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Abstract

It is shown that the recently introduced lower cone distribution function and
the associated set-valued multivariate quantile generate a Galois connection be-
tween a complete lattice of closed convex sets and the interval [0, 1]. This gen-
eralizes the corresponding univariate result. It is also shown that an extension
of the lower cone distribution function and the set-valued quantile characterize
the capacity functional of a random set extension of the original multivariate
variable along with its distribution.

Keywords Galois connection, multivariate quantile, complete lattice, lower cone dis-
tribution function, random set
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1 Introduction

Several features of set-valued quantiles for multivariate random variables as introduced
in [9] are investigated and extended. In particular, the lower cone distribution function
from [9] is extended to a function on sets, and it is shown that this extension together
with the set-valued quantile forms a Galois connection between ([0, 1],≤) and a com-
plete lattice of closed convex sets ordered by ⊇. In the univariate case, a similar result
is known (see [4, Remark 3.1]), but apparently not too popular under this label. For ex-
ample, in the recent work [6], the property constituting the Galois connection is stated
(formula (2), p. 5), but the Galois connection is neither mentioned, nor exploited.
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Our approach turns two downsides of previous proposals for multivariate quan-
tiles into upsides. First, by using the cone distribution function (instead of the joint
distribution function even if the cone is Rd

+), an arbitrary vector order can be dealt
with, thus ‘the absence of a natural ordering of Euclidean spaces of dimension greater
than one’ ([13, p. 214] where ‘natural’ apparently has to be understood as ‘total’ in
order theoretic terms) is turned into a huge potential for applications in statistical
and financial analysis where such an order relation very often is present by default,
e.g., generated by a solvency cone. Secondly, the fact that an inverse of a monotone
function usually ‘defines only a correspondence, that is, a multi-valued or set-valued
mapping’ ([6, p. 5]) is exploited by understanding quantiles as functions mapping into
complete lattices of sets which carry a rich (order) structure. It is shown that certain
lattices, e.g., generated by the closure operators of the respective Galois connection,
characterize features of the underlying random vector.

Moreover, it is shown that the set-valued quantiles characterize the distribution
of a random set extension of the original random variable, thus the three objects
“distribution of the random set,” “(extended) cone distribution function of the random
vector,” and “lattice-valued quantile function” carry the same information. This is
very much parallel to the univariate case (compare, for instance, [6, formula (4), p. 5]).
The ordering cone enters the definition of the lattice of sets in which the random set
extension of the original multivariate random variable takes its values.

2 Set-up

The framework and notation of [9] and, when it comes to concepts from set-valued
convex analysis, [8] are used. In particular, we consider a vector preorder on Rd which
is generated by a nonempty closed convex cone ∅ 6= C ( Rd by means of

y ≤C z ⇔ z − y ∈ C

for y, z ∈ Rd; C is neither assumed to have a non-empty interior, nor be pointed, i.e.,
C∩(−C) = {0} is not assumed. Thus, the cases C = {0} and C = H+(w) := {z ∈ Rd |
wTz ≥ 0} for w ∈ Rd\{0} are not excluded. In the latter case, C is a (homogeneous)
halfspace and ≤C a total preorder. The (positive) dual of the cone C is

C+ =
{

w ∈ C | ∀z ∈ C : wTz ≥ 0
}

.

The bipolar theorem yields C = C++ := (C+)+ under the given assumptions. The set

G(Rd, C) =
{

D ⊆ Rd | D = cl co (D + C)
}

comprises the closed convex subsets of Rd which are stable under addition of C; the
sum A+B is understood in the Minkowski sense with A+∅ = ∅+A = ∅ for all A ⊆ Rd.
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The pair (G(Rd, C),⊇) is an order complete lattice with the following formulas for inf
and sup (see, for example, [8]) for sets D ⊆ G(Rd, C):

inf
D∈D

D = cl co
⋃

D∈D

D, sup
D∈D

D =
⋂

D∈D

D.

