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A Lévy-Ottaviani type inequality for the Bernoulli

process on an interval

Witold Bednorz and Rafa l Martynek ∗†‡§

Abstract

In this paper we prove a Lévy-Ottaviani type of property for the Bernoulli process defined

on an interval. Namely, we show that under certain conditions on functions (ai)
n
i=1 and for

independent Bernoulli random variables (εi)
n
i=1, P(supt∈[0,1]

∑n

i=1 ai(t)εi > c) is dominated by

CP(
∑n

i=1 ai(1)εi > 1), where c and C are explicit numerical constants independent of n. The result

is a partial answer to the conjecture of W. Szatzschneider that the domination holds with c = 1 and

C = 2.

1 Introduction

Let T ⊂ R
n. Suppose that ε1, . . . , εn is a sequence of independent Bernoulli random variables i.e. for

each i ≥ 1, P(εi = ±1) = 1/2. For the element t = (t1, . . . , tn) of T we define a random variable

Xt =
∑n

i=1 tiεi. Obviously, EXt = 0 and Var(Xt) =
∑n

i=1 t
2
i =: ‖t‖2. Furthermore, let X = supt∈T Xt.

The main assumption of this work will be the existance of the point t0 ∈ T satisfying supt∈T Var(Xt) =

Var(Xt0). We will refer to t0 as the point of maximal variance. The question we want to study concerns

the control over X one can expect from knowing t0. It will be a simple consequence of Theorem 2

and could be also deduced from McDiarmid’s inequality (see [7, Problem 3.7]) that the strengthened

concentration inequality can be obtained (with constant 2 instead of 8 in the exponent). The more

intriguing question is on the tail domination, namely can we expect a Lévy-Ottaviani type of inequality.

For this, we define Y =
∑n

i=1 t
0
i εi. The main motivation for the study of this question is the following

problem posed by W. Szatzschneider in [5]. Suppose that ai : [0, 1] → R+, for i = 1, 2, . . . , n are

non-decreasing, right-continuous functions. In the orginal setting it was also assumed that functions ai

satisfy following conditions:

1. for each t ∈ [0, 1], a1(t) > a2(t) > . . . > an(t)

2.
∑n

i=1 ai(1) > 1 + 2a1(1).

Variables X and Y we defined at the beginning are now of the form X = supt∈[0,1]

∑n
i=1 ai(t)εi and Y =

∑n
i=1 ai(1)εi. W. Szatzschneider conjectured that under the above conditions the following inequality

holds

P(X > 1) 6 2P(Y > 1).
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Notice that conditions 1 and 2 require that n ≥ 3. In [5] the conjecture was proved for cases n = 3

and n = 4 by a simple path analysis. Also, the fact that constant 2 cannot be improved for even n was

presented there. Before we state the main result in the direction of Szatzschneider conjecture, let us

present a special case when the domination holds, which explains its relation with classic Lévy-Ottaviani

inequality i.e. that for independent, symmetric random variables Z1, Z2, . . . , Zn it holds true that

P( max
16k6n

k
∑

i=1

Zi > u) 6 2P(
n
∑

i=1

Zi > u).

Proposition 1. Suppose that functions ai : [0, 1] → R+ are of the form ai(t) = αi(t)ai(1), where for

all t ∈ [0, 1] 0 6 αn(t) 6 . . . 6 α1(t) 6 1. Then,

P(X > 1) 6 2P(Y > 1).

Proof. Denote Sa
i =

∑k
j=1 aj(1)εi. Obviously, Y = Sa

n. Then, by the Abel’s inequality, we get

X =

n
∑

i=1

ai(1)αi(t)εi =

n
∑

i=1

(αi(t)− αi+1(t))S
a
i ≤ max

16i6n
Sa
i ,

where we put αn+1(t) = 0. Hence, by Lévy-Ottaviani inequality, we conclude that

P(X > 1) 6 P( max
16k6n

Sa
k > 1) 6 2P(Sa

n > 1).

�

Remark 1. An example of functions satisfying the above condition are ai(t) = ai(1)1[ti,1](t) for 0 6

t1 6 . . . 6 tn 6 1.

The approach we propose allows to skip the two mentioned conditions. We will prove the following form

of Szatzschneider’s conjecture.

