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ON COMPLETE INTERSECTIONS CONTAINING A LINEAR SUBSPACE

FRANCESCO BASTIANELLI, CIRO CILIBERTO, FLAMINIO FLAMINI, AND PAOLA SUPINO

ABSTRACT. Consider the Fano scheme Fj(Y) parameterizing k—dimensional linear subspaces contained in a complete
intersection Y C P™ of multi-degree d = (d1,...,ds). It is known that, if ¢ := > (dlljk) — (k+1)(m — k) <0 and
TI_,d; > 2, for Y a general complete intersection as above, then F}(Y") has dimension —t. In this paper we consider
the case ¢ > 0. Then the locus Wy of all complete intersections as above containing a k-dimensional linear subspace
is irreducible and turns out to have codimension t in the parameter space of all complete intersections with the given
multi-degree. Moreover, we prove that for general [Y] € Wy the scheme Fj(Y) is zero-dimensional of length one.
This implies that Wy, is rational.

1. INTRODUCTION

In this paper we will be concerned with the Fano scheme Fi(Y'), parameterizing k—dimensional linear subspaces
contained in a subvariety Y C P™, when Y is a complete intersection of multi-degree d = (dy,...,ds), with 1 < s <
m — 2. We will assume that Y is neither a linear subspace nor a quadric, cases to be considered as trivial. Thus we
will constantly assume that II7_, d; > 2.

Let Sq := @j_; H° (P™, Opm(d;)), and consider its Zariski open subset S := @;_; (H° (P™, Opm(d;)) \ {0}).
For any u := (g1,...,9s) € S;, let Y, :=V(g1,...,9s) C P denote the closed subscheme defined by the vanishing of

the polynomials gi,...,9s. When u € S} is general, Y, is a smooth, irreducible variety of dimension m — s > 2. For
any integer k>1, we define the locus

Wg,k = {U S SE

Fi(Y) 0 } € 5

and set

tm, kyd) =3 (di . k) k4 1)(m — k).

i=1
If no confusion arises, we will simply denote t(m, k, d) by t.
First of all, consider the case t<0. This is the most studied case in the literature, and it is now well understood
(cf. e.g. [2LBL[6, [7]). In particular, the following holds.

Result 1. Let m,k,s and d = (dy,...,ds) be such that II{_,d; > 2 and t<0. Then:
(a) Wa = Sg;
(b) for general u € Sy Fy.(Y,,) is smooth, of dimension dim(Fy(Y,)) = —t and it is irreducible when dim(Fy(Y,))>1.

The proof of this result can be found e.g. in [2) Prop.2.1, Cor.2.2, Thm. 4.1], for the complex case, and in [3]
Thm. 2.1, (b) & (c)], for any algebraically closed field. In addition, in [3] Thm. 4.3] the authors compute deg(F(Y3))
under the Pliicker embedding Fy(Y,) C G(k,m) — PV with N = (?:11) — 1. Their formulas extend to any k>1
enumerative formulas by Libgober in [4], who computed deg(F;(Y,)) when t(m,1,d) = 0.

On the other hand, we are interested in the case t > 0, where the known results can be summarized as follows.

Result 2. Let m,k,s and d = (d1,...,ds) be such that II_,d; > 2 and t > 0. Then:

(a) War C SE

(b) Wy contains points w for which Y, C P™ is a smooth complete intersection of dimension m — s if and only if
s<m — 2k.

(¢) For s<m — 2k, set Hyy := {u S W¢7k| Y, € P™ is smooth, of dimension m — 5}. If d;>2 for any 1<i<s, then
Hg,, is irreducible, unirational and codimgss(Hgay) = t. Moreover, for general uw € Hgay, Fyp(Yy) is a zero-
dimensional scheme.
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The proof of Result 2l (a) is contained in [3] Thm. 2.1 (a)], whereas that of assertions (b) and (c) is contained in
[5, Cor. 1.2, Rem. 3.4]; both proofs therein hold for any algebraically closed field.
The main result of this paper, which improves on Result 2] is the following.

Theorem 1.1. Let m,k,s and d = (di,...,ds) be such that II{_;d; > 2 and t > 0. Then Wqy C S is non—empty,
irreducible and rational, with codimgs(Wy ) = t. Furthermore, for a general point u € Wy, the variety Y, C P™ is
a complete intersection of dimension m — s whose Fano scheme Fy(Y,,) is a zero—dimensional scheme of length one.
Moreover, Yy, has singular locus of dimension max{—1,2k+s—m— 1} along its unique k—dimensional linear subspace
(in particular Y, is smooth if and only if m — s>2k).

The proof of this theorem is contained in Section 2 and it extends [I, Prop. 2.3] to arbitrary k>1. Theorem
[Tl improves, via different and easier methods, Miyazaki’s results in [5, Cor. 1.2], showing that for general u € Wy j
one has deg(Fy(Y,)) = 1, which implies the rationality of Wy . Moreover we also get rid of Miyazaki’s hypothesis
m — s=>2k.

