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Abstract

This paper aims to present a fairly accessible generalization of several symmetric Gauss-
Seidel decomposition based multi-block proximal alternating direction methods of multipliers
(ADMMs) for convex composite optimization problems. The proposed method unifies and
refines many constructive techniques that were separately developed for the computational
efficiency of multi-block ADMM-type algorithms. Specifically, the majorized augmented
Lagrangian functions, the indefinite proximal terms, the inexact symmetric Gauss-Seidel
decomposition theorem, the tolerance criteria of approximately solving the subproblems,
and the large dual step-lengths, are all incorporated in one algorithmic framework, which
we named as sGS-imiPADMM. From the popularity of convergent variants of multi-block
ADMMs in recent years, especially for high-dimensional multi-block convex composite conic
programming problems, the unification presented in this paper, as well as the corresponding
convergence results, may have the great potential of facilitating the implementation of many
multi-block ADMMs in various problem settings.
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1 Introduction

In this paper, we consider the following multi-block convex composite programming:

min
x∈X , y∈Y

{
p1(x1) + f(x1, . . . , xm) + q1(y1) + g(y1, . . . , yn) | A∗x+ B∗y = c

}
, (1.1)

where X , Y and Z are three finite dimensional real Hilbert spaces, each endowed with an inner
product 〈·, ·〉 and its induced norm ‖ · ‖, and
- X can be decomposed as the Cartesian product of X1, . . . ,Xm, which are finite dimensional
real Hilbert spaces endowed with the inner product 〈·, ·〉 inherited from X and its induced
norm ‖·‖. Similarly, Y = Y1×· · ·×Yn. Based on such decompositions, one can write x ∈ X
as x = (x1, . . . , xm) with xi ∈ Xi, i = 1, . . . ,m, and, similarly, y = (y1, . . . , yn);

- p1 : X1 → (−∞,∞] and q1 : Y1 → (−∞,∞] are two closed proper convex functions;

- f : X → (−∞,∞) and g : Y → (−∞,∞) are continuously differentiable convex functions
with Lipschitz continuous gradients;

- A∗ and B∗ are the adjoints of the two given linear mappings A : Z → X and B : Z → Y,
respectively; c ∈ Z is a given vector;

- without loss of generality, we define the two functions p : X → (−∞,∞] and q : Y →
(−∞,∞] by p(x) := p1(x1), ∀x ∈ X and q(y) := q1(y1), ∀y ∈ Y for convenience.

At the first glance, one may view problem (1.1) as a 2-block separable convex optimization
problem with coupled linear equality constraints. Consequently, the classic alternating direction
method of multipliers (ADMM) [13, 12] and its contemporary variants such as [8, 10] can be
used for solving problem (1.1). For the classic 2-block ADMM, one may refer to [9, 14] for
a history of the algorithm and to the recent note [3] for a thorough study on its convergence
properties.

In high-dimensional settings, it is usually not computationally economical to directly apply
the 2-block ADMM and its variants to solve problem (1.1), as in this case solving the sub-
problems at each ADMM iteration can be too expensive. The difficulty is made more severe
especially when we know that ADMMs, being intrinsically first-order methods, are prone to
require a large number of outer iterations to compute even a moderately accurate approximate
solution. As a result, further decomposition of the variables in problem (1.1) for getting easier
subproblems, if possible, should be incorporated when designing ADMM-type methods for solv-
ing it. Unfortunately, even if the functions f and g in problem (1.1) are separable with respect
to each subspace, say, Xi and Yj, the naive extension of the classic ADMM to multi-block cases
is not necessarily convergent[2]. How to address the aforementioned issues is the key reason why
the algorithmic development, as well as the corresponding convergence analysis, of multi-block
variants of the ADMM has been an important research topic in convex optimization.

Of course, it is not reasonable to expect finding a general algorithmic framework that can
achieve sterling numerical performance on a wide variety of different classes of linearly con-
strained multi-block convex optimization problems. Thus, in this paper our focus is on model
(1.1), which is already quite versatile, for the following two reasons. Firstly, this model is
general enough to handle quite a large number of convex composite optimization models from
both the core convex optimization and realistic applications [19, 4]. Secondly, the convergence
of multi-block variants of the ADMM for solving problem (1.1) has been separately realized in
[25, 19, 18, 4, 30, 5], without sacrificing the numerical performance when compared to the naively
extended multi-block ADMM. The latter has long been served as a benchmark for comparing
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new ADMM-type methods since its impressive numerical performance has been well recognized
in extensive numerical experiments, despite its lack of theoretical convergence guarantee. Cur-
rently, this line of ADMMs has been applied to many concrete instances of problem (1.1), e.g.,
[1, 7, 16, 27, 28, 29, 11, 24, 26, 21], to name just a few.

Motivated by the above exposition, in this paper, we plan to propose a unified multi-block
ADMM for solving problem (1.1). Our unified method is an inexact symmetric Gauss-Seidel
(sGS) decomposition based majorized indefinite-proximal ADMM (sGS-imiPADMM). The pur-
pose of this study is to distill and synthesize all the practical techniques that were construc-
tively exploited in the references mentioned above for the computational efficiency of multi-block
ADMM-type algorithms. Specifically, our unified algorithm incorporates all the following ingre-
dients developed over the past few years:

- the inexact sGS decomposition theorem progressively developed in [25, 19, 20];

- the majorized augmented Lagrangian functions introduced in [18];

- the indefinite proximal terms studied in [18, 30, 5];

- the admissible stopping conditions of approximately solving the subproblems developed in
[4],

together with the large dual step-lengths for the classic ADMM [13].
We show that the proposed sGS-imiPADMM is globally convergent under very mild assump-

tions, and the resulting convergence theorem also improves those in the highly related references
mentioned above. For instance, it refines the sGS-imsPADMM in [4] by substituting the ex-
tra condition [4, (5.26) of Theorem 5.1] for establishing the convergence with the weaker basic
condition[4, (3.2)], which is imposed for the well-definedness of the algorithm. Moreover, com-
pared with the recently developed sGS decomposition based majorized ADMM with indefinite
proximal terms in [30], the problem setting for sGS-imiPADMM is much more general as the
functions f and g here are not restricted to have the separable structures that were required in
[30].

The rest of this paper is organized as follows. In section 2, we introduce some notation, and
recall the inexact sGS decomposition theorem which plays an important role in the subsequent
algorithmic design. In section 3, the sGS-imiPADMM algorithm for the multi-block problem
(1.1) is formally proposed. Its global convergence theorem is established in section 4 via the
convergence of an inexact majorized indefinite-proximal ADMM (imiPADMM), which will be
introduced in section 4.2, in conjunction with the inexact sGS decomposition theorem. Finally,
we conclude the paper in section 5.

2 Notation and Preliminaries

2.1 Notation

Let U and V be two arbitrary finite dimensional real Hilbert spaces each endowed with an inner
product 〈·, ·〉 and its induced norm ‖ · ‖. For any given linear map H : U → V, we use ‖H‖ to
denote its spectral norm and H∗ : V → U to denote its adjoint linear operator.

