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The Bergman kernel in constant curvature
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Abstract

We present an elementary proof for an approximate expression of the Bergman kernel on homoge-
neous spaces, and products of them. The error term is exponentially small with respect to the inverse
semiclassical parameter.

1 Introduction

1.1 Bergman kernels

This article is devoted to the study of the Bergman kernel on homogeneous spaces, that is, Kähler manifolds
with constant curvature (see Definition 1.2). This class of manifolds contain complex projective spaces (on
which the Bergman kernel is explicit), as well as tori and hyperbolic manifolds (on which it is not). This
kernel encodes the holomorphic sections of a suitable line bundle over M .

The study of the Bergman kernel is mainly motivated by Berezin-Toeplitz quantization, which associates
to a function f on M a sequence (TN (f))N∈N of linear operators on holomorphic sections over M . Toeplitz
operators allow to tackle problems arising from representation theory [5], semiclassical analysis [10] and
quantum spin systems [6]. The Bergman kernel is also associated with determinantal processes [1], sampling
theory [2], and nodal sets [11].

Definition 1.1.

• A Kähler manifold (M,J, ω) is quantizable when there exists a Hermitian line bundle (L, h) over M
with curvature −2iπω. The bundle (L, h) is then called prequantum line bundle over M .

• Let (M,J, ω) be a quantizable Kähler manifold with (L, h) a prequantum bundle and let N ∈ N.

– The Hardy space H0(M,L⊗N ) is the space of holomorphic sections of L⊗N . It is a closed subspace
of L2(M,L⊗N ) which consists of all square-integrable sections of the same line bundle.

– The Bergman projector SN is the orthogonal projector from L2(M,L⊗N ) to H0(M,L⊗N ).

The simplest example of a quantizable compact Kähler manifold is the one-dimensional projective space
CP1, endowed with the natural complex structure Jst and the Fubini-Study form ωF S. A natural bundle
over CP1 is the tautological bundle (the fibre over one point is the corresponding complex line in C2). Then
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L is the dual of the tautological bundle. One can show that H0(CP1, L⊗N ) is isomorphic to the space of
homogeneous polynomials of degree N in two variables (with scalar product given by the volume form on
S3).

The space H0(M,L⊗N ) is always finite-dimensional if M is compact. Indeed, since ∆ = −∂∂, one has

H0(M,L⊗N ) = ker ∂C∞(M,L⊗N )→Ω1(M,L⊗N ) ⊂ ker ∆C∞(M,L⊗N )→Ω1(M,L⊗N ).

The Laplace operator ∆ is elliptic on the compact manifold M , so that its kernel is finite-dimensional.

1.2 Kernels of linear operators between sections of line bundles

The Bergman projector SN is a linear operator mapping the space of sections H0(M,L⊗N ), to itself. Here
we describe what it means for such an operator to have an integral kernel, and the nature of this kernel.

If E and F are finite-dimensional vector spaces, then it is well known that the space L(F,E) of linear
opeators from E to F can be identified with F ⊗E∗ where E∗ is the dual of E. Using this, let us construct,
for any two line bundles E1

π1→ M1 and E2
π2→ M2 over Riemannian manifolds, a space of kernels E1 ⊠ E∗

2

for linear operators which associate, to a section of E2, a section of E1.
The space E1 ⊠E∗

2 will be constructed as a vector bundle over M1 ×M2. An informal definition is that
the fiber (E1 ⊠ E∗

2)(x,y) over a point (x, y) ∈ M1 ×M2 is defined as the tensor product (E1)x ⊗ (E2)∗
y.

One can formally build E1 ⊠ E∗
2 in two steps. The first step is to associate to E1

π1→ M1 a bundle

E′
1

π′
1→ M1 ×M2 as follows:

E′
1 = E1 ×M2

π′
1(e, y) = (π1(e), y).

Then (E′
1)(x,y) = (π′

1)−1((x, y)) = π−1
1 (x) × {y} ≃ (E1)x. Similarly, from the dual bundle E∗

2 of E2, one can

build E∗′

2

π′
2→ M1 ×M2. Then, the second step is to define

E1 ⊠ E∗
2 = E′

1 ⊗ E∗′

2 .

