
The Boosted DC Algorithm
for nonsmooth functions

Francisco J. Aragón Artacho*, Phan T. Vuong†

July 24, 2019

Abstract

The Boosted Difference of Convex functions Algorithm (BDCA) was recently
proposed for minimizing smooth difference of convex (DC) functions. BDCA ac-
celerates the convergence of the classical Difference of Convex functions Algorithm
(DCA) thanks to an additional line search step. The purpose of this paper is twofold.
Firstly, to show that this scheme can be generalized and successfully applied to cer-
tain types of nonsmooth DC functions, namely, those that can be expressed as the
difference of a smooth function and a possibly nonsmooth one. Secondly, to show
that there is complete freedom in the choice of the trial step size for the line search,
which is something that can further improve its performance. We prove that any
limit point of the BDCA iterative sequence is a critical point of the problem under
consideration, and that the corresponding objective value is monotonically decreas-
ing and convergent. The global convergence and convergent rate of the iterations
are obtained under the Kurdyka–Łojasiewicz property. Applications and numeri-
cal experiments for two problems in data science are presented, demonstrating that
BDCA outperforms DCA. Specifically, for the Minimum Sum-of-Squares Clustering
problem, BDCA was on average sixteen times faster than DCA, and for the Multidi-
mensional Scaling problem, BDCA was three times faster than DCA.

Keywords: Difference of convex functions; Boosted Difference of Convex functions
Algorithm; Kurdyka–Łojasiewicz property; Clustering problem; Multidimensional Scal-
ing problem.

AMS subject classifications: 65K05, 65K10, 90C26, 47N10

1 Introduction
In this paper, we are interested in the following DC (difference of convex) optimization
problem

(P) minimize
x∈Rm

g(x)−h(x) =: φ(x), (1)

*Department of Mathematics, University of Alicante, Alicante, Spain; email: francisco.aragon@ua.es
†Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria;

email: vuong.phan@univie.ac.at

1

ar
X

iv
:1

81
2.

06
07

0v
2

 [
m

at
h.

O
C

]
 2

3
Ju

l 2
01

9

where g : Rm→R∪{+∞} and h : Rm→R∪{+∞} are proper convex functions, with the
conventions

(+∞)− (+∞) = +∞,

(+∞)−λ =+∞ and λ − (+∞) =−∞, ∀λ ∈]−∞,+∞[.

For solving (P), one usually applies the well-known DC Algorithm (DCA) [20, 21,
31] (see Section 3). DC programming and the DCA have been investigated and devel-
oped for more than 30 years [19]. The DCA has been successfully applied in many fields,
such as machine learning, financial optimization, supply chain management and telecom-
munication [18, 21, 19]. If both functions g and h are differentiable, then the Boosted
DC Algorithm (BDCA) developed in [2] can be applied to accelerate the convergence of
DCA. Numerical experiments with various biological data sets in [2] showed that BDCA
outperforms DCA, being on average more than four times faster in both computational
time and the number of iterations. This advantage has been also confirmed when apply-
ing BDCA to the Indefinite Kernel Support Vector Machine problem [33].

The purpose of the present paper is to develop a version of BDCA when the function φ

is not differentiable. Unfortunatelly, when g is not differentiable, the direction used by
BDCA may no longer be a descent direction (see Example 3.2). For this reason, we shall
restrict ourselves to the case where g is assumed to be differentiable but h is not. The
motivation for this study comes from many applications of DC programming where the
objective function is the difference of a smooth convex function and a nonsmooth con-
vex function. We mention here the Minimum Sum-of-Squares Clustering problem [12],
the Bilevel Hierarchical Clustering problem [25], the Multicast Network Design problem
[14], and the Multidimensional Scaling problem [17], among others.

The paper is organized as follows. In Section 2, we recall some basic concepts and
properties of convex analysis. As we are working with nonconvex and nonsmooth func-
tions, we need some tools from variational analysis for generalized differentiability.

Our main contributions are in Section 3, where we propose a nonsmooth version of
the BDCA introduced in [2]. More precisely, we prove that the point generated by the
DCA provides a descent direction for the objective function at this point, even at points
where the function h is not differentiable. This is the key property allowing us to employ a
simple line search along the descent direction, which permits to achieve a larger decrease
in the value of the objective function.

In Section 4, we investigate the global convergence and convergence rate of the BDCA.
The convergence analysis relies on the Kurdyka–Łojasiewicz inequality. These concepts
of real algebraic geometry were introduced by Łojasiewicz [22] and Kurdyka [15] and
later developed in the nonsmooth setting by Bolte, Daniilidis, Lewis and Shiota [8], and
Attouch, Bolte, Redont, and Soubeyran [3], among many others [1, 4, 5, 7, 10, 26].

In Section 5, we begin by introducing a self-adaptive strategy for choosing the trial
step size for the line search step. We show that this strategy permits to further improve
the numerical results obtained in [2] for the above-mentioned problem arising in biochem-
istry, being BDCA almost seven times faster than DCA on average. Next, we present an
application of BDCA to two important classes of DC programming problems in engineer-
ing: the Minimum Sum-of-Squares Clustering problem and the Multidimensional Scaling
problem. We present some numerical experiments on large data sets, both with real and
randomly generated data, which clearly show that BDCA outperforms DCA. Namely, on
average, BDCA was sixteen times faster than DCA for the Minimum Sum-of-Squares

2

Clustering and three times faster for the Multidimensional Scaling problems. We con-
clude the paper with some remarks and future research directions in the last section.

2 Preliminaries
Throughout this paper, the inner product of two vectors x,y ∈ Rm is denoted by 〈x,y〉,
while ‖ ·‖ denotes the induced norm, defined by ‖x‖=

√
〈x,x〉. The closed ball of center

x and radius r > 0 is denoted by B(x,r).

2.1 Tools of convex and variational analysis
In this subsection, we recall some basic concepts and results of convex analysis and gen-
eralized differentiation for nonsmooth functions, which will be used in the sequel.

For an extended real-valued function f : Rm→ R∪{+∞}, the domain of f is the set

dom f = {x ∈ Rm : f (x)<+∞} .

The function f is said to be proper if its domain is nonempty. It is said to be convex if

f (λx+(1−λ)y)≤ λ f (x)+(1−λ) f (y) for all x,y ∈ Rm and λ ∈]0,1[,

and f is said to be concave if − f is convex. Further, f is called strongly convex with
modulus ρ > 0 if for all x,y ∈ Rm and λ ∈]0,1[,

f (λx+(1−λ)y)≤ λ f (x)+(1−λ) f (y)− 1
2

ρλ (1−λ)‖x− y‖2,

or, equivalently, when f − ρ

2‖ · ‖
2 is convex. The function f is said to be coercive if

f (x)→+∞ whenever ‖x‖→+∞. The gradient of a function f : Rm→ R∪{+∞} which
is differentiable at some point x in the interior of dom f is denoted by ∇ f (x). We denote
by f ′(x,d) the one-sided directional derivative of f at x ∈ dom f for the direction d ∈Rm,
defined as

f ′(x;d) := lim
t↓0

f (x+ td)− f (x)
t

.

A function F : Rm→ Rm is said to be monotone when

〈F(x)−F(y),x− y〉 ≥ 0 for all x,y ∈ Rm.

Further, F is called strongly monotone with modulus ρ > 0 when

〈F(x)−F(y),x− y〉 ≥ ρ‖x− y‖2 for all x,y ∈ Rm.

The function F is called Lipschitz continuous if there is some constant L≥ 0 such that

‖F(x)−F(y)‖ ≤ L‖x− y‖, for all x,y ∈ Rm,

and F is said to be locally Lipschitz continuous if, for every x in Rm, there exists a neigh-
borhood U of x such that F restricted to U is Lipschitz continuous.

We have the following well-known result (see, e.g., [30, Exercise 12.59]).

3

Fact 2.1. A function f : Rm→R∪{+∞} is strongly convex with modulus ρ if and only if
∂ f is strongly monotone with modulus ρ .

