AN EXTREMAL PROBLEM FOR FUNCTIONS ANNIHILATED BY A TOEPLITZ OPERATOR

KONSTANTIN M. DYAKONOV

ABSTRACT. For a bounded function φ on the unit circle \mathbb{T} , let T_{φ} be the associated Toeplitz operator on the Hardy space H^2 . Assume that the kernel

$$
K_2(\varphi) := \{ f \in H^2 : T_{\varphi} f = 0 \}
$$

is nontrivial. Given a unit-norm function f in $K_2(\varphi)$, we ask whether an identity of the form $|f|^2 = \frac{1}{2} (|f_1|^2 + |f_2|^2)$ may hold a.e. on T for some $f_1, f_2 \in K_2(\varphi)$, both of norm 1 and such that $|f_1| \neq |f_2|$ on a set of positive measure. We then show that such a decomposition is possible if and only if either f or $\overline{z\varphi f}$ has a nonconstant inner factor. The proof relies on an intrinsic characterization of the moduli of functions in $K_2(\varphi)$, a result which we also extend to $K_p(\varphi)$ (the kernel of T_{φ} in H^p) with $1 \leq p \leq \infty$.

1. Introduction and results

Let T stand for the circle $\{\zeta \in \mathbb{C} : |\zeta| = 1\}$ and let m be the normalized Lebesgue measure on \mathbb{T} . For $0 < p \leq \infty$, the space $L^p := L^p(\mathbb{T}, m)$ will be endowed with the usual norm $\|\cdot\|_p$ (the term "quasinorm" should actually be used when 0 < $p < 1$). We also need the *Hardy space* $H^p := H^p(\mathbb{T})$, viewed as a subspace of L^p . The functions in H^p are thus the boundary traces (in the sense of nontangential convergence almost everywhere) of those in $H^p(\mathbb{D})$, the classical Hardy space on the disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. The latter space consists, by definition, of all holomorphic functions f on $\mathbb D$ that satisfy

$$
\sup\left\{\|f_r\|_p: \, 0 < r < 1\right\} < \infty,
$$

where $f_r(\zeta) := f(r\zeta)$ for $\zeta \in \mathbb{T}$.

Our starting point is the following observation: Given any $f \in H^2$ with $||f||_2 = 1$, one can find unit-norm functions $f_1, f_2 \in H^2$ such that

(1.1)
$$
|f|^2 = \frac{1}{2} (|f_1|^2 + |f_2|^2) \text{ a.e. on } \mathbb{T}
$$

and

(1.2)
$$
|f_1| \neq |f_2|
$$
 on a set of positive measure.

²⁰¹⁰ *Mathematics Subject Classification.* 30H10, 30J05, 46A55, 47B35.

Key words and phrases. Hardy space, Toeplitz operator, extreme point, outer function.

Supported in part by grants MTM2014-51834-P and MTM2017-83499-P from El Ministerio de Economía y Competitividad (Spain), and by grant 2017-SGR-358 from AGAUR (Generalitat de Catalunya).

This fact (to be explained in a moment) is akin to the classical result that the unit ball of L^1 has no extreme points, even though the ball should currently be replaced by a suitable convex subset thereof. Namely, consider the set

$$
V_0 := \left\{ |f|^2 : f \in H^2, \, 0 < \|f\|_2 \le 1 \right\},\,
$$

i.e., the collection of all functions g on $\mathbb T$ that have the form $g = |f|^2$ for some non-null f from the unit ball of H^2 . We know from basic H^p theory (see [\[9,](#page-8-0) Chapter II) that the elements g of V_0 are characterized by the conditions

(1.3)
$$
g \ge 0
$$
 a.e. on T, $g \in L^1$, $\int_{\mathbb{T}} \log g \, dm > -\infty$,

and $||g||_1 \leq 1$. (The fact that every function g satisfying [\(1.3\)](#page-1-0) is writable as $|f|^2$, for some $f \in H^2$, was proved by Szegö in [\[15\]](#page-9-0). He then used this representation to study the asymptotic behavior of the polynomials that are orthogonal with respect to such a weight q on \mathbb{T} ; see [\[16,](#page-9-1) Chapter 12].) Clearly, the functions q that obey (1.3) form a convex cone in L^1 . The portion of that cone lying in the (closed) unit ball of L^1 is precisely V_0 , so this last set is again convex.