3 Lower cone distribution functions and quantiles

Let (Ω,A,P) be a probability space and L0
d the space of all equivalence classes of random

variables with values in Rd. For X ∈ L0
d, w ∈ Rd\{0}, the function FX,w : R

d → [0, 1]
defined by FX,w(z) = P{X ∈ z−H+(w)} = P{wTX ≤ wT z} is called the w-distribution
function of X . If d = 1, C = R+ and w = 1, then FX,w is the usual cumulative distribu-
tion function (cdf) of the univariate random variableX . The function FX,C : R

d → [0, 1]
defined by

FX,C(z) = inf
w∈C+\{0}

FX,w(z) = inf
{

P{X ∈ z −H+(w)} | w ∈ C+
}

is called the lower C-distribution function associated to X .
If p ∈ [0, 1] and w ∈ Rd\{0}, the set Q−

X,w(p) =
{

z ∈ Rd | FX,w(z) ≥ p
}

is called
the lower w-quantile, and the set

Q−
X,C(p) =

{

z ∈ Rd | FX,C(z) ≥ p
}

=
⋂

w∈C+\{0}

Q−
X,w(p) (1)

is called the lower C-quantile of X . Clearly, Q−
X,w(0) = Q−

X,C(0) = Rd for all w ∈

Rd\{0}.
If C = {0} and hence C+ = Rd, then FX,C is the Tukey depth function and Q−

X,C(p)
is the corresponding depth region. In this case, it might happen that (for continuous
distributions, for example) FX,C(z) ∈ [0, 1/2] for all z ∈ Rd which also shows that
Tukey’s depth function in the case d = 1 is not a generalization of the univariate cdf
which requires C = C+ = R+ and has values in [0, 1], in general.

A few elementary properties are collected in the following result.

Proposition 1. (a) For each p ∈ [0, 1] and w ∈ Rd\{0}, the set Q−
X,w(p) is a closed

halfspace or empty or Rd.
(b) For each p ∈ [0, 1], the set Q−

X,C(p) is closed, convex and satisfies Q−
X,C(p)+C ⊆

Q−
X,C(p).

(c) One has Q−
X,C(p1) ⊇ Q−

X,C(p2) whenever 0 ≤ p1 ≤ p2 ≤ 1. Moreover,

∀p ∈ [0, 1] : Q−
X,C(p) =

⋂

0≤q<p

Q−
X,C(q). (2)

(d) The function FX,C : R
d → [0, 1] is quasiconcave, upper semicontinuous and

monotone nondecreasing with respect to ≤C .
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Proof. (a) This is a consequence of the monotonicity and the upper semicontinuity
of FX,w as the cumulative distribution function of the univariate random variable wTX .

(b) This follows from (a) since Q−
X,C(p) is the intersection of the closed halfspaces

Q−
X,w(p) for w ∈ C+\{0} (possibly empty or Rd).

(c) The sets Q−
X,C(p) are nested by definition. Hence ⊇ holds in (2). For the

contrary, assume z ∈ Q−
X,w(p). If z is not an element of the right hand side of (2),

then there is 0 ≤ q < p such that z 6∈ Q−
X,C(q). This would imply FX,C(z) < q < p ≤

FX,C(z), a contradiction.
(d) The first two properties follow since a function with convex and closed upper

level sets is quasiconcave and upper semicontinuous while monotonicity is a straight-
forward consequence of the definitions of C+, FX,w, FX,C . �

Proposition 1 yields Q−
X,C(p) ∈ G(Rd, C) which means that Q−

X,C can be seen as

a function mapping from [0, 1] into the complete lattice (G(Rd, C),⊇). Therefore, (2)
can be written as Q−

X,C(p) = sup0≤q<pQ
−
X,C(q) where the supremum is understood

in (G(Rd, C),⊇). In this sense, Q−
X,C is left-continuous. To summarize, the quantile

function p 7→ Q−
X,C(p) is the non-decreasing, left-continuous G(R

d, C)-valued inverse of
the lower C-distribution function FX,C (in the sense of, e.g., [5, Definition 1]). This
provides a complete analog to the univariate case. The left-continuity of Q−

X,C yields

Q−
X,C(1) =

⋂

0≤q<1Q
−
X,C(q), and this set can be non-empty. Since Q−

X,C(0) = Rd is the

obvious choice, Q−
X,C is well-defined on [0, 1] by (1). Even for the univariate case, it has

been observed that ‘leaving out the probabilities 0 and 1 is artificial’ ([4, Remark 3.1]).
Proposition 1 (d) can be considered as an extension of [12, Proposition 1] which

works for the Tukey depth function (but even for an arbitrary positive measure).
The next result, stated for notational convenience, prepares a continuity result for

FX,C .