If U = V and H is self-adjoint and positive semidefinite, then there exists a unique self-
adjoint positive semidefinite linear operator H 1

2 : U → U such that H 1
2H 1

2 = H. In this case,
for any u, v ∈ U , we define 〈u, v〉H := 〈u,Hv〉 and ‖u‖H :=

√
〈u,Hu〉 = ‖H 1

2u‖.
For a closed proper convex function θ : U → (−∞,+∞], we denote dom θ and ∂θ for the

effective domain and the subdifferential mapping of θ, respectively.
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Let s > 0 be a given integer such that one can decompose U as the Cartesian product
of U1, . . . ,Us, such that each Ui is a finite dimensional real Hilbert space endowed with the
inner product 〈·, ·〉 inherited from U and its induced norm ‖ · ‖. Then, the self-adjoint positive
semidefinite linear operator H : U → U can be symbolically decomposed as

H =




H11 H12 · · · H1s

H∗
12 H22 · · · H2s

...
...

. . .
...

H∗
1s H∗

2s · · · Hss



, (2.1)

where Hij : Uj → Ui, i, j = 1, . . . , s are linear maps and Hii, i = 1, . . . , s are self-adjoint positive
semidefinite linear operators. Based on (2.1), we use Hd := Diag(H11, . . . ,Hss) to denote the
block-diagonal part of H, and denote the symbolically strictly upper triangular part of H by Hu,
so that H = Hd +Hu +H∗

u. To simplify the notation in this case, for any u = (u1, . . . , us) ∈ U
and i ∈ {1, . . . , s}, we denote u≤i := {u1, . . . , ui}, u≥i := {ui, . . . , us}.

2.2 The inexact sGS decomposition theorem

We now briefly review the inexact block sGS decomposition theorem in [20], which is a general-
ization of the Schur complement based decomposition technique developed in [19].

Following the notation of the previous subsection, suppose that U = U1 × · · · × Us and H is
symbolically decomposed as in (2.1). Let θ1 : U1 → (−∞,∞] be a given closed proper convex
function, and b ∈ U be a given vector. Define the convex quadratic function h : U → (−∞,∞)
by

h(u) :=
1

2
〈u,Hu〉 − 〈b, u〉, ∀u ∈ U .

Let δ̃i, δi ∈ Ui, i = 1, . . . , s be given (error tolerance) vectors with δ̃1 = δ1. With the assumption
that Hd is positive definite, we define

d(δ̃, δ) := δ +HuH−1
d (δ − δ̃) with δ := (δ1, . . . , δs) and δ̃ := (δ̃1, . . . δ̃s). (2.2)

Suppose that u− ∈ U is a given vector. Define




ũi := argmin
ui

{
θ(u−1 ) + h(u−≤i−1, ui, ũ≥i+1)− 〈δ̃i, ui〉

}
, i = s, . . . , 2,

u+1 := argmin
u1

{
θ(u1) + h(u1, ũ≥2)− 〈δ1, u1〉

}
,

u+i := argmin
ui

{
θ(u+1 ) + h(u+≤i−1, ui, ũ≥i+1)− 〈δi, ui〉

}
, i = 2, . . . , s.

(2.3)

Meanwhile, define the self-adjoint positive semidefinite linear operator sGS(H) : U → U by

sGS(H) := HuH−1
d H∗

u. (2.4)

Now, consider the following convex composite quadratic optimization problem:

min
u∈U

{
θ(u1) + h(u) +

1

2
‖u− u−‖2sGS(H) − 〈d(δ̃, δ), u〉

}
. (2.5)

The following sGS decomposition theorem from [20, Theorem 1 & Proposition 1], reveals the
equivalence between the sGS iteration (2.3) and the proximal minimization problem (2.5). This
theorem is essential for the algorithmic development in this paper.
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Theorem 2.1. Suppose that Hd = Diag(H11, . . . ,Hss) is positive definite. Then
(i) both the iteration process in (2.3) and the linear operator sGS(H) defined by (2.4) are

well-defined;

(ii) problem (2.5) is well-defined and admits a unique solution, which is exactly the vector u+

generated by (2.3);

(iii) it holds that Ĥ := H + sGS(H) = (Hd +Hu)H−1
d (Hd +H∗

u) ≻ 0;

(iv) the vector d(δ̃, δ) defined by (2.2) satisfies

‖Ĥ− 1
2 d(δ̃, δ)‖ ≤ ‖H− 1

2
d (δ − δ̃)‖+ ‖H

1
2
d (Hd +Hu)

−1δ̃‖.

3 An Inexact sGS Decomposition Based Majorized Indefinite-

Proximal ADMM

In this section, we present the sGS-imiPADMM algorithm for solving problem (1.1). We first recall
the majorization technique used in [18] and the indefinite proximal terms used in [5]. Since the
two convex functions f and g in problem (1.1) are assumed to be continuously differentiable with
Lipschitz continuous gradients, there exist two self-adjoint positive semidefinite linear operators
Σ̂f : X → X and Σ̂g : Y → Y such that





f(x) ≤ f̂(x;x′) := f(x′) + 〈∇f(x′), x− x′〉+ 1
2‖x− x′‖2

Σ̂f

, ∀x, x′ ∈ X ,
g(y) ≤ ĝ(y; y′) := g(y′) + 〈∇g(y′), y − y′〉+ 1

2‖y − y′‖2
Σ̂g
, ∀y, y′ ∈ Y. (3.1)

For any given σ > 0, the majorized proximal augmented Lagrangian function associated with
problem (1.1) is defined by

L̃σ(x, y; (x
′, y′, z′)) := p(x) + f̂(x;x′) + q(y) + ĝ(y; y′) + 〈z′,A∗x+ B∗y − c〉

+
σ

2
‖A∗x+ B∗y − c‖2 + 1

2
‖x− x′‖2

S̃
+

1

2
‖y − y′‖2

T̃
,

∀ (x, y) ∈ X × Y and ∀ (x′, y′, z′) ∈ X × Y × Z,

where S̃ : X → X and T̃ : Y → Y are self-adjoint (not necessarily positive semidefinite) linear
operators satisfying

S̃ � −1

2
Σ̂f and T̃ � −1

2
Σ̂g. (3.2)

In order to apply the block sGS decomposition theorem, we symbolically decompose the
positive semidefinite linear operators Σ̂f and Σ̂g defined in (3.1) into the following form, i.e.,

Σ̂f =




(Σ̂f )11 (Σ̂f )12 · · · (Σ̂f )1m

(Σ̂f )
∗
12 (Σ̂f )22 · · · (Σ̂f )2m

...
...

. . .
...

(Σ̂f )
∗
1m (Σ̂f )

∗
2m · · · (Σ̂f )mm




and Σ̂g =




(Σ̂g)11 (Σ̂g)12 · · · (Σ̂g)1n

(Σ̂g)
∗
12 (Σ̂g)22 · · · (Σ̂g)2n

...
...

. . .
...

