified R
d

with the letters in T
≥1(Rd). Since vi = v ≻ i, this is the only

candidate for a map with the desired properties. It remains to show that it is indeed a
homomorphism of Zinbiel algebras.

By definition, it holds that ΛBij = ΛBi⋟ΛBj. Thus, assume that ΛBxy = ΛBx⋟ΛBy

holds for all nonempty words x, y such that ∣x∣ + ∣y∣ = n. Then, for all nonempty words
w and v such that ∣w∣ + ∣v∣ = n, we have

ΛBw ⋟ ΛBvi = ΛBw ⋟ (ΛBv ⋟ ΛBi) = (ΛBw ⋟ ΛBv + ΛBv ⋟ ΛBw) ⋟ ΛBi =

ΛB(w ≻ v + v ≻ w) ⋟ ΛBi = ΛB((w ≻ v + v ≻ w) ≻ i) = ΛB(w ≻ (v ≻ i)) = ΛB(w ≻ vi),
and ΛBui ∶= ΛBu ⋟ ΛBi, for all nonempty words u with ∣u∣ = n by definition. The claim
follows by induction over n.

The following result describes the relation between the map Mp and the half-shuffle.

Theorem 3.8. The restriction of Mp to T
≥1(Rd), Mp∣T≥1(Rd), is the unique half-shuffle

homomorphism such that Mp(i) = ϕd(pi).
Proof. Using (6) and the definition of Mp, we get

Mp(wi) = d

∑
j=1

(Mp(w)� k
ij
p ) • j = Mp(w) ≻ ( d

∑
j=1

k
ij
p • j) = Mp(w) ≻Mp(i),

and thus the statement follows immediately from the proof of Theorem 3.7.

We finish this section with a generalization of Theorem 1.2 in terms of Zinbiel algebras
stated in the following result.

Theorem 3.9. Let X ∶ [0, L] ⟶ R
d

be a piecewise continuously differentiable path and

B ∶ R
m

→ (T≥1(Rd),≻) be a linear map. Then, the signature of the path

Y ∶ [0, L] ⟶ R
m
, Y

i
t ∶= ⟨σ (X∣[0,t]) , Bi⟩ ,

is a linear transformation of the signature of X, namely

⟨σ(Y ), w⟩ = ⟨σ(X),ΛBw⟩ ,
where ΛB is the unique extension of B to a Zinbiel homomorphsim.
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Before proving this result, we introduce some notation. We denote by X
z
0s the coefficient

of z in the signature of the path X restricted to the interval [0, s]. That is,

X
z
0s ∶= ⟨σ(X↾[0,s]), z⟩.

Note that X
i
0s = X

i
s − X

i
0. Then, the path Y introduced in Theorem 3.9 is given by

Y
i
s = X

Bi
0s . Moreover, for any letter i, we define the maps T

−
i ,T

+
i ∶ T(Rd) → T(Rd) to be

the unique linear maps given recursively by T
+
i w = wi and by T

−
i wj = δijw with T

−
i e = 0,

respectively, for any word w.
These two maps allows us to define the right half-shuffle as shown in the following

technical result.

Lemma 3.10. For any x, y ∈ T
≥1(Rd), we have x ≻ y =

d

∑
i=1

T
+
i (x� T

−
i y).

Proof. This is just a reformulation of (6) in the following way. For any word v, any
non-empty word w, and any letter j, we have that

d

∑
i=1

T
+
i (w� T

−
i vj) = T

+
j (w� v) = (w� v) • j = w ≻ vj,

where the last equality follows from (6). Then, the general statement for any x, y ∈

T
≥1(Rd) follows from (bi)linearity.

Now we are ready to prove Theorem 3.9.

Proof of Theorem 3.9. For better readability, we put Λ ∶= ΛB . First note that by the defi-
nition of the signature and the fact that X is continuously differentiable almost everywhere,
we have

Y
i
s = X

Bi
0s = X

Λi
0s =

d

∑
i=1

∫ s

0

X
T

−
i Λi

0t dX
i
t =

d

∑
i=1

∫ s

0

X
T

−
i Λi

0t Ẋ
i
tdt

and thus, for almost all s ∈ [0, T ],
Ẏ

i
s =

d

∑
i=1

X
T

−
i Λi

0t Ẋ
i
t .

Following an inductive argument, assume now that X
Λw
0s = Y

w
0s holds for some word w.