Lemma 1. Let (an)n∈N, (bn)n∈N be convergent sequences in R with limits a, b ∈ R,
respectively. If a 6= b, then,

lim
n→∞

1(−∞,an](bn) = 1(−∞,a](b).

Proof. Suppose that a < b so that 1(−∞,a](b) = 0. Let ε = b−a
3
. There exists

n0 ∈ N such that |an − a| ≤ ε and |bn − b| ≤ ε for every n ≥ n0. In particular, an ≤ a+
ε < b− ε ≤ bn so that 1(−∞,an](bn) = 0 for every n ≥ n0. Hence, limn→∞ 1(−∞,an](bn) =
0 = 1(−∞,a](b). The case a > b can be treated by similar arguments. �

Remark 1. The condition a 6= b in Lemma 1 cannot be omitted. As a counterexample,
let a = b = 0 and an = − 1

n
, bn = 1

n
for every n ∈ N. Note that 1(−∞,a](b) = 1 and

1(−∞,an](bn) = 0 for every n ∈ N. Hence, limn→∞ 1(−∞,an](bn) = 0 6= 1 = 1(−∞,a](b).
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Proposition 2. If the distribution of wTX under P is such that P{wTX = r} = 0
for each w ∈ C+\{0} and each r ∈ R, then FX,C is continuous. In particular, FX,C is
continuous whenever X is a continuous random vector.

Proof. Let B = C+ ∩ Sd−1, where Sd−1 is the unit sphere in Rd. Note that B is a
base for C+ in the sense that every w̃ ∈ C+ \ {0} can be written in the form w̃ = rw
for some unique r > 0 and unique w ∈ B, and we have FX,w̃(z) = FX,w(z) for every
z ∈ Rd. It follows that

FX,C(z) = inf
w∈B

FX,w(z) (3)

for every z ∈ Rd. Moreover B is a compact set.
By Proposition 1 (d), it suffices to show that FX,C is lower semicontinuous. We fix

p ∈ [0, 1) and show that the lower level set L(p) =
{

z ∈ Rd | FX,C(z) ≤ p
}

is closed. To
that end, let (zn)n∈N be a convergent sequence in L(p) with limit z̄ ∈ Rd. Let ε > 0. By
(3), for every n ∈ N, there exists wn ∈ B such that FX,wn

(zn) < FX,C(zn) + ε ≤ p+ ε.
Since (wn)n∈N is a sequence in the compact set B, by Bolzano-Weierstrass theorem,
there exists a convergent subsequence (wnk

)k∈N of it, say, with limit w̄ ∈ B. Hence,
limk→∞wTk zk = w̄T z̄, and applying Lemma 1 gives

lim
k→∞

1(−∞,wT
nk
zn

k
](w

T
nk
X(ω)) = 1(−∞,w̄T z̄](w̄

TX(ω))

for every ω ∈ Ω such that w̄TX(ω) 6= w̄T z̄. By assumption, one has P{w̄TX = w̄T z̄} =
0. Hence,

lim
k→∞

1(−∞,wT
n
k
znk

](w
T
nk
X) = 1(−∞,w̄T z̄](w̄

TX) almost surely.

Therefore, by dominated convergence theorem,

lim
k→∞

FX,wn
k
(znk

) = lim
k→∞

P{wTnk
X ≤ wTnk

znk
}

= lim
k→∞

E
[

1(−∞,wT
nk
zn

k
](w

T
nk
X)
]

= E
[

1(−∞,w̄T z̄](w̄
TX)

]

= P{w̄TX ≤ w̄T z̄} = FX,w̄(z̄).

Hence, FX,w̄(z̄) ≤ p+ε. Since ε > 0 is arbitrary, we conclude that FX,C(z̄) ≤ FX,w̄(z̄) ≤
p. So z̄ ∈ L(p). Hence, L(p) is a closed set. �

There is an alternative way of writing Q−
X,C : the result in Theorem 1 below is

inspired by [12, Propositions 2 & 6]. The proof is prepared by the following lemma
which should be known and is implicitly part of the proof of [16, Theorem 2.11].