We need to show that every function $g \in V_0$ with $||g||_1 = 1$ is a non-extreme point of V_0 . (By the way, this will imply that V_0 has no extreme points at all.) In fact, given such a g, we can always find a non-null real-valued function $\tau \in L^{\infty}$ with the properties that $\int_{\mathbb{T}} g \tau \, dm = 0$ and $||\tau||_{\infty} \leq \frac{1}{2}$ $\frac{1}{2}$. This done, we put

$$
g_1 := g(1 + \tau), \qquad g_2 := g(1 - \tau)
$$

and note that

(1.4)
$$
g = \frac{1}{2} (g_1 + g_2) \quad \text{a.e. on } \mathbb{T},
$$

while g_1 and g_2 are both in V_0 . Indeed, for $j = 1, 2$ we have

$$
\frac{1}{2}g \le g_j \le \frac{3}{2}g \quad \text{a.e. on } \mathbb{T},
$$

which makes (1.3) true for g_j in place of g ; also,

$$
||g_j||_1 = \int_{\mathbb{T}} g(1 \pm \tau) dm = \int_{\mathbb{T}} g dm = 1.
$$

Thus (1.4) tells us that q is the midpoint of a (nondegenerate) segment whose endpoints g_i $(j = 1, 2)$ lie in V_0 and satisfy $||g_i||_1 = 1$. Equivalently, a nontrivial decomposition [\(1.1\)](#page-0-0) with required properties is always possible.

The purpose of this note is to study the equation (1.1) when f lies in a certain subspace of H^2 , namely, in the kernel of a given Toeplitz operator. The unknowns f_1 and f_2 are then required to belong to the same subspace and obey [\(1.2\)](#page-0-1). Besides, all the functions involved are supposed to be of norm 1, as before.

For an essentially bounded function φ on \mathbb{T} , we consider the associated operator T_{φ} (called the *Toeplitz operator with symbol* φ) which acts on H^2 by the rule

$$
T_{\varphi}f := P_{+}(\varphi f),
$$

where P_+ is the orthogonal projection from L^2 onto H^2 . Assuming that the kernel

$$
K_2(\varphi) := \{ f \in H^2 : T_{\varphi} f = 0 \}
$$

is nontrivial, we look at the set

(1.5)
$$
V_{\varphi} := \left\{ |f|^2 : f \in K_2(\varphi), \ 0 < ||f||_2 \le 1 \right\},
$$

i.e., the collection of all functions g on \mathbb{T} that have the form $g = |f|^2$ for some non-null f from the unit ball of $K_2(\varphi)$. This set is convex, as we shall soon see, and we are concerned with its (non-)extreme points; once these are determined, we shall arrive at the sought-after information on the solvability of [\(1.1\)](#page-0-0) for unit-norm functions in $K_2(\varphi)$. We are only interested in the case where $\varphi \in L^{\infty} \setminus \{0\}$ (i.e., φ) is non-null), since otherwise $K_2(\varphi) = H^2$ and V_{φ} reduces to V_0 , a situation we have already discussed.

Before moving further ahead, we need to gain a better understanding of the moduli of functions in $K_2(\varphi)$. This will be achieved by means of Theorem [1.1](#page-3-0) below, generalizing an earlier result from [\[4\]](#page-8-1). When dealing with this issue, we temporarily extend our attention to the subspaces

(1.6)
$$
K_p(\varphi) := \{ f \in H^p : T_{\varphi} f = 0 \}
$$

with $1 \leq p \leq \infty$, not just with $p = 2$.