Then the fibre over one point reads

(E1 ⊠ E∗
2)(x,y) ≃ (E′

1)(x,y) ⊗ (E∗′

2 )(x,y) ≃ (E1)x ⊗ (E2)∗
y,

as prescribed.
A smooth section of E1 ⊠ E∗

2 gives a linear operator between compactly supported, smooth sections of
E2 and sections of E1. Indeed, if KA is a smooth section of E1 ⊠ E∗

2 , then for any compactly supported,
smooth section s of E2 one can define the section As of E1 as

(As)(x) =

∫

M2

KA(x, y)s(y)dV ol(y).

Indeed, KA(x, y) ∈ (E1)x ⊗ (E2)∗
y is a linear operator from (E2)y (to which s(y) belongs) and (E1)x. Then

the integral makes sense as taking values in (E1)x, so that As is well-defined as a section of E1.

In particular, in our setting the Bergman projector SN admits a kernel as an element of L⊗N
⊠ L

⊗N
.

Indeed, since H0(M,L⊗N ) is finite-dimensional, it is spanned by a Hilbert base s1, . . . , sdN
of holomorphic

sections of L⊗N . Then the kernel of SN is

SN (x, y) =
dN∑

i=1

si(x) ⊗ si(y).
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1.3 Statement of the main results

Definition 1.2. A Kähler manifold (M,ω, J) is called homogeneous under the two following conditions:

• For every two points x, y ∈ M , there exist an open set U ∈ M containing x, an open set V ∈ M
containing y, and a biholomorphism ρ : U 7→ V which preserves ω.

• For every point x ∈ M , there exist an open set U ∈ M containing x and an action of U(d) by ω-
preserving biholomorphisms on U , with x as only common fixed point, such that the induced linear
action on TxM is conjugated to the tautological action of U(d) on Cd.

There is a one-parameter family of local models for homogeneous manifolds of dimension d: for positive
curvature c > 0, the rescaled complex projective space CPd; for zero curvature c = 0, the vector space Cd;
for negative curvature c > 0, the rescaled hyperbolic space H2d. In particular, on a homogeneous Kähler
manifold (M,ω, J), in the real-analytic structure given by (M,J), the symplectic form ω is real-analytic.

Using the standard notion of holomorphic extensions of real-analytic functions on totally real submani-
folds, let us define what will be the kernel of the Bergman projector, up to a constant multiplicative factor
and an exponentially small error.

Definition 1.3 (A particular section of L⊗N
⊠ L

⊗N
). The bundle L⊠ L, when restricted to the diagonal

M∆ = {(x, y) ∈ M × M,x = y}, is the trivial line bundle M × C → M . Moreover, if the first component
of M × M is endowed with the complex structure on M , and the second component with the opposite
complex structure (we informally call M ×M this complex manifold), then M∆ is a totally real submanifold
of M ×M .

Over a small neighbourhood of M∆ in M×M , one can then uniquely define Ψ1 as the unique holomorphic
section of L⊠ L which is equal to 1 on M∆.

This section is locally described at follows: let s be a non-vanishing holomorphic section of L over a small
open set U ⊂ M . Let φ = −1

2 log |s|h. Then φ is real-analytic, so that it admits a holomorphic extension φ̃,
defined on U × U (again, the diagonal copy of U is totally real in U × U). Then

Ψ1(x, y) = e2φ̃(x,y)s(x) ⊗ s(y).

We then define ΨN as (Ψ1)⊗N , which is a section of L⊗N
⊠ L

⊗N
.

Theorem A. Let M be a quantizable Kähler manifold of complex dimension d and suppose M is a product
of compact homogeneous Kähler manifolds.

Then the Bergman projector SN on M has an approximate kernel: there is a sequence of real coefficients
(ai)0≤i≤d, and positive constants c, C such that, for all (x, y) ∈ M ×M and for all N ≥ 1, one has

∥∥∥∥∥SN (x, y) − ΨN (x, y)
d∑

k=0

Nd−kak

∥∥∥∥∥
h

≤ Ce−cN .

If M is homogeneous, with curvature κ, then

d∑

k=0

Nd−kak =
1

πd
(N − κ)(N − 2κ) . . . (N − dκ).