(Σ̂g)
∗
1n (Σ̂g)

∗
2n · · · (Σ̂g)nn




, (3.3)
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which are consistent with the decompositions of X and Y. Meanwhile, the linear operators A
and B are also can be decomposed as

Az = (A1z, . . . ,Amz) and Bz = (B1z, . . . ,Bnz),

where Aiz ∈ Xi and Bjz ∈ Yj , ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, and z ∈ Z. Moreover, we can

also decompose the linear operators S̃ : X → X and T̃ : Y → Y as the decompositions of Σ̂f

and Σ̂g in (3.3). To ensure the block sGS decomposition theorem, we require

(Σ̂f )ii+σAiA∗
i +S̃ii ≻ 0, i = 1, . . . ,m, and (Σ̂g)jj+σBjB∗

j +T̃jj ≻ 0, j = 1, . . . , n, (3.4)

where S̃ii : Xi → Xi, i = 1, . . . ,m and T̃jj : Yj → Yj, j = 1, . . . , n are the block diagonal parts
of S and T , respectively. We now formally present the promised sGS-imiPADMM.

Following the discussions in [4], here we define two linear operators M̃ : X → X and
Ñ : Y → Y as follows: {

M̃ := Σ̂f + σAA∗ + S̃,
Ñ := Σ̂g + σBB∗ + T̃ .

(3.5)

Just like the decomposition of Σ̂f and Σ̂g in (3.3), we can symbolically decompose M̃ and Ñ
accordingly. We use M̃d and Ñd to denote the corresponding diagonal parts, and M̃u and Ñu

to denote the strictly upper triangular parts, respectively. Consequently, M̃ = M̃d+M̃u+M̃∗
u

and Ñ = Ñd + Ñu + Ñ ∗
u .

Remark 3.1. Note that the linear operators S̃ : X → X and T̃ : Y → Y are chosen for the
purpose of compensating the deviation from the majorized augmented Lagrangian function to
the original augmented Lagrangian function. Meanwhile, they should be chosen such that the
minimization subproblems involving p1 and q1 are easier to solve. With appropriately chosen
S̃11 and T̃11, we can assume that the following well-defined optimization problems

min
x1∈X1

{
p1(x1) +

1

2
‖x1 − x′1‖2M̃11

}
and min

y1∈Y1

{
q1(y1) +

1

2
‖y1 − y′1‖2Ñ11

}

can be solved to a sufficient accuracy in the sense of returning approximate solutions with suffi-
ciently small subgradients of the objective functions, for any given x′1 ∈ X1 and y′1 ∈ Y1.

Recall that the Karush-Kuhn-Tucker (KKT) system of problem (1.1) is given by

0 ∈ ∂p(x) +∇f(x) +Az, 0 ∈ ∂q(y) +∇g(y) + Bz, A∗x+ B∗y = c. (3.6)

If (x̄, ȳ, z̄) ∈ X × Y × Z satisfies (3.6), from [23, Corollary 30.5.1] we know that (x̄, ȳ) is an
optimal solution to problem (1.1) and z̄ is an optimal solution to the dual of this problem. To
simplify the notation, we denote the solution set of the KKT system (3.6) for problem (1.1) by
W.

We now make the following assumption on problem (1.1) and Algorithm 1.

Assumption 3.1. Assume that:

(i) the solution set W to the KKT system (3.6) of problem (1.1) is nonempty;

(ii) the self-adjoint positive semidefinite linear operators Σ̂f : X → X and Σ̂g : Y → Y are
chosen such that (3.1) holds;
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Algorithm 1 (sGS-imiPADMM): An inexact sGS decomposition based majorized indefinite-
proximal ADMM for solving problem (1.1).

Let τ ∈ (0, (1 +
√
5)/2) be the step-length and {ε̃k}k≥0 be a summable sequence of nonnegative

numbers. Let (x0, y0, z0) ∈ dom p×dom q×Z be the initial point. For k = 0, 1, . . ., perform the
following steps:

Step 1a. (Backward GS sweep) Compute for i = m, . . . , 2,

x̃k+1
i ≈ argmin

xi∈Xi

{
L̃σ

(
(xk≤i−1, xi, x̃

k+1
≥i+1), y

k; (xk, yk, zk)
)}

,

δ̃ki ∈ ∂xi
L̃σ

(
(xk≤i−1, x̃

k+1
i , x̃k+1

≥i+1), y
k; (xk, yk, zk)

)
with ‖δ̃ki ‖ ≤ ε̃k.

Step 1b. (Forward GS sweep) Compute for i = 1, . . . ,m,

xk+1
i ≈ argmin

xi∈Xi

{
L̃σ

(
(xk+1

≤i−1, xi, x̃
k+1
≥i+1), y

k; (xk, yk, zk)
)}

,

δki ∈ ∂xi
L̃σ

(
(xk+1

≤i−1, x
k+1
i , x̃k+1

≥i+1), y
k; (xk, yk, zk)

)
with ‖δki ‖ ≤ ε̃k.

Step 2a. (Backward GS sweep) Compute for j = n, . . . , 2,

ỹk+1
j ≈ argmin

yj∈Yj

{
L̃σ

(
xk+1, (yk≤j−1, yj , ỹ

k+1
≥j+1); (x

k, yk, zk)
)}

,

γ̃kj ∈ ∂yj L̃σ

(
xk+1, (yk≤j−1, ỹ

k+1
j , ỹk+1

≥j+1); (x
k, yk, zk)

)
with ‖γ̃kj ‖ ≤ ε̃k.

Step 2b. (Forward GS sweep) Compute for j = 1, . . . , n,

yk+1
j ≈ argmin

yj∈Yj

{
L̃σ

(
xk+1, (yk+1

≤j−1, yj , ỹ
k+1
≥j+1); (x

k, yk, zk)
)}

,

γkj ∈ ∂yj L̃σ

(
xk+1, (yk+1

≤j−1, y
k+1
j , ỹk+1

≥j+1); (x
k, yk, zk)

)
with ‖γkj ‖ ≤ ε̃k.

Step 3. Compute zk+1 := zk + τσ(A∗xk+1 + B∗yk+1 − c).

(iii) the self-adjoint linear operators S̃ and T̃ are chosen such that (3.2) and (3.4) hold.

Under Assumption 3.1, we can define the following linear operators:
{

SsGS := S̃ + sGS(M̃) = S̃ + M̃uM̃−1
d M̃∗

u,

TsGS := T̃ + sGS(Ñ ) = T̃ + ÑuÑ−1
d Ñ ∗

u .
(3.7)

Based on the above preparations, the global convergence of Algorithm 1 is given as the following
theorem. The corresponding proof will be accomplished in section 4.

Theorem 3.1 (Convergence of sGS-imiPADMM). Suppose that Assumption 3.1 holds, and the
linear operators S̃ and T̃ are chosen such that

1

2
Σ̂f + σAA∗ + SsGS ≻ 0 and

1

2
Σ̂g + σBB∗ + TsGS ≻ 0. (3.8)
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Then the whole sequence {(xk, yk, zk)} generated by Algorithm 1 converges to a solution of the
KKT system (3.6) of problem (1.1).

We end this section by comparing Algorithm 1 and its convergence theorem (Theorem 3.1)
with its precursors in [19, 4, 30] for solving problem (1.1). Such a comparison will clearly
demonstrate from where the algorithm in this paper originates and to what extent does the
progress made in this paper can reach. The details of the comparison are presented in the
following table.

