
DERIVED EQUIVALENCES FOR THE FLOPS OF TYPE C2 AND AG
4 VIA

MUTATION OF SEMIORTHOGONAL DECOMPOSITION

HAYATO MORIMURA

Abstract. We give a new proof of the derived equivalence of a pair of varieties connected by the
flop of type C2 in the list of Kanemitsu [13], which is originally due to Segal [22]. We also prove
the derived equivalence of a pair of varieties connected by the flop of type AG

4 in the same list.
The latter proof follows that of the derived equivalence of Calabi–Yau 3-folds in Grassmannians
Gr(2, 5) and Gr(3, 5) by Kapustka and Rampazzo [15] closely.

1. Introduction

Let G be a semisimple Lie group and B a Borel subgroup of G. For distinct maximal
parabolic subgroups P and Q of G containing B, three homogeneous spaces G/P, G/Q, and
G/(P ∩ Q) form the following diagram:

F B G/(P ∩ Q)
$−

vv

$+

((
P B G/P Q B G/Q

We write the hyperplane classes of P and Q as h and H respectively. By abuse of notation,
the pull-back to F of the hyperplane classes h and H will be denoted by the same symbol.
The morphisms $− and $+ are projective morphisms whose relative O(1) are O(H) and O(h)
respectively. We consider the diagram

F
$−

}}

� _

ι

��

$+

!!
P� _

ι−
��

V
ϕ−

}}

ϕ+

  

Q� _
ι+
��

V−
φ−

!!

V+

φ+

~~
V0

(1.1)

where

• V− is the total space of (($−)∗O(h + H))∨ over P,
• V+ is the total space of(($+)∗O(h + H))∨ over Q,
• V is the total space of O(−h − H) over F,
• ι−, ι+, and ι are the zero-sections,
• ϕ− and ϕ+ are blow-ups of the zero-sections, and
• φ− and φ+ are the affinizations which contract the zero sections.

If V− and V+ have the trivial canonical bundles, then one expects from [4, Conjecture 4.4] or
[16, Conjecture 1.2] that V− and V+ are derived-equivalent.
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When G is the simple Lie group of type G2, Ueda [24] used sequence of mutations of
semiorthogonal decompositions of Db(V) obtained by applying Orlov’s theorem [20] to the
diagram (1.1) to prove the derived equivalence of V− and V+. This sequence of mutations in
turn follows that of Kuznetsov [18] closely.

In this paper, by using the same method, we give a new proof to the following theorem,
which is originally due to Segal [22], where the flop was attributed to Abuaf:

Theorem 1.1. Varieties connected by the flop of type C2 are derived-equivalent.

The term the flop of type C2 was introduced in [13], where simple K-equivalent maps in
dimension at most 8 were classified. There are several ways to prove Theorem 1.1. In [22],
Segal showed the derived equivalence by using tilting vector bundles. Hara [8] constructed
alternative tilting vector bundles and studied the relation between functors defined by him and
Segal.

The flop of type AG
2r−2 is also in the list of Kanemitsu[13]. It connects V− and V+ for P =

Gr(r − 1, 2r − 1) and Q = Gr(r, 2r − 1). Similarly, we prove the following theorem:

Theorem 1.2. Varieties connected by the flop of type AG
4 are derived-equivalent.

Although the proof of Theorem 1.2 is parallel to that of the derived equivalence of Calabi–
Yau complete intersections in P = Gr(2, 5) and Q = Gr(3, 5) defined by global sections of the
equivariant vector bundles dual to V− and V+ in [15, Theorem 5.7], we write down a full detail
for clarity. As explained in [24], the derived equivalence obtained in [15] in turn follows from
Theorem 1.2 using matrix factorizations.