A proof of Theorem A using advanced microlocal analysis (local Bergman kernels) was first hinted in [3]
and detailed in [7], where the coefficients ak are explicitely computed through an explicit expression of the
Kähler potential φ in a chart. We propose to prove Theorem A without semiclassical tools, and to recover
the coefficients ak from an elementary observation of the case of positive curvature.
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Theorem A implies exponential approximation in the L2 operator sense. Indeed, if K is a section of

L⊗N
⊠ L

⊗N
with ‖K(x, y)‖h ≤ C for all (x, y) ∈ M2, then for u ∈ L2(M,L⊗N ) one has

∫

M

∥∥∥∥
∫

M
〈K(x, y), u(y)〉hdy

∥∥∥∥
2

h

dx ≤

∫

M

∫

M
‖〈K(x, y), u(y)〉h‖2

hdydx

≤

∫

M

∫

M
‖K(x, y)‖2

h‖u(y)‖2
hdxdy

≤ C2V ol(M)‖u‖2
L2 .

Expressions for the Bergman kernel such as the one appearing in Theorem A were first obtained by
Charles [4] in the smooth setting; in this weaker case the section ΨN is only defined at every order on the
diagonal, which yields an O(N−∞) remainder.

Our proof of Theorem A, does not rely on microlocal analysis; the only partial differential operator
involved is the Cauchy-Riemann operator ∂ acting on L2(M,L⊗N ). We use the following estimate on this
operator: if M is compact, there exists C > 0 such that, for every N ≥ 1 and u ∈ L2(M,L⊗N ), one has:

‖∂u‖L2 ≥ C‖u− SNu‖L2 . (1)

This estimate follows from the work of Kohn [8, 9], which relies only on the basic theory of unbounded
operators on Hilbert spaces; it is widely used in the asymptotic study of the Bergman kernel, where it is
sometimes named after Hörmander or Kodaira.

The rest of this article is devoted to the proof of Theorem A. The plan is the following: we build an
approximation S̃N , up to exponential precision, for the Bergman kernel on compact homogeneous spaces.
The method consists in constructing candidates ψ̃N

x,v for the coherent states, using the local symmetries.
These states are almost holomorphic and satisfy a reproducing condition; from these properties, we deduce
that the associated reproducing kernel is exponentially close to the Bergman kernel.

Remark 1.4 (Non-compact homogeneous spaces). Since Kohn’s estimate (1) is valid for general homoge-
neous manifolds, the method of approximation of the Bergman kernel which we provide in this paper adapts
to non-compact homogeneous spaces under the condition that the radius of injectivity is bounded from
below. In the simple picture of hyperbolic surfaces of finite genus, we allow for the presence of funnels but
not cusps (more specifically, the behaviour of the Bergman kernel far away in a cusp, where the diameter is

smaller than N− 1
2 , is unknown to us). The exact statement of Theorem A is valid in this context, however

we cannot conclude that SN is controlled in the L2 operator norm.

2 Radial holomorphic charts

Kähler potentials on a Kähler manifold (M,J, ω) are characterised by the following property. If ρ is a
local holomorphic chart for M , the pulled-back symplectic form ρ∗ω can be seen as a function of Cd into
anti-Hermitian matrices of size 2d. The closure condition dω = 0 is then equivalent to the existence of a
real-valued function φ on the chart such that i∂∂φ = ρ∗ω. Such a φ is a Kähler potential.

From now on, (M,J, ω) denotes a compact quantizatble homogeneous Kähler manifold, of complex
dimension d, and (L, h) is the prequantum bundle over M .

Near every point P0 ∈ M , we will build a radial holomorphic chart using the local homogeneity. This
chart is the main ingredient in the construction of the approximate coherent states.

Proposition 2.1. For every P0 ∈ M , there is an open set U ⊂ M with P0 ∈ U , an open set V ⊂ Cd

invariant under U(d), and a biholomorphism ρ : V 7→ U , such that ρ∗ω is invariant under U(n).
In particular, in this chart, there exists a Kähler potential φ which depends only on the distance to the

origin, with real-analytic regularity.
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Proof. Let ρ0 : V0 7→ U0 be any local holomorphic chart to a neighbourhood of P0, with ρ0(0) = P0.
Since M is homogeneous, there exists an open set P0 ∈ U1 ⊂ U0 and an action of U(n) on U1 such that,

for any g ∈ U(d), one has

D(x 7→ ρ−1
0 (g · ρ0(x)))(0) = g

(g·)∗J = J

(g·)∗ω = ω.

In particular, for g ∈ U(d), the map ρg : x 7→ g ·ρ0(g−1x) is a biholomorphism from V2 =
⋂

g∈U(d) g ◦ρ−1
0 (U1)

onto its image U2(g).
For x ∈

⋂
g∈U(d) U2(g), let us define

σ(x) =

∫

U(d)
ρ−1

g (x)dµHaar(g).