It should be noted that the operator P_+ , which kills the function's negativeindexed Fourier coefficients, admits a natural extension to L^1 , even though $P_+(L^1) \not\subset$ L^1 . This allows us to define the Toeplitz operator T_{φ} on H^1 , whenever $\varphi \in L^{\infty}$, the range of any such operator being contained in $P_+(L^1)$ and hence in every H^s with $0 < s < 1$. Consequently, the definition (1.6) is meaningful for $p = 1$, as well as for all bigger values of p.

For a function $f \in H^p$ to be in $K_p(\varphi)$, it is necessary and sufficient that the product φf be anti-analytic, which in turn amounts to saying that the "companion" function"

$$
\widetilde{f}:=\overline{z\varphi f}
$$

is in H^p . Thus,

$$
K_p(\varphi) = \{ f \in H^p : \tilde{f} \in H^p \}, \qquad 1 \le p \le \infty.
$$

(As a byproduct of this characterization, we mention the fact that every Toeplitz kernel $K_p(\varphi)$ enjoys the F-property of Havin; see [\[10\]](#page-8-2).)

A bit more terminology and notation will be needed. Given a nonnegative function w on \mathbb{T} with $\log w \in L^{\overline{1}}$, the corresponding *outer function* \mathcal{O}_w is defined a.e. on \mathbb{T} by

$$
\mathcal{O}_w := \exp\left\{\log w + i \mathcal{H}(\log w)\right\},\,
$$

where H stands for the harmonic conjugation operator. Functions of the form $\lambda \mathcal{O}_w$, with w as above and λ a unimodular constant, will also be referred to as outer. It is well known (and easy to check) that \mathcal{O}_w extends analytically into $\mathbb D$ and has modulus w a.e. on \mathbb{T} . Furthermore, $\mathcal{O}_w \in H^p$ if and only if $w \in L^p$. Finally, we recall that an H^{∞} function is said to be *inner* if its modulus equals 1 a.e. on T. See,

e.g., [\[9,](#page-8-0) Chapter II] for a systematic treatment of these concepts and of the basic facts related to them.

Theorem 1.1. Let $1 \leq p \leq \infty$, and suppose φ is a non-null function in L^{∞} for which $K_p(\varphi) \neq \{0\}$. Also, let g be a nonnegative function in $L^{p/2}$. The following conditions are then equivalent.

(i.1) There is an $f \in K_p(\varphi)$ such that $|f|^2 = g$ a.e. on \mathbb{T} . (ii.1) $\overline{z\varphi}g \in H^{p/2}$.

Moreover, if (ii.1) holds (with g non-null) and if I is the inner factor of $\overline{z\varphi}g$, then the general form of a function $f \in K_p(\varphi)$ with $|f|^2 = g$ is given by $f = \mathcal{O}_{\sqrt{g}}J$, where J is an inner divisor of I.

Among the possible symbols φ of our Toeplitz operators, we may single out those which are complex conjugates of inner functions. For such φ 's (i.e., for $\varphi = \overline{\theta}$ with θ inner), the corresponding Toeplitz kernels $K_p(\varphi)$ take the form

$$
H^p \cap \overline{z} \theta \overline{H^p} =: K^p_\theta
$$

and are known as *star-invariant* or *model* subspaces. When $1 \leq p < \infty$, these are precisely the invariant subspaces of the backward shift operator $f \mapsto (f - f(0))/z$ in H^p ; see [\[2,](#page-8-3) [12\]](#page-9-2). We mention in passing that there are deeper connections between the two types of spaces, $K_p(\varphi)$ and K_p^p θ . Namely, in a way, generic Toeplitz kernels can be cooked up from model subspaces; see [\[6,](#page-8-4) [11,](#page-8-5) [13\]](#page-9-3) for details.

It was in the K_{θ}^p $\frac{p}{\theta}$ setting that Theorem [1.1](#page-3-0) originally appeared in [\[4\]](#page-8-1); see also [\[8,](#page-8-6) Lemma 5. In the (tiny) special case where $\overline{\varphi} = \theta = z^{n+1}$, the subspace in question is populated by polynomials of degree at most n , and the equivalence between $(i,1)$ and $(ii.1)$ above reduces to the classical Fejer–Riesz theorem that describes the moduli of such polynomials on $\mathbb T$ (see, e.g., [\[14,](#page-9-4) p. 26]).