Then,

Y
wi
0s = ∫ s

0

Y
w
0tdY

i
t = ∫ s

0

Y
w
0tẎ

i
t dt =

d

∑
l=1

∫ s

0

X
Λw
0t X

T
−
l Λi

0t Ẋ
l
tdt

= ∫ s

0

X
∑d

l=1 Λw�T
−
l Λi

0t dX
l
0t = X

∑d

l=1 T
+
l (Λw�T

−
l Λi)

0t = X
Λw≻Λi
0t = X

Λwi
0t ,

were we used Lemma 3.10 and the fact that Λ is a homomorphism of Zinbiel algebras.

Theorem 3.9 can also be directly shown using

∫ s

0

X
x
0tdX

y
0t = X

x≻y
0s (8)

for any x, y ∈ T
≥1(Rd), a relation which is quite fundamental for an algebraic under-

standing of the signature and was mentioned already for example in [GK08] right after
equation (6). Conversely, starting from Theorem 3.9, equation (8) is immediate with the
choice B1 = x,B2 = y.

The following example illustrates the results presented in this section.
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Example 3.11. For a given path X ∶ [0, L] → R
3
, let

Y = (Area(X2
,X

3),Area(X3
,X

1),Area(X1
,X

2))
denote the area path of X, where Area(Xi

,X
j)t = ∫ t

0
∫ s

0
dX

i
udX

j
s − ∫ t

0
∫ s

0
dX

j
udX

i
s. Let us

compute ⟨σ(Y ), 12 − 21⟩ in the special case that X ∶ [0, 1] → R
3
, X(t) = (t, t2, t3). We

have Y
i
s = X

Bi
0s where

B1 = 23− 32, B2 = 31 − 13, B3 = 12− 21

We need to compute ΛB(12− 21) = B1 ≻B2 −B2 ≻B1. To this end,

(23− 32) ≻ (31− 13) = 2 ⋅ 2331− 2 ⋅ 3321− 2313− 2133− 1233+ 3213+ 3123+ 1323,

(31− 13) ≻ (23− 32) = 3123+ 3213+ 2313− 1323− 1233− 2133− 3132− 2 ⋅ 3312

+ 2 ⋅ 1332+ 3132.

Thus, ΛB(12−21) = 2⋅(−1323 + 1332+ 2313− 2331+ 3312− 3321). Since in our special
case of X(t) = (t, t2, t3) it holds that [AFS19, Example 2.2]

∫ 1

0

∫ u

0

∫ t

0

∫ s

0

dX
i
rdX

j
sdX

k
t dX

l
u =

j ⋅ k ⋅ l(j + i)(k + j + i)(l + k + j + i) ,
we get that

⟨σ(Y ), 12 − 21⟩
= 2 ⋅ (−3 ⋅ 2 ⋅ 3

4 ⋅ 6 ⋅ 9
+

3 ⋅ 3 ⋅ 2

4 ⋅ 7 ⋅ 9
+

3 ⋅ 1 ⋅ 3

5 ⋅ 6 ⋅ 9
−

3 ⋅ 3 ⋅ 1

5 ⋅ 8 ⋅ 9
+

3 ⋅ 1 ⋅ 2

6 ⋅ 7 ⋅ 9
−

3 ⋅ 2 ⋅ 1

6 ⋅ 8 ⋅ 9
)

= −
1

315
≈ −0.00317

as the desired result.

4 Examples and consequences

Let us start with an easy example to illustrate how Theorem 1.2 works, and also the
property (V) in Proposition 3.2.

Example 4.1. Consider the polynomial map p ∶ R
2
⟶ R

3
given by the polynomials

p1 = x
2
, p2 = y

3
and p3 = x− y. Consider also the path in Example 2.7, X ∶ [0, 1] ⟶ R

2

given by X
1(t) = t and X

2(t) = t
2
. We want to compute a few terms in the signature of

the path p(X).
We start computing the Jacobian matrix and its image under ϕ:

(J ij
p )

i,j
=

⎛⎜⎜⎝
2x 0

0 3y
2

1 −1

⎞⎟⎟⎠ and (kijp )i,j = (ϕ (J ij
p ))

i,j
=

⎛⎜⎜⎝
2 ⋅ 1 0

0 6 ⋅ 22

e −e

⎞⎟⎟⎠ .

