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CUTOFF AT THE ENTROPIC TIME FOR RANDOM WALKS ON COVERED

EXPANDER GRAPHS

CHARLES BORDENAVE AND HUBERT LACOIN

Abstract. It is a fact simple to establish that the mixing time of the simple random walk on a

d-regular graph Gn with n vertices is asymptotically bounded from below by d

d−2
logn

log(d−1)
. Such a

bound is obtained by comparing the walk on Gn to the walk on d-regular tree Td. If one can map

another transitive graph G onto Gn, then we can improve the strategy by using a comparison with

the random walk on G (instead of that of Td), and we obtain a lower bound of the form 1
h
log n,

where h is the entropy rate associated with G. We call this the entropic lower bound.

It was recently proved that in the case G = Td, this entropic lower bound (in that case d

d−2
log n

log(d−1)
)

is sharp when graphs have minimal spectral radius and thus that in that case the random walk

exhibit cutoff at the entropic time. In this paper, we provide a generalization of the result by

providing a sufficient condition on the spectra of the random walks on Gn under which the random

walk exhibits cutoff at the entropic time. It applies notably to anisotropic random walks on random

d-regular graphs and to random walks on random n-lifts of a base graph (including non-reversible

walks).
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1. Introduction

This paper is aimed at understanding the mixing properties of random walks on a finite regular

graph. We are going to be focused on asymptotic properties when the number of vertices goes to

infinity.

Minimal mixing time for the simple random walk. Let 3 ≤ d ≤ n − 1 be integers with nd

even and let Gn = (Vn, En) be a finite simple d-regular graph on a vertex set Vn of size #Vn = n.

Let (Xt)t≥0 be the simple random walk on Gn, which is the Markov process taking values in Vn

with transition matrix,

Pn(x, y) =
1{{x,y}∈En}

d
for x, y ∈ Vn.

The uniform measure on Vn denoted by πn is reversible for the process. Furthermore if Gn is

connected, then πn is the unique invariant probability measure of Pn. If additionally Gn is not

bipartite, then P t
n(x, ·) converges to πn when t tends to infinity.

We are interested in estimating the time at which P t
n(x, ·) falls in a close neighborhood of πn

in terms of the total variation distance. More formally, the total variation mixing time associated
1
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with threshold ε ∈ (0, 1) and initial condition x ∈ Vn, is defined by

Tmix
n (x, ε) := inf {t ∈ N : dn(x, t) < ε} ,

where dn(x, t) is the total variation distance to equilibrium

(1) dn(x, t) := ‖P t
n(x, ·)− πn‖TV =

1

2

∑

y∈Vn

∣

∣P t
n(x, y)− πn(y)

∣

∣ = max
A⊂Vn

{

P t
n(x,A) − πn(A)

}

.

The worst-case mixing time is classically defined as

Tmix
n (ε) = max

x∈Vn

Tmix
n (x, ε).

The mixing properties for the random walk are intimately related to the spectrum of Pn. An

illustration of this is the classical computation based on the spectral decomposition of Pn (see [36,

Theorem 12.4] for a proof in the reversible case) which allows to control the distance as a function

of the singular radius of Pn. For all x ∈ Vn,

(2) dn(x, t) ≤
√
n− 1

2
σtn.

where the singular radius σn

σn = ‖(Pn)|1⊥‖2→2

is the ℓ2 operator norm of Pn restricted to functions with zero sum. Since Pn is reversible, we have

σn = ̺n where ̺n is the spectral radius of Pn, that is the second largest eigenvalue of Pn in absolute

value counting multiplicities. This yields in particular that

(3) Tmix
n (ε) ≤ 1

| log ̺n|

(

1

2
log n− log(2ε)

)

.

In particular, if we have ̺n < 1− δ for some fixed δ ∈ (0, 1) along some sequence of integers going

to infinity, then the upper bound in (3) is of order log n along that sequence.

On the other hand, a naive lower bound of the same order of Tmix
n (ε) can be obtaind by using

the elementary fact that the graph distance Dist(x,Xt) between Xt and the initial condition x is

stochastically dominated by a random walk on the set of non-negative integers, started at 0, with

jump probabilities 1/d to the left and (d − 1)/d to the right, except at 0 where the probability to

jump to the right is equal to 1. Thus when starting from X0 = x, Xt remains within distance r

from x at least during a random time of order d
d−2r+O(

√
r). Combining this with the fact that a

ball of radius r contains at most d(d− 1)r−1 vertices, we obtain that for any x ∈ Vn

(4) Tmix
n (x, 1 − ε) ≥ d

(d− 2) log(d− 1)

(

log n− Cε

√

log n
)

.