The role of Theorem [1.1](#page-3-0) in the present context consists in providing a useful – and usable – description of the set V_{φ} , as defined by [\(1.5\)](#page-2-1). Specifically, it tells us that a nonnegative function $g \in L^1 \setminus \{0\}$ is in V_{φ} if and only if it satisfies $\overline{z\varphi}g \in H^1$ and $||g||_1 \leq 1$. This criterion (which implies the convexity of V_{φ} , among other things) will be repeatedly used hereafter.

Our main result, to be stated next, characterizes the extreme points of V_{φ} . Of course, every function $g \in V_{\varphi}$ with $||g||_1 < 1$ is non-extreme, since

$$
g = \frac{1}{2}(1+\varepsilon)g + \frac{1}{2}(1-\varepsilon)g
$$

and $(1 \pm \varepsilon)g \in V_{\varphi}$ for suitably small $\varepsilon > 0$. Therefore, we only need to consider the case where $||q||_1 = 1$.

Theorem 1.2. Let $\varphi \in L^{\infty} \setminus \{0\}$ be such that $K_2(\varphi) \neq \{0\}$, and let $g \in V_{\varphi}$ be a function with $||g||_1 = 1$. The following are equivalent.

(i.2) g is an extreme point of V_{φ} .

(ii.2) $\overline{z\varphi}g$ is an outer function in H^1 .

This characterization is reminiscent of de Leeuw and Rudin's theorem (see [\[1\]](#page-8-7) or [\[9,](#page-8-0) Chapter IV]) which identifies the extreme points of the unit ball of H^1 as unit-norm outer functions. We also mention a related result from [\[5\]](#page-8-8) that describes the extreme points of the unit ball in $K_1(\varphi)$. (Namely, these are shown to be the unit-norm functions $f \in K_1(\varphi)$ with the property that the inner factors of f and f are relatively prime.) In this connection, see also [\[3\]](#page-8-9) and [\[7\]](#page-8-10).

We now state a consequence of Theorem [1.2](#page-3-1) which provides an additional piece of information on the geometry of V_{φ} .

Corollary 1.3. Let $\varphi \in L^{\infty} \setminus \{0\}$ be such that $K_2(\varphi) \neq \{0\}$. Then every function $g \in V_{\varphi}$ with $||g||_1 = 1$ has the form $g = \frac{1}{2}$ $\frac{1}{2}(g_1+g_2)$, where g_1 and g_2 are extreme points of V_φ .

Going back to Theorem [1.2,](#page-3-1) we remark that for $g \in V_{\varphi}$, the function $\overline{z\varphi}g$ can be written as $f\tilde{f}$, where f is some (any) function in $K_2(\varphi)$ with $|f|^2 = g$ and $\widetilde{f} := \overline{z\varphi f} (\in H^2)$. Consequently, we may rephrase condition (ii.2) above by saying that both f and \hat{f} are outer functions. This in turn leads us to a reformulation of Theorem [1.2,](#page-3-1) which is perhaps better suited for answering our original question.

Theorem 1.4. Suppose that $\varphi \in L^{\infty} \setminus \{0\}$, $f \in K_2(\varphi)$ and $||f||_2 = 1$. In order that there exist a decomposition of the form (1.1) with some unit-norm functions $f_1, f_2 \in K_2(\varphi)$ satisfying [\(1.2\)](#page-0-1), it is necessary and sufficient that either f or \widetilde{f} have a nonconstant inner factor.

Finally, we take yet another look at condition (ii.2) of Theorem [1.2.](#page-3-1) Assuming that (ii.2) holds, we know from Theorem [1.1](#page-3-0) that the only functions $f \in K_2(\varphi)$ with $|f|^2 = g$ are constant multiples of $\mathcal{O}_{\sqrt{g}}$. It turns out that a similar conclusion is valid, under condition (ii.2), for those functions $f \in K_2(\varphi)$ which are merely dominated by \sqrt{g} in the sense that

(1.7)
$$
\int_{\mathbb{T}} \frac{|f|}{\sqrt{g}} dm < \infty.
$$

(Clearly, this holds in particular when $|f|^2 \leq \text{const} \cdot g$ on \mathbb{T} , let alone when $|f|^2 =$ g.) In the more general context of H^p spaces with $p \geq 1$, the underlying rigidity phenomenon manifests itself in essentially the same way.