We also give a similar proof of derived equivalences for a Mukai flop and a standard flop.
For a Mukai flop, Kawamata [16] and Namikawa [19] independently showed the derived equiv-
alence by using the pull-back and the push-forward along the fiber product V−×V0 V+. Adding-
ton, Donovan, and Meachan [1] introduced a generalization of the functor of Kawamata and
Namikawa parametrized by an integer, and discovered that certain compositions of these func-
tors give the P-twist in the sense of Huybrechts and Thomas [11]. They also considered the case
of a standard flop, where the derived equivalence is originally proved by Bondal and Orlov [5].
Our proof is obtained by proceeding the mutation performed in [5] and [1] a little further in a
straightforward way. Hara [7] also studied a Mukai flop in terms of non-commutative crepant
resolutions.

For a standard flop, Segal [21] showed the derived equivalence by using the grade restriction
rule for variation of geometric invariant theory quotients (VGIT) originally introduced by Hori,
Herbst, and Page [10]. VGIT method was subsequently developed by Halpern-Leistner [6] and
Ballard, Favero, and Katzarkov [2]. It is an interesting problem to develop this method further
to prove the derived equivalence for the flop of type C2 and AG

4 , and a Mukai flop.

Notations and conventions. We work over an algebraically closed field k of characteristic
0 throughout this paper. All pull-back and push-forward are derived unless otherwise speci-
fied. The complexes underlying Ext•(−,−) and H•(−) will be denoted by hom(−,−) and h(−)
respectively.

Acknowledgements. The author would like to express his gratitude to Kazushi Ueda for guid-
ance and encouragement. The author would like to thank anonymous reviewers for their careful
reading of the manuscript and their many suggestions and comments. The author declare that
he has no conflict of interest.

2. flop of type C2

Let P and Q be the parabolic subgroups of the simple Lie group G of type C2 associated with
the crossed Dynkin diagrams and . The corresponding homogeneous spaces are the
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projective space P = P(V), the Lagrangian Grassmannian Q = LGr(V), and the isotropic flag
variety F = PP

(
L ⊥

P /LP
)

= PQ
(
SQ

)
. Here V is a 4-dimensional symplectic vector space, L ⊥

P
is the rank 3 vector bundle given as the symplectic orthogonal to the tautological line bundle
LP � OP(−h) on P, and SQ is the tautological rank 2 bundle on Q. Note that Q is also a
quadric hypersurface in P4. Tautological sequences on Q = LGr(V) and F � PQ

(
SQ

)
give

0→ SQ → OQ ⊗ V → S ∨
Q → 0(2.1)

and

0→ OF(−h + H)→ S ∨
F → OF(h)→ 0,(2.2)

where SF B $∗+SQ. We have

($−)∗ (OF(H)) �
((

L ⊥
P /LP

)
⊗LP

)∨
and

($+)∗ (OF(h)) � S ∨
Q ,

whose determinants are given by OP(2h) and OQ(H) respectively. Since ωP � OP(−4h), ωQ �
OQ(−3H), and ωF � OF(−2h − 2H), we have ωV− � OV− , ωV+

� OV+
, and ωV � OV(−h − H).

Recall from [3] that

Db(P) = 〈OP(−2h),OP(−h),OP,OP(h)〉,(2.3)

and from [17] (cf. also [14]) that

Db(Q) = 〈OQ(−H),S ∨
Q (−H),OQ,OQ(H)〉.

Since ϕ± are blow-ups along the zero-sections, it follows from [20] that

Db(V) = 〈ι∗$
∗
−Db(P),Φ−(Db(V−))〉(2.4)

and

Db(V) = 〈ι∗$
∗
+Db(Q),Φ+(Db(V+))〉,(2.5)

where

Φ− B ((−) ⊗ OV(H)) ◦ ϕ∗− : Db(V−)→ Db(V)

and

Φ+ B ((−) ⊗ OV(h)) ◦ ϕ∗+ : Db(V+)→ Db(V).

By abuse of notation, we use the same symbol for an object of Db(F) and its image in Db(V)
by the push-forward ι∗. (2.3) and (2.4) give

Db(V) = 〈OF(−2h),OF(−h),OF,OF(h),Φ−(Db(V−))〉.