2. THE PROOF

This section is devoted to the proof of Theorem [T1]

Proof of Theorem [l Let G := G(k,m) be the Grassmannian of k-linear subspaces in P and consider the incidence
correspondence
J = {([H],u)ersg

MCY,}CGxS;
with the two projections
G J 28
The map m1: J — G is surjective and, for any [II] € G, one has 7' ([II]) = @;_, (H® (Zr/en(d;)) \ {0}), where
Iy pm denotes the ideal sheaf of II in P™.
Thus J is irreducible with dim(J) = dim(G) +dim(r; ' ([II])) = (k+1)(m — k) + > 5, h° (Zrijpm (d;)). From the
exact sequence
0= P Zuypn (di) = E Orn (di) = @D Ou(di) = @D Opr (di) — 0, (2.1)
i=1 i=1 i=1 i=1
one gets
. L (di+m L (di+k . .
dim(J) = (k+1)(m — k) + El ( ” ) - Zl ( . ) = dim(Sy) —t. (2.2)
The next step recovers [5, Cor. 1.2] via different and easier methods, and we also get rid of the hypothesis m—s>2k
present there. We essentially adapt the argument in [2, Proof of Prop.2.1], used for the case ¢<0.

Step 1. The map mo: J — S} is generically finite onto its image Wa i, which is therefore irreducible and unirational.
Moreover codimgs (Wa,r) = t.

For general w € Wa, Fr(Y.) is a zero-dimensional scheme and Y, has singular locus of dimension max{—1,2k+s—
m — 1} along any of the k—dimensional linear subspaces in Fy(Yy,).

Proof of Step. One has Wy, = m2(J), hence Wy, C S is irreducible and unirational, because J is rational, being
an open dense subset of a vector bundle over G. Once one shows that mo: J — W i, is generically finite, one deduces
that codimgs (Wy ) =t from ([@22). Therefore, we focus on proving that 7 is generically finite, i.e. that if u € Wy
is a general point, then dim(7y ! (u)) = 0.

Let [IT] € G and choose [yo,¥1,---,Ym] homogeneous coordinates in P™ such that the ideal of II is Iy :=
(Yk+1, - - -»Ym). For general ([I],u) € my * ([]) C J, with u = (g1,...,9s) € War, we can write

m
h .
gi = Z yn o+, 1<0<s,

h=Fk+1
with
r; € (If)a, whereas pl(-h) = Z CE]L) yr e Clyo, y1, -+ Ykla,—1, 1<i<s, k4 1<h<m, (2.3)
|pl=di—1
where (I3)4, is the homogenous component of degree d; of the ideal I3, po= (po,- - 5 k) € Z’;gl, || = Zﬁ:o s

(h)

i

Mo, M1

and yt = yy" - -yy*. By the generality assumption on u, the polynomials p; "’ and r; are general.
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The Jacobian matrix (gzi )i<i<s;0<j<m computed along IT takes the block form

M=(0 P) where P:= (pl(-h)hgigs;kﬂghgm

where the 0-block has size s x (k+1) and P has size s x (m —k), where m— k>s because of course dim(Y;,) = m—s>k.

By the generality of the polynomials pgh), the locus of I where rk(M) < s, which coincides with the singular locus of

Y, along II, has dimension max{—1,2k + s —m — 1} and, by Bertini’s theorem, it coincides with the singular locus of
Y.
Next we consider the following exact sequence of normal sheaves

0— Nnyy, = Nujpm = Opr (1)(m=F) — NYH/IPM‘H = @Ow (di) (2.4)
i=1

(see [8, Lemma 68.5.6]). Any & € H(II, Ny /pm) can be identified with a collection of m — k linear forms on II = P*
%ﬁ(g) ‘= anpoYo + anay1 + -+ appyr, k+ 1<h<m,
whose coefficients fill up the (m — k) x (k + 1) matrix
Ae == (an,j), k+ 1<h<m, 0<j<k;

by abusing notation, one may identify £ with Ae.
Thus the map H° (IT, Ny pm ) —— H° (II, Ny, jp|,), arising from () is given by (cf. e.g. [2 formula (4)])

h
A % S angyp : (2.5)
0SgSh<hsm 1<i<s
Notice that the assumption ¢ > 0 reads as

S

d; + k
(k+1)(m — k) = h° (IL, N e ) < h° (IL, Ny, e[ ) = < A >
i=1
Claim 2.1. The map H° (H, NH/]Pm) 25 HO (H, Nyu/pm‘n) is injective, equivalently hO(NH/yu) = 0. In particular,

for a general point w € Wy, the Fano scheme Fy(Y,,) contains {[II]} as a zero—dimensional integral component.