Proposition 1.5. Let $1 \leq p \leq \infty$ and let $\varphi \in L^{\infty} \setminus \{0\}$ be such that $K_p(\varphi) \neq \{0\}$. Suppose g is a nonnegative function in $L^{p/2} \setminus \{0\}$ for which $\overline{z\varphi}g$ is an outer function in $H^{p/2}$. Then every function $f \in K_p(\varphi)$ satisfying [\(1.7\)](#page-4-0) is of the form $f = c\mathcal{O}_{\sqrt{g}}$ for some constant $c \in \mathbb{C}$.

In the special case where φ is the conjugate of an inner function, a similar rigidity result can be found (in a somewhat weaker form) as Theorem 5 in [\[4\]](#page-8-1).

Now let us turn to the proofs of our current results.

2. Proof of Theorem [1.1](#page-3-0)

If (i.1) holds, then

$$
\overline{z\varphi}g = \overline{z\varphi}|f|^2 = f \cdot \overline{z\varphi}\overline{f} = f\widetilde{f}.
$$

This last product is in $H^{p/2}$, because f and \tilde{f} are both in H^p , and we arrive at (ii.1).

Before proceeding to prove the converse, we pause to observe that

$$
(2.1)\t\t \t\t \log |\varphi| \in L^1
$$

thanks to our hypotheses on φ . Indeed, let f_0 be a non-null function in $K_p(\varphi)$. Then $f_0 := \overline{z\varphi f}_0$ is in $H^p \setminus \{0\}$ (recall that $|\varphi| > 0$ on a set of positive measure, while $|f_0| > 0$ a.e.), and so

,

$$
\log |\varphi| = \log |\widetilde{f}_0| - \log |f_0| \in L^1.
$$

Now suppose that (ii.1) holds, so that $\overline{z\varphi g} =: \mathcal{G}$ is in $H^{p/2}$. The case of $g \equiv 0$ being trivial, we shall henceforth assume that g is non-null; the same is then true for G. (The latter conclusion relies on [\(2.1\)](#page-5-0), which guarantees that $|\varphi| > 0$ a.e. on T.) It follows that $log |\mathcal{G}| \in L^1$, and hence

$$
\log g = \log |\mathcal{G}| - \log |\varphi| \in L^1
$$

(where [\(2.1\)](#page-5-0) has been used again). We may then consider the outer function $\mathcal{O}_{\sqrt{a}} =$: F, so that $F \in H^p$ and $|F| = \sqrt{g}$, and we further claim that $F \in K_p(\varphi)$.

To see why, note that $|\mathcal{G}| = |\varphi|g$, and consequently, the outer factor of $\mathcal G$ equals

$$
\mathcal{O}_{|\mathcal{G}|} = \mathcal{O}_{|\varphi|} \mathcal{O}_g = \Phi F^2,
$$

where $\Phi := \mathcal{O}_{|\varphi|}(\in H^{\infty})$. Therefore, letting I denote the inner factor of \mathcal{G} , we have ^{2}I .

(2.2) G = ΦF

Using [\(2.2\)](#page-5-1) and the fact that

$$
(2.3) \t\t\t g = |F|^2 (= \overline{F}F),
$$

we now rewrite the identity $\overline{z\varphi}g = \mathcal{G}$ in the form

$$
\overline{z\varphi}\overline{F}F = \Phi F^2I,
$$

or equivalently,

$$
\overline{z\varphi}\overline{F} = \Phi FI.
$$

Thus, $\overline{F} := \overline{z\varphi} \overline{F}$ is in H^p , which means that $F \in K_p(\varphi)$, as claimed above. Finally, we recall [\(2.3\)](#page-5-2) to arrive at (i.1), with $f = F$. The equivalence of (i.1) and (ii.1) is thereby verified.