Since ωV � OV(−h − H), by mutating the first term to the far right, and then Φ−(Db(V−)) one
step to the right, we obtain

Db(V) = 〈OF(−h),OF,OF(h),OF(−h + H),Φ1(Db(V−))〉,

where

Φ1 B R〈OF(−h+H)〉 ◦ Φ−.

In the sequel, we will use the following fact.

Lemma 2.1. Given two vector bundles EF,FF on F, if h
(
E∨F ⊗ FF(−h − H)

)
' 0, then we have

homOV (EF,FF) ' h
(
E∨F ⊗ FF

)
.

3



Proof. We have

homOV (EF,FF) ' homOV ({EV(h + H)→ EV} ,FF)

' h
({
E∨F ⊗ FF → E

∨
F ⊗ FF(−h − H)

})
' h

(
E∨F ⊗ FF

)
.

�

Note that the canonical extension of OF(h) by OF(−h + H) associated with

homOV (OF(h),OF(−h + H)) ' h (OF(−2h + H))

' h
(
($+)∗OF(−2h) ⊗ OQ(H)

)
' h

(
OQ[−1]

)
' k[−1]

is given by the short exact sequence (2.2). By mutating OF(−h + H) one step to the left, OF(−h)
to the far right, and then Φ1(Db(V−)) one step to the right, we obtain

Db(V) = 〈OF,S
∨

F ,OF(h),OF(H),Φ2(Db(V−))〉,

where

Φ2 B R〈OF(H)〉 ◦ Φ1.

One can easily see that OF(h) and OF(H) are orthogonal, so that

Db(V) = 〈OF,S
∨

F ,OF(H),OF(h),Φ2(Db(V−))〉.(2.6)

By mutating Φ2(Db(V−)) one step to the left, and then OF(h) to the far left, we obtain

Db(V) = 〈OF(−H),OF,S
∨

F ,OF(H),Φ3(Db(V−))〉,

where

Φ3 B L〈OF(h)〉 ◦ Φ2.

We have

homOV

(
OF,S

∨
F
)
' h

(
S ∨

F
)
' V∨,

and the dual of (2.1) shows that the kernel of the evaluation map OF ⊗ V∨ → S ∨
F is SF �

S ∨
F (−H). By mutating S ∨

F one step to the left, we obtain

Db(V) = 〈OF(−H),S ∨
F (−H),OF,OF(H),Φ3(Db(V−))〉.(2.7)

By comparing (2.7) with (2.5), we obtain a derived equivalence

Φ B Φ!
+ ◦ Φ3 : Db(V−)

∼
−→ Db(V+),

where

Φ!
+(−) B (ϕ+)∗ ◦ ((−) ⊗ OV(−h)) : Db(V)→ Db(V+)

is the left adjoint functor of Φ+.
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3. flop of type AG
4

Let P and Q be the parabolic subgroups of the simple Lie group G of type A4 associated with
the crossed Dynkin diagrams and . The corresponding homogeneous spaces are
the Grassmannians P = Gr(2,V), Q = Gr(3,V), and the partial flag variety F = PP

(
∧2Q∨

P

)
=

PQ
(
∧2SQ

)
. Here V is a 5-dimensional vector space, Q∨

P is the dual of the universal quotient
bundle on P, and SQ is the tautological rank 3 bundle on Q. We have

($−)∗ (OF(H)) � ∧2QP

and

($+)∗ (OF(h)) � ∧2S ∨
Q ,

whose determinants are given by OP(2h) and OQ(2H) respectively. Since ωP � OP(−5h), ωQ �
OQ(−5H), and ωF � OF(−3h − 3H), we have ωV− � OV− , ωV+

� OV+
and ωV � OV(−2h − 2H).

First, we adapt several lemmas in [15] to our situation. To distinguish vector bundles which
are obtained as a pull-back to F from P or Q, we put tilde on the pull-back from Q. By abuse
of notation, we use the same symbol for an object of Db(F) and its image in Db(V) by the
push-forward ι∗.

Lemma 3.1. homOV

(
Q̃F,OF (h + aH)

)
' 0 for integers −4 ≤ a ≤ −2.