The convex subdifferential ∂ f (x̄) of a function f at x̄ ∈ Rm is defined at any point
x̄ ∈ dom f by

∂ f (x̄) = {u ∈ Rm | f (x)− f (x̄)≥ 〈u,x− x̄〉 ,∀x ∈ Rm} ,

and is empty otherwise.
When dealing with nonconvex and nonsmooth functions, we have to consider sub-

differentials more general than the convex one. One of the most widely used construc-
tions is the Clarke subdifferential, which can be defined in several (equivalent) ways (see,
e.g., [11]). For a given locally Lipschitz continuous function f : Rm → R∪{+∞}, the
Clarke subdifferential of f at x̄ is given by

∂C f (x̄) = co
{

lim
x→x̄,x 6∈Ω f

∇ f (x)
}
,

where co stands for the convex hull and Ω f denotes the set of Lebesgue measure zero (by
Rademacher’s Theorem) where f fails to be differentiable. When f is also convex on a
neighborhood of x̄, then ∂C f (x̄) = ∂ f (x̄) (see [11, Proposition 2.2.7]).

Clarke subgradients are generalizations of the usual gradient of smooth functions.
Indeed, if f is strictly differentiable at x, we have

∂C f (x) = {∇ f (x)} ,

see [11, Proposition 2.2.4]. However, it should be noted that if f is only Fréchet differen-
tiable at x, then ∂C f (x) can contain points other than ∇ f (x) (see, e.g. [11, Example 2.2.3]).

The next basic formulas facilitate the calculation of the Clarke subdifferential.

Fact 2.2 (Basic calculus). The following assertions hold:

(i) For any scalar s, one has
∂C(s f)(x) = s∂C f (x).

(ii) ∂C(f + g)(x) ⊂ ∂C f (x)+ ∂Cg(x), and equality holds if either f or g is strictly dif-
ferentiable.

Proof. See [11, Propositions 2.3.1 and 2.3.3]. For the last assertion, see [11, Corollary 1,
p. 39].

2.2 Assumptions
Throughout this paper, the following two assumptions are made.

Assumption 1 Both functions g and h are strongly convex with modulus ρ > 0.

4

Assumption 2 The function h is subdifferentiable at every point in domh; i.e., ∂h(x) 6= /0
for all x ∈ domh. The function g is continuously differentiable on an open set containing
domh and

inf
x∈Rm

φ(x)>−∞. (2)

Under these assumptions, the next necessary optimality condition holds.

Fact 2.3 (First-order necessary optimality condition). If x∗ ∈ domφ is an optimal solution
of problem (P) in (1), then

∂h(x∗) = {∇g(x∗)} . (3)

Proof. See [32, Theorem 3’].

Any point satisfying condition (3) is called a stationary point of (P). One says that x̄
is a critical point of (P) if

∇g(x̄) ∈ ∂h(x̄).

It is obvious that every stationary point x∗ is a critical point, but the converse is not true
in general.

Example 2.1. Consider the DC function φ : Rm→ R defined for x ∈ Rm by

φ(x) := ‖x‖2 +
m

∑
i=1

xi−
m

∑
i=1
|xi|.

It is not difficult to check that φ has 2m critical points, namely, any x ∈ {−1,0}m, and
only one stationary point x∗ := (−1,−1, . . . ,−1), which is the global minimum of φ . ♦

3 DCA and BDCA
The key idea of the DCA to solve problem (P) in (1) is to approximate the concave part
−h of the objective function φ by its affine majorization, and then minimize the resulting
convex function. The algorithm proceeds as follows.

DCA (DC Algorithm) [21]

1. Let x0 be any initial point and set k := 0.

2. Select uk ∈ ∂h(xk) and solve the strongly convex optimization problem

(Pk) minimize
x∈Rm

g(x)−〈uk,x〉

to obtain its unique solution yk.

3. If yk = xk then STOP and RETURN xk, otherwise set xk+1 := yk, set k := k+ 1,
and go to Step 2.

5

Let us introduce the algorithm we propose for solving problem (P), which we call
BDCA (Boosted DC Algorithm). The algorithm is a nonsmooth version of the one pro-
posed in [2], except for a small but relevant modification in Step 4, where now we give
total freedom to the initial value for the backtracking line search used for finding an ap-
propriate value of the step size λk. In Section 5, we demonstrate that this seemingly minor
change permits smarter choices of the initial value than simply using a constant value λ .
We have also replaced λk in the right-hand side of the line search inequality by λ 2

k , which
allows us to remove the inconvenient assumption ρ > α (see [2, Remark 3] for more
details).

BDCA (Boosted DC Algorithm)

1. Fix α > 0 and 0 < β < 1. Let x0 be any initial point and set k := 0.

2. Select uk ∈ ∂h(xk) and solve the strongly convex optimization problem

(Pk) minimize
x∈Rm

g(x)−〈uk,x〉

to obtain its unique solution yk.

3. Set dk := yk− xk. If dk = 0, STOP and RETURN xk. Otherwise, go to Step 4.

4. Choose any λ k ≥ 0. Set λk := λ k.
WHILE φ(yk +λkdk)> φ(yk)−αλ 2

k ‖dk‖2 DO λk := βλk.

5. Set xk+1 := yk +λkdk, set k := k+1, and go to Step 2.

Observe that if one sets λ k = 0, the iterations of the BDCA and the DCA coincide.
Hence, our convergence results for the BDCA apply in particular to the DCA. In the
following proposition we show that dk := yk− xk is a descent direction for φ at yk. Since
the value of φ is always reduced at yk with respect to that at xk, one can achieve a larger
decrease by moving along the direction dk. This simple fact, which is the key idea of the
BDCA, improves the performance of the DCA in many applications (see Section 5).

Proposition 3.1. For all k ∈ N, the following holds:

(i) φ(yk)≤ φ(xk)−ρ‖dk‖2;

(ii) φ ′(yk;dk)≤−ρ‖dk‖2;

(iii) there is some δk > 0 such that

φ (yk +λdk)≤ φ(yk)−αλ
2‖dk‖2, for all λ ∈ [0,δk],

so the backtracking Step 4 of BDCA terminates finitely.

Proof. The proof of (i) is similar to the one of [2, Proposition 3] and is therefore omitted.
To prove (ii), pick any v∈ ∂h(yk). Note that the one-sided directional derivative φ ′(yk;dk)

6

is given by

φ
′(yk;dk) = lim

t↓0

φ(yk + tdk)−φ(yk)

t

= lim
t↓0

g(yk + tdk)−g(yk)

t
− lim

t↓0

h(yk + tdk)−h(yk)

t
≤ 〈∇g(yk),dk〉−〈v,dk〉 , (4)

by convexity of h. Since yk is the unique solution of the strongly convex problem (Pk),
we have

∇g(yk) = uk ∈ ∂h(xk).

The function h is strongly convex with constant ρ . This implies, by Fact 2.1, that ∂h is
strongly monotone with constant ρ . Therefore, since v ∈ ∂h(yk), it holds

〈uk− v,xk− yk〉 ≥ ρ‖xk− yk‖2.

Hence
〈∇g(yk)− v,dk〉= 〈uk− v,yk− xk〉 ≤ −ρ‖dk‖2,

and the proof follows by combining the last inequality with (4).
Finally, to prove (iii), if dk = 0 there is nothing to prove. Otherwise, we have

lim
λ↓0

φ(yk +λdk)−φ(yk)

λ
= φ

′(yk;dk)≤−ρ‖dk‖2 <−ρ

2
‖dk‖2 < 0.

Hence, there is some λ̃k > 0 such that

φ(yk +λdk)−φ(yk)

λ
≤−ρ

2
‖dk‖2, ∀λ ∈

]
0, λ̃k

]
;

that is

φ(yk +λdk)≤ φ(yk)−
ρλ

2
‖dk‖2, ∀λ ∈

]
0, λ̃k

]
.

Setting δk := min
{

λ̃k,
ρ

2α

}
, we obtain

φ(yk +λdk)≤ φ(yk)−αλ
2‖dk‖2, ∀λ ∈]0,δk],

which completes the proof.