Then D(σ ◦ ρ0)(0) = I. Hence, σ is a biholomorphism, from a small U(d) invariant open set U ∋ P0 into a
small U(d) invariant open set V ∋ 0. By construction σ is g-equivariant, in the sense that σ(gx) = g · σ(x).
Then σ−1 is the requested chart since ω is invariant under the action of U(d) on U .

Let us proceed to the second part of the Proposition. We first let φ1 be any real-analytic Kähler potential
in the chart σ−1. We then define

φ(x) =

∫

g∈U(n)
φ1(gx)dµHaar(g).

Then φ is a radial function since U(d) acts transitively on the unit sphere. Moreover, since σ∗ω is U(d)-
invariant then x 7→ φ1(gx) is a Kähler potential, so that the mean value φ is a Kähler potential.

Remark 2.2. There is exactly one degree of freedom in the choice of the chart ρ in Proposition 2.1: the
precomposition by a scaling z 7→ λz preserves all requested properties. In general, the metric σ∗ℜ(ω), at
zero, is a constant times the standard metric. This constant can be modified by the scaling above. Hence,
without loss of generality, one can choose the chart so that the Kähler potential has the following Taylor
expansion at zero:

φ(x) =
|x|2

2
+O(|x|3),

so that the metric σ∗g, at zero, is the standard metric.

Definition 2.3. A chart satisfying the conditions of Proposition 2.1, such that the radial Kähler potential
has the following Taylor expansion at zero:

φ(x) =
|x|2

2
+O(|x|3),

is called a radial holomorphic chart.

The following elementary fact will be used extensively:

Proposition 2.4. The radial Kähler potential φ of a radial holomorphic chart is strongly convex. In par-
ticular, for all x 6= 0 in the domain of φ one has φ(x) > 0.

Proof. From the Taylor expansion φ(x) = |x|2

2 + O(|x|3), one deduces that the real Hessian matrix of φ is
positive definite at zero. Near any point x 6= 0 which belongs to the domain of φ, in spherical coordinates the

function φ depends only on the distance r to the origin. The Levi form ∂2φ
∂zi∂zj

(x), which is Hermitian positive

definite (since φ is strongly pseudo-convex), is then equal to ∂2φ
∂r2 (r)Id. In particular, ∂2φ

∂r2 > 0 everywhere,
so that φ is strongly convex at x.

5



3 Approximate coherent states

We first recall the notion of coherent states in Berezin-Toeplitz quantization.

Definition 3.1. Let (P0, v) ∈ L. We define the associated coherent state, which is a section of L⊗N , as
follows:

ψN
P0,v = (u 7→ 〈u(P0), v〉h)

∗
H0(M,L⊗N ) .

That is, the evaluation map u 7→ 〈u(P0), v〉h is a linear operator on H0(M,L⊗N ), and by the Riesz
representation theorem, there exists ψN

P0,v such that linear map is 〈ψN
P0,v, ·〉.

Let us use the radial charts above to build an approximation for coherent states on a homogeneous
Kähler manifold.

Proposition 3.2. There exists r > 0 such that the following is true.

1. Let P0 ∈ M . There exists a radial holomorphic chart near P0, whose domain contains B(0, r).

2. Let φ denote the radial Kähler potential near P0. For all N ≥ 1 the quantity

a(N) =

∫

B(0,r)
exp(−Nφ(|z|))dzdz

is well-defined and does not depend on P0.

Proof.

1. Let P1 ∈ M . By Proposition 2.1 there exists a radial holomorphic chart near P1. Since M is ho-
mogeneous, a small neighbourhood of any P0 ∈ M , of size independent of P0 since M is compact,
can be mapped into a neighbourhood of P1 ∈ M . By restriction of the radial holomorphic chart of
Proposition 2.1 to this neighbourhood, whose preimage contains a small ball around zero, this defines
a chart around P0. Since M is compact, there is a radius r such that, for every P0 ∈ M , the closed
ball B(P0, r) is contained in the domain of the chart around P0.

2. By construction of the chart above, the Kähler potential φ does not depend on P0. Moreover, φ is a
smooth function on B(0, r), hence the claim..

Remark 3.3. We will see at the end of the proof of Theorem A that a(N)−1 is exponentially close to a
polynomial in N .