Proof. We have

homOV

(
Q̃F,OF (h + aH)

)
' h

(
Q̃∨

F (h + aH)
)
' 0,

where the first and the second isomorphisms follow from Lemma 2.1, Borel-Bott-Weil theorem
and [15, Lemma 5.1] respectively. �

Similarly, one can deduce Lemma 3.2 and Lemma 3.3 below from [15, Lemma 5.2, Lemma
5.3] by checking that OF ((a − 1)H), E∨F ⊗ E

′
F ((a − 1)h − 2H), and F̃ ∨F ⊗ F̃

′
F (−2h + (a − 1)H)

are acyclic as an object of Db(F).

Lemma 3.2. homOV (OF,OF (h + aH)) ' 0 for integers −3 ≤ a ≤ −1.

Lemma 3.3. Let EF,E
′
F be the pull-back to F of vector bundles E,E′ on P, and let F̃F, F̃

′
F be

the pull-back to F of vector bundles F ,F ′ on Q. Then we have homOV

(
EF,E

′
F (ah − H)

)
' 0

and homOV

(
F̃F, F̃

′
F (−h + aH)

)
' 0 for all integers a.

The parallel result to the following lemma was tacitly used in [15].

Lemma 3.4. As an object of Db(V), OF, Q̃F,SF, and S ∨
F are left orthogonal to S̃ ∨

F (h − 2H) ,
S̃ ∨

F (h − 2H) ,OF (2h − 2H), and QF respectively.

Lemma 3.5 below and the tautological sequence show that ROFQ̃
∨
F ' S̃ ∨

F and ROFSF ' QF
in Db(V).

Lemma 3.5. homOV

(
Q̃∨

F ,OF
)
' V and homOV (SF,OF) ' V.

Again, both Lemma 3.4 and Lemma 3.5 follow from Lemma 2.1 and Borel-Bott-Weil theo-
rem. Lemma 3.6 below and the exact sequences

0→ OF(h − H)→ QF → Q̃F → 0

and

0→ SF → S̃F → OF(h − H)→ 0

obtained in [15] show that ROF(h−H)Q̃F ' QF[1] and LOF(−h+H)S̃ ∨
F ' S ∨

F in Db(V).
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Lemma 3.6. homOV

(
Q̃F,OF(h − H)

)
' k[−1] and homOV

(
OF(−h + H), S̃ ∨

F

)
' k.

Proof. We have

homOV

(
Q̃F,OF(h − H)

)
' h

(
Q̃∨

F (h − H)
)
' k[−1],

where the isomorphisms follow from Lemma 2.1 and Borel-Bott-Weil theorem. Similarly, we
have

homOV

(
OF(−h + H), S̃ ∨

F

)
' h

(
S̃ ∨

F (h − H)
)
' k.

�

Recall from [17] (cf. also [14])

Db(P) = 〈SP(−2h),OP(−2h),SP(−h),OP(−h), · · · ,SP(2h),OP(2h)〉,

and

Db(Q) = 〈OQ,QQ,OQ(H),QQ(H), · · · ,OQ(4H),QQ(4H)〉.(3.1)

Since ϕ± are blow-ups along the zero-sections, it follows from [20] that

Db(V) = 〈ι∗$
∗
−Db(P), ι∗$∗−Db(P)(h + H),Φ−(Db(V−))〉(3.2)

and

Db(V) = 〈ι∗$
∗
+Db(Q), ι∗$∗+Db(Q)(h + H),Φ+(Db(V+))〉,(3.3)

where

Φ− B ((−) ⊗ OV(2H)) ◦ ϕ∗− : Db(V−)→ Db(V)

and

Φ+ B ((−) ⊗ OV(2h)) ◦ ϕ∗+ : Db(V+)→ Db(V).