While the strategy might seem a bit rough, the above bound (4) can be sharp. This was first

discovered for random d-regular graphs in [40].

However, an important observation is that the factor in front of log n in (3) and (4) cannot

match. From Alon-Boppana lower bound [4, 42], we have for any sequence of d-regular graphs
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(Gn)n≥0 on n vertices, we have lim infn ̺n ≥ ̺ := 2
√
d−1
d . More precisely, there exists a constant

C = C(d) such that for every n and every d-regular graph on n vertices

(5) ̺n ≥ ̺− C

(log n)2
.

The number ̺ = 2
√
d− 1/d is the spectral radius of the simple random walk on the infinite d-regular

tree Td (and incidentally also that of the biased random walk on integers used in the lower-bound

strategy). A graph such that ̺n ≤ ̺ is called a (non-bipartite) Ramanujan graph. Hence a natural

question is the following: If a sequence of graphs on n vertices has an asymptotically minimal

spectral radius in the sense that ̺n = (1 + o(1))̺, does it also have a minimal mixing time in the

sense that Tmix
n (ε) = (1 + o(1)) (d−2)

d log(d−1) log n for any fixed ε ∈ (0, 1)?

An affirmative answer was given to this question in [39] (see also [29]):

Theorem A ([39]). Let d ≥ 3 be an integer and let (Gn)n∈N be a sequence of d-regular graphs on

n vertices, for which the associated sequence of spectral radii satisfy limn→∞ ̺n = ̺ = 2
√
d− 1/d.

Then for any ε ∈ (0, 1), we have

(6) lim
n→∞

Tmix
n (ε)

log n
=

d

(d− 2) log(d− 1)
.

Remark 1.1. The result above remains of course valid if our sequence (Gn) is indexed by an infinite

subset of N provided that ̺n converges to ̺ when n → ∞ in this subset. In the remainder of the

paper, with a some small abuse of notation, when using lim, we always assume that the considered

sequence may not be defined for every n.

Theorem A is an illustration of the cutoff phenomenon. A sequence of finite Markov chains corre-

sponding to the sequence of transition matrices (Pn) exhibits cutoff if up to first order in n, the mix-

ing time Tmix
n (ε) does not depend on ε ∈ (0, 1), that is, for any ε ∈ (0, 1), limn→∞ Tmix

n (ε)/Tmix
n (1−

ε) = 1. Since its original discovery by Diaconis, Shashahani and Aldous in the context of card

shuffling [2, 3, 21], this phenomenon has attracted much attention. We refer to [20, 36] for an

introduction and to [9] for an alternative characterization of cutoff. For other recent contributions

on cutoff for random walks on graphs with bounded degrees, see [10, 11, 14].

As a warmup, we provide a novel proof of Theorem A, which is simpler than those presented

in [39] and [29] (independently observed by Lubetzky [38]). A more precise version of Theorem

A will be proved in Proposition 11 below (it notably allows to obtain the second order term in

the asymptotic development of Tmix
n (ε)). With our approach we can also relax the assumption

by allowing the presence of nα eigenvalues at a positive distance from the interval [−̺, ̺], with
α ∈ (0, 1) small enough, at the cost of discarding a small proportion of possibly bad starting points

(the methods in [29, 39] only allow for no(1) outlying eigenvalues, see remark below [39, Corollary

5]). More precisely, given (Gn) a sequence of d-regular graphs on n vertices, we define the upper
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semi-continuous function I : [0, 1] → {−∞} ∪ [0, 1], which can be interpreted as an asymptotic

density of eigenvalues on log-log scale

(7) I(u) = inf
ε↓0

lim sup
n→∞

log
(

∑

{λ∈Sp(Pn) : ||λ|−u|<ε} dim(Eλ
n)
)

log n
,

where dim(Eλ
n) denotes the dimension of the eigenspace corresponding to λ.

Theorem B. Let δ ∈ (0, 1), d ≥ 3 an integer and let (Gn) be a sequence of d-regular graphs on n

vertices whose spectral radii satisfy for all n, ̺n ≤ 1− δ and for all u > ̺,

(8) I(u) ≤ 1− 2
log(u/̺+

√

(u/̺)2 − 1)

log(d− 1)
.