Remark 3.1. (i) When the function h is differentiable, BDCA uses the same direction as
the Mine–Fukushima algorithm [23], since yk+λdk = xk+(1+λ)dk. The algorithm they
propose is computationally undesirable in the sense that it uses an exact line search. This
was later fixed in the Fukushima–Mine algorithm [13] by considering an Armijo type rule
for choosing the step size

xk+1 = xk +β
ldk = β

lyk +
(

1−β
l
)

xk

for some 0 < β < 1 and some nonnegative integer l. Since 0 < β < 1, the step size
λ = β l − 1 chosen by the Fukushima–Mine algorithm [13] is always less than or equal
to zero, while in BDCA, only step sizes λ ∈

]
0,λ k

]
are explored. Also, the Armijo rule

7

differs, as BDCA searches for some λk such that φ(yk+λkdk)≤ φ(yk)−αλ 2
k ‖dk‖2, while

the Fukushima–Mine algorithm requires φ(xk +β ldk)≤ φ(xk)−αβ l‖dk‖2.
(ii) We know from Proposition 3.1 that

φ (yk +λdk)≤ φ(yk)−αλ
2‖dk‖2 ≤ φ(xk)−

(
ρ +αλ

2)‖dk‖2;

thus, BDCA results in a larger decrease in the value of φ at each iteration than DCA. As
a result, we can expect BDCA to converge faster than DCA.

Example 3.1 (Example 2.1 revisited). Consider again the function defined in Example 2.1
for m = 2. The function φ can be expressed as a DC function of type (1) with strongly
convex terms by taking, for instance,

g(x,y) =
3
2
(
x2 + y2)+ x+ y and h(x,y) = |x|+ |y|+ 1

2
(
x2 + y2) .

In Fig. 1(a) we show the iterations generated by DCA and BDCA from the same starting
point (x0,y0) = (1,0), with α = 0.1, β = 0.5 and λ k = 1 for all k. Not only BDCA
obtains a larger decrease than DCA in the value of φ at each iteration, but also the line
search helps the sequence generated escape from the stationary point (0,−1), which is
not even a local minimum. As the function h is not differentiable at (x0,y0), there is
freedom in the choice of the point in ∂h(x0,y0) = {2}× [−1,1] (we took the point (2,0)).
In Fig. 1(b) we plot the value of the function in the line search procedure of BDCA at the
first iteration. The value λ = 0 corresponds to the next iteration chosen by DCA, while
BDCA choses λ > 0, which permits to achieve an additional decrease in the value of φ .

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

DCA
BDCA

(a) Iterations generated by DCA and BDCA

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-2

-1.5

-1

-0.5

0

0.5

1

(b) Line search of BDCA at the starting point

Figure 1: Illustration of Example 3.1

(−1,−1) (−1,0) (0,−1) (0,0)
DCA 249,763 249,841 250,204 250,192

BDCA 996,104 1,922 1,974 0

Table 1: For one million random starting points in [−1.5,1.5]2, we count the sequences
generated by DCA and BDCA converging to each of the four stationary points

To demonstrate that, indeed, the line search procedure of BDCA helps the iterations
escape from stationary points that are not critical points, we show in Table 1 the results

8

of running both algorithms for one million random starting points. For only 25% of the
starting points, DCA finds the optimal solution, while BDCA finds it in 99.6% of the
instances. ♦

The next example complements the one given in [2, Remark 1]. It shows that the
direction used by BDCA can be an ascent direction at yk even when this point is not
the global minimum of φ . Thus, Proposition 3.1 does not remain valid when g is not
differentiable, and the scheme cannot be further extended.

Example 3.2 (Failure of BDCA when g is not differentiable). Consider now the following
modification of the previous example

g(x,y) =−5
2

x+ x2 + y2 + |x|+ |y| and h(x,y) =
1
2
(
x2 + y2) ,

so that now h is differentiable but g is not. Let (x0,y0) =
(1

2 ,1
)
. Then, the next point

generated by DCA is (x1,y1) = (1,0) and d0 := (x1,y1)− (x0,y0) =
(1

2 ,−1
)

is not a
descent direction for φ at (x1,y1). Indeed, one can easily check that

φ
′((x1,y1);d0) = lim

t↓0

φ
(
(1,0)+ t

(1
2 ,−1

))
−φ(1,0)

t
=

3
4
,

see Fig. 2. Actually, it holds that

φ ((x1,y1)+ td0)−φ(x1,y1) =
5t2

8
+

3t
4
,

so φ ((x1,y1)+ td0)> φ(x1,y1) for all t > 0.

-0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

DCA

(a) Iterations generated by DCA and search direc-
tion of BDCA at (1,0)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

(b) Line search of BDCA at the point (1,0)

Figure 2: Illustration of Example 3.2

In contrast with the example in [2, Remark 1], observe that here (x1,y1) is not the
global minimum of φ . In fact, the iterates generated by DCA converge to the global
minimum of φ , as shown in Fig. 2(a). ♦

As proved next, the failure of BDCA shown in Example 3.2 can only occur for n≥ 2.

9

Proposition 3.2. Let φ = g− h, where g : R→ R and h : R→ R are convex and h is
differentiable. If h′(x) ∈ ∂g(y) and 0 6∈ ∂Cφ(y), then φ ′(y;y− x)< 0.

Proof. First, observe that

φ
′(y;y− x) = (y− x) sup

z∈∂g(y)

{
z−h′(y)

}
.

Since h is convex, one has (
h′(x)−h′(y)

)
(x− y)≥ 0.

Suppose that x−y > 0. Then, h′(x)≥ h′(y). Since h′(y) 6∈ ∂g(y) and ∂g(y) is convex, we
deduce that h′(y)< z for all z∈ ∂g(y), which implies φ ′(y;y−x)< 0. A similar argument
shows that φ ′(y;y− x)< 0 when x− y < 0. This concludes the proof.

We are now in a position to state our first convergence result of the iterative sequence
generated by BDCA, whose statement coincides with [2, Proposition 5]. The first part of
its proof requires some small adjustments due to the nonsmoothness of h.

Theorem 3.1. For any x0 ∈ Rm, either BDCA returns a critical point of (P) or it gener-
ates an infinite sequence such that the following holds.

(i) φ(xk) is monotonically decreasing and convergent to some φ∗.

(ii) Any limit point of {xk} is a critical point of (P). If in addition, φ is coercive then
there exits a subsequence of {xk} which converges to a critical point of (P).

(iii) ∑
+∞

k=0 ‖dk‖2 < +∞. Further, if there is some λ such that λk ≤ λ for all k, then
∑
+∞

k=0 ‖xk+1− xk‖2 <+∞.

Proof. If BDCA stops at Step 3 and returns xk, then xk = yk. Because yk is the unique
solution of the strongly convex problem (Pk), we have

∇g(xk) = uk ∈ ∂h(xk),

i.e., xk is a critical point of (P). Otherwise, by Proposition 3.1 and Step 4 of BDCA, we
have

φ(xk+1)≤ φ(yk)−αλ
2
k ‖dk‖2 ≤ φ(xk)−

(
αλ

2
k +ρ

)
‖dk‖2. (5)

Therefore, the sequence {φ(xk)} converges to some φ∗, since is monotonically decreasing
and bounded from below by (2). This proves (i). As a consequence, we obtain

φ(xk+1)−φ(xk)→ 0,

which implies ‖dk‖2 = ‖yk− xk‖2→ 0, by (5).
If x̄ is a limit point of {xk}, there exists a subsequence {xki} converging to x̄. Then, as

‖yki− xki‖→ 0, we have yki → x̄. Since ∇g is continuous, we get

uki = ∇g(yki)→ ∇g(x̄).

Hence, we deduce ∇g(x̄) ∈ ∂h(x̄), thanks to the closedness of the graph of ∂h (see [29,
Theorem 24.4]). When φ is coercive, by (i), the sequence {xk} must be bounded, which
implies the rest of the claim in (ii).

The proof of (iii) is similar to that of [2, Proposition 5(iii)] and is thus omitted.

10

Remark 3.2. In our approach, both functions g and h are assumed to be strongly convex
with constant ρ > 0. It is well-known that the performance of DCA heavily depends on
the decomposition of the objective function [21, 28]. There is an infinite number of ways
of doing this and it is challenging to find a “good” one [28]. To get rid of this assumption,
one could add a proximal term ρk

2 ‖x− xk‖2 to the objective of the convex optimization
subproblem (Pk) in Step 2, as done in the proximal point algorithm (see [13]). This tech-
nique is employed in the proximal DCA, see [1, 5, 19, 24]. With some minor adjustments
in the proofs, it is easy to show that the resulting algorithm satisfies both Proposition 3.1
and Theorem 3.1.