Proof of Claim [21l Using ([Z3)), the polynomials on the right-hand-side of (23 read as

m k
h .
Z Z ah,jY; Z cl(ﬂ) gﬁ , 1<i<s.
h=k+1 j=0 |pl=d;—1

Ordering the previous polynomial expressions via the standard lexicographical monomial order on the canonical basis
{y} of Clyo,y1, .- yxla, = H*(Opx(d;)), 1<i<s, the injectivity of the map o is equivalent for the homogeneous
linear system

Yo el any =0, 1<i<s, (2.6)

0<j<k<h<m
to have only the trivial solution, where v := (vg, v1,..., V%) € Z’;‘gl is such that [v| = d;, ¢; is the (j + 1)-th vertex of
the standard (k + 1)-simplex in Z];gl \ {0}, and C’S,hg)fgj =0wheny—e¢; ¢ Zl;gl (this last condition stands for “v —e;

improper” as formulated in [2, p. 29]). The linear system (Z0)) consists of > ;_, (di;k) equations in the (k+1)(m — k)

indeterminates ay, ;, with coefficients cz(-}:b), 0<j<k < h<m.

Let C = (c(h) ) be the coefficient matrix of ([2.6]); one is reduced to show that, for general choices of the entries

Lr—e;
cz(-)hz)_g_, the matrix C' has maximal rank (k+ 1)(m — k). This can be done arguing as in [2] p. 29]. Namely, row—indices
of C are determined by the standard lexicographical monomial order on the canonical basis of @:_; Clyo, Y1, - - -, Yk)d;

whereas column—indices of C' are determined by the standard lexicographic order on the set of indices (h,j). If one

considers the square sub-matrix C' of C' formed by the first (k + 1)(m — k) rows and by all the columns of C, then

A (r)

det(C) is a non—zero polynomial in the indeterminates i Indeed, take the lexicographic order on the set of indices

(h, i, p), where k+1<h<m, |p| =d; — 1, 1<i<s,
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and order the monomials appearing in the expression of det(a) according to the following rule: the monomials m;
and my are such that m; > ms if, considering the smallest index (h, 1, H) for which cz(hu) occurs in the monomial mq
with exponent p; and in the monomial mo with exponent ps # p1, one has p; > ps. The greatest monomial (in the
monomial ordering described above) appearing in det(a) has coefficient 4 1, since in each column the choice of the
cz(-) u) entering in this monomial is uniquely determined. By maximality of such monomial, it follows that det(C ) # 0,
which shows that C' has maximal rank (k + 1)(m — k), i.e. the map o is injective.

The injectivity of o and (@) yield h°(Nyi/y, ) = 0. Since H%(Npy, ) is the tangent space to Fi,(Y,) at its point
[IT], one deduces that {[IT]} is a zero—dimensional, reduced component of F(Y,,), as claimed. O

Finally, by monodromy arguments, the irreducibility of J and Claim [21] ensure that for general u € Wy, the
Fano scheme Fj(Y,,) is zero-dimensional and reduced, i.e. mo: J — Wy j is generically finite, and that Y, has a singular
locus of dimension max{—1,2k+s—m — 1} along any of the k—~dimensional linear subspaces in F}(Y,,). This completes
the proof of Step [ O

To conclude the proof of Theorem [T, we need the following numerical result.

Step 2. For 0<h<k — 1 integers, consider the integer

5 (m, k, d) ;:i (dil‘:k) —i (di;h) (k= h)(m+h+1—k).

i=1 i=1
If 6p(m, k,d) < 0, then
t(m,k,d) <0

Proof of Step[@. In order to ease notation, we set §, := 0p(m,k,d). Therefore, the condition §, < 0 implies
m>= klh [25:1 (d’:k) — (di;{h)] — (h+ 1 —k). Plugging the previous inequality in the expression of ¢, one has

< ° {h+1(d +k> k+1<di+h
1

— ﬂ + (k+ 1)(h +1). (2.7)

1=

Set D(z) := Z_ifll(wzk) - ﬂ(wz ). Thus, Z7) reads

< — ZD + (k+1)(h+1). (2.8)

The assumption 0<h<k — 1 gives

(h+1)(d; +1)---
kl(k — h)

The polynomial D(x) vanishes for x = 1, which is its only positive root. Notice that

D(d;) =

(di + 1) ((di—l—h-l-l)"'(di"'k)_(k+1)k"'(h+2))’ Isiss.

Rl (k42 k+1(h+2\  (h+D(k+1)
D@)—m( K )‘m( h )—f“"
In particular, D(z) is increasing and positive for = > 1, so from (23] it follows that
< — ZD +(k+1D)(h+1)<-sD2)+ (k+1)(h+1)= (k+1)(h+1)(1—§).