Then, there exists c = c(δ, d) > 0 such that for any ε ∈ (0, 1) and η > 0,

(9) lim
n→∞

#

{

x ∈ Vn :
Tmix
n (x, ε)

log n
≥ (1 + η)

d

(d− 2) log(d− 1)

}

/n1−cη = 0.

We note that if the graph Gn is transitive (that is for any pair x, y ∈ Vn, there exists an

automorphism of Gn which maps x to y) then Tmix
n (x, ε) does not depend on x, and (9) implies

that limn→∞ Tmix
n (ε)/ log n = d/((d − 2) log(d − 1)). See Remark 3.1 for a variant of Theorem B

which allows to control Tmix
n (ε) at the cost of modifying the definition of the function I(u). The

principal aim of this paper is to obtain a better understanding of this phenomenon via bringing

the question to a larger setup.

Minimal mixing time for the anisotropic random walk. A first possible extension is to

consider a random walk on Gn with non-uniform jump rates. For d ∈ N, we set [d] = {1, . . . , d}.
One way to define a biaised random walk on a d-regular graph Gn = (Vn, En) with #Vn = n

is to assume that En can be partitioned into d sets of edges (En,i)i∈[d] where each vertex of Vn is

adjacent to exactly one edge of each type (this implies in particular that n is even), and to associate

a transition rate pi to each type of edge with
∑

i∈[d] pi = 1. For more generality, we consider an

involution ∗ : i 7→ i∗ of [d] = {1, . . . , d}. We are going to make the weaker assumption that Gn is a

Schreier graph. This means that its adjacency matrix Pn may be written as a sum of permutation

matrices. That is to say that for all x, y ∈ Vn, we have

(10) Pn(x, y) =
d
∑

i=1

Si(x, y),

where, for every i ∈ [d], Si(x, y) = 1I(x = αi(y)) for some permutation αi on Vn and Si∗ = S−1
i . In

full generality the expression (10) allows for both Pn(x, y) ≥ 2, and Pn(x, x) ≥ 1, so that we consider

graphs which may include loops and/or multiple edges. For example, if the involution ∗ on [d] is

the identity, then the permutations αi are involutions: for every i ∈ [d], we have α−1
i = αi∗ = αi. In

this case, the sets (En,i)i∈[d] defined for every i ∈ [d] by En,i = {{x, αi(x)} : x ∈ Vn} is a partition

of the edge set En. We thus recover the above setting.
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If d is even, any finite d-regular graph is a Schreier graph for some collection of d/2 permutations

and their inverses (another formulation of this result is: any 2k-regular graph is 2-factorable see

[43], this is now a standard exercise in graph theory and can be proved using König’s Theorem for

bipartite graphs, see e.g. [37, Theorem 6.2.4]).

This definition of Schreier graphs can be extended to regular graphs on countably many vertices.

Note that any Cayley graph of a finitely generated group with a symmetric set of generators of size

d is a Schreier graph: the natural choice for the permutations Si in (10) corresponds to the (left

or right) multiplication by an element of the symmetric set of generators, the involution maps a

generator to its inverse.

Now we consider Gn is a d-regular Schreier graph with #Vn = n, given with an involution ∗ and

a decompotion of the adjacency matrix into permutations (10), and p = (p1, . . . , pd) a probability

vector (that is, a vector whose coordinate are nonnegative and sum to one) we define the matrix

(11) Pn,p =

d
∑

i=1

piSi.

Note that by construction Pn,p is a stochastic matrix. This is the transition kernel of a random

walk on Gn which we refer to as the p-anisotropic random walk. Again, πn, the uniform measure

on Vn, is invariant for this process. We are going to assume that

(12) d ≥ 3 and ∀i ∈ [d], pi + pi∗ > 0.

The condition pi + pi∗ > 0 is not really a restriction since it can be satisfied by just eliminating

the coordinates for which pi + pi∗ = 0. The condition d ≥ 3 (which is not the same as asking that

three coordinates of p are positive) is very natural and justified below Equation (19). The singular

radius of Pn,p is defined as the ℓ2 operator norm of Pn,p projected onto the orthogonal of constant

functions

(13) σn,p = ‖(Pn,p)1⊥‖2→2.

Recall that the singular values of a matrix T are the square of the eigenvalues of TT ∗. By definition

σn,p is the second largest singular value of Pn,p (we are counting eigenvalues with multiplicities,

meaning that σn,p = 1 for a non-connected graph). If Pn,p is reversible then σn,p coincides with

the spectral radius ̺n,p, that is the second largest eigenvalue of Pn,p in absolute value. Note that

Pn,p is reversible if the following condition holds:

(14) ∀i ∈ [d], pi∗ = pi.