4 Convergence under the Kurdyka–Łojasiewicz property
In this section, we prove the convergence of the sequence generated by BDCA as long
as the sequence has a cluster point at which φ satisfies the strong Kurdyka–Łojasiewicz
inequality [22, 15, 8] and ∇g is locally Lipschitz. As we shall see, under some additional
assumptions, linear convergence can be also guaranteed.

Definition 4.1. Let f : Rm → R be a locally Lipschitz function. We say that f satis-
fies the strong Kurdyka–Łojasiewicz inequality at x∗ ∈ Rm if there exist η ∈]0,+∞[, a
neighborhood U of x∗, and a concave function ϕ : [0,η]→ [0,+∞[such that:

(i) ϕ(0) = 0;

(ii) ϕ is of class C 1 on]0,η [;

(iii) ϕ ′ > 0 on]0,η [;

(iv) for all x ∈U with f (x∗)< f (x)< f (x∗)+η we have

ϕ
′(f (x)− f (x∗))dist(0,∂C f (x))≥ 1.

For strictly differentiable functions the latter reduces to the standard definition of the
KŁ-inequality. Bolte et al. [8, Theorem 14] show that definable functions satisfy the
strong KŁ-inequality at each point in dom∂C f , which covers a large variety of practical
cases.

Remark 4.1. Although the concavity of the function ϕ does not explicitly appear in the
statement of [8, Theorem 14], the function ϕ can be chosen to be concave (since ϕ is
o-minimal by construction, its second derivative exists and maintains the sign on an inter-
val]0,δ [, and this sign is necessarily negative). If the function f is not o-minimal but is
convex and satisfies the Kurdyka–Łojasiewicz inequality with a function ϕ which is not
concave, then f also satisfies the Kurdyka–Łojasiewicz inequality with another function
Ψ which is concave (see [9, Theorem 29]).

Theorem 4.1. For any x0 ∈ Rm, consider the sequence {xk} generated by the BDCA.
Suppose that {xk} has a cluster point x∗, that ∇g is locally Lipschitz continuous around x∗

and that φ satisfies the strong Kurdyka–Łojasiewicz inequality at x∗. Then {xk} converges
to x∗, which is a critical point of (P).

11

Proof. By Theorem 3.1, we have limk→+∞ φ(xk) = φ∗. Let x∗ be a cluster point of the
sequence {xk}. Then, there exists a subsequence {xki} of {xk} such that limi→+∞ xki = x∗.
Thanks to the continuity of φ , we deduce

φ(x∗) = lim
i→+∞

φ(xki) = lim
k→∞

φ(xk) = φ
∗.

Hence, the function φ is finite and has the same value φ∗ at every cluster point of {xk}.
If φ(xk) = φ∗ for some k > 1, then φ(xk) = φ(xk+1), because the sequence {φ(xk)} is

decreasing. From (5), we deduce that dk = 0, so BDCA terminates after a finite number
of steps. Thus, from now on, we assume that φ(xk)> φ∗ for all k.

Since ∇g is locally Lipschitz around x∗, there exist some constants L ≥ 0 and δ1 > 0
such that

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖, ∀x,y ∈ B(x∗,δ1). (6)

Further, since φ satisfies the strong Kurdyka–Łojasiewicz inequality at x∗, there exist
η ∈]0,+∞[, a neighborhood U of x∗, and a continuous and concave function ϕ : [0,η]→
[0,+∞[such that for every x ∈U with φ(x∗)< φ(x)< φ(x∗)+η , we have

ϕ
′(φ(x)−φ(x∗))dist(0,∂Cφ(x))≥ 1. (7)

Take δ2 small enough that B(x∗,δ2)⊂U and set δ := 1
2 min{δ1,δ2}. Let

K := max
λ≥0

L(1+λ)

αλ 2 +ρ
, (8)

which is attained at λ̂ =−1+
√

1+ρ/α . Since limi→+∞ xki = x∗, limi→+∞ φ(xki) = φ∗,
φ(xk)> φ∗ for all k, and ϕ is continuous, we can find an index N large enough such that

xN ∈ B(x∗,δ), φ
∗ < φ(xN)< φ

∗+η (9)

and
‖xN− x∗‖+Kϕ (φ(xN)−φ

∗)< δ . (10)

By Theorem 3.1(iii), we know that dk = yk− xk→ 0. Then, taking a larger N if needed,
we can ensure that

‖yk− xk‖ ≤ δ , ∀k ≥ N.

For all k ≥ N such that xk ∈ B(x∗,δ), we have

‖yk− x∗‖ ≤ ‖yk− xk‖+‖xk− x∗‖ ≤ 2δ ≤ δ1,

then, using (6), we obtain

‖∇g(yk)−∇g(xk)‖ ≤ L‖yk− xk‖=
L

1+λk
‖xk+1− xk‖.

On the other hand, we have from the optimality condition of (Pk) that

∇g(yk) = uk ∈ ∂h(xk),

which implies, by Fact 2.2,

∇g(yk)−∇g(xk) ∈ ∂h(xk)−∇g(xk) = ∂C (−φ(xk)) =−∂Cφ(xk).

12

Therefore,

dist(0,∂Cφ(xk))≤ ‖∇g(yk)−∇g(xk)‖ ≤
L

1+λk
‖xk+1− xk‖. (11)

For all k ≥ N such that xk ∈ B(x∗,δ) and φ∗ < φ(xk) < φ∗+η , it follows from (11),
the concavity of ϕ , (7) and (5) that

L
1+λk

‖xk− xk+1‖(ϕ (φ(xk)−φ
∗)−ϕ (φ(xk+1)−φ

∗))

≥ dist(0,∂Cφ(xk))(ϕ (φ(xk)−φ
∗)−ϕ (φ(xk+1)−φ

∗))

≥ dist(0,∂Cφ(xk))ϕ
′ (φ(xk)−φ

∗)(φ(xk)−φ(xk+1))

≥ φ(xk)−φ(xk+1)

≥
(
αλ

2
k +ρ

)
‖yk− xk‖2 =

αλ 2
k +ρ

(1+λk)2‖xk− xk+1‖2,

which implies, by (8), that

‖xk− xk+1‖ ≤
L(1+λk)

αλ 2
k +ρ

(ϕ (φ(xk)−φ
∗)−ϕ (φ(xk+1)−φ

∗))

≤ K (ϕ (φ(xk)−φ
∗)−ϕ (φ(xk+1)−φ

∗)) . (12)

We prove by induction that xk ∈ B(x∗,δ) for all k ≥ N. Indeed, from (9) the claim
holds for k = N. We suppose that it also holds for k = N,N+1, . . . ,N+ p−1, with p≥ 1.
Since {φ(xk)} is a decreasing sequence converging to φ∗, our choice of N implies that
φ∗ < φ(xk) < φ∗+η for all k ≥ N. Then (12) is valid for k = N,N + 1, . . . ,N + p− 1.
Hence,

∥∥xN+p− x∗
∥∥≤ ‖xN− x∗‖+

p

∑
i=1
‖xN+i− xN+i−1‖

≤ ‖xN− x∗‖+K
p

∑
i=1

[ϕ (φ(xN+i−1)−φ
∗)−ϕ (φ(xN+i)−φ

∗)]

≤ ‖xN− x∗‖+Kϕ (φ(xN)−φ
∗)< δ ,

where the last inequality follows from (10).
Thus, adding (12) from k = N to P, we get

P

∑
k=N
‖xk+1− xk‖ ≤ Kϕ (φ(xN)−φ

∗) ,

and taking the limit as P→+∞, we conclude that

+∞

∑
k=1
‖xk+1− xk‖<+∞. (13)

Therefore, {xk} is a Cauchy sequence, and since x∗ is a cluster point of {xk}, the whole
sequence converges to x∗. By Theorem 3.1, x∗ must be a critical point of (P).

13

Remark 4.2. (i) Observe that Theorem 4.1 also holds under the assumption that −φ sat-
isfies the Kurdyka–Łojasiewicz inequality (which is the same estimate but for the limiting
subdifferential).