Theorem 1. Let ai : [0, 1] → R+, for i = 1, 2, . . . , n be non-decreasing, right-continous functions and

n > 5. Then for u > 0

P( sup
t∈[0,1]

n
∑

i=1

ai(t)εi > 8u) 6 53P(

n
∑

i=1

ai(1)εi > u).

This result is also a consequence of the concentration result (Theorem 2) which we prove in the next

section. As we will explain the constant on the left hand side of the above inequality comes from the

estimate on the EX which we obtain by using chaining method (see [6] for the comprehensive study).

This will be presented in section 3.

Let’s finish this section with the important comparison inequalities between the Lp-norms of Xt. Let’s

denote them by ‖Xt‖p. The first one is a hypercontraction (see e.g. [3, Chapter 3.4]) i.e. for 1 < q <

p < ∞
‖Xt‖p 6

√

p− 1

q − 1
‖Xt‖q. (1)

Moreover, we have comparison with the first moment which in the following form is due to Szarek [4].

We have

E|Xt| >
1√
2
‖Xt‖2 =

1√
2
‖t‖ (2)

It is easy to see that it extends to X in the sense that EX ≥ (1/2
√
2) supt∈T ‖t‖. The aim of section 3

is to prove that EX is actually comparable with ‖t0‖ in the Szatzschneider setting. It is an interesting

task to provide a geometrical description of sets T for which such comparison occurs.
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2 Concentration

We aim to prove a special form of concentration result.

Theorem 2. Let T = [0, t01]× · · · × [0, t0n] and ϕ : R → [0,∞) be any convex, increasing function. Then

Eϕ(X −EX) 6 Eϕ(Y ). (3)

Proof. Consider numbers (b(t))t∈T and define X̃ = supt∈T (
∑n

i=1 tiεi + b(t)). We will prove that

Eϕ(X̃ −EX̃) 6 Eϕ(Y ).

and apply this result for b ≡ 0. We will proceed by induction. For n = 0 both sides equal 0. For n > 1,

we will condtion on ε1. To this end we define

X̃+ = sup
t∈T

(

t1 + b(t) +

n
∑

i=2

tiεi

)

and X̃− = sup
t∈T

(

−t1 + b(t) +

n
∑

i=2

tiεi

)

.

Notice that EX̃ = (EX̃− +EX̃+)/2, so we can write

Eϕ(X −EX) =
1

2

(

Eϕ

(

X̃+ −EX̃+ +
EX̃+ −EX̃−

2

)

+Eϕ

(

X̃− −EX̃− +
EX̃− −EX̃+

2

))

. (4)

Therefore, by the induction assumption used for convex increasing functions x 7→ ϕ(x+(EX̃+−EX̃−)/2)

and x 7→ ϕ(x + (EX̃− −EX̃+)/2) we have

Eϕ(X̃ −EX̃) 6
1

2

(

Eϕ

(

n
∑

i=2

t0i εi +
EX̃+ −EX̃−

2

)

+Eϕ

(

n
∑

i=2

t0i εi +
EX̃− −EX̃+

2

))

= Eϕ

(

|EX̃+ −EX̃−|
2

ε1 +

n
∑

i=2

t0i εi

)

. (5)

Observe that
|EX̃+ −EX̃−|

2
6 sup

t∈T
t1 = t01

and thus using the contraction principle (see e.g. [6, Lemma 3.2.9]) in the special case, when we condition

on ε2, . . . , εn and consider a supremum over a single point we get

Eϕ

(

|EX̃+ −EX̃−|
2

ε1 +
n
∑

i=2

t0i εi

)

6 Eϕ

(

n
∑

i=1

t0i εi

)

. (6)

Combining (4),(5),(6) completes the proof.

�

There are two functions which are of special interest. The first one will recover the strenghened concen-

tration, while the other will lead to the main result of this work.

Corollary 1. We have

P(|X −EX | > u) ≤ 2e
− u

2

2‖t0‖2 . (7)

Proof. Apply (3) for ϕ(x) = eλx, λ ∈ R.