We write Oi, j B OF(ih + jH). (3.1) and (3.3) give a semiorthogonal decomposition of the form

Db(V) = 〈O0,0, Q̃0,0,O0,1, Q̃0,1,O0,2, Q̃0,2,O0,3, Q̃0,3,O0,4, Q̃0,4

O1,1, Q̃1,1,O1,2, Q̃1,2,O1,3, Q̃1,3,O1,4, Q̃1,4,O1,5, Q̃1,5,Φ+(Db(V+))〉.

Since ωV � OV(−2h−2H), by mutating the first five terms to the far right, and then Φ+(Db(V+))
five steps to the right, we obtain

Db(V) = 〈Q̃0,2,O0,3, Q̃0,3,O0,4, Q̃0,4,O1,1, Q̃1,1,O1,2, Q̃1,2,O1,3

Q̃1,3,O1,4, Q̃1,4,O1,5, Q̃1,5,O2,2, Q̃2,2,O2,3, Q̃2,3,O2,4,Φ1(Db(V+))〉,

where

Φ1 B R
〈O2,2,Q̃2,2,O2,3,Q̃2,3,O2,4〉

◦ Φ+.

One can easily see that O1,1 is orthogonal to O0,3, Q̃0,3, O0,4, and Q̃0,4 by Lemma 3.1 and
Lemma 3.2, so that

Db(V) = 〈Q̃0,2,O1,1,O0,3, Q̃0,3,O0,4, Q̃0,4, Q̃1,1,O1,2, Q̃1,2,O1,3

Q̃1,3,O2,2,O1,4, Q̃1,4,O1,5, Q̃1,5, Q̃2,2,O2,3, Q̃2,3,O2,4,Φ1(Db(V+))〉.

By mutating Q̃0,2, Q̃1,3, Q̃1,1, and Q̃2,2 one step to the right, we obtain by Q̃1,1 � Q̃∨
1,2, Lemma

3.5, and Lemma 3.6

Db(V) = 〈O1,1,Q0,2,O0,3, Q̃0,3,O0,4, Q̃0,4,O1,2, S̃
∨

1,2, Q̃1,2,O1,3

O2,2,Q1,3,O1,4, Q̃1,4,O1,5, Q̃1,5,O2,3, S̃
∨

2,3, Q̃2,3,O2,4,Φ1(Db(V+))〉.
6



By mutating O1,2 and O2,3 four steps to the left, we obtain by Lemma 3.1, Lemma 3.2, and
Lemma 3.6

Db(V) = 〈O1,1,Q0,2,O1,2,O0,3,Q0,3,O0,4, Q̃0,4, S̃
∨

1,2, Q̃1,2,O1,3

O2,2,Q1,3,O2,3,O1,4,Q1,4,O1,5, Q̃1,5, S̃
∨

2,3, Q̃2,3,O2,4,Φ1(Db(V+))〉.

One can easily see that S̃ ∨
1,2 is orthogonal to O0,4 and Q̃0,4 by Lemma 3.4, so that

Db(V) = 〈O1,1,Q0,2,O1,2,O0,3,Q0,3, S̃
∨

1,2,O0,4, Q̃0,4, Q̃1,2,O1,3

O2,2,Q1,3,O2,3,O1,4,Q1,4, S̃
∨

2,3,O1,5, Q̃1,5, Q̃2,3,O2,4,Φ1(Db(V+))〉.

By mutating O0,3 and O1,4 two steps to the right, O1,3 and O2,4 three steps to the left, and then
O0,4 and O1,5 two steps to the right, we obtain by Lemma 3.5 and Lemma 3.6

Db(V) = 〈O1,1,Q0,2,O1,2,S0,3,S
∨

1,2,O0,3,O1,3,S0,4,S
∨

1,3,O0,4

O2,2,Q1,3,O2,3,S1,4,S
∨

2,3,O1,4,O2,4,S1,5,S
∨

2,4,O1,5,Φ1(Db(V+))〉.

By mutating O1,1 to the far right, and then Φ1(Db(V+)) one step to the right, we obtain

Db(V) = 〈Q0,2,O1,2,S0,3,S
∨

1,2,O0,3,O1,3,S0,4,S
∨

1,3,O0,4,O2,2

Q1,3,O2,3,S1,4,S
∨

2,3,O1,4,O2,4,S1,5,S
∨

2,4,O1,5,O3,3,Φ2(Db(V+))〉,

where

Φ2 B R〈O3,3〉 ◦ Φ1.