(ii) As mentioned before, if one sets λ k = 0 for all k, then BDCA becomes DCA. In
this case, Theorem 4.1 is akin to [16, Theorem 3.4], where the function φ is assumed to
be subanalytic. We also note that in this setting only one of the functions g or h needs
to be strongly convex, since one can easily check that [2, Proposition 3] still holds, and
Proposition 3.1(ii) is not needed anymore.

Next, we establish the convergence rate on the iterative sequence {xk}when φ satisfies
the Kurdyka–Łojasiewicz inequality with ϕ(t) = Mt1−θ for some M > 0 and 0≤ θ < 1.
Observe that this property holds for all globally subanalytic functions [8, Corollary 16],
which covers many classes of functions in applications. We will employ the following
useful lemma, whose proof appears within that of [4, Theorem 2] for specific values of α

and β .

Lemma 4.1. [2, Lemma 1] Let {sk} be a nonnegative sequence in R and let α,β be some
positive constants. Suppose that sk→ 0 and that the sequence satisfies

sα
k ≤ β (sk− sk+1), for all k sufficiently large.

Then,

(i) if α = 0, the sequence {sk} converges to 0 in a finite number of steps;

(ii) if α ∈]0,1], the sequence {sk} converges linearly to 0 with rate 1− 1
β

;

(iii) if α > 1, there exists η > 0 such that

sk ≤ ηk−
1

α−1 , for all k sufficiently large.

Theorem 4.2. Suppose that the sequence {xk} generated by the BDCA has the limit
point x∗. Assume that ∇g is locally Lipschitz continuous around x∗ and φ satisfies the
strong Kurdyka–Łojasiewicz inequality at x∗ with ϕ(t) = Mt1−θ for some M > 0 and
0≤ θ < 1. Then, the following convergence rates are guaranteed:

(i) if θ = 0, then the sequence {xk} converges in a finite number of steps to x∗;

(ii) if θ ∈
]
0, 1

2

]
, then the sequence {xk} converges linearly to x∗;

(iii) if θ ∈
]1

2 ,1
[
, then there exist a positive constant η such that

‖xk− x∗‖ ≤ ηk−
1−θ

2θ−1

for all large k.

Proof. By (13), we know that si := ∑
+∞

k=i ‖xk+1− xk‖ is finite. Since ‖xi− x∗‖ ≤ si by the
triangle inequality, the rate of convergence of xi to x∗ can be deduced from the conver-
gence rate of si to 0.

Adding (12) from i to P with N ≤ i≤ P, we have

P

∑
k=i
‖xk+1− xk‖ ≤ Kϕ (φ(xi)−φ

∗) = KM(φ(xi)−φ
∗)1−θ ,

14

which implies that

si = lim
P→+∞

P

∑
k=i
‖xk+1− xk‖ ≤ KM(φ(xi)−φ

∗)1−θ . (14)

Since φ satisfies the strong Kurdyka–Łojasiewicz inequality at x∗ with ϕ(t) = Mt1−θ , we
have

M(1−θ)(φ(xi)−φ
∗)−θ dist(0,∂Cφ(xi))≥ 1.

This and (11) imply

(φ(xi)−φ
∗)θ ≤M(1−θ)dist(0,∂Cφ(xi))

≤ ML(1−θ)

1+λi
‖xi+1− xi‖

≤ML(1−θ)‖xi+1− xi‖. (15)

Combining (14) and (15), we obtain

s
θ

1−θ

i ≤ (KM)
θ

1−θ (φ(xi)−φ
∗)θ ≤ML(1−θ)(KM)

θ

1−θ (si− si+1).

Applying Lemma 4.1, with α := θ

1−θ
and β := ML(1−θ)(KM)

θ

1−θ , we deduce the con-
vergence rates in (i)-(iii).

5 Applications and Numerical Experiments
The purpose of this section is to numerically compare the performance of DCA and
BDCA. All our codes were written in Python 2.7 and the tests were run on an Intel Core
i7-4770 CPU 3.40GHz with 32GB RAM, under Windows 10 (64-bit).

In all the experiments in this section we use the following strategy for choosing the
trial step size in Step 4 of BDCA, which makes use of the previous step sizes. We empha-
size that the convergence results in the previous sections apply to any possible choice of
the trial step sizes λ k. This is in contrast with [2], where λ k had to be chosen constantly
equal to some fixed parameter λ > 0.

Self-adaptive trial step size

Fix γ > 1. Set λ 0 = 0. Choose some λ 1 > 0 and obtain λ1 by Step 4 of BDCA.
For any k ≥ 2:

1. IF λk−2 = λ k−2 AND λk−1 = λ k−1 THEN set λ k := γλk−1; ELSE set λ k := λk−1.

2. Obtain λk from λ k by Step 4 of BDCA.

The latter self-adaptive strategy uses the step size that was chosen in the previous
iteration as a new trial step size for the next iteration, except in the case where two con-
secutive trial step sizes were successful. In that case, the trial step size is increased by
multiplying the previously accepted step size by γ > 1. Thus, we used a somehow con-
servative strategy in our experiments, where two successful iterations are needed before

15

increasing the trial step size. Other strategies could be easily considered. Since we set
λ 0 = 0, the first iteration is computed with DCA. In all our experiments we took γ := 2.

The self-adaptive strategy for the trial step size has two key advantages with respect
to the constant strategy λ k = λ > 0, which was used in [2]. The most important one is
that we observed in our numerical tests almost a two times speed up in the running time
of BDCA. The second advantage is that it is more adaptive and less sensitive to a wrong
choice of the parameters. Indeed, in the constant strategy, a very large value of λ could
make BDCA slow, due to the internal iterations needed in the backtracking step. On the
other hand, a small value of λ would provide a trial step size that will be readily accepted,
but will result in a small advantage of BDCA against DCA.

In the next two subsections, we compare the performance of DCA and BDCA in two
important nonsmooth problems in data analysis: the Minimum Sum-of-Squares Cluster-
ing problem and the Multidimensional Scaling problem. Before doing that, let us begin by
numerically demonstrating that the self-adaptive strategy permits to further improve the
results of BDCA in the smooth problem arising from the study of systems of biochemical
reactions tested in [2], where BDCA was shown to be more than four times faster than
DCA. To this aim, we used the same setting than in [2, Section 5]. For each of five ran-
domly selected starting points, we obtained the 1000th iterate of BDCA with constant trial
step size strategy λ = 50. Next, both BDCA with self-adaptive strategy (with β = 0.1)
and DCA were run from the same starting point until they reached the same objective
value as the one obtained by BDCA with constant strategy. Instead of presenting a ta-
ble with the results, we show in Fig. 3 the ratios of the running times between the three
algorithms, which permits to readily compare the three algorithms. On average, BDCA
with self-adaptive strategy was 6.7 times faster than DCA, and was 1.7 times faster than
BDCA with constant strategy, which in turns was 4.2 times faster than DCA.

Ecoli core

L lactis M
G1363

Sc thermophilis
T Maritim

a
iAF692

iAI549
iAN840m

iCB925
iIT341

iJR904
iMB745

iSB619
iTH366

iTZ479 v2
0

1

2

3

4

5

6

7

8

9

10
time DCA

time adaptive BDCA
time DCA

time constant BDCA
time constant BDCA
time adaptive BDCA

Figure 3: Ratios of the running times of DCA, BDCA with constant trial step size and
BDCA with self-adaptive trial step size for finding a steady state of various biochemical
reaction network models [2]. For each of the models, the algorithms were run using the
same five random starting points. The average is represented with a dashed line.

16

In the next two subsections we present various experiments with problems in data
analysis. We consider two types of data: real and random. As real data, we use the
geographic coordinates of the Spanish cities with more than 500 habitants1. The advan-
tage of this relatively large data in R2 is that it permits to visually illustrate some of the
experiments.

5.1 The Minimum Sum-of-Squares Clustering Problem
Clustering is an unsupervised technique for data analysis whose objective is to group a
collection of objects into clusters based on similarity. This is among the most popular
techniques in data mining and can be mathematically described as follows. Let A =
{a1, . . . ,an} be a finite set of points in Rm, which represent the data points to be grouped.
The goal is to partition A into k disjoint subsets A1, . . . ,Ak, called clusters, such that a
clustering criterion is optimized.