Lemma 2. Let p ∈ [0, 1]. For every w ∈ Rd\{0} and every z ∈ Rd with P{X ∈
z −H+(w)} < p there exists y ∈ z + intH+(w) such that P{X ∈ y − intH+(w)} < p.
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Proof. Let us fix w ∈ Rd\{0} and z ∈ Rd with P{X ∈ z −H+(w)} < p and take
z̄ ∈ Rd with wT z̄ = 1, which exists since w 6= 0. Then, sz̄ ∈ intH+(w) for all s > 0.
Let us define yn = z + 1

n
z̄ ∈ z + intH+(w) for each n ∈ N. Then, for every n ∈ N,

wTyn = wT
(

z +
1

n
z̄

)

= wTz +
1

n
,

so that wTyn+1 < wTyn and limn→∞wTyn = wT z. Since FwTX is right-continuous, it
follows that

P{X ∈ z −H+(w)} = FwTX(w
Tz) = lim

n→∞
FwTX(w

Tyn) < p,

so there is n̄ ∈ N with

FwTX(w
Tyn̄) = P{X ∈ yn̄ −H+(w)} < p.

Hence,
P{X ∈ yn̄ − intH+(w)} ≤ P{X ∈ yn̄ −H+(w)} < p,

which proves the claim with y = yn̄. �

Theorem 1. For all p ∈ [0, 1],

Q−
X,C(p) =

⋂

w∈C+\{0}

⋂

y∈Rd

{

y +H+(w) | P
{

X ∈ y +H+(w)
}

> 1− p
}

=
⋂

w∈C+\{0}

⋂

y∈Rd

{

y +H+(w) | P
{

X ∈ y − intH+(w)
}

< p
}

.

Proof. The two expressions on the right hand side clearly coincide since P{X ∈
y +H+(w)} = 1− P{X ∈ y − intH+(w)}.

First, assume that z 6∈
⋂

w∈C+\{0}

⋂

y∈Rd {y +H+(w) | P {X ∈ y − intH+(w)} < p}.

Then, there exist w ∈ C+\{0}, y ∈ Rd such that P {X ∈ y − intH+(w)} < p and z 6∈
y+H+(w). It follows that z ∈ y−intH+(w) which implies z−H+(w) ⊆ y−intH+(w),
so

P{X ∈ z −H+(w)} ≤ P{X ∈ y − intH+(w)} < p,

hence z 6∈ Q−
X,C (p).

Therefore, Q−
X,C (p) ⊆

⋂

w∈C+\{0}

⋂

y∈Rd {y +H+(w) | P {X ∈ y − intH+(w)} < p}.
Conversely, assume that

z̄ /∈ Q−
X,C(p) =

⋂

w∈C+\{0}

Q−
X,w (p) =

⋂

w∈C+\{0}

{

z ∈ Rd | FX,w(z) ≥ p
}

.

6



Then, there exists w ∈ C+ such that FX,w(z̄) = P{X ∈ z̄ − H+(w)} < p. Lemma 2
yields the existence of ȳ ∈ z̄ + intH+(w) satisfying P{X ∈ ȳ − intH+(w)} < p. If

z̄ ∈
⋂

w∈C+

⋂

y∈Rd

{

y +H+(w) | P
{

X ∈ y − intH+(w)
}

< p
}

would be true, then also z̄ ∈ ȳ +H+(w) and

z̄ ∈
(

ȳ − intH+(w)
)

∩
(

ȳ +H+(w)
)

,

which is a contradiction. So, z̄ 6∈
⋂

w∈C+

⋂

y∈Rd {y +H+(w) | P {X ∈ y − intH+(w)} < p}.

This shows Q−
X,C (p) ⊇

⋂

w∈C+

⋂

y∈Rd {y +H+(w) | P {X ∈ y − intH+(w)} < p}. �

Remark 2. Assume that there is z̄ ∈ C such that wT z̄ > 0 for all w ∈ C+\{0}.
Then, the set B+ =

{

w ∈ C+ | wT z̄ = 1
}

⊆ C+ is a base of C+ (every w ∈ C+\{0}
can be represented uniquely as w = sb with b ∈ B+, s > 0). If this is the case, then
intersections such as in formula (1) and the one in Theorem 1 need to run only over
B+ instead of C+ since H+(sw) = H+(w) for all w ∈ C+ and s > 0.