Therefore, when s>2, we have t<0 and we are done in this case.
If s =1, set d := d;. In this case [Z8) is t< — D(d) + (k+ 1)(h + 1), where again D(d) is increasing and positive
for d > 1. When s = 1, we have d>3 by assumption. Thus, one computes

k+h+5

D(3) = (k+1)(h+1)

and so, for any d>3, one has
1 —
t<—D(d)+ (k+1)(h+1)<—=DB)+ (k+1)(h+1)=(k+1)(h+1)
Being 0<h<k — 1, one deduces that ¢<0, completing the proof of Step 0

The final step of the proof of Theorem [Tl is the following.
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Step 3. For general v € Wy, the zero-dimensional Fano scheme Fj(Y,) has length one. In particular, the map
mo: J = Wy is birational and Wy, is rational.

Proof of Step[3. Let us consider the (locally closed) incidence correspondence
I = {([nl],[ng],u) €G x G x S|y # 10y, 1L, C Vi, 1<i<2} CGxG xS
If I is not empty, let ¢: I — J be the map defined by

e (M), 2], w)) = (M, ).

We need to prove that ¢ is not dominant. To do this, consider the (locally closed) subset
I = { (], (2] ,u) € I | I} NI, 2 P"} | where — 1<h<k — 1

(we set P~1 = (), i.e. the case h = —1 occurs when II; and II, are skew). Clearly, one has I = |_|h;171 Ip,. Setting
©n = @1, it is sufficient to prove that ¢, is not dominant, for any —1<h<k — 1.

So, let h be such that I, is not empty, and let T}, be an irreducible component of Ij,. Of course, if dim(73) < dim(.J),
the restriction ¢y, : T — J is not dominant. On the other hand, suppose that dim(7},) > dim(J). For any such a

component, the map ¢y, 7, cannot be dominant, otherwise the composition 7}, wﬂﬁ” J =2 Wa, would be dominant,
as mo is, which would imply that the general fiber of 7y is positive dimensional, contradicting Step [l

Therefore, it remains to investigate the case dim(7}) = dim(J). We estimate the dimension of T}, as follows.
Consider

Gy = {([],[]) e Gx G| NI, 2 P"} C G x G,
which is locally closed in G x G. The projection
%1 : G]QI — G, ([Hl] s [Hg]) — [Hl]
is surjective onto G and any 7 —fiber is irreducible, of dimension equal to dim (G(h, k) x G(k —h—1,m —h —1)) =
(h+1)(k—h)+ (k—h)(m — k). Thus
dimG? = (k+1)(m — k) + (h + 1)(k — h) + (k — h)(m — k).
One has the projection
djh: Th—>G}2L7 ([Hl]a[HQ]vu)’H([Hl]v[Hl])v

which is surjective, because the projective group acts transitively on G7. Hence dim(7},) = dim(G3 ) + dim(Fy), where
Sy :=D_, (HO (Inlun2/[pm (dl)) \ {O}) is the general fiber of 4,7, and where Ty, r, pm denotes the ideal sheaf of
Hl U HQ in P™.

Claim 2.2. For every positive integer d one has

~ d+k d+h
hO(Il'IlUHg/IP’m (d)) = dim(Sq) — 2< L > + ( . >
Proof of Claim[2ZZ2 We have

k
Consider the linear system ¥ cut out on Ily by |Zr, /pm(d)]. We claim that ¥ is the complete linear system of
hypersurfaces of degree d of IIy containing I := II; NIly. Indeed ¥ contains all hypersurfaces consisting of a hyperplane
through II plus a hypersurface of degree d — 1 of Il,, which proves our claim. In the light of this fact, and arguing as

in ) and ([22]), we deduce that

1 i, o () = i)~ (7). 29)

DO (T (@) = BTy () — (i) + 1) = KO(Zig, o () ((d (% "))

which, by (29), yields the assertion. O

By Claim we have

dim(Fy) = dim(S}) — 22 (di2k> + Z (dizh)

i=1
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Hence
dim(7},) = dim(Fp) + dim(G}) =
>~ (di+k >~ (d;i +h
=dim(S)) — 2
im(S3) ;( i )+i_1< L )-!—
+k+Dm—-—k+(h+1)(k—h)+(k—-h)(m—Fk) = (2.10)
 (di+k °~ (d; +h
=dim(J) — k—nh h+1—-k)=
im(.J) ;( . >+;< ) )+( Ym 4 h+ )
= dim(J) — dp.
Since dim(7T3) = dim(J), (ZI0) implies dp, = 0. When 0<h<k — 1, Step B2 gives ¢<0, contrary to our assumption.
When h = —1, one has 0 = §_; = t, again against our assumptions.
Since no component 7, C I}, can dominate J, the map ¢: I — J is not dominant. We conclude therefore that
the map mo: J — Wy is birational, completing the proof of Step Bl O
Steps [MH3] prove Theorem [T11 O
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