By Lemma 3.2, Lemma 3.3, and Lemma 3.4, we obtain

Db(V) = 〈Q0,2,O1,2,S
∨

1,2,O2,2,S0,3,O0,3,O1,3,S
∨

1,3,Q1,3,O2,3

S ∨
2,3,O3,3,S0,4,O0,4,S1,4,O1,4,O2,4,S

∨
2,4,S1,5,O1,5,Φ2(Db(V+))〉.

By mutating Φ2(Db(V+)) ten steps to the left, and then last ten terms to the far left, we obtain

Db(V) = 〈S ∨
0,1,O1,1,S−2,2,O−2,2,S−1,2,O−1,2,O0,2,S

∨
0,2,S−1,3,O−1,3

Q0,2,O1,2,S
∨

1,2,O2,2,S0,3,O0,3,O1,3,S
∨

1,3,Q1,3,O2,3,Φ3(Db(V+))〉,

where

Φ3 B L〈S ∨
2,3,O3,3,S0,4,O0,4,S1,4,O1,4,O2,4,S ∨

2,4,S1,5,O1,5〉 ◦ Φ2.

By Lemma 3.3, we obtain

Db(V) = 〈S ∨
0,1,O1,1,S−2,2,O−2,2,S−1,2,O−1,2,O0,2,S

∨
0,2,Q0,2,O1,2

S ∨
1,2,O2,2,S−1,3,O−1,3,S0,3,O0,3,O1,3,S

∨
1,3,Q1,3,O2,3,Φ3(Db(V+))〉.

By mutating Q0,2 and Q1,3 two steps to the left, the first two terms to the far right, and then
Φ3(Db(V+)) two steps to the right, we obtain by S ∨

0,0 ' S1,0, Lemma 3.4, and Lemma 3.6

Db(V) = 〈S−2,2,O−2,2,S−1,2,O−1,2,S0,2,O0,2,S1,2,O1,2,S2,2,O2,2

S−1,3,O−1,3,S0,3,O0,3,S1,3,O1,3,S2,3,O2,3,S3,3,O3,3,Φ4(Db(V+))〉,
(3.4)

where

Φ4 B R〈S ∨
2,3,O3,3〉 ◦ Φ3.

By comparing (3.4) with (3.2), we obtain a derived equivalence

Φ B Φ!
− ◦ Φ4 : Db(V+)

∼
−→ Db(V−),

7



where

Φ!
−(−) B (ϕ−)∗ ◦ ((−) ⊗ OV(−2H)) : Db(V)→ Db(V−)

is the left adjoint functor of Φ−.

4. Mukai flop

For n ≥ 2, let P and Q be the maximal parabolic subgroups of the simple Lie group of
type An associated with the crossed Dynkin diagrams and . The corresponding
homogeneous spaces are the projective spaces P = PV, Q = PV∨, and the partial flag variety
F = F (1, n; V), where V is an (n + 1)-dimensional vector space. Since ωP � O(−(n + 1)h),
ωQ � O(−(n + 1)H), and ωF � O(−nh − nH), we have ωV− � OV− , ωV+

� OV+
, and ωV �

O(−(n − 1)h − (n − 1)H).

Lemma 4.1. OF(−ih + jH) and OF(−(i + 1)h + ( j − 1)H) are acyclic for 1 ≤ j ≤ n − 1 and
1 ≤ i ≤ n − j.

Proof. Since j − n ≤ −i ≤ −1 and j − n − 1 ≤ −i − 1 ≤ −2, the derived push-foward of
OF(−ih + jH) and OF(−(i + 1)h + ( j − 1)H) vanish by [9, Exercise III.8.4] unless i = n − 1 and
j = 1, in which case the acyclicity of OF(−nh) is obvious. �

Lemma 4.2. homOV (OF(ih − jH),OF) ' 0 for 1 ≤ j ≤ n − 1 and 1 ≤ i ≤ n − j.