From now on, r is as in the claim of Proposition 3.2.

Proposition 3.4. Let (P0, v) ∈ L. The action of U(n) on a neighbourhood U of P0 in M can be lifted in
an action on LU .

Proof. By definition of L, if V is the preimage of U by a radial holomorphic chart, the bundle (LU , h) is
isomorphic to

(V × C, exp(−φ(z))|u|2).

Since φ is invariant under U(n), the linear action of U(n) on V can be trivially extended to V × C and
preserves the metric.

In order to treat local holomorphic sections of a prequantum bundle over a quantizable compact homo-
geneous Kähler manifold, let us define the Ancillary space and the approximate coherent states:

6



Definition 3.5. Let φ be the radial Kähler potential on M and r be as in Proposition 3.2. Let N ∈ N.
The ancillary space is defined as

AN =

{
u holomorphic on B(0, r),

∫

B(0,r)
e−Nφ(z)|u|2 ≤ +∞

}
.

It is a Hilbert space with the scalar product

〈u, v〉AN
=

∫

B(0,r)
e−Nφ(z)u(z)v(z)dz.

The set AN consists of functions belonging to the usual Hardy space of the unit ball, but the scalar
product is twisted by the Kähler potential φ.

Since the function φ appearing in the definition of AN is a universal local Kähler potential on M , for
each (P0, v) ∈ L∗ there is a natural isomorphism (up to multiplication of all norms by ‖v‖h) S

N
P0,v between

AN and the space of L2 local holomorphic sections H0(U,L⊗N ) where U = σ−1
P0

(B(0, r)). We define ψ̃N
P0,v

as the element of H0(U,L⊗N ) associated with the constant function a(N)−1 ∈ AN .
We set ψ̃N

P0,v to be zero outside σ−1(B(0, r)) so that ψ̃N
P0,v ∈ L2(M,L⊗N ). The function ψ̃N

P0,v is equiv-
ariant with respect to v: one has

ψ̃N
P0,v =

(
v/v′

)N
ψ̃N

P0,v′ .

This allows us to define the approximate normalized coherent state ψ̃P0 as an element of L2(M,L⊗N )⊗L
⊗N
P0

.

Let us prove that the approximate coherent states are very close to HN (M,L):

Proposition 3.6. There exists c > 0 and C > 0 such that, for all P0 ∈ M ,

‖SN ψ̃
N
P0

− ψ̃P0‖L2 ≤ Ce−cN .

Proof. Let χ denote a test function on R which is smooth and such that χ = 1 on [0, r
2 ] and χ = 0 on

[r,+∞).
The section (χ ◦ |σ|)ψ̃N

P0
is smooth; since ψ̃N

P0
is holomorphic on σ−1(B(0, r)) and decays exponentially

fast far from P0, one has
‖∂(χ ◦ |σ|)ψ̃N

P0
‖L2 ≤ Ce−cN .

From Kohn’s estimate (1) we deduce that

‖SN (χ ◦ |σ|)ψ̃N
P0

− (χ ◦ |σ|)ψ̃P0‖L2 ≤ Ce−cN .

In addition, since φ > c on B(0, r) \B(0, r/2), one has

‖(χ ◦ |σ|)ψ̃N
P0

− ψ̃N
P0

‖L2 ≤ Ce−cN .

Since SN is an orthogonal projector, its operator norm is bounded by 1, so that the previous estimates
implies

‖SN (χ ◦ |σ|)ψ̃N
P0

− SN ψ̃
N
P0

‖L2 ≤ Ce−cN .

This ends the proof.

To show that our approximate coherent states are indeed exponentially close to the actual coherent
states we will use the following lemma.
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Lemma 3.7. Any continuous linear form on AN invariant by linear unitary changes of variables is propor-
tional to the continuous linear form v 7→ 〈v, 1〉.

In particular, the continuous linear form AN ∋ u 7→ u(0) is equal to the scalar product with the constant
function a(N)−1

Proof. A Hilbert basis of AN is given by the normalised monomials eνz 7→ cνz
ν for ν ∈ Nd, for some

cν > 0. Special elements of U(n) are the diagonal matrices diag(exp(iθ1), . . . , exp(iθd)) which send eν into
exp(iθ · ν)eν .

A linear form η invariant under U(d) must be such that η(eν) = exp(iθ · ν)η(eν) for every θ, ν. In
particular, ν 6= 0 ⇒ η(eν) = 0. Since η is continuous we deduce that η is proportional to the scalar product
with e0 = c01.