Notice that ϕ(3y2) = 3 ⋅ 2� 2 = 6 ⋅ 22. We use Definition 3.1 to compute the image of a
few words:

Mp(1) = 2 ⋅ 11, Mp(2) = 6 ⋅ 222, Mp(3) = 1 − 2,

Mp(33) = (1 − 2) • 1 − (1 − 2) • 2 = 11 + 22− 12 − 21.
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We observe that for any word w above, ℓ (Mp(w)) ≤ 3 ⋅ ℓ(w). This is due to property (V) in
Proposition 3.2 since deg(p) = 3. Now, applying Theorem 1.2 and looking at the signature
terms computed in Example 2.7, we obtain that

⟨σ (p(X)) , 1⟩ = ⟨σ(X),Mp(1)⟩ = ⟨σ(X), 2 ⋅ 11⟩ = 2 ⋅
1

2
= 1,

⟨σ (p(X)) , 2⟩ = ⟨σ(X),Mp(2)⟩ = ⟨σ(X), 6 ⋅ 222⟩ = 6 ⋅
1

6
= 1,

⟨σ (p(X)) , 3⟩ = ⟨σ(X),Mp(3)⟩ = ⟨σ(X), 1 − 2⟩ = 1− 1 = 0, and

⟨σ (p(X)) , 33⟩ = ⟨σ(X),Mp(33)⟩ = ⟨σ(X), 11 + 22 − 12 − 21⟩ = 0.

This second example is more generic and shows the property (VI) in Proposition 3.2.

Example 4.2. Let X be any piecewise continuously differentiable path in R
2
. Consider

the polynomial map p ∶ R
2
⟶ R

3
given by p(x, y) = (x2, xy, y2), and fix k = 2.

By Theorem 1.2, the coefficient of w in σ (p(X)) is given by the coefficient of Mp(w)
in σ(X). Moreover, by Proposition 3.2 (VI), the words appearing in Mp(w) have length

exactly 4. One way of storing σ
(2) (p(X)) is using a matrix that encodes the coefficients

in Mp(w),

σ
(2) (p(X))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11

12

13

21

22

23

31

32

33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↭

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 2 0 2 0 0 0 2 0 0 0 0 0 0 0

0 0 0 4 0 4 0 0 0 4 0 0 0 0 0 0

0 0 4 0 4 0 0 0 4 0 0 0 0 0 0 0

0 0 0 2 0 2 2 0 0 2 2 0 2 0 0 0

0 0 0 0 0 0 0 4 0 0 0 4 0 4 0 0

0 0 0 0 0 0 4 0 0 0 4 0 4 0 0 0

0 0 0 0 0 0 0 2 0 0 0 2 0 2 6 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

σ
(4)(X)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1111

1112

1121

1122

1211

1212

1221

1222

2111

2112

2121

2122

2211

2212

2221

2222

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

More generally, by Proposition 3.2 (VI), for any word w in the alphabet {1, 2, 3} with
ℓ(w) = k, Mp(w) is a sum of words in the alphabet {1, 2} of length 2k. Applying Theorem

1.2, the information of σ
(k) (p(X)) can be stored in terms of σ

(2k)(X). In fact, there

exists a matrix M of format 3
k
× 2

2k
that describes the change of coordinates in the

following sense. Fix an order on the words, for instance, lexicographic order as above.
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The coefficients of σ
(k)(p(X)) and the coefficients of σ

(2k)(X) are related as

σ
(k) (p(X))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kÌ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ
11 . . . 1

1 . . . 12

⋮

3 . . . 32

3 . . . 33Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= M

σ
(2k)(X)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2kÌ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÎ
11 . . . 1

1 . . . 12

⋮

2 . . . 21

2 . . . 22Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
2k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the row indexed by w in M is given by the coefficients of Mp(w). Moreover, we want
to point out the following properties of this homomorphism Mp:

• For w = 1 . . . 1Í ÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
k times

, Mp(w) = (2k)!
k!

⋅ w • w.

• For w = 2 . . . 2Í ÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
k times

, Mp(w) = k! ⋅ 1 . . . 1Í ÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
k times

� 2 . . . 2Í ÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
k times

.

• For w = 3 . . . 3Í ÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
k times

, Mp(w) = (2k)!
k!

2 . . . 2Í ÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÏ
2k times

.

The rest of this section is dedicated to analize the consequences of Theorems 1.1 and 1.2
in several particular cases. We start looking at the case in which X is itself a polynomial
map and we need the following definition.

Definition 4.3. For an element a ∈ T((Rd)), with zero coefficient for the empty word e,
we define the concatenation product exponential of a as

exp•(a) ∶= ∑
n≥0

a
•n

n!
.