Proof. We have

homOV (OF(ih − jH),OF) ' h ({OF(−ih + jH)→ OF(−(i + 1)h + ( j − 1)H)}) ,

which vanishes by Lemma 4.1. �

Recall from [3] that

Db(P) = 〈OP,OP(h), · · · ,OP(nh)〉(4.1)

and

Db(Q) = 〈OQ,OQ(H), · · · ,OQ(nH)〉.(4.2)

Since ϕ± are blow-ups along the zero-sections, it follows from [20] that

Db(V) = 〈ι∗$
∗
−Db(P), · · · , ι∗$∗−Db(P) ⊗ OV((n − 2)H),Φ−(Db(V−))〉(4.3)

and

Db(V) = 〈ι∗$
∗
+Db(Q), · · · , ι∗$∗+Db(Q) ⊗ OV((n − 2)h),Φ+(Db(V+))〉,(4.4)

where

Φ− B ((−) ⊗ OV((n − 1)H)) ◦ ϕ∗− : Db(V−)→ Db(V)

and

Φ+ B ((−) ⊗ OV((n − 1)h)) ◦ ϕ∗+ : Db(V+)→ Db(V).

We write Oi, j B OF(ih + jH). (4.1) and (4.3) give a semiorthogonal decomposition of the form

Db(V) = 〈A0,Φ−(Db(V−))〉
whereA0 is given by

O0,0 O1,0 · · · On−2,0 On−1,0 On,0

O1,1 · · · On−2,1 On−1,1 On,1 On+1,1
. . .

...
...

...
...

. . .

On−2,n−2 On−1,n−2 On,n−2 On+1,n−2 · · · O2n−2,n−2.

(4.5)
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Note from Lemma 4.2 that there are no morphisms from right to left in (4.5). Since ωV �
O−(n−1),−(n−1), by mutating first

O0,0 O1,0 · · · On−2,0

O1,1 · · · On−2,1
. . .

...
On−2,n−2

to the far right, and then Φ−(Db(V−)) to the far right, we obtain

Db(V) = 〈A1,Φ1(Db(V−))〉,

where

Φ1(Db(V−)) B R〈On−1,n−1,··· ,O2n−3,2n−3〉 ◦ Φ−

andA1 is given by

On−1,0 On,0

On−1,1 On,1 On+1,1
...

...
...

. . .

On−1,n−2 On,n−2 On+1,n−2 · · · O2n−3,n−2 O2n−2,n−2

On−1,n−1 On,n−1 On+1,n−1 · · · O2n−3,n−1

On,n On+1,n · · · O2n−3,n

On+1,n+1 · · · O2n−3,n+1
. . .

...
O2n−3,2n−3.

By mutating Φ1(Db(V−)) one step to the left, and then O2n−2,n−2 to the far left, we obtain

Db(V) = 〈A2,Φ2(Db(V−))〉,(4.6)

where

Φ2(Db(V−)) B LO2n−2,n−2 ◦ Φ1

andA2 is given by

On−1,−1

On−1,0 On,0

On−1,1 On,1 On+1,1
...

...
...

. . .

On−1,n−2 On,n−2 On+1,n−2 · · · O2n−3,n−2

On−1,n−1 On,n−1 On+1,n−1 · · · O2n−3,n−1

On,n On+1,n · · · O2n−3,n

On+1,n+1 · · · O2n−3,n+1
. . .

...
O2n−3,2n−3.

By comparing (4.6) with (4.2) and (4.4), we obtain a derived equivalence

Φ B (ϕ+)∗ ◦ ((−) ⊗ O−(2n−2),0) ◦ Φ2 : Db(V−)
∼
−→ Db(V+).
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5. Standard flop

For n ≥ 1, let P and Q be the maximal parabolic subgroups of the semisimple Lie group
G = SL(V)×SL(V∨) associated with the crossed Dynkin diagram ⊕ and ⊕

. The corresponding homogeneous spaces are the projective spaces P = PV , Q = PV∨,
and their product F = PV × PV∨. Since ωP � O(−(n + 1)h), ωQ � O(−(n + 1)H), and ωF �
O(−(n + 1)h − (n + 1)H), we have ωV− � OV− , ωV+

� OV+
, and ωV � O(−nh − nH).