For the second part of the Proposition we only need to prove that the multiplicative factor between the
two continuous U(d)-invariant linear forms of AN , evaluation at 0 on one side, scalar product with a(N)−1

on the other side, is 1. By Definition of a(N), the scalar product in AN of a(N)−1 with a(N)−1 is a(N)−1,
moreover the evaluation at zero of a(N)−1 is a(N)−1, hence the claim.

The functions ψ̃N
P0,v mimic the definition of coherent states.

Proposition 3.8. There exists c > 0 such that, for any (P0, v0), (P1, v1) ∈ L∗,

• If dist(P0, P1) ≤ r
2 , then

∣∣∣〈ψ̃N
P1,v1

, ψ̃N
P0,v0

〉 − 〈ψ̃P1,v1(P0), v⊗N
0 〉h

∣∣∣ = O(e−cN ).

• In general, one has
|〈ψ̃N

P1,v1
, ψ̃N

P0,v0
〉| ≤ Ce−cN dist(P0,P1)2

.

Proof.

• The continuous linear functional on AN which sends u to u(0) is invariant under the action of U(n)
(since 0 is a fixed point), so that, by Lemma 3.7, it is proportional to the scalar product with a
constant. This property, read in the map S

N
P0,v0

, means that, for every (P1, v1) ∈ L the scalar product

〈ψ̃N
P0,v0

, ψ̃N
P1,v1

〉

is a constant (independent of P1) times 〈SN ψ̃P1,v1(P0), v⊗N
0 〉h. The normalizing factor a(N) is such

that both sides are equal to 1 if P1 = P0. This ends the proof since SN is almost identity on the almost
coherent states.

• If dist(P0, P1) ≥ 2r then ψ̃N
P0,v0

and ψ̃N
P1,v1

have disjoint support so that the scalar product is zero.

If r/2 ≤ dist(P0, P1) ≤ 2r then ψ̃N
P1,v1

is exponentially small on B(P0, r/4) and ψ̃N
P0,v1

is exponentially

small outside this ball so that the scalar product is smaller than Ce−cN(4r)2
for some c > 0.

If P1 ∈ B(P0, r/2), one can apply the previous point; the claim follows from the fact that φ(|x|) ≥ c|x|2

on B(P0, r/2).
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4 Approximate Bergman projector

We can now define the approximate Bergman projector by its kernel: S̃N is a function on L
⊗N

⊠L⊗N which

is linear in the fibres (or, equivalently, a section of L⊗N
⊠ L

⊗N
) defined by the formula:

S̃N ((x, v), (y, v′)) = 〈ψ̃N
x,v, ψ̃

N
y,v′〉.

We wish to prove that this operator is very close to the actual Bergman projector, defined by the actual
coherent states ψN

P0,v:

Proposition 4.1. Let (P0, v) ∈ L. Then SN ψ̃
N
P0,v = ψN

P0,v.

Proof. Let U = B(P0, r). By construction, the scalar product of ψ̃N
P0,v with any element of HN (U,L⊗N ) is

the value at P0 of this element, taken in scalar product with v. As HN(M,L⊗N ) ⊂ HN(U,L⊗N ) in a way
which preserves the scalar product with ψ̃N

P0,v, from Definition 3.1 one has SN ψ̃
N
P0,v = ψN

P0,v.

From Propositions 3.6 and 4.1 we deduce that approximate coherent states are, indeed, close to coherent
states. In particular,

Proposition 4.2. Uniformly on (x, y) ∈ M ×M , there holds

‖S̃N (x, y) − SN (x, y)‖h = O(e−cN ).

Proof. The exact Bergman kernel is expressed in terms of the coherent states as:

SN ((x, v), (y, v′)) = 〈ψN
x,v, ψ

N
y,v′〉.

From this and the Definition of S̃N , since

SN ψ̃
N
x,v = ψN

x,v = ψ̃N
x,v +O(e−cN ),

the kernels of SN and S̃N are exponentially close.