Ref. \ Item f & g. Majorization Proximal Terms Inexact

[19] separable, quadratic no semidefinite no

[4] - yes semidefinite yes

[30] separable yes indefinite no

This paper - yes indefinite yes

Here, the column “f & g” indicates the additional conditions imposed on the functions f and g
in problem (1.1), the column “Majorization” indicates whether the majorization technique was
used, the column “Proximal Terms” shows whether the proximal terms used are semidefinite or
indefinite, and the column “Inexact” shows whether the subproblems are allowed to be solved
approximately. It is easy to conclude from the above table that Algorithm 1 proposed in this
paper generalizes all those in [19, 4, 30]. This explains why we name the sGS-imiPADMM
as a unified algorithmic framework. Here, it is also worthwhile to point out that even when
the proximal terms in sGS-imiPADMM are chosen to be positive semidefinite, the convergence
theorem in this paper is sharper than that in [4]; see Remark 4.3 for the details.

4 Convergence Analysis

In this section, we will prove Theorem 3.1 step-by-step. We first show how to apply the sGS de-
composition theorem to reformulate the multi-block Algorithm 1 as an abstract 2-block ADMM-
type algorithm. Then we establish the convergence properties of the later, and, as a consequence,
prove Theorem 3.1.

4.1 Basic convergence results

Proposition 4.1. Suppose that (3.2) and (3.4) hold. Define for all k ≥ 0,

δ̃k := (δ̃k1 , . . . , δ̃
k
m), δk := (δk1 , . . . , δ

k
m), γ̃k := (γ̃k1 , . . . , γ̃

k
n), and γk := (γk1 , . . . , γ

k
n)

with the convention that δ̃k1 := δk1 and γ̃k1 := γk1 . Then

(i) the sequences {(xk, yk, zk)}, {δk}, {δ̃k}, {γk} and {γ̃k} generated by the sGS-imiPADMM are
well-defined;

(ii) the linear operators SsGS and TsGS in (3.7) are well-defined, and

MsGS := Σ̂f + σAA∗ + SsGS ≻ 0, NsGS := Σ̂g + σBB∗ + TsGS ≻ 0; (4.1)
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(iii) it holds that





dkx ∈ ∂x

{
L̃σ

(
x
↑

k+1, yk; (xk, yk, zk)

)
+ 1

2‖x↑
k+1 − xk‖2

sGS(M̃)

}
,

dky ∈ ∂y

{
L̃σ

(
xk+1, y

↑

k+1; (xk, yk, zk)

)
+ 1

2‖y
↑

k+1 − yk‖2
sGS(Ñ )

}
,

where
dkx := δk + M̃uM̃−1

d (δk − δ̃k) and dky := γk + ÑuÑ−1
d (γk − γ̃k);

(iv) one has that ‖M− 1
2

sGSd
k
x‖ ≤ κε̃k, ‖N

− 1
2

sGSd
k
y‖ ≤ κ′ε̃k, where





κ := 2
√
m− 1‖M̃− 1

2
d ‖+√

m‖M̃
1
2
d (M̃d + M̃u)

−1‖,

κ′ := 2
√
n− 1‖Ñ− 1

2
d ‖+√

n‖Ñ
1
2
d (Ñd + Ñu)

−1‖.
(4.2)

Remark 4.1. It is easy to prove Proposition 4.1 via Theorem 2.1. We omit the detailed proof
here since it is almost the same as that of [4, Proposition 3.1].

4.2 An inexact 2-block majorized indefinite-proxiaml ADMM

Based on Proposition 4.1 and the previous efforts (see e.g. [20, 4]), here we also view the sGS-
imiPADMM as a 2-block ADMM-type algorithm applied to problem (1.1) with intelligently
constructed proximal terms. For this purpose, we formally present the previously mentioned
imiPADMM as Algorithm 2, where the majorized augmented Lagrangian function associated with
problem (1.1) is defined by

L̂σ(x, y; (x
′, y′, z′)) := p(x) + f̂(x;x′) + q(y) + ĝ(y; y′) + 〈z′,A∗x+ B∗y − c〉

+
σ

2
‖A∗x+ B∗y − c‖2, ∀ (x, y) ∈ X × Y and ∀ (x′, y′, z′) ∈ X × Y × Z.

Now, we are ready to present the convergence theorem of the imiPADMM. The proof of this
theorem is postponed to Appendix A.

Theorem 4.1 (Convergence of imiPADMM). Suppose that parts (i) and (ii) in Assumption 3.1
hold. Then the sequence {(xk, yk, zk)} generated by Algorithm 2 converges to a point in W, i.e.,
the solution set to the KKT system (3.6) of problem (1.1).

Remark 4.2. Even though the purpose of the proposed Algorithm 2 is to derive the convergence
properties of Algorithm 1, this 2-block ADMM-type algorithm itself is a very general extension of
the classic ADMM that contains many contemporary practical techniques, including the original
large dual step-lengths in [13], the positive semidefinite proximal terms in [10], the majorized
augmented Lagrangian function and indefinite proximal terms in [18], and the error tolerance
criteria in [4].

Remark 4.3. If both S and T are chosen as positive semidefinite linear operators, Algorithm
2 reduces to Algorithm imsPADMM in [4]. Moreover, if the subproblems (4.4) and (4.5) in
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Algorithm 2 (imiPADMM): An inexact majorized indefinite-proximal ADMM for solving prob-
lem (1.1).

Let τ ∈ (0, (1 +
√
5)/2) be the step-length and {εk}k≥0 be a summable sequence of nonnegative

numbers. Choose the self-adjoint (not necessarily positive semidefinite) linear operators S and
T such that

S � −1

2
Σ̂f , T � −1

2
Σ̂g,

1

2
Σ̂f + σAA∗ + S ≻ 0 and

1

2
Σ̂g + σBB∗ + T ≻ 0. (4.3)

For k = 0, 1, . . ., perform the following steps:

Step 1. Compute xk+1 and dkx ∈ ∂ψk(x
k+1) such that ‖(Σ̂f + σAA∗ + S)− 1

2 dkx‖ ≤ εk, where

xk+1 ≈ x̄k+1 := argmin
x∈X

{
ψk(x) := L̂σ

(
x, yk; (xk, yk, zk)

)
+

1

2
‖x− xk‖2S

}
. (4.4)

Step 2. Compute yk+1 and dky ∈ ∂ϕk(y
k+1) such that ‖(Σ̂g + σBB∗ + T )−

1
2 dky‖ ≤ εk, where

yk+1 ≈ ȳk+1 : = argmin
y∈Y

{
ϕk(y) := L̂σ

(
xk+1, y; (xk, yk, zk)

)
+

1

2
‖y − yk‖2T

}
. (4.5)

Step 3. Compute zk+1 := zk + τσ(A∗xk+1 + B∗yk+1 − c).

Algorithm 2 are solved exactly, i.e., by restricting εk ≡ 0, ∀k ≥ 0, imiPADMM here reduces to
the Majorized iPADMM proposed in [18]. However, in both [4] and [18], one requires1

1

2
Σf + S + σAA∗ ≻ 0 and

1

2
Σg + T + σBB∗ ≻ 0,

where Σf � Σ̂f and Σg � Σ̂g, and these conditions are in general stronger than the last two
conditions in (4.3). Therefore, even for 2-block problems, Theorem 4.1 on the convergence of
Algorithm 2 has made its own progress on improving the convergence properties of the previously
proposed algorithms imsPADMM and Majorized iPADMM in [4] and [18], respectively. As a
result, for the multi-block problem (1.1), Theorem 3.1 can also be used to sharpen the convergence
properties of the sGS-imsPADMM in [4].