There are many different criteria for the clustering problem. One of the most used
is the Minimum Sum-of-Squares Clustering criterion, where one tries to minimize the
Euclidean distance of each data point to the centroid of its cluster [6, 12, 27]. Thus,
each cluster A j is identified by its center (or centroid) x j ∈ Rm, j = 1, . . . ,k. Letting X :=(
x1, . . . ,xk) ∈ Rm×k, this gives rise to the following optimization problem:

minimize ϕ(X ,ω) :=
1
n

n

∑
i=1

k

∑
j=1

ωi j‖x j−ai‖2,

where the binary variables ωi j express the assignment of the point ai to the cluster j;
i.e., ωi j = 1 if ai ∈ A j, and ωi j = 0 otherwise. This problem can be equivalently refor-
mulated as the following nonsmooth nonconvex unconstrained optimization problem (see
[12, 27]):

minimize
X∈Rm×k

φ(X) :=
1
n

n

∑
i=1

min
j=1,...,k

‖x j−ai‖2. (16)

As explained in [12, 27], we can write this problem as a DC problem of type (1) by taking

g(X) :=
1
n

n

∑
i=1

k

∑
j=1

∥∥x j−ai∥∥2
+

ρ

2
‖X‖2,

h(X) :=
1
n

n

∑
i=1

max
j=1,...,k

k

∑
t=1,t 6= j

∥∥xt−ai∥∥2
+

ρ

2
‖X‖2,

for some ρ ≥ 0, where ‖X‖ is the Frobenius norm of X . Observe that both functions g and
h are convex, and strongly convex if ρ > 0. Moreover, g is differentiable, and the subdif-
ferential of h can be explicitly computed (see [27, page 346] or [12, Equation (3.21)]).

Experiment 1 (Clustering the Spanish cities in the peninsula). Consider the problem of
finding a partition into five clusters of the 4001 Spanish cities in the peninsula with more
than 500 residents. For illustrating the difference between the iterations of DCA and
BDCA, we present in Fig. 4 the result of applying 10 iterations of DCA and BDCA to the

1The data can be retrieved from the Spanish National Center of Geographic Information at
http://centrodedescargas.cnig.es.

17

http://centrodedescargas.cnig.es

clustering problem (16) from a random starting point (composed by a quintet of points in
R2), with the parameters ρ = 1

10 , α = 0.1, β = 0.5 and λ 1 = 5. Both algorithms converge
to the same critical point, but it is apparent that the line search of BDCA makes it faster.

8 6 4 2 0 2 4

36

38

40

42

44

ai, i = 1, , 4001
Critical point

DCA
BDCA

Figure 4: Seven iterations of DCA and BDCA are computed from the same starting point
for grouping the Spanish cities in the peninsula into five clusters.

Let us demonstrate that the behavior shown in Fig. 4 is not atypical. To do so, let
us consider the same problem of the Spanish cities for a different number of clusters
k ∈ {5,10,15,20,25,50,75,100}. For each of these values, we run BDCA for 100 ran-
dom starting points with coordinates in]−9.26,3.27[×]36.02,43.74[(the range of the
geographical coordinates of the cities). The algorithm was stopped when the relative er-
ror of the objective function φ was smaller than 10−3. Then, DCA was run from the
same starting point until the same value of the objective function was reached, which did
not happen in 31 instances because DCA failed (by which we mean that it converged to a
worse critical point). In Fig. 5 we have plotted the ratios between the running time and the
number of iterations, except for those instances where DCA failed. On average, BDCA
was 16 times faster than DCA, and DCA needed 18 times more iterations to reach the
same objective value as BDCA.

Experiment 2 (Clustering random points in an m-dimensional box). In this numeri-
cal experiment, we generated n random points in Rm whose coordinates were drawn
from a normal distribution having a mean of 0 and a standard deviation of 10, with
n ∈ {500,1000,5000,10,000} and m ∈ {2,5,10,20}. For each pair of values of n and m,
ten random starting points were chosen and BDCA was run to solve the k-clustering
problem until the relative error of the objective function was smaller than 10−3, with
k ∈ {5,10,15,20,25,50,75,100}. As in Experiment 1, we run DCA from the same start-
ing point than BDCA until the same value of the objective function was reached. The
DCA failed to do so in 123 instances. The ratios between the respective running times are
shown in Fig. 6. On average, BDCA was 13.7 times faster than DCA.

18

5 10 15 20 25 50 75 100
clusters

1.5
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0

tim
e

ra
tio

5 10 15 20 25 50 75 100
clusters

1.5
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0

ite
ra

tio
ns

 ra
tio

Figure 5: Comparison between DCA and BDCA for solving the clustering problem of the
cities in the Spanish peninsula described in Experiment 1. We represent the ratios of run-
ning time (left) and number of iterations (right) between DCA and BDCA for 100 random
instances for different values of the number of clusters k ∈ {5,10,15,20,25,50,75,100}.
The dashed line shows the overall average ratio, and the red dots represent the average
ratio for each value of k.

5.2 The Multidimensional Scaling Problem
Given only a table of distances between some objects, known as the dissimilarity ma-
trix, Multidimensional Scaling (MDS) is a technique that permits to represent the data
in a small number of dimensions (usually two or three). If the objects are defined by n
points x1,x2, . . . ,xn in Rq, the entries δi j of the dissimilarity matrix can be defined by the
Euclidean distance between these points:

δi j = ‖xi− x j‖ := di j(X),

where we denote by X the n×q matrix whose rows are x1,x2, . . . ,xn.
Given a target dimension p≤ q, the metric MDS problem consists in finding n points

in Rp, which are represented by an n× p matrix X∗, such that the quantity

Stress(X∗) := ∑
i< j

wi j
(
di j(X∗)−δi j

)2

is smallest, where wi j are nonnegative weights. As shown in [17, p. 236], this problem
can be equivalently reformulated as a DC problem of type (1) by setting

g(X) :=
1
2 ∑

i< j
wi jd2

i j(X)+
ρ

2
‖X‖2,

h(X) := ∑
i< j

wi jδi jdi j(X)+
ρ

2
‖X‖2,

for some ρ ≥ 0. Moreover, it is clear that g is differentiable while h is not. However,
the subgradient of h can be explicitly computed, see [17, Section 4.2]. Both functions are
strongly convex for any ρ > 0.

For this problem we replicated some of the numerical experiments in [17], where the
authors demonstrate the good performance of DCA for solving MDS problems. Our main
aim here is showing that, even for those problems where DCA works well in practice,
BDCA is able to outperform it.

19

m = 2 m = 5 m = 10 m = 20

5 10 15 20 25 50 75 100
clusters

2
5

10

15

20

25

30

35

40

45
tim

e
ra

tio

(a) n = 500

5 10 15 20 25 50 75 100
clusters

5
10
15
20
25
30
35
40
45
50

tim
e

ra
tio

(b) n = 1000

5 10 15 20 25 50 75 100
clusters

3
5
7
9

11
13
15
17
19
21
23

tim
e

ra
tio

(c) n = 5000

5 10 15 20 25 50 75 100
clusters

4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

tim
e

ra
tio

(d) n = 10,000

Figure 6: Comparison between DCA and BDCA for solving the clustering problems with
random data described in Experiment 2. For each value of n ∈ {500,1000,5000,10,000}
and m ∈ {2,5,10,20} we represent the ratios of running time between DCA and
BDCA for 10 random starting points for different values of the number of clusters
k ∈ {5,10,15,20,25,50,75,100}. The black dots represent the average ratios.

In our experiments, we set the weights wi j = 1 and the starting points were generated
as in [17]. First, we randomly chose a matrix X̃0 ∈ Rn×p with entries in]0,10[. Then, the
starting point was set as X0 :=

(
I− (1/n)eeT) X̃0, where I and e denote the identity matrix

and the vector of ones in Rn, respectively. We used the parameters ρ = 1
np , α = 0.05,

λ 1 = 3 and β = 0.1.