More information on this exponential map and its inverse, the logarithm, can be found
in [Reu93].

Corollary 4.4. Let X ∶ [0, L] ⟶ R
d

be a polynomial map, with L ∈ R, L ≥ 1. Then,

for any w ∈ T(Rd),
⟨σ(X), w⟩ = ⟨exp•(L ⋅ 1),MX̃(w)⟩ ,

where X̃(y) = X(y) −X0. Equivalently, σ(X) = M
∗

X̃
(exp•(L ⋅ 1)).

Proof. Let Y ∶ [0, L] ⟶ R be the path given by Y (t) = t. Then, σ(Y ) = exp•(L ⋅1). The
statement follows by Corollary 3.3 applied to the path Y and the polynomial map X.

The next result looks at the case when M
∗
p (σ(X)) = 0 from the perspective of the

polynomial map and of the piecewise continuously differentiable path. We introduce first
two concepts. Given a polynomial map p, we define the ideal generated by p as the ideal
Ip generated by the polynomials that define the map p, i.e. Ip = ⟨p1, . . . , pm⟩. Moreover,
we define a tree-like path as a path X such that σ(X) = 0. This definition is the charac-
terization given by B.M. Hambly and T. J. Lyons, [HL10], and a more general topological
definition can be found in [BGLY16, Definition 1.1].
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Remark 4.5. A very simple example of a tree-like path is a concatenation of paths A ⊔

B ⊔ C ⊔ D such that the paths A and B (resp. C and D) are of the same shape, but
parametrized in the opposite direction. When we compute the integrals on such a path, we
get cancellations and the signature of the path does not see the A ⊔ B ⊔ C ⊔D loop, i.e.
σ(A ⊔B ⊔ C ⊔D) = e.

The following result describes the situation in which the (image of the) path lies in the
zeros of the ideal Ip, for some polynomial map p.

Corollary 4.6. Let p ∶ R
d
⟶ R

m
be a polynomial map with associated ideal Ip. We

define the polynomial map p̃(y) = p(y +X0) − p(X0), for which p̃(0) = 0.

• If X ∶ [0, L] ⟶ R
d

is a piecewise continuously differentiable path such that X(t) ∈
V(Ip) for all t ∈ [0, L], then M

∗
p̃ (σ(X)) = e.

• Conversely, if M
∗
p̃ (σ(X)) = e, for some piecewise continuously differentiable path

X ∶ [0, L] ⟶ R
d
, then p(X) is tree-like.

The last consequence is that the dual map M
∗
p behaves nicely with respect to the

concatenation of signatures.

Corollary 4.7. Let p ∶ R
d
⟶ R

m
be a polynomial map with p(0) = 0 and let X,Y ∶[0, L] ⟶ R

d
be two piecewise continuously differentiable paths with X0 = Y0 = 0. Then,

M
∗
p (σ(X) • σ(Y )) = M

∗
p (σ(X)) •M

∗
q (σ(Y )),

where q(y) = p(y +XL −X0) − p(XL −X0).
5 Applications and future work

The results presented in this paper solve an algebraic question that arises from the sig-
natures of paths, an object commonly studied in stochastic analysis. There are several
interesting problems that do not fit on the algebraic flavour of this paper. We summarize
them in the following list.

(A) In comparison with the results presented in [PSS19], we would like to explore a non-
linear version of their approach using dictionaries. The idea is that if we have a
family of generic paths, χ, for which we know the signature and a polynomial map
p, then Theorem 1.2 allows us to compute the signature of all the paths in p(χ).
For instance, Example 4.2 shows that we can compute the signature of p(X) for any
piecewise continuously differentiable path X by multiplying the signature of X by a
matrix at each level. Therefore, we have the following question:

Is it possible to understand σ(p(X)) in terms of σ(X) and Mp

in the language of tensors?

(B) Another line of future research is focused on the map Mp. Since it is defined from
a polynomial map without involving any piecewise continuously differentiable path
and gives us the commuting diagram (3), we intuit that it is worth to look for more
interesting properties. For that, we should look to the big picture involving the Hopf
algebra structures, as well as other constructions.

In this direction, at the end of Example 4.2 we describe combinatorially Mp(w) for
some particular words w. A more general question would be the following:
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For which words w and polynomial maps p is there a non-recursive combi-
natorial formula for Mp(w)?

Answering this question could be very useful from the computational perspective.
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