If d = 1, C = R+, then B+ = {1} is such a base, and the formula in Theorem 1
breaks down to

Q−
X,C(p) = sup{r ∈ R | P{X < r} < p}+ R+

while (1) becomes Q−
X,C(p) = inf{s ∈ R | P{X ≤ s} ≥ p} + R+ which re-produces

well-known formulas for the univariate lower quantile, see [7, p. 207].

4 Galois connections

Let P(Rd) denote the power set of Rd (including ∅) and ψ : Rd → R ∪ {±∞} be an
extended real-valued function. The function ψ△ : P(Rd) → R ∪ {±∞} defined by

ψ△(D) = inf
z∈D

ψ(z)

is called the inf-extension of ψ, where ψ△(∅) = +∞ is understood.
First, we apply this concept to ψ = FX,C . The following result collects a few

properties of F△

X,C which are basically inherited from FX,C .

Proposition 3. (a) X 7→ F△

X,C(D) is monotone: X1 ≤C X2 almost surely implies
F△

X2,C
(D) ≤ F△

X1,C
(D) for every D ∈ P(Rd).

(b) D 7→ F△

X,C(D) is monotone: D1 ⊇ D2 implies F△

X,C(D1) ≤ F△

X,C(D2) for every
X ∈ L0

d.
(c) F△

X,C({z}+ C) = F△

X,C({z}) = FX,C(z) for every z ∈ Rd.

7



Proof. (a) follows from the monotonicity of X 7→ FX,C(z). (b) follows by the
construction of F△

X,C . (c) follows from the monotonicity of z 7→ FX,C(z). �

The following proposition prepares a new feature.

Proposition 4. For every D ∈ P(Rd),

F△

X,C(cl co (D + C)) = F△

X,C(D).

Proof. By the definition of F△

X,C , ≤ is certainly true. Since FX,C is monotone
with respect to ≤C (see Proposition 1 (d)),

∀z ∈ C, ∀x ∈ D : FX,C(x) ≤ FX,C(x+ z),

hence F△

X,C({x}) ≤ F△

X,C({x}+C) and therefore, F△

X,C(D) ≤ F△

X,C(D+C). This gives
F△

X,C(D) = F△

X,C(D + C).
Next, take z1, . . . , zm ∈ D and s1, . . . , sm ∈ [0, 1] with m ∈ N such that

∑m

i=1 si = 1.
Set z =

∑m

i=1 siz
i. The quasiconcavity of FX,C yields

FX,C(z) ≥ min{FX,C(z
1), . . . , FX,C(z

m)} ≥ F△

X,C(D).

This proves F△

X,C(coD) = F△

X,C(D).
Finally, take a sequence (zn)n∈N in D which converges to some z ∈ Rd. Then, the

upper semicontinuity of FX,C produces

FX,C(z) ≥ lim sup
n→∞

FX,C(z
n) ≥ lim sup

n→∞
F△

X,C(D) = F△

X,C(D),

hence F△

X,C(clD) ≥ F△

X,C(D) which gives “=.” �

As a result of Proposition 4, it is enough to consider the inf-extension F△

X,C as a
function on G(Rd, C) rather than the whole power set P(Rd), which is done in the
sequel.

Corollary 1. (a) For every D ⊆ G(Rd, C), one has

F△

X,C

(

inf
D∈D

D

)

= inf
D∈D

F△

X,C(D). (4)

(b) For A ⊆ Rd and w ∈ C+, one has

inf
y∈A

FwTX(w
Ty) = FwTX

(

inf
y∈A

wTy

)

. (5)

8



Proof. (a) Since D ⊆ infD∈DD = cl co
⋃

D∈DD for all D ∈ D, “≤” certainly
is true. Take z ∈

⋃

D∈DD. Then, there is D′ ∈ D with z ∈ D′, hence FX,C(z) ≥
infD∈D F

△

X,C(D) which in turn implies F△

X,C(
⋃

D∈DD) ≥ infD∈D F
△

X,C(D). Proposition 4
now produces F△

X,C(infD∈DD) = infD∈D F
△

X,C(D).
(b) Setting C = H+(w), D(y) = y + H+(w) for y ∈ A, D = {D(y) | y ∈ A} and

observing F△

X,H+(w)(A) = infy∈A FwTX(w
Ty) as well as

F△

X,w

(

inf
D∈D

D

)

= F△

X,w

(

cl
⋃

y∈A

(y +H+(w))

)

= F△

X,w(A) = inf
y∈A

FwTX(w
Ty)

(see Proposition 4) one gets (5) as a special case of (4). �

Equation (4) means that F△

X,C preserves infima (meets) as a function from G(Rd, C)
to [0, 1] (see also [3, 7.31 & 2.26]). This property has been called “inf-stability” in [2].