To prove the last assertion of the theorem, assume that q satisfies (ii.1) and that f is an H^p function with $|f|^2 = g$. The outer factor of f must then agree with F, defined as above, so $f = FJ$ for some inner function J. Now, in order that f be in $K_p(\varphi)$, it is necessary and sufficient that

(2.5)
$$
\widetilde{f}(:=\overline{z\varphi f})\in H^p.
$$

On the other hand, multiplying both sides of [\(2.4\)](#page-5-3) by \overline{J} yields

$$
\widetilde{f} = \overline{z\varphi}\overline{FJ} = \Phi F I \overline{J} = \Phi F I/J.
$$

It follows that (2.5) holds if and only if J divides I, and the proof is complete.

3. Proofs of Theorem [1.2](#page-3-1) and Corollary [1.3](#page-4-1)

Proof of Theorem [1.2.](#page-3-1) We begin by showing that (i.2) implies (ii.2). Suppose that (ii.2) fails, so that the function $\mathcal{G} := \overline{z\varphi}g(\in H^1)$ has a nontrivial inner factor, say u. Multiplying u by a suitable unimodular constant, if necessary, we may assume that the number $\int_{\mathbb{T}} gu \, dm$ is purely imaginary (i.e., belongs to iR). Clearly, $\psi := \text{Re } u$ is then a nonconstant real-valued L^{∞} function with $\|\psi\|_{\infty} \leq 1$; moreover,

$$
\int_{\mathbb{T}} g\psi \, dm = \text{Re} \int_{\mathbb{T}} g u \, dm = 0.
$$

Next, we put

$$
g_1 := g(1 + \psi), \qquad g_2 := g(1 - \psi)
$$

and we are going to check that

(3.1)
$$
g_j \in V_{\varphi} \quad \text{for} \quad j = 1, 2.
$$

Indeed, the above-mentioned properties of ψ imply that

$$
g\left(1\pm\psi\right)\geq 0\quad\text{a.e. on }\mathbb{T},
$$

while

$$
\int_{\mathbb{T}} g(1 \pm \psi) \, dm = \int_{\mathbb{T}} g \, dm = 1.
$$

Thus, g_1 and g_2 are nonnegative L^1 functions, both of norm 1. We also claim that (3.2) $\overline{z\varphi}g_j \in H^1$ for $j = 1, 2$.

To see why, write G for the outer factor of $\mathcal G$ (so that $\mathcal G = Gu$) and note that

(3.3)

$$
\overline{z\varphi}g_1 = \overline{z\varphi}g(1+\psi) = \mathcal{G}(1+\psi)
$$

$$
= Gu\left(1 + \frac{1}{2}u + \frac{1}{2}\overline{u}\right) = \frac{1}{2}G(1+u)^2.
$$

A similar calculation yields

(3.4)
$$
\overline{z\varphi}g_2 = -\frac{1}{2}G(1-u)^2.
$$

Because $G \in H^1$ and $(1 \pm u)^2 \in H^\infty$, the right-hand sides of [\(3.3\)](#page-6-0) and [\(3.4\)](#page-6-1) are both in $H¹$. The claim [\(3.2\)](#page-6-2) is thereby established, and so is [\(3.1\)](#page-6-3).

Finally, $g_1 \not\equiv g_2$ because $g > 0$ a.e. and ψ is non-null. The representation

(3.5)
$$
g = \frac{1}{2} (g_1 + g_2)
$$

now allows us to conclude that g is a non-extreme point of V_{φ} , in contradiction with $(i.2).$

Conversely, suppose that (ii.2) is fulfilled. Thus, $\mathcal{G} := \overline{z\varphi g}$ is an outer function in $H¹$. Now assume that [\(3.5\)](#page-6-4) holds with some g_1 and g_2 in V_{φ} ; hence, in particular,

$$
(3.6) \t\t\t \|g_1\|_1 = \|g_2\|_1 = 1.
$$

Setting $h := g_1 - g$ and $\mathcal{H} := \overline{z\varphi}h$, we further observe that