4.3 Convergence of the sGS-imiPADMM

Now we are ready to prove Theorem 3.1 for Algorithm 1 based on the connection between the
sGS-imiPADMM for the multi-block problem (1.1) and the imiPADMM for the same problem but
from the angle of viewing it as a 2-block problem.

Proof of Theorem 3.1. Suppose that Assumption 3.1 holds. Let S := SsGS and T := TsGS, where
SsGS and TsGS are given in (3.7). According to (3.8) we know that (4.3) holds. Moreover, one has
from (4.1) that Σ̂f+σAA∗+S = MsGS and Σ̂g+σBB∗+T = NsGS. Thus by Proposition 4.1(iii),
one has that dkx ∈ ∂ψk(x

k+1) and dky ∈ ∂ϕk(y
k+1). Meanwhile, we can define the sequence {εk}

1The precise definitions of Σf and Σg are given in (A.3) of the Appendix.
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in Algorithm 2 by εk := max{κ, κ′}ε̃k, ∀k ≥ 0, which is summable due to the fact that the
sequence {ε̃k} used in Algorithm 1 to control the inexactness is summable, where κ and κ′ are

given in (4.2). Then, by Proposition 4.1(iv), one has that ‖M− 1
2

sGSd
k
x‖ ≤ εk and ‖N− 1

2
sGSd

k
y‖ ≤ εk.

Thus, since Assumption 3.1(iii) holds, the sequence {(xk, yk, zk)} generated by Algorithm 1 is
exactly a sequence generated by Algorithm 2 with the specially constructed proximal terms
S = SsGS and T = TsGS. Consequently, since parts (i) and (ii) in Assumption 3.1 hold, from
Theorem 4.1 we know that Theorem 3.1 holds. This completes the proof.

5 Conclusions

In this paper, we have developed a unified algorithmic framework, i.e., sGS-imiPADMM, for
solving the multi-block convex composite programming problem (1.1). The proposed algorithm
combines the merits from its various precursors by gathering the practical techniques developed
for the purpose of improving the efficiency of ADMM-type algorithms. The motivation behind
such a unification is that, these techniques, including the majorization-type surrogates, inexact
symmetric Gauss-Seidel decomposition, indefinite proximal terms, inexact computation of sub-
problems, and large dual step-lengths, have been shown to be very useful in dealing with convex
composite programming problems. We established the global convergence of the sGS-imiPADMM
under very mild assumptions. We believe that the proposed algorithm can serve not only as a
generalization or extension of the existing algorithms, but also provide a catalyst for enhancing
the numerical performance of multi-block ADMM based solvers. We should mention that the
linear convergence rate of sGS-imiADMM is not discussed in this paper, but one should be able
to establish such results following the works conducted in [15, 30] without much difficulty.

Acknowledgements. The authors would like to thank Prof. Xudong Li and Dr. Xiaoliang
Song for some helpful discussions on Algorithm 1.
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A Convergence Analysis of the imiPADMM

In this part, we prove Theorem 4.1. We begin by introducing the notation and definitions
that will be used throughout this section. Then we establish a key inequality for obtaining the
convergence of the algorithm. After that, we turn to the convergence of the imiPADMM.

A.1 Additional notation and preliminaries

Recall that H is a finite dimensional real Euclidean space endowed with an inner product 〈·, ·〉
and its induced norm ‖ · ‖. Then, we have that

〈u, v〉H = 1
2

(
‖u‖2H + ‖v‖2H − ‖u− v‖2H

)
= 1

2

(
‖u+ v‖2H − ‖u‖2H − ‖v‖2H

)
. (A.1)

The following lemma was given in [30, Lemma 3.2].
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Lemma A.1. Let h : U → (−∞,∞) be a smooth convex function and there is a self-adjoint
positive semidefinite linear operator Σ̂h : U → U such that, for any given u′ ∈ U ,

h(u) ≤ h(u′) + 〈∇h(u′), u− u′〉+ 1

2
‖u− u′‖2

Σ̂h
, ∀u ∈ U .

Then it holds that for any given u′ ∈ U ,

〈∇h(u) −∇h(u′), v − u′〉 ≥ −1

4
‖v − u‖2

Σ̂h
, ∀u, v ∈ U . (A.2)

We now turn to problem (1.1) and Algorithm 2. Due to the convexity of f and g, there exist
two positive semidefinite linear operators Σf (� Σ̂f ) and Σg (� Σ̂g) such that

f(x) ≥ f(x′) + 〈∇f(x′), x− x′〉+ 1
2‖x− x′‖2Σf

, ∀x, x′ ∈ X ,
g(y) ≥ g(y′) + 〈∇g(y′), y − y′〉+ 1

2‖y − y′‖2Σg
, ∀ y, y′ ∈ Y.

(A.3)

Since that the sequence {εk} in Algorithm 2 is nonnegative and summable, we can define the
following two real numbers

E :=
∞∑

k=0

εk and E ′ :=
∞∑

k=0

ε2k.

Suppose that both (i) and (ii) in Assumption 3.1 hold. Then, an infinite sequence {(xk, yk, zk)}
can be generated by Algorithm 2. Meanwhile, there exist two sequences {x̄k} and {ȳk} defined
by (4.4) and (4.5), respectively. In this case, we define for any k ≥ 0,

{
rk := A∗xk + B∗yk − c, r̄k := A∗x̄k + B∗ȳk − c,

z̃k+1 := zk + σrk+1, z̄k+1 := zk + τσr̄k+1

with the convention that x̄0 = x0 and ȳ0 = y0, where τ is the step-length used in Algorithm 2.
Moreover, we define the following three constants:





α := (1 + τ/min{1 + τ, 1 + τ−1})/2,
α̂ := 1− αmin{τ, τ−1},
β := min{1, 1 − τ + τ−1}α− (1− α)τ.

(A.4)

Based on the above definitions, we have the following result.

Proposition A.1. Suppose that both (i) and (ii) in Assumption 3.1 hold. Let {(xk, yk, zk)}
be the sequence generated by Algorithm 2, and {x̄k}, {ȳk} be the sequence defined by (4.4) and
(4.5). Then, for any k ≥ 0, we have that

‖xk+1 − x̄k+1‖M ≤ εk

and
‖yk+1 − ȳk+1‖N ≤ (1 + σ‖N− 1

2BA∗M− 1
2‖)εk,

where
M := Σ̂f + σAA∗ + S ≻ 0 and N := Σ̂g + σBB∗ + T ≻ 0. (A.5)
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Proof. As a consequence of (4.3) in Algorithm 2, (A.5) holds. Then, the subsequent proof can
be easily completed via a few properties of the Moreau-Yosida mappings in [17], and one can
refer to [4, Proposition 3.1] and its proof for the details.

The following result on a quasi-Fejér monotone sequence of real numbers will be used later.