Proposition 5. (a) For every D ∈ G(Rd, C) and p ∈ [0, 1],

Q−
X,C(p) ⊇ D ⇔ p ≤ F△

X,C(D).

(b) The two compositions F△

X,C◦Q
−
X,C : [0, 1] → G(Rd, C) and Q−

X,C◦F
△

X,C : G(R
d, C) →

[0, 1] are closure operators (extensive, increasing and idempotent).
(c) The set

FX(R
d, C) =

{

D ∈ G(Rd, C) | D = (Q−
X,C ◦ F△

X,C)(D)
}

is a complete lattice with respect to ⊇.
(d) One has

∀p ∈ [0, 1] : Q−
X,C(p) = inf

{

D ∈ G(Rd, C) | F△

X,C(D) ≥ p
}

(6)

∀D ∈ G(Rd, C) : F△

X,C(D) = sup
{

p ∈ [0, 1] | D ⊆ Q−
X,C(p)

}

. (7)

Proof. (a) is straightforward and can be checked by using the definitions of F△

X,C

and Q−
X,C . (b) follows from the theory of Galois connections (see [3, Chapter 7]).

(c) follows from the Knaster-Tarski theorem since (G(Rd, C),⊇) is a complete lattice
and FX(R

d, C) is the set of fixed points of the composition Q−
X,C ◦ F△

X,C : G(R
d, C) →

G(Rd, C). (d) also follows from the theory of Galois connections [3]. �

Proposition 5 (a) establishes the fact that F△

X,C and Q−
X,C form a Galois connection

between the two complete lattices (G(Rd, C),⊇) and ([0, 1],≤) where F△

X,C is the upper
adjoint and Q−

X,C the lower adjoint. This means that F△

X,C and Q−
X,C determine each

other; they carry the same information.

9



Remark 3. The complete lattice FX(R
d, C) can be generated in a different, but related

way. Using the notation of [2], we set Ψ = {FX,C} and define the Ψ-closure of D ∈
G(Rd, C) by

cl Ψ(D) =
{

z ∈ Rd | FX,C(z) ≥ F△

X,C(D)
}

.

Now, one has
cl Ψ = Q−

X,C ◦ F△

X,C .

Therefore, the set of all fixed points of the closure operator Q−
X,C ◦ F△

X,C coincides with
the complete lattice generated by the singleton Ψ = {FX,C} via D = cl ψ(D). The
relation defined by

z1 ≤Ψ z
2 ⇔ FX,C(z

1) ≤ FX,C(z
2),

is a total order which is extended to P(Rd) by

D1 �Ψ D
2 ⇔ F△

X,C(D
1) ≤ F△

X,C(D
2).

The function FX,C can be understood as a ranking function for multivariate data
points in Rd. Such ranking functions are used in statistics, e.g., for outlier detection (see
[14]), and also for decision making (see [10]). The function F△

X,C gives a corresponding
ranking for subsets of Rd.

A different (non-total) order relation can be constructed using the w-distribution
functions FX,w with w ∈ C+\{0} instead of the lower C-distribution function FX,C .
We consider the family Φ = {FX,w | w ∈ C+\{0}} which induces the relation

z1 ≤Φ z
2 ⇔ ∀w ∈ C+\{0} : FX,w(z

1) ≤ FX,w(z
2)

on Rd which is non-total in general, as well as the set relation

D1 �Φ D
2 ⇔ ∀w ∈ C+\{0} : F△

X,w(D
1) ≤ F△

X,w(D
2)

on G(Rd, C). Since the infimum over w ∈ C+ can be taken first on the left hand side
of the two scalar inequalities above and then on the right hand side, the relations ≤Ψ

and �Ψ above turn out to be extensions of ≤Φ and �Φ, respectively: z
1 ≤Φ z

2 implies
z1 ≤Ψ z

2 and D1 �Φ D
2 implies D1 �Ψ D

2.
Define the Φ-closure of D ∈ G(Rd, C) by

cl Φ(D) =
⋂

w∈C+\{0}

{

z ∈ Rd | FX,w(z) ≥ F△

X,w(D)
}

.