�
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Corollary 2. Let 0 < α 6 1 and u > 0. Then,

P(X > EX + (1 + α)u) 6
4

αu
P(Y > u)E(Y )+. (8)

Proof. Consider ϕ(x) = (x − u)+. Then, by (3) we get that E(X −EX − u)+ 6 E(Y − u)+. We will

show that

αuP(X > EX + (1 + α)u) 6 E(X −EX − u)+ (9)

and

E(Y − u)+ 6 4P(Y > u)E(Y )+. (10)

(9) follows simply from

E(X −EX − u)+ > E(X −EX − u)+1{X−EX>(1+α)u} > αuP(X −EX > (1 + α)u).

(10) can be deduced from the Kahane’s inequality (see e.g. [3, Proposition 1.4.1]). Indeed,

E(Y −u)+ =

∫ ∞

u

P(Y > t)dt =

∫ ∞

0

P(Y > u+t)dt 6 4P(Y > u)

∫ ∞

0

P(Y > t)dt = 4P(Y > u)E(Y )+.

�

Let’s state the main result of this work.

Theorem 3. Consider a subset T ⊆ [0, t01] × · · · × [0, t0n] of R
n. Let X and Y be as in Theorem 2.

Suppose that there exists a positive constant C1 such that EX 6 C1‖t0‖. Then, for u > 0, α ∈ (0, 1],

θ ∈ (0, 1)

P(X > (
C1√
θ
+ 1 + α)u) 6 Cα,θP(Y > u), (11)

where Cα,θ = max{ 18
(1−θ)2 ,

2
α
√
θ
}.

Proof. Suppose that u 6
√
θ‖t0‖. Notice that by (1) we have (E|Y |2)2/E|Y |4 > 1/9. Hence, by the

Paley-Zygmund inequality we get

P(Y > u) > P(Y >
√
θ‖t0‖) = 1

2
P(|Y | >

√
θ‖t0‖) = 1

2
P(|Y |2 > θ‖t0‖2)

=
1

2
P(|Y |2 > θE|Y |2) > 1

2
(1 − θ)2

(E|Y |2)2
E|Y |4 >

(1− θ)2

18
,

so trivially

P(X > (
C1√
θ
+ 1 + α)u) 6 1 6

18

(1− θ)2
P(Y > u).

Now, consider u >
√
θ‖t0‖. Notice that E(Y )+ = 1/2E|Y | 6 1/2

√

E|Y |2 = 1/2‖t0‖. Hence by Corollary

2

P(X > (
C1√
θ
+ 1 + α)u) 6 P(X > (

EX√
θ‖t0‖

+ 1 + α)
√
θ‖t0‖) 6 4

α
√
θ‖t0‖

P(Y > u)
1

2
‖t0‖. (12)

This finishes the proof.

�

Remark 2. Instead of using Kahane’s inequality in Corollary 2 one can use [2, Lemma 7] to obtain

that P(X > EX + (1 + α)u) 6 16
α P(Y > u). Then by considering cases when u is less or greater than

(1/2
√
2)‖t0‖ and applying (2) one can get

P(X > (2
√
2C1 + 2)u) 6 16P(Y > u). (13)
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3 Chaining

Theorem 4. The following inequality holds EX 6 C‖a(1)‖, where C 6 4.45.

Proof. The proof is based on the special choice of approximation nets Tk, k > 0. We denote the number

of elements |Tk| = Nk, where Nk are numbers which we choose later. Define Tk = {uk
0 , u

k
1 , . . . , u

k
Nk−1}

in the following way

uk
l = inf{t ∈ [0, 1] : ‖a(t)‖2 > l

Nk
‖a(1)‖2}.

Since ai(t) are right continuous we have that

l

Nk
‖a(1)‖2 6 ‖a(uk

l )‖2 6
l + 1

Nk
‖a(1)‖2. (14)

Moreover, Tk ⊂ Tk+1. Let us define πk(t) ∈ Tk as max{uk
l ∈ Tk : uk

l 6 t}. Therefore, if t ∈ Tk, k > 1

and πk−1(t) = uk−1
l then

l

Nk−1
6 ‖a(πk−1(t))‖2 6 ‖a(t)‖2 <

l + 1

Nk−1
.

As a consequence of the above inequality and monotonicity of each ai we get the following crucial fact

‖a(t)− a(πk−1(t))‖2 6 ‖a(πk(t))‖2 − ‖a(πk−1(t))‖2 6
‖a(1)‖2
Nk−1

. (15)

It is clear that
⋃

k Tk is dense in T . Fix K and consider points t ∈ TK . Obviously, πK(t) = t. Using

backward induction we define tk for k = 0, 1, 2, . . . ,K as tK = πK(t) = t and for k < K, tk = πk(tk+1).