Lemma A.2. Let {ak}k≥0 be a nonnegative sequence of real numbers satisfying ak+1 ≤ ak+ εk,
∀k ≥ 0, where {εk}k≥0 is a nonnegative and summable sequence of real numbers. Then the
quasi-Fejér monotone sequence {ak} converges to a unique limit point.

A.2 The key inequality

Now, we start to analyze the convergence of the imiPADMM by studying some necessary results.
Let τ be the dual step-length in Algorithm 2 and α be the constant defined in (A.4). We define
the following two linear operators

F :=
1

2
Σ̂f + S +

(1− α)σ

2
AA∗ and G :=

1

2
Σ̂g + T +min{τ, 1 + τ − τ2}ασBB∗, (A.6)

where Σ̂f and Σ̂g are given by (3.1).

Lemma A.3. Assume that (4.3) holds. For any τ ∈ (0, (1 +
√
5)/2), the constants α, α̂ and β

defined by (A.4) satisfy 0 < α < 1, 0 < α̂ < 1 and β > 0. Meanwhile, the linear operators F
and G defined by (A.6) are positive definite.

Proof. It is easy to see that 0 < α < 1, 0 < α̂ < 1 and β > 0 from (A.4) and the fact that
τ ∈ (0, (1 +

√
5)/2). Also, it holds that ρ := min(τ, 1+ τ − τ2) ∈ (0, 1] so that 0 < ρα < 1. Note

that by (A.6) we have that

F = (1−α)
2

(
1
2Σ̂f + S + σAA∗

)
+ 1+α

2

(
1
2 Σ̂f + S

)
,

G = ρα
2

(
1
2Σ̂g + T + σBB∗

)
+ 2−ρα

2

(
1
2Σ̂g + T

)
+ ρα

2 σBB∗.

Hence, one can readily observe that F ≻ 0 and G ≻ 0 from (4.3). This completes the proof.

Based on the previous results, one can get the following result, which is exactly the same as
[4, Theorem 5.2]. So we omit the corresponding proof.

Lemma A.4. Suppose that both (i) and (ii) in Assumption 3.1 hold. Then, the infinite sequence
{(xk, yk, zk)} generated by Algorithm 2 satisfies, for all k ≥ 1,

(1− τ)σ‖rk+1‖2 + σ‖A∗xk+1 + B∗yk − c‖2 + 2α〈dk−1
y − dky , y

k − yk+1〉
≥ α̂σ(‖rk+1‖2 − ‖rk‖2) + βσ‖rk+1‖2 + ‖xk − xk+1‖2(1−α)σ

2
AA∗

−‖yk−1 − yk‖2
α(Σ̂g+T )

+ ‖yk − yk+1‖2
α(Σ̂g+T )+min{τ,1+τ−τ2}ασBB∗

.

(A.7)

Next, we shall derive an inequality which is essential for establishing the global convergence
of the imiPADMM.
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Proposition A.2 (The key inequality). Suppose that both (i) and (ii) in Assumption 3.1 hold.
For any w̄ := (x̄, ȳ, z̄) ∈ W, the sequence {(xk, yk, zk)} generated by Algorithm 2 satisfies

2α〈dky − dk−1
y , yk − yk+1〉 − 2〈dkx, xk+1 − x̄〉 − 2〈dky , yk+1 − ȳ〉

+‖xk − xk+1‖2F + ‖yk − yk+1‖2G + βσ‖rk+1‖2 ≤ φk(w̄)− φk+1(w̄), ∀k ≥ 1,
(A.8)

where, for any (x, y, z) ∈ X × Y × Z and k ≥ 1,

φk(x, y, z) :=
1

τσ
‖z − zk‖2 + ‖x− xk‖2

Σ̂f+S
+ ‖y − yk‖2

Σ̂g+T

+σ‖A∗x+ B∗yk − c‖2 + α̂σ‖rk‖2 + α‖yk−1 − yk‖2
Σ̂g+T

.
(A.9)

Proof. For any given (x, y, z) ∈ X × Y × Z, we define xe := x− x̄, ye := y − ȳ and ze := z − z̄.
From (A.1) one has that

zk + σ(A∗xk+1 + B∗yk − c) = z̃ k+1 + σB∗(yk − yk+1).

Then, from Step 1 of Algorithm 2, we know that

dkx −∇f(xk)−A
(
z̃ k+1 + σB∗(yk − yk+1)

)
+ (Σ̂f + S)(xk − xk+1) ∈ ∂p(xk+1). (A.10)

Moreover, the convexity of p implies that

p(x̄)+ 〈dkx −∇f(xk)−A
(
z̃k+1 + σB∗(yk − yk+1)

)
+ (Σ̂f +S)(xk −xk+1), xk+1

e 〉 ≥ p(xk+1).

(A.11)

Applying a similar derivation, we can also get that for any y ∈ Y,
q(ȳ) + 〈dky , yk+1

e 〉 − 〈∇g(yk), yk+1
e 〉 − 〈z̃k+1, B∗yk+1

e 〉
+〈(Σ̂g + T )(yk − yk+1), yk+1

e 〉 ≥ q(yk+1).
(A.12)

By using (3.6) and the convexity of the functions p and q, we have

p(xk+1)− p(x̄) + 〈∇f(x̄) +Az̄, xk+1
e 〉 ≥ 0,

q(yk+1)− q(ȳ) + 〈∇g(ȳ) + Bz̄, yk+1
e 〉 ≥ 0.

(A.13)

Finally, by summing (A.11) (A.12) and (A.13) together, we get

−〈z̃k+1
e , rk+1〉 − σ〈B∗(yk − yk+1),A∗xk+1

e 〉
+〈xk+1

e , (xk − xk+1)〉
Σ̂f+S + 〈yk+1

e , (yk − yk+1)〉
Σ̂g+T + 〈dkx, xk+1

e 〉+ 〈dky , yk+1
e 〉

≥ 〈∇f(xk)−∇f(x̄), xk+1
e 〉+ 〈∇g(yk)−∇g(ȳ), yk+1

e 〉
≥ −1

4‖xk − xk+1‖2
Σ̂f

− 1
4‖yk − yk+1‖2

Σ̂g
,

(A.14)

where the last inequality comes from Lemma A.1. Next, we estimate the left-hand side of (A.14).
By using (A.1), we have that

〈B∗(yk − yk+1), A∗xk+1
e 〉 = 〈B∗yke − B∗yk+1

e , rk+1 − B∗yk+1
e 〉

= 〈B∗yke − B∗yk+1
e , rk+1〉 − 1

2

(
‖B∗yke‖2 − ‖B∗yke − B∗yk+1

e ‖2 − ‖B∗yk+1
e ‖2

)

= 1
2

(
‖B∗yk+1

e ‖2 + ‖A∗xk+1 + B∗yk − c‖2 − ‖B∗yke‖2 − ‖rk+1‖2
)
.

(A.15)
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Also, from (A.1) we know that

〈xk+1
e , xk − xk+1〉Σ̂f+S = 1

2(‖xke‖2Σ̂f+S
− ‖xk+1

e ‖2
Σ̂f+S

)− 1
2‖xk − xk+1‖2

Σ̂f+S
,

〈yk+1
e , yk − yk+1〉Σ̂g+T = 1

2(‖yke ‖2Σ̂g+T
− ‖yk+1

e ‖2
Σ̂g+T

)− 1
2‖yk − yk+1‖2

Σ̂g+T
.