It follows from [2, Proposition 2.2] that cl Φ is a closure operator which generates the
complete lattice

CX(R
d, C) =

{

D ∈ G(Rd, C) | D = cl Φ(D)
}

with the relation ⊇. The next result characterizes the case where cl Φ coincides with
the identity operator, that is, CX(R

d, C) = G(Rd, C).

10



Theorem 2. The following are equivalent:
(a) For every w ∈ C+\{0}, the cumulative distribution function FwTX is strictly

increasing.
(b) For every D ∈ G(Rd, C), D = cl Φ(D).

Proof. Suppose that (a) holds and let D ∈ G(Rd, C). Clearly, D ⊆ cl Φ(D). To
show the reverse inclusion, let z ∈ cl Φ(D). Fix w ∈ C+\{0}. We have FX,w(z) ≥
F△

X,w(D). By (5) one has

FwTX(w
Tz) = FX,w(z) ≥ F△

X,w(D) = inf
y∈D

FwTX(w
Ty) = FwTX

(

inf
y∈D

wTy

)

,

where FwTX(−∞) = 0 is understood. Hence, the strict monotonicity of FwTX implies

wT z ≥ inf
y∈D

wTy.

Since this holds for every w ∈ C+\{0}, one may conlude that z ∈ D. Hence, cl Φ(D) ⊆
D.

Conversely, suppose that (b) holds. To get a contradiction, assume that there exists
w̄ ∈ C+\{0} such that Fw̄TX is not strictly increasing. Hence, there exist a, b ∈ R such
that a < b and Fw̄TX(a) = Fw̄TX(b). It is clear that one can find za, zb ∈ Rd with
w̄Tza = a and w̄T zb = b. Let us define

D = {zb}+H+(w̄).

Clearly, D ∈ G(Rd, C) and zb ∈ D. We claim that za ∈ cl Φ(D). First, note that

inf
y∈D

wTy =

{

sw̄Tzb = sb if w = sw̄ for some s > 0,

−∞ else,

for each w ∈ C+\{0}. Hence, if w = sw̄ for s > 0, then

F△

X,w(D) = inf
y∈D

FwTX(w
Ty) = inf

y∈D
Fw̄TX(w̄

Ty)

= Fw̄TX

(

inf
y∈D

w̄Ty

)

= Fw̄TX(b) = Fw̄TX(a) = Fw̄TX(w̄
Tza) = FX,w(z

a).

On the other hand, if w ∈ C+\{0} with w 6= sw̄ for every s > 0, then

F△

X,w(D) = FwTX

(

inf
y∈D

wTy

)

= FwTX(−∞) = 0 ≤ FX,w(z
a).

Hence, the claim follows. However,

w̄Tza = a < b = w̄Tzb = inf
y∈D

w̄Ty,

11



which shows that za /∈ D. Since D 6= cl Φ(D), we get a contradiction to (b). Hence,
(a) holds. �

Note that the condition (a) in Theorem 2 requires, for each w ∈ C+\{0}, the
continuous part of FwTX to be strictly increasing although FwTX may have jumps.

Remark 4. It is easy to check that D ⊆ cl Φ(D) ⊆ cl Ψ(D) for each D ∈ G(Rd, C).
Under the conditions of Theorem 2, we have D = cl Φ(D). In general, cl Φ(D) may be
a (much) smaller set than cl Ψ(D). However, if C = H+(w) for some w ∈ Rd\{0},
then C+ is the ray generated by w so that cl Φ(D) = cl Ψ(D) for every D ∈ G(Rd, C).
In this case, �Φ is also a total order and coincindes with �Ψ.

5 The simulation result

The main question in this section is how the quantile function characterizes the dis-
tribution. In the univariate case, one can show that the quantile, taken at a random
variable uniformly distributed over [0, 1], produces a random variable which has the
cumulative distribution function that defines the quantile (compare, for example, [7,
Lemma A.19], the “simulation lemma”). In our setting, quantiles are sets, so plugging
in a random variable with values in [0, 1] produces a random set.