5 Approximate projector in a normal chart

To conclude the proof of Theorem A in the homogeneous case, it only remains to compute an approximate
expression for S̃N (x, y) = 〈ψ̃N

x , ψ̃
N
y 〉. At first sight, this looks easy. Indeed, on the diagonal, S̃N (x, x) =

a(N)−1. Moreover S̃N is O(e−cN )-close from the Bergman kernel SN , which is holomorphic in the first
variable and anti-holomorphic in the second variable. However, one cannot conclude that S̃N is exponentially
close to the holomorphic extension of a(N)−1 (that is, a(N)−1ΨN ). Indeed, SN (x, x) − a(N)−1, while
exponentially small, might oscillate very fast, so that its holomorphic extension is not uniformly controlled.

By studying change of charts between radial holomorphic charts, one can prove the following Proposition.

Proposition 5.1. There exists c > 0 and C > 0 such that, for all (x, y) ∈ M ×M , there holds
∥∥∥S̃N (x, y) − ΨN (x, y)a(N)−1

∥∥∥
h

≤ Ce−cN .
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Proof. It is sufficient to prove the claim for x, y close enough from each other.
We first need to understand how to change from the radial holomorphic chart around x to the radial

holomorphic chart around y. By hypothesis, if x and y are two points in M at distance less than r
2 , if ρ

denotes a radial chart at x, there is a map σ : B(0, r
2 ) → B(0, r), which is biholomorphic on its image and

which preserves the metric ρ∗g, and such that σ(0) = ρ(y). The associated holomorphic map on B(0, r
2) × C

which preserves the Hermitian metric pulled back by ρ on the fibre is of the form:

(z, v) 7→

(
σ(z), exp

(
1

2
(φ(|z|2) − φ(|σ(z)|2)) + ifσ(z)

)
v

)
, (2)

where fσ is such that the function

m 7→ φ(|z|2) − φ(|σ(z)|2) + ifσ(z)

is holomorphic. Such a fσ exists and is unique up to an additive constant: indeed, since σ preserves the
metric g, z 7→ φ(|σ(z)|2) is a Kähler potential on B(0, r

2). Hence, the map

z 7→ φ(|z|2) − φ(|σ(z)|2)

is harmonic, so that it is the real part of a holomorphic function.
Then, by (2), in a radial holomorphic chart around x, the almost coherent state ψ̃N

y,v′ is written as

z 7→ a(N)−1
1V (y)v′ exp

(
−
N

2
φ(|σ(z)|2) + ifσ(z)

)
.

By Proposition 3.8, the scalar product with ψ̃N
x,v, with y close to x, is

〈ψ̃N
y,v′ , ψ̃N

x,v〉 = a(N)−1(vv′) exp

(
−
N

2
φ(|ρ(y)|2) + iNfσ(0)

)
+O(e−cN ).

In particular, in a radial holomorphic chart ρ around x, the approximate Bergman kernel evaluated at
x has the following form for z small:

S̃N (ρ(z), ρ(0)) = a(N)−1 exp(Ng(z))ψN
x (ρ(z))ψN

x (ρ(0)) +O(e−cN ),

where g is holomorphic. Using another change of charts given by (2), the form of the approximate Bergman
kernel, near the diagonal, is

S̃N (ρ(z), ρ(w)) = a(N)−1 exp(NF (z,w))ψ̃N
x (ρ(z))ψ̃N

x (ρ(w)) +O(e−cN ),

where F is holomorphic in the first variable and anti-holomorphic in the second variable.
Moreover, S̃N (z, z) = S̃N (0, 0) = a(N)−1, hence F (z,w) = φ̃(z · w).
The expression of the phase in coordinates coincides with the section ΨN of Definition 1.3 (the non-

vanishing section s here is ψ̃1
x). Thus the Bergman kernel can be written as

S̃N (x, y) = ΨN (x, y)a(N)−1 +O(e−cN ).

We will compute explicitely a(N)−1 in Section 6. Up to this computation, the proof of Theorem A is
complete in the case of a single homogeneous manifold.

It remains to prove how to pass from homogeneous manifolds to direct products of such. This relies on
the following Proposition.
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Proposition 5.2. Let M1,M2 be compact quantizable Kähler manifolds and L1, L2 be the associated pre-
quantum line bundles. Then L1 ⊠ L2 is the prequantum line bundle over M1 ×M2, and

H0(M1 ×M2, (L1 ⊠ L2)⊗N ) ≃ H0(M1, L
⊗N
1 ) ⊗H0(M2, L

⊗N
2 ).