(A.16)

Moreover, by using the definition of {z̃k} and (A.1) we know that

〈rk+1, z̃k+1
e 〉 = 〈rk+1, zke + σrk+1〉 = 1

τσ
〈z k+1 − zk, zke 〉+ σ‖rk+1‖2

= 1
2τσ

(
‖zk+1

e ‖2 − ‖zk+1 − zk‖2 − ‖zke ‖2
)
+ σ‖rk+1‖2

= 1
2τσ

(
‖zk+1

e ‖2 − ‖zke ‖2
)
+ (2−τ)σ

2 ‖rk+1‖2.

(A.17)

Thus, by substituting (A.15), (A.16) and (A.17) into (A.14), we obtain that

〈dkx, xk+1
e 〉+ 〈dky , yk+1

e 〉+ 1
2τσ

(
‖zke ‖2 − ‖zk+1

e ‖2
)
+ σ

2 (‖B∗yke‖2 − ‖B∗yk+1
e ‖2)

+1
2(‖xke‖2Σ̂f+S

+ ‖yke‖2Σ̂g+T
)− 1

2(‖xk+1
e ‖2

Σ̂f+S
+ ‖yk+1

e ‖2
Σ̂g+T

)

≥ 1
2‖xk − xk+1‖21

2
Σ̂f+S

+ 1
2‖yk − yk+1‖21

2
Σ̂g+T

+σ
2‖A∗xk+1 + B∗yk − c‖2 + (1−τ)σ

2 ‖rk+1‖2.

(A.18)

Note that for any y ∈ Y, A∗x̄ + B∗y − c = B∗ye. Therefore, by applying (A.7) in Lemma A.4
to the right hand side of (A.18) and using (A.9) together with (A.6), we know that (A.8) holds
for k ≥ 1. This completes the proof.

Remark A.1. The inequality (A.18) in the proof is responsible for the improvement that we
made in this paper, when compared with [4], in which the same problem as (1.1) was considered
and the inequality for the same purpose as (A.18) is given as follows:

〈dkx, xk+1
e 〉+ 〈dky , yk+1

e 〉+ 1
2τσ (‖zke ‖2 − ‖zk+1

e ‖2) + σ
2 (‖B∗yke‖2 − ‖B∗yk+1

e ‖2)
+1

2(‖xke‖2Σ̂f+S
+ ‖yke‖2Σ̂g+T

)− 1
2(‖xk+1

e ‖2
Σ̂f+S

+ ‖yk+1
e ‖2

Σ̂g+T
)

≥ 1

2
‖xk − xk+1‖21

2
Σf+S

+
1

2
‖yk − yk+1‖21

2
Σg+T

+
σ

2
‖A∗xk+1 + B∗yk − c‖2 + (1− τ)σ

2
‖rk+1‖2,

(A.19)

where Σf and Σg are defined by (A.3). The difference between (A.19) and (A.18) is highlighted

in a box. Since that Σ̂f � Σf and Σ̂g � Σg, the inequality (A.18) is tighter than (A.19).
Consequently, the inequality (A.8) looks the same as [4, (5.14) in Proposition 5.1], but one
should notice that the definitions of F and G in this paper are different from those in [4], as can
be seen from the following table.

Ref. \ Item F G

[4] 1
2Σf + S + (1−α)σ

2 AA∗ 1
2Σg + T +min{τ, 1 + τ − τ2}ασBB∗

This paper 1
2Σ̂f + S + (1−α)σ

2 AA∗ 1
2 Σ̂g + T +min{τ, 1 + τ − τ2}ασBB∗
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A.3 Proof of Theorem 4.1

The proof for Theorem 4.1 can be obtained by using the newly defined F and G in (A.6) instead
of those used in [4] and repeating the proof of [4, Theorem 5.1]. In order to make this paper
more readable, we provide the proof of Theorem 4.1 here.

Proof. According to Assumption 3.1(i) we know that the solution set W to the KKT system
(3.6) of problem (1.1) is nonempty. Then, we can choose a fixed w̄ := (x̄, ȳ, z̄) ∈ W, and define
xe := x− x̄, ye := y − ȳ and ze := z − z̄ for any given (x, y, z) ∈ X × Y × Z.

We first show that the sequence {(xk, yk, zk)} is bounded. According to Lemma A.3 one has
that 0 < α < 1, 0 < α̂ < 1 and β > 0. Moreover, the linear operators F and G defined in (A.6)
are positive definite. Hence, it holds that

‖yk − yk+1‖2G + 2α〈dky − dk−1
y , yk − yk+1〉

= ‖yk − yk+1 + αG−1(dky − dk−1
y )‖2G − α2‖dky − dk−1

y ‖2G−1 .

By substituting x̄k+1 and ȳk+1 for xk+1 and yk+1 into (A.8) in Proposition A.2, we obtain that

φk(w̄)− φ̄k+1(w̄) + α2‖dk−1
y ‖2G−1

≥ ‖x̄k+1 − xk‖2F + βσ‖r̄k+1‖2 + ‖ȳk+1 − yk + αG−1dk−1
y ‖2G , ∀k ≥ 1,

(A.20)

where for any (x, y, z) ∈ X × Y × Z, we define

φ̄k(x, y, z) :=
1
τσ

‖z − z̄k‖2 + ‖x− x̄k‖2
Σ̂f+S

+ ‖y − ȳk‖2
Σ̂g+T

+σ‖A∗x+ B∗ȳk − c‖2 + α̂σ‖r̄k‖2 + α‖yk−1 − ȳk‖2
Σ̂g+T

, ∀k ≥ 1.

Now, define the sequences {ξk} and {ξ̄k} in Z × X × Y ×Z × Y for k ≥ 1 by




ξk :=
(√

τσzke , (Σ̂f + S) 1
2xke ,N

1
2 yke ,

√
α̂σrk,

√
α(Σ̂g + T )

1
2 (yk−1 − yk)

)
,

ξ̄k :=
(√

τσz̄ke , (Σ̂f + S) 1
2 x̄ke ,N

1
2 ȳke ,

√
α̂σr̄k,

√
α(Σ̂g + T )

1
2 (yk−1 − ȳk)

)
.

Obviously we have ‖ξk‖2 = φk(w̄) and ‖ξ̄k‖2 = φ̄k(w̄). This, together with (A.20) implies that

‖ξ̄k+1‖2 ≤ ‖ξk‖2 + α2‖G− 1
2dk−1

y ‖2. As a result, it holds that ‖ξ̄k+1‖ ≤ ‖ξk‖ + α‖G− 1
2dk−1

y ‖.
Consequently, one obtains that

‖ξk+1‖ ≤ ‖ξk‖+ α‖G− 1
2dk−1

y ‖+ ‖ξ̄k+1 − ξk+1‖. (A.21)

Next, we estimate ‖ξ̄k+1 − ξk+1‖ in (A.21). From Lemma A.3 we know that α̂ + τ ∈ [1, 2], so
that

1
τσ

‖z̄k+1 − zk+1‖2 + α̂σ‖r̄k+1 − rk+1‖2 = (τ + α̂)σ‖r̄k+1 − rk+1‖2

≤ 2σ‖A∗(x̄k+1 − xk+1) + B∗(ȳk+1 − yk+1)‖2 ≤ 4‖x̄k+1 − xk+1‖2σAA∗ + 4‖ȳk+1 − yk+1‖2σBB∗ .