Lemma 5.1. homOV (OF(ih − jH),OF) ' 0 for 1 ≤ j ≤ n − 1 and 1 ≤ i ≤ n − j.

Proof. We have

homOV (OF(ih − jH),OF) ' h ({OF(−ih + jH)→ OF(−(i + 1)h + ( j − 1)H)}) ,

which vanishes for 1 ≤ i ≤ n − j ≤ n − 1. �

It follows from [20] that

Db(V) = 〈ι∗$
∗
−Db(P), · · · , ι∗$∗−Db(P) ⊗ O((n − 1)(h + H)),Φ−(Db(V−))〉(5.1)

and

Db(V) = 〈ι∗$
∗
+Db(Q), · · · , ι∗$∗+Db(Q) ⊗ O((n − 1)(h + H)),Φ+(Db(V+))〉,(5.2)

where

Φ− B (−) ⊗ OV(n(h + H)) ◦ ϕ∗− : Db(V−)→ Db(V)

and

Φ+ B (−) ⊗ OV(n(h + H)) ◦ ϕ∗+ : Db(V+)→ Db(V).

We write Oi, j B OF(ih + jH). (4.1) and (5.1) give a semiorthogonal decomposition of the form

Db(V) = 〈A0,Φ−(Db(V−))〉

whereA0 is given by

O0,0 O1,0 · · · On−2,0 On−1,0 On,0

O1,1 · · · On−2,1 On−1,1 On,1 On+1,1
. . .

...
...

...
...

. . .

On−2,n−2 On−1,n−2 On,n−2 On+1,n−2 · · · O2n−2,n−2

On−1,n−1 On,n−1 On+1,n−1 · · · O2n−2,n−1 O2n−1,n−1.

(5.3)

Note from Lemma 5.1 that there are no morphisms from right to left in (5.3). Since ωV �
OV(−nh − nH), by mutating first

O0,0 O1,0 · · · On−2,0

O1,1 · · · On−2,1
. . .

...
On−2,n−2

to the far right, and then Φ−(Db(V−)) to the far right, we obtain

Db(V) = 〈A1,Φ1(Db(V−))〉,

where

Φ1(Db(V−)) B R〈On,n,··· ,O2n−2,2n−2〉 ◦ Φ−
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andA1 is given by

On−1,0 On,0

On−1,1 On,1 On+1,1
...

...
...

. . .

On−1,n−1 On,n−1 On+1,n−1 · · · O2n−2,n−1 O2n−1,n−1

On,n On+1,n · · · O2n−2,n

On+1,n+1 · · · O2n−2,n+1
. . .

...
O2n−2,2n−2.

By mutating Φ1(Db(V−)) one step to the left, and then O2n−1,n−1 to the far left, we obtain

Db(V) = 〈A2,Φ2(Db(V−))〉,(5.4)

where

Φ2(Db(V−)) B LO2n−1,n−1 ◦ Φ1

andA2 is given by

On−1,−1

On−1,0 On,0

On−1,1 On,1 On+1,1
...

...
...

. . .

On−1,n−1 On,n−1 On+1,n−1 · · · O2n−2,n−1

On,n On+1,n · · · O2n−2,n

On+1,n+1 · · · O2n−2,n+1
. . .

...
O2n−2,2n−2.

By comparing (5.4) with (4.2) and (5.2), we obtain a derived equivalence

Φ B (ϕ+)∗ ◦ ((−) ⊗ O−(2n−1),0) ◦ Φ2 : Db(V−)
∼
−→ Db(V+).

Remark 5.1. The way of presenting our proof in Section 4 and 5 is called chess game by some
authors [12, 23].
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