(3.7)
$$
\mathcal{H} = \overline{z\varphi}g_1 - \overline{z\varphi}g \in H^1.
$$

Also, we have $g_1 = g + h$ and $g_2 = g - h$, so [\(3.6\)](#page-6-5) takes the form

(3.8)
$$
||g+h||_1 = ||g-h||_1 = 1.
$$

Therefore,

$$
\int_{\mathbb{T}} \left(|g+h|+|g-h| \right) dm = 2,
$$

or equivalently,

(3.9)
$$
\int_{\mathbb{T}} (|1 + \Psi| + |1 - \Psi|) d\mu = 2,
$$

where $\Psi := h/g$ and $d\mu := g dm$. Because μ is a probability measure on T which has the same null-sets as m , we may couple (3.9) with the obvious inequality

$$
|1+\Psi|+|1-\Psi|\geq 2
$$

to deduce that we actually have

$$
|1 + \Psi| + |1 - \Psi| = 2
$$

a.e. on T. This in turn means that Ψ takes its values in the (real) interval [−1, 1]. On the other hand,

(3.10)
$$
\Psi := \frac{h}{g} = \frac{\overline{z\varphi}h}{\overline{z\varphi}g} = \frac{\mathcal{H}}{\mathcal{G}}.
$$

Recalling that $\mathcal{H} \in H^1$ (as [\(3.7\)](#page-6-6) tells us), while G is outer, we deduce from [\(3.10\)](#page-7-1) that Ψ belongs to the Smirnov class N^+ (see [\[9,](#page-8-0) Chapter II]). We also know that Ψ is bounded, whence

$$
\Psi \in N^+ \cap L^{\infty} = H^{\infty};
$$

and since the only real-valued functions in H^{∞} are constants, it follows that $\Psi \equiv c$ for some constant $c \in [-1, 1]$. Consequently, $h = cq$ and

$$
||g \pm h||_1 = (1 \pm c) ||g||_1 = 1 \pm c.
$$

Comparing this with [\(3.8\)](#page-7-2), we finally conclude that $c = 0$. Thus, $h \equiv 0$ and $g_1 = g_2 = g$, so that the only decomposition of the form [\(3.5\)](#page-6-4) is the trivial one. This brings us to (i.2) and completes the proof. \Box

Proof of Corollary [1.3.](#page-4-1) If g is an extreme point of V_{φ} , then it suffices to take $g_1 = g_2 = g$. Now, if g is non-extreme (so that $\overline{z\varphi}g$ is non-outer), then we may use the representation [\(3.5\)](#page-6-4) from the proof of the (i.2) \implies (ii.2) part above. To check that the functions g_1 and g_2 constructed there are actually extreme points of V_φ , we invoke the (ii.2) \implies (i.2) part of the theorem, coupled with the fact that the functions $\overline{z\varphi}g_j$ (j = 1, 2) are both outer. The latter is readily seen from [\(3.3\)](#page-6-0) and [\(3.4\)](#page-6-1), since each of these identities has an outer function, namely $\pm \frac{1}{2}G(1 \pm u)^2$, for the right-hand side.

4. Proof of Proposition [1.5](#page-4-2)

Let $f \in K_p(\varphi)$ be a function satisfying [\(1.7\)](#page-4-0). Then

(4.1)
$$
\frac{|f|^2}{g} = \frac{\overline{z\varphi f} \cdot f}{\overline{z\varphi}g} = \frac{\widetilde{f}f}{\mathcal{G}},
$$

where we write $f := \overline{z\varphi f}$ and $\mathcal{G} := \overline{z\varphi}g$, as before. Since f (as well as f) is in H^p , while G is an *outer* function in $H^{p/2}$, it follows that the quotient on the right-hand side of (4.1) lies in the Smirnov class N^+ . The same is therefore true for the left-hand side of [\(4.1\)](#page-8-11), that is, for $|f|^2/g$. This last ratio also belongs to $L^{1/2}$, as [\(1.7\)](#page-4-0) tells us, and so

$$
\frac{|f|^2}{g} \in N^+ \cap L^{1/2} = H^{1/2}.
$$

Because the only nonnegative $H^{1/2}$ functions are constants (see [\[9,](#page-8-0) p. 92]), we infer that

$$
|f|^2 = \lambda g
$$

for some constant $\lambda \geq 0$.