Experiment 3 (MDS for Spanish cities). Consider the dissimilarity matrix defined by the
distances between the 4155 Spanish cities with more than 500 residents, including this
time those outside the peninsula to make the problem more difficult. The optimal value
of this MDS problem is zero. In Fig. 7(b) we have represented a starting point of the type
X0 :=

(
I− (1/4155)eeT) X̃0, where X̃0 ∈ R4155×2 was randomly chosen with entries in

]0,10[. In Fig. 7(c)-(k) we plot the iterations of DCA and BDCA. As shown in Fig. 7(a),
despite both DCA and BDCA converged to the optimal solution, DCA required five times
more iterations than BDCA to reach the same accuracy.

To demonstrate that the advantage shown in Fig. 7 is not unusual, we run both algo-
rithms from 100 different random starting points until either the value of the objective

20

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
k

10 5

10 2

101

104

107
(X

k)
DCA
BDCA

(a) Value of the objective function

10 0 10
15

10

5

0

5

10

15

(b) Starting point

20 10 0 10
20

10

0

10

20

(c) 25 iterations of BDCA

10 5 0 5
15

10

5

0

(d) 50 iterations of BDCA

10 5 0 5
15

10

5

0

(e) 100 iterations of BDCA

20 10 0 10 20
20

10

0

10

20

(f) 25 iterations of DCA

20 10 0 10
20

10

0

10

20

(g) 50 iterations of DCA

15 10 5 0 5

15

10

5

0

5

(h) 100 iterations of DCA

15 10 5 0 5
15

10

5

0

(i) 150 iterations of DCA

10 5 0 5
15

10

5

0

(j) 200 iterations of DCA

10 5 0 5
15

10

5

0

(k) 400 iterations of DCA

Figure 7: Comparison between DCA and BDCA when they are applied to the MDS prob-
lem of the Spanish cities described in Experiment 3 from the same random starting point.

21

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

random starting points

0

100

200

300

400

500

600
ru

nn
in

g
tim

e

DCA
BDCA

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

random starting points

0

100

200

300

400

500

600

700

800

nu
m

be
r o

f i
te

ra
tio

ns

DCA
BDCA

Figure 8: Comparison between DCA and BDCA for solving the MDS problem of the
Spanish cities described in Experiment 3. We represent the running time (left) and number
of iterations (right) of DCA and BDCA for 100 random instances. The dashed lines show
the averages.

function was smaller than 10−6, or until φ(Xk)−φ(Xk+1)< 10−6. This second stopping
criterion was used in 32 instances, and in all of them the value of φ was approximately
equal to 26683.66. The running time and the number of iterations of both algorithms is
plotted in Fig. 8. On average, BDCA was 3.9 times faster than DCA. Further, BDCA
was always more than 2.9 times faster than DCA, and the number of iterations required
by DCA was always more than 3.5 times higher (on average, it was 4.7 times higher). In
fact, the minimum time required by DCA within all the random instances (389.9 seconds)
was 2.2 times higher than the maximum time spent by BDCA (173.2 seconds).

Experiment 4 (MDS with random data). To test randomly generated data, we considered
two cases:

• Case 1: the dissimilarities are distances between objects in Rp; thus, the optimal
value is 0.

• Case 2: the dissimilarities are distances between objects in R2p; hence, the optimal
value is unknown a priori.

The data was obtained by generating a matrix M in Rn×p and Rn×2p with entries randomly
drawn from a normal distribution having a mean of 0 and a standard deviation of 10. Then,
the values of δi j were determined by the distance matrix between the rows of M. We used
the same stopping criteria as in [17]: for Case 1, the algorithms were stopped when the
value of the merit function was smaller than 10−6, while for Case 2, they were stopped
when the relative error of the objective function was smaller than 10−3.

The ratios between the respective running times and number of iterations of DCA and
BDCA are shown in Fig. 9. On average, BDCA was 2.6 times faster than DCA, and
the advantage was bigger both for Case 1 and for p = 3. For Case 2 we can find some
instances where BDCA was only 1.5 times faster than DCA. In Fig. 10 we observe that
these instances seem to be outliers, for which DCA was faster than usual. The value of the
objective function with respect to time of both algorithms for a particular large random
instance is plotted in Fig. 11.

22

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n

2.0

2.5

3.0

3.5

4.0

4.5
tim

e
ra

tio
p = 2
p = 3

(a) Case 1 (running time ratio)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n

2.5

3.0

3.5

4.0

4.5

5.0

5.5

ite
ra

tio
ns

 ra
tio

p = 2
p = 3

(b) Case 1 (number of iterations ratio)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

tim
e

ra
tio

p = 2
p = 3

(c) Case 2 (running time ratio)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

ite
ra

tio
ns

 ra
tio

p = 2
p = 3

(d) Case 2 (number of iterations ratio)

Figure 9: Comparison between DCA and BDCA for solving the MDS problems with
random data described in Experiment 4. We represent the ratios of running time and
number of iterations between DCA and BDCA for ten random instances for each value of
n ∈ {500,1000, . . . ,10,000} and p ∈ {2,3}. For each p, the average value is represented
with a dashed line.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n

0

100

200

300

400

500

600

tim
e

(s
ec

on
ds

)

DCA
BDCA

(a) Running time

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
n

0

20

40

60

80

100

120

140

160

ite
ra

tio
ns

DCA
BDCA

(b) Number of iterations

Figure 10: Running time and number of iterations for DCA and BDCA when applied to
the random data described in Experiment 4 for Case 2 with p = 2.

23

0 200 400 600 800 1000 1200 1400 1600
time (seconds)

10 5

10 3

10 1

101

103

105

107

109
(X

k)
DCA
BDCA

(a) Case 1

0 100 200 300 400 500 600
time (seconds)

2 × 109

3 × 109

4 × 109

(X
k)

DCA
BDCA

(b) Case 2

Figure 11: Value of the objective function of DCA and BDCA (using logarithmic scale)
against CPU time for one particular random instance of each of the two test cases in
Experiment 4 (with p = 3 and n = 10,000).

6 Concluding Remarks
We have developed a version of the Boosted DC Algorithm proposed in [2] for solving
DC programming problems when the objective function is not differentiable. Our conver-
gence results were obtained under some standard assumptions. The global convergence
and convergent rate was established assuming the strong Kurdyka–Łojasiewicz inequal-
ity. It remains as an open question whether the results still hold under the Kurdyka–
Łojasiewicz inequality, i.e., the corresponding inequality associated with the limiting sub-
differential instead of the Clarke’s one. This is a topic for future research.

We have applied our algorithm for solving two important problems in data science,
namely, the Minimum Sum-of-Squares Clustering problem and the Multidimensional
Scaling problem. Our numerical experiments indicate that BDCA outperforms DCA, be-
ing on average more than sixteen times faster in the first problem and nearly three times
faster in the second problem, in both computational time and number of iterations. In
general, the advantage of BDCA against DCA will always depend on two key factors: the
difficulty in solving the subproblems (Pk) and the number of backtracking steps needed
at each iteration. A relatively small backtracking parameter β ≈ 0.1 seems to work well
in practice.

An important novelty of the proposed algorithm is the flexibility in the choice of
the trial step size λ k in the line search step of BDCA, which had to be constant in our
previous work [2]. A comparison of both strategies if shown in Fig. 12 using the same
starting point as in Fig. 7, where we can observe that each drop in the function value of the
self-adaptive strategy was originated by a large increase of the step size. Although BDCA
with constant choice was slower, it still needed three times less iterations than DCA,
see Fig. 7(a). The complete freedom in the choice of λ k permits to use the information
available from previous iterations, as done in Section 5 with what we call the self-adaptive
trial step size. Roughly, this strategy allowed us to obtain a two times speed up of BDCA
in all our numerical experiments, when compared with the constant strategy. There are
many possibilities in the choice of the trial step size to investigate, which could further
improve the performance of BDCA.