Proof. There is a tautological, isometric injection

ι : H0(M1, L
⊗N
1 ) ⊗H0(M2, L

⊗N
2 ) →֒ H0(M1 ×M2, (L1 ⊠ L2)⊗N )

which is such that, for (s1, s2) ∈ H0(M1, L
⊗N
1 ) ×H0(M2, L

⊗N
2 ) and (x, y) ∈ M1 ×M2, one has

ι(s1 ⊗ s2)(x, y) = s1(x) ⊗ s2(y).

It remains to prove that any element of H0(M1×M2, (L1⊠L2)⊗N ) belongs to the image of the element above.
To this end, let us prove that, for any (x1, v1), (x2, v2) ∈ L1 × L2, the coherent state at ((x1, x2), v1 ⊗ v2) is
given by

ψN
(x1,x2),v1⊗v2

= ι(ψN
x1,v1

⊗ ψN
x2,v2

).

Indeed, for any s ∈ H0(M1 ×M2, (L1 ⊠ L2)⊗N ), one has

〈s, ι(ψN
x1,v1

⊗ ψN
x2,v2

)〉 =

∫

M1

〈∫

M2

〈s(y1, y2), ψN
x2,v2

(y2)〉(L2)⊗N
y2

dy2, ψ
N
x1,v1

(y1)

〉

(L1)⊗N
y1

dx1

=

∫

M1

〈s(y1, x2), ψ⊗N
x1,v1

⊗ v2〉(L1)⊗N
y1

⊗(L2)⊗N
x2

dx1

= 〈s(x1, x2), v1 ⊗ v2〉(L1)⊗N
x1

⊗(L2)⊗N
x2

= 〈s, ψN
(x1,x2),v1⊗v2

〉.

The image of ι thus contains all coherent states on M1 × M2. Hence, the orthogonal of the range of ι in
H0(M1 ×M2, (L1 ⊠ L2)⊗N ) is zero, which concludes the proof.

In particular, the Bergman kernel on a product M1 ×M2 is given by

SM1×M2
N (x1, x2, y1, y2) = SM1

N (x1, y1) ⊗ SM2
N (x2, y2).

This, along with Propositions 4.1 and 5.1, concludes the proof of Theorem A up to the study of a(N)−1,
which we perfrorm in the next section.

6 The coefficients of the Bergman kernel

Since, for all x ∈ M , one has ΨN (x, x) = 1, then the trace of the Bergman kernel is given by

tr(SN ) =
dN∑

i=1

1 =

∫

M

dN∑

i=1

si(x)si(x)dx =

∫

M
SN (x, x)dz = a(N)−1V ol(M) +O(e−cN ).

In particular, a(N)−1 is exponentially close to an integer divided by V ol(M). Let

P (N) =
tr(SN )

V ol(M)
.

In this section we compute P (N) in the case of a homogeneous manifold of dimension d. Since

P (N)−1 =

∫

B(0,r)
exp(−Nφ(|z|))dzdz +O(e−cN ),
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and there is a universal local model for M which depends only on its curvature κ, then P (N) depends
only on κ and the dimension d. Moreover, P (N)−1 has real-analytic dependence on κ. We will give an
expression for P (N) which is valid on κ ∈ { 1

k
, k ∈ N}. Since P (N) is real-analytic in κ, it will follow that

this expression is valid for all curvatures. From now on we write Pκ(N) to indicate that P (N) depends on
N and κ, and only on them.

Let us consider the case of the rescaled projective space:

(Mk, ωk, J) = (CP
d, kωF S, Jst).

This space is quantizable; the prequantum bundle is simply

Lk = (L1)⊗k,

so that
SN,k(x, y) = SNk,1(x, y).

Moreover, the curvature of (Mk, ωk) is 1
k
. In other terms,

P 1
k
(N) =

V ol(M1)

V ol(Mk)
P1(kN) = k−dP1(kN).

It remains to compute P1. On CPd, the prequantum bundle L1 is explicit: it is O(1), the dual of the
tautological line bundle. In this setting,

H0(M,L⊗N ) ≃ CN [X1, . . . ,Xd].

Hence,

P1(N) =
1

V ol(CPd)
dim(CN [X1, . . . ,Xd]) =

d!

πd

(
N + d

d

)
=

1

πd
(N + 1) . . . (N + d).

Hence, for any κ of the form 1
k

with k ∈ N there holds

Pκ(N) =
1

πd
(N + κ)(N + 2κ) . . . (N + dκ).

Since Pκ has real-analytic dependence on κ, the formula above is true for any κ ∈ R, which concludes the
proof.
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