Now, if $\lambda = 0$, then $f \equiv 0$ and we are done. Otherwise, since $\mathcal G$ has no inner part, Theorem [1.1](#page-3-0) (or rather its final assertion, applied with λq in place of q) allows us to conclude that f agrees, up to a constant factor of modulus 1, with the outer function $\mathcal{O}_{\sqrt{\lambda g}}\left(=\sqrt{\lambda}\mathcal{O}_{\sqrt{g}}\right)$. The proof is complete.

REFERENCES

- [1] K. de Leeuw and W. Rudin, *Extreme points and extremum problems in* H1, Pacific J. Math. 8 (1958), 467–485.
- [2] R. G. Douglas, H. S. Shapiro, and A. L. Shields, *Cyclic vectors and invariant subspaces for the backward shift operator*, Ann. Inst. Fourier (Grenoble) 20 (1970), 37–76.
- [3] K. M. Dyakonov, *The geometry of the unit ball in the space* K_{θ}^1 , Geometric problems of the theory of functions and sets, 52–54, Kalinin. Gos. Univ., Kalinin, 1987. (Russian)
- [4] K. M. Dyakonov, *Moduli and arguments of analytic functions from subspaces in H^p that are invariant under the backward shift operator*, Sibirsk. Mat. Zh. 31 (1990), no. 6, 64–79; translation in Siberian Math. J. 31 (1990), 926–939.
- [5] K. M. Dyakonov, *Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators*, Proc. Amer. Math. Soc. 116 (1992), 1007–1013.
- [6] K. M. Dyakonov, *Kernels of Toeplitz operators via Bourgain's factorization theorem*, J. Funct. Anal. 170 (2000), 93–106.
- [7] K. M. Dyakonov, *Polynomials and entire functions: zeros and geometry of the unit ball*, Math. Res. Lett. 7 (2000), 393–404.
- [8] K. M. Dyakonov, *Zero sets and multiplier theorems for star-invariant subspaces*, J. Anal. Math. 86 (2002), 247–269.
- [9] J. B. Garnett, *Bounded analytic functions*, Revised first edition, Springer, New York, 2007.
- [10] V. P. Havin, *The factorization of analytic functions that are smooth up to the boundary*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971), 202–205.
- [11] E. Hayashi, *The kernel of a Toeplitz operator*, Integral Equations Operator Theory 9 (1986), 588–591.
- [12] N. K. Nikolski, *Operators, Functions, and Systems: An Easy Reading, Vol. 2: Model operators and systems*, Mathematical Surveys and Monographs, 93, Amer. Math. Soc., Providence, RI, 2002.
- [13] D. Sarason, *Kernels of Toeplitz operators*, Toeplitz operators and related topics (Santa Cruz, CA, 1992), 153-164, Oper. Theory Adv. Appl., 71, Birkhäuser, Basel, 1994.
- [14] B. Simon, *Orthogonal polynomials on the unit circle. Part 1. Classical theory*, American Mathematical Society Colloquium Publications, 54, Amer. Math. Soc., Providence, RI, 2005.
- [15] G. Szegö, *Über die Randwerte analytischer Funktionen*, Math. Ann. **84** (1921), 232–244.
- [16] G. Szegö, *Orthogonal polynomials*, Fourth edition, Colloquium Publications, 23, Amer. Math. Soc., Providence, RI, 1975.

DEPARTAMENT DE MATEMÀTIQUES I INFORMÀTICA, IMUB, BGSMATH, UNIVERSITAT DE Barcelona, Gran Via 585, E-08007 Barcelona, Spain

ICREA, PG. LLUÍS COMPANYS 23, E-08010 BARCELONA, SPAIN *Email address*: konstantin.dyakonov@icrea.cat