Finally, we would like to mention that applications of BDCA to the Bilevel Hierarchi-

24

0 50 100 150 200
k

10 6

10 4

10 2

100

102

104

106

108

(Xk)

Self-adaptive
Constant

0

10

20

30

40

50

k

Figure 12: Comparison of the self-adaptive and the constant (with λ k = 3) choices for the
trial step sizes of BDCA in Step 4, using the same starting point as in Fig. 7. The plot
includes two scales, a logarithmic one for the objective function values, and another one
for the step sizes (which are represented with discontinuous lines).

cal Clustering problem [25] and the Multicast Network Design problem [14] can be also
considered. However, due to the inclusion of a penalty and a smoothing parameter, the DC
objective function associated with these problems changes at each iteration, see [14, 25]
for details. Therefore, the applicability of BDCA should be justified in this setting. This
serves as an interesting question for future research.

Acknowledgements
The authors wish to thank Aris Daniilidis for his help with Remark 4.1.

The first author was supported by MINECO of Spain and ERDF of EU, as part of
the Ramón y Cajal program (RYC-2013-13327) and the Grants MTM2014-59179-C2-1-
P and PGC2018-097960-B-C22. The second author was supported by FWF (Austrian
Science Fund), project I 2419-N32.

References
[1] N.T. AN AND N.M. NAM, Convergence analysis of a proximal point algorithm for

minimizing differences of functions, Optimization, 66 (2017), pp. 129–147.

[2] F.J. ARAGÓN ARTACHO, R. FLEMING, AND P.T. VUONG, Accelerating the DC
algorithm for smooth functions, Math. Program., 169B (2018), pp. 95–118.

25

[3] H. ATTOUCH, J. BOLTE, P. REDONT, AND A. SOUBEYRAN, Proximal alternating
minimization and projection methods for nonconvex problems. An approach based on
the Kurdyka–Łojasiewicz inequality, Math. Oper. Res., 35 (2010), pp. 438–457.

[4] H. ATTOUCH AND J. BOLTE, On the convergence of the proximal algorithm for
nonsmooth functions involving analytic features, Math. Program., 116 (2009), pp. 5–
16.

[5] S. BANERT AND R. BOŢ, A general double-proximal gradient algorithm for d.c.
programming, Math. Program., (2018), DOI 10.1007/s10107-018-1292-2.

[6] H.H. BOCK, Clustering and neural networks, in Advances in Data Science and Clas-
sification, Springer, Berlin, 1998, pp. 265–277.

[7] J. BOLTE, A. DANIILIDIS, AND A. LEWIS, The Łojasiewicz inequality for non-
smooth subanalytic functions with applications to subgradient dynamical systems,
SIAM J. Optimiz., 17 (2007), pp. 1205–1223.

[8] J. BOLTE, A. DANIILIDIS, A. LEWIS, AND M. SHIOTA, Clarke subgradients of
stratifiable functions, SIAM J. Optim., 18 (2007), pp. 556–572.

[9] J. BOLTE, A. DANIILIDIS, O. LEY, AND L. MAZET, Characterizations of Lo-
jasiewicz inequalities: subgradient flows, talweg, convexity, Trans. Amer. Math. Soc.,
362 (2010), pp. 3319–3363.

[10] J. BOLTE, S. SABACH, AND M. TEBOULLE, Proximal alternating linearized
minimization for nonconvex and nonsmooth problems, Math. Program., 146 (2013),
pp. 459–494.

[11] F.H. CLARKE, Optimization and Nonsmooth Analysis, Second edition, Classics
Appl. Math. 5, SIAM, Philadelphia, 1990.

[12] T.H. CUONG, N.D. YEN, AND Y.C. YAO, Qualitative Properties of the Minimum
Sum-of-Squares Clustering Problem, arXiv: 1810.02057

[13] M. FUKUSHIMA AND H. MINE, A generalized proximal point algorithm for certain
non-convex minimization problems, Int. J. Syst. Sci., 12 (1981), pp. 989–1000.

[14] W. GEREMEW, N.M. NAM, A. SEMENOV, V. BOGINSKI, AND E. PASILIAO, A DC
programming approach for solving multicast network design problems via the Nesterov
smoothing technique, J. Glob. Optim., 72 (2018), pp. 705–729.

[15] K. KURDYKA, On gradients of functions definable in o-minimal structures, Annales
de l’Institut Fourier (Grenoble), 48 (1998), pp. 769–783.

[16] H.A. LE THI, V.N. HUYNH, AND T. PHAM DINH, Convergence analysis of
Difference-of-Convex Algorithm with subanalytic data, J. Optim. Theory Appl., 179
(2018), pp. 103–126.

[17] H.A. LE THI, AND T. PHAM DINH D.C. programing approach to the multidimen-
sional scaling problem, in From Local to Global Optimization, P. Pardalos and P. Var-
brand, eds, Kluwer, Dodrecht, 2001, pp. 231–276.

26

https://doi.org/10.1007/s10107-018-1292-2
https://arxiv.org/abs/1810.02057

[18] H.A. LE THI AND T. PHAM DINH, The DC (difference of convex functions) pro-
gramming and DCA revisited with DC models of real world nonconvex optimization
problems, Ann. Oper. Res., 133 (2005), pp. 23–46.

[19] H.A. LE THI AND T. PHAM DINH, DC Programming and DCA: Thirty Years of
Developments, Math. Program., 169 (2018), pp. 5–68.

[20] H.A. LE THI AND T. PHAM DINH, Recent advances in DC programming and
DCA, Nguyen N-T, Le Thi HA, eds. Trans. Comput. Collective Intelligence Lecture
Notes in Computer Science, Vol. 8342 (Springer, Berlin), pp. 1–37, 2014.

[21] H.A. LE THI, T. PHAM DINH, AND L.D. MUU, Numerical solution for optimiza-
tion over the efficient set by D.C. optimization algorithms, Oper. Res. Lett., 19 (1996),
pp. 117–128.

[22] S. ŁOJASIEWICZ, Ensembles semi-analytiques, Institut des Hautes Etudes Scien-
tifiques, Bures-sur-Yvette (Seine-et-Oise), France, 1965.

[23] H. MINE AND M. FUKUSHIMA, A minimization method for the sum of a convex
function and a continuously differentiable function, J. Optim. Theory Appl., 33 (1981),
pp. 9–23.

[24] A. MOUDAFI AND P. MAINGE, On the convergence of an approximate proximal
method for DC functions, J. Comput. Math., 24 (2006), pp. 475–480.

[25] N.M. NAM, W. GEREMEW, R. REYNOLDS, AND T. TRAN, Nesterov’s smoothing
technique and minimizing differences of convex functions for hierarchical clustering,
Optim. Lett., 12 (2018), pp. 455–473.

[26] D. NOLL, Convergence of non-smooth descent methods using the Kurdyka–
Łojasiewicz inequality, J. Optim. Theory Appl., 160 (2014), pp. 553–572.

[27] B. ORDIN AND A.M. BAGIROV, A heuristic algorithm for solving the minimum
sum-of-squares clustering problems, J. Glob. Optim., 61 (2015), pp. 341–361.

[28] T. PHAM DINH AND H.A. LE THI, A DC optimization algorithm for solving the
trust-region subproblem, SIAM J. Optim., 8 (1998), pp. 476–505.

[29] R.T. ROCKAFELLAR, Convex Analysis, Princeton University Press, 1972.

[30] R.T. ROCKAFELLAR AND R.J.-B. WETS, Variational Analysis, Grundlehren Math.
Wiss. 317, Springer, New York, 1998.

[31] P.D. TAO AND H.A. LE THI, Convex analysis approach to DC programming: the-
ory, algorithms and applications, Acta Mathematica Vietnamica, 22 (1997), pp. 289–
355.

[32] J.F. TOLAND, On subdifferential calculus and duality in non-convex optimization,
Bull. Soc. Math. Fr. Mém. 60 (1979) (Proc. Colloq., Pau 1977), pp. 177–183.

[33] H.M. XU, H. XUE, X.H. CHEN, Y.Y. WANG, Solving Indefinite Kernel Support
Vector Machine with Difference of Convex Functions Programming, Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17).

27

	1 Introduction
	2 Preliminaries
	2.1 Tools of convex and variational analysis
	2.2 Assumptions

	3 DCA and BDCA
	4 Convergence under the Kurdyka–Łojasiewicz property
	5 Applications and Numerical Experiments
	5.1 The Minimum Sum-of-Squares Clustering Problem
	5.2 The Multidimensional Scaling Problem

	6 Concluding Remarks