Let U : Ω → [0, 1] be a standard uniform random variable and define a function
X : Ω → G(Rd, C) by

X (ω) = Q−
X,C(U(ω))

for every ω ∈ Ω. To be able to talk about the distribution of X under P, we first view X
as a measurable function by equipping G(Rd, C) with the σ-algebra constructed below.

For each K ⊆ Rd, let

DK =
{

D ∈ G(Rd, C) | D ∩K = ∅
}

and
DK =

{

D ∈ G(Rd, C) | D ∩K 6= ∅
}

,

which is the complement of DK in G(Rd, C). Let us denote by K the set of all compact
subsets of Rd. Note that the collection

{

DK | K ∈ K
}

is a π-system on G(Rd, C) since
DK1 ∩ DK2 = DK1∪K2 and K1 ∪ K2 ∈ K for every K1, K2 ∈ K. Let B(G(Rd, C)) be
the σ-algebra generated by

{

DK | K ∈ K
}

, called the Borel σ-algebra on G(Rd, C); the
reader is referred to [11, Section 1.1] for a detailed discussion. Clearly, B(G(Rd, C)) is
also generated by {DK | K ∈ K}.

We shall establish the measurability of X with respect to B(G(Rd, C)).

Lemma 3. The function X : Ω → G(Rd, C) is measurable with respect to A and
B(G(Rd, C)).
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Proof. Let K ∈ K. Note that

{X ∈ DK} =
{

ω ∈ Ω | Q−
X,C(U(ω)) ∩K 6= ∅

}

=
{

ω ∈ Ω |
{

z ∈ Rd | FX,C(z) ≥ U(ω)
}

∩K 6= ∅
}

= {ω ∈ Ω | ∃z ∈ K : FX,C(z) ≥ U(ω)}

=

{

ω ∈ Ω | max
z∈K

FX,C(z) ≥ U(ω)

}

=

{

U ≤ max
z∈K

FX,C(z)

}

∈ A,

where the fourth equality and the well-definedness of maximum is by the upper semicon-
tinuity of FX,C in Proposition 1(d), and the last equality follows since U is measurable
with respect to the Borel σ-algebra on [0, 1] and A. Hence, by [1, Proposition I.2.3], it
follows that {X ∈ D} for every D ∈ B(G(Rd, C)), that is, X is measurable. �

Thanks to Lemma 3, X is a random variable taking values in G(Rd, C). Hence,
its distribution under P is the probability measure P ◦X−1 on (G(Rd, C),B(G(Rd, C)))
defined by

P ◦ X−1(D) = P {X ∈ D}

for every D ∈ B(G(Rd, C)). Since
{

DK | K ∈ K
}

is a π-system which generates the
σ-algebra B(G(Rd, C)), the distribution of X is determined by its values on this π-
system; see [1, Proposition I.3.7], for instance. Since P

{

X ∈ DK
}

= 1− P {X ∈ DK}
for every K ∈ K, the distribution of X is also determined by the so-called capacity
functional TX : K → [0, 1] defined by

TX (K) = P {X ∈ DK} = P {X ∩K 6= ∅}

for each K ∈ K.

Proposition 6. The lower C-distribution function FX,C : R
d → [0, 1] and the capacity

functional TX of the set-valued random variable X determine each other.

Proof. Let K ∈ K. Following the calculation in the proof of Lemma 3, we have

TX (K) = P

{

U ≤ max
z∈K

FX,C(z)

}

= max
z∈K

FX,C(z)

since U has the standard uniform distribution. Hence, FX,C determines TX .
Conversely, let z ∈ Rd. The above calculation yields FX,C(z) = TX ({z}). Hence,

TX determines FX,C . �

Proposition 6 together with (6), (7) implies that the lower C-quantile Q−
X,C , the

lower C-distribution function FX,C , the inf-extension F
△

X,C , the capacity functional TX ,
and the distribution P ◦ X−1 determine each other.
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[8] Hamel AH, Heyde F, Löhne A, Rudloff B, Schrage C, Set optimization–a rather
short introduction. In: Hamel, A.H., Heyde, F., Löhne, A., Rudloff, B., Schrage,
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