Note that t0 = 0 for all t ∈ TK . Before we state the main chaining argument we present two helpful

inequalities. First, recall that from (1) we can bound any norm ofXt by ‖t‖, namely ‖Xt‖p 6
√
p− 1‖t‖.

Also, (see proof of [1, Theorem 1 ]), we have for any constant C > 1 and p > 2

E(
Xt

‖Xt‖p
− C)+ =

1

2
E(

|Xt|
‖Xt‖p

− C)+ 6
1

2
max
x>C

1

xp
(x− C) 6

1

2
C

1

p− 1

(

p− 1

Cp

)p

. (16)

We proceed to chaining

EX = lim
K→∞

E sup
t∈TK

(Xt −X0) = lim
K→∞

E sup
t∈TK

K
∑

k=1

(Xtk −Xtk−1
)

6 lim
K→∞

E sup
t∈TK

K
∑

k=1

Ck‖Xtk −Xtk−1
‖pk

(

1 +

(

Xtk −Xtk−1

Ck‖Xtk −Xtk−1
‖pk

− 1

)

+

)

6 ‖a(1)‖ lim
K→∞

E sup
t∈TK

K
∑

k=1

Ck
(pk − 1)1/2

|Tk−1|1/2

(

1 +

(

Xtk −Xtk−1

Ck‖Xtk −Xtk−1
‖pk

− 1

)

+

)

(17)

6 ‖a(1)‖ lim
K→∞

K
∑

k=1

Ck
(pk − 1)1/2

|Tk−1|1/2

(

1 +
∑

u∈Tk

E

(

Xu −Xπk−1(u)

Ck‖Xu −Xπk−1(u)‖pk

− 1

)

+

)

= ‖a(1)‖ lim
K→∞

K
∑

k=1

Ck
(pk − 1)1/2

|Tk−1|1/2

(

1 +
∑

u∈Tk

1

2Ck
E

( |Xu −Xπk−1(u)|
‖Xu −Xπk−1(u)‖pk

− Ck

)

+

)

6 ‖a(1)‖ lim
K→∞

K
∑

k=1

Ck
(pk − 1)1/2

|Tk−1|1/2
(

1 +
1

2Ck
|Tk|Ck

1

pk − 1

(

pk − 1

Ckpk

)pk
)

(18)
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where in (17) we used (15) and (1), while (18) follows from (16). It remains to choose parameters Ck, pk

and |Tk| in the optimal way. For this we pick C1 = 1 and Ck = 2 for k > 2. For each k we choose

pk = 2k. We define |Tk| iteratively so that |T0| = 1 and |Tk| it is the multiple of |Tk−1| (to satisfy

Tk−1 ⊂ Tk) closest to the minimizer of the function

f(x) =

(

2k − 1

|Tk−1|

)

1

2 1

2k − 1

(

2k − 1

2k+1

)2k

x+ 2

(

2k+1 − 1

x

)

1

2

,

which is

x = ((2k+1 − 1)(2k − 1))
1

3

(

2k

2k − 1

)

2

3
2k

|Tk−1|
1

3 22
k

.

The result then follows by substituting values of Ck, pk and Tk and a simple estimation.

�

Proof of Theorem 1. We apply Theorem 3 with θ = (C1/(7− α))2 for α = 0.1 and C1 = 4.45.

�

Remark 3. Constant inside the probability on the left hand side in Theorem 1 can be reduced to 6 in

exchange for Cα,θ 6 430. Alternatively, we can apply (13) to reduce constant on the right hand side to

16 with constant on the left equal to 14.6.

Remark 4. Notice that Corollary 2 implies that for big u (say u > EX/ǫ, ǫ > 0 small) the result is

close to the original conjecture. Namely, for α = ǫ we get that

P(X > (1 + 2ǫ)u) 6 P(X > EX + (1 + α)u) 6
4E(Y )+

ǫu
P(Y > 1).

The constant 4E(Y )+/(ǫu) gets smaller with larger u we take. Obviously, the esimate works until u

exceeds
∑n

i=1 |ai(t)|.
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