This, together with Proposition A.1, implies that

‖ξ̄k+1 − ξk+1‖2

≤ ‖x̄k+1 − xk+1‖2
Σ̂f+S

+ ‖ȳk+1 − yk+1‖2N + ‖ȳk+1 − yk+1‖2
Σ̂g+T

+4‖x̄k+1 − xk+1‖2σAA∗ + 4‖ȳk+1 − yk+1‖2σBB∗

≤ 5(‖x̄k+1 − xk+1‖2M + ‖ȳk+1 − yk+1‖2N ) ≤ ̺2ε2k,

(A.22)
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where ̺ is a positive constant defined by ̺ :=

√
5(1 + (1 + σ‖N− 1

2BA∗M− 1
2 ‖)2). On the other

hand, from Proposition A.1, we know that ‖G− 1
2dky‖ ≤ ‖G− 1

2N 1
2 ‖εk. By using this fact together

with (A.21) and (A.22), one can get

‖ξk+1‖ ≤ ‖ξk‖+ ̺εk + ‖G− 1
2N 1

2‖εk−1 ≤ ‖ξ1‖+
(
̺+ ‖G− 1

2N 1
2 ‖
)
E , (A.23)

which implies that the sequence {ξk} is bounded. Hence by (A.22), we know that the sequence
{ξ̄k} is also bounded. From the definition of ξk, we know that the sequences {yk}, {zk}, {rk}
and {(Σ̂f+S) 1

2xk} are bounded. Thus, by the definition of rk, we know that the sequence {Axk}
is also bounded, which together with the definition of M and the fact that M ≻ 0, implies that
{xk} is bounded.

By (A.20), (A.22) and (A.23) we have that

∞∑

k=1

(
‖x̄k+1 − xk‖2F + βσ‖r̄k+1‖2 + ‖ȳk+1 − yk + αG−1dk−1

y ‖2G
)

≤
∞∑

k=1

(
φk(w̄)− φk+1(w̄) + φk+1(w̄)− φ̄k+1(w̄) + α2‖dk−1

y ‖2G−1

)

≤ φ1(w̄) +
∑∞

k=1‖ξk+1 − ξ̄k+1‖
(
‖ξk+1‖+ ‖ξ̄k+1‖

)
+ ‖G− 1

2N 1
2 ‖2E ′

≤ φ1(w̄) + ‖G− 1
2N 1

2 ‖2E ′ + ̺max
k≥1

{‖ξk+1‖+ ‖ξ̄k+1‖}E <∞,

(A.24)

where we have used the fact that φk(w̄)− φ̄k(w̄) ≤ ‖ξk − ξ̄k‖(‖ξk‖+ ‖ξ̄k‖). By (A.24), we know
that limk→∞ ‖x̄k+1−xk‖2F = 0, limk→∞ ‖ȳk+1−yk+αG−1dk−1

y ‖2G = 0, and limk→∞ ‖r̄k+1‖2 = 0.

Then, by F ≻ 0 and G ≻ 0, we have that {x̄k+1 − xk} → 0, {ȳk+1 − yk} → 0 and {r̄k} → 0
as k → ∞. Also, due to the fact that M ≻ 0 and N ≻ 0, by Proposition A.1 we know that
{x̄k − xk} → 0 and {ȳk − yk} → 0 as k → ∞. As a result, it holds that {xk − xk+1} → 0,
{yk − yk+1} → 0, and {rk} → 0 as k → ∞. Note that the sequence {(xk+1, yk+1, zk+1)} is
bounded. Thus, it has a convergent subsequence {(xki+1, yki+1, zki+1)} which converges to a
point, say (x∞, y∞, z∞) ∈ X × Y × Z. We define two nonlinear mappings F : X × Y × Z → X
and G : X × Y × Z → Z by

F (w) := ∂p(x) +∇f(x) +Az and G(w) := ∂q(y) +∇g(y) + Bz, ∀(x, y, z) ∈ X × Y × Z.
Note that for any k ≥ 0,

dky −∇g(yk)− Bz̃k+1 + (Σ̂g + T )yk − yk+1 ∈ ∂q(yk+1). (A.25)

Since that Assumption 3.1(ii) holds, by Clarke’s Mean Value Theorem [6, Proposition 2.6.5],
we know that for any k ≥ 1, there exist two self-adjoint linear operators 0 � Pk

x � Σ̂f and

0 � Pk
y � Σ̂g such that

∇f(xk−1)−∇f(xk) = Pk
x(x

k−1 − xk) and ∇g(yk−1)−∇g(yk) = Pk
y (y

k−1 − yk). (A.26)

Note that (A.10) holds. Then, by (A.25) and (A.26) we know that for all k ≥ 1,




dkx − Pk+1
x (xk − xk+1) + (Σ̂f + S)(xk − xk+1) + (τ − 1)σArk+1 − σAB∗(yk − yk+1)

∈ F (wk+1),

dky − Pk+1
y yk − yk+1 + (Σ̂g + T )yk − yk+1 + (τ − 1)σBrk+1 ∈ G(wk+1).

(A.27)
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By taking limits along {ki} as i→ ∞ in (A.27), we know that

0 ∈ ∂p(x∞) +∇f(x∞) +Az∞ and 0 ∈ ∂q(y∞) +∇g(y∞) + Bz∞,

which together with the fact that limk→∞ rk = 0 implies that (x∞, y∞, z∞) ∈ W . Hence,
(x∞, y∞) is a solution to problem (1.1) and z∞ is a solution to the dual of problem (1.1).

By (A.23) and Lemma A.2, we know that the sequence {‖ξk‖} is convergent. We can let
w̄ = (x∞, y∞, z∞) in all the previous discussions. In this case, limk→∞ ‖ξk‖ = 0. Thus, from
the definition of {ξk}, we know that

lim
k→∞

zk = z∞, lim
k→∞

yk = y∞, and lim
k→∞

(Σ̂f + S)xk = (Σ̂f + S)x∞.

Since that limk→∞ rk = 0, it holds that {A∗xk} → A∗x∞ as k → ∞. Consequently, from the
definition of M and the fact that M ≻ 0, we can get limk→∞ xk = x∞, which completes the
proof.

20


	1 Introduction
	2 Notation and Preliminaries
	2.1 Notation
	2.2 The inexact sGS decomposition theorem

	3 An Inexact sGS Decomposition Based Majorized Indefinite-Proximal ADMM
	4 Convergence Analysis
	4.1 Basic convergence results
	4.2 An inexact 2-block majorized indefinite-proxiaml ADMM
	4.3 Convergence of the sGS-imiPADMM

	5 Conclusions
	A Convergence Analysis of the imiPADMM
	A.1 Additional notation and preliminaries
	A.2 The key inequality
	A.3 Proof of Theorem ??