Our aim is to prove a result analogous to Theorem A for p-anisotropic walks on Schreier graphs.

We fix the involution ∗ and p and then investigate the asymptotic behavior of the mixing time for

p-anisotropic random walks on a sequence of Schreier graphs (Gn) associated with the involution

∗.
5



Instead of comparing the spectral radius of Pn with that of the simple random walk on the d-

regular tree, we need here to compare it with that of a p-anisotropic walk on the tree Td considered

as a Cayley graph. There are several natural ways to endow Td with a Cayley graph structure. For

instance, we can consider k free copies of Z/2Z and l free copies of Z with their natural generators,

for any value of k and l satisfying k + 2l = d. We are going to choose k to be equal to the number

of fixed points of ∗ so that the infinite object we consider has a structure which is analogous to our

finite Schreier graphs (with Definition 2 below we will formalize this remark).

Using the Schreier graph structure of Td considered as a Cayley graph, we define in a manner

analogous to (11) the p-anisotropic random walk on Td. We denote by Pp its transition kernel.

These random walk have been extensively studied in the literature (see e.g. [22, 24, 34]).

In analogy with (5), in the reversible case where (14) holds, one can asymptotically compare

the spectral radius of Pn,p with that of Pp. From [17, 26], the Alon-Bopanna lower bound for the

spectral radius states that for any sequence of Schreier graphs we have

(15) lim inf
n→∞

̺n,p ≥ ̺p,

where ̺p is the spectral radius of Pp, given by the classical Akemann-Ostrand formula [1]. In

the general case, a lower bound of this type holds for the singular radii of powers of Pn,p. More

precisely, for integer t ≥ 1, we define the t-th singular radius as

(16) σn,p(t) = ‖(P t
n,p)1⊥‖1/t2→2 and σp(t) = ‖(Pt

p)‖
1/t
2→2.

We simply write σn,p and σp when t = 1. Moreover, Gelfand’s formula asserts that the t-th singular

radius converges to the spectral radius,

(17) lim
t→∞

σn,p(t) = ̺n,p and lim
t→∞

σp(t) = ̺p.

Note that if (14) holds then for any t ≥ 1, σn,p(t) = ̺n,p and σp(t) = ̺p. Beware here and

througout this text that the spectral radius ̺p is the spectral radius of the bounded operator Pp

on ℓ2(G). It can differ (in fact it is larger or equal to) from what is often called in the literature

the spectral radius of the walk which is the asymptotic rate of decay the return probability, that

is limt→∞ P2t
p (e, e)1/(2t) (in the reversible case, the two notions coincide). From [26], the Alon-

Bopanna lower bound claims that for any fixed t, for any sequence of Schreier graphs we have

(18) lim inf
n→∞

σn,p(t) ≥ σp(t),

In particular, from Gelfand’s formula (17), we get

(19) lim
t→∞

lim inf
n→∞

σn,p(t) ≥ ̺p.

The latter formula can be thought as an extension of (15) to the non-reversible case. Note that

our assumption (12) simply corresponds to assuming that ̺p < 1 (in the discarded cases, the

anisotropic random walk on Td remains on a subset of the tree which is homemorphic to Z).
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Adapting the reasoning which yields (4) to the isotropic case, we can also obtain an asymptotic

lower bound in n for the mixing time for the p-anisotropic random walk on Gn. Consider (Xt)t≥0 an

anisotropic random walk on Td with transition kernel Pp and starting from the root of Td denoted

by e. Introduced by Avez [8], the entropy rate h(p) of Pp is defined as

(20) h(p) := lim
t→∞

−1

t

∑

g∈Td
Pt
p(e, g) log Pt

p(e, g).

We have h(p) > 0 as soon as (12) holds. From Shannon-McMillan-Breiman Theorem [31, Theorem

2.1], we have almost surely

(21) lim
t→∞

logPt
p(e,Xt)

t
= −h(p).

A way to interpret this convergence is to say that at large times t, the marginal distribution of Xt

is roughly uniform on a (deterministic) set of size eh(p)t(1+o(1)) . We have chosen our setup so that

we can construct the random walk on Gn by taking the image of Xt by some function Td → Vn (see

Definition 2). Thus for any time t > 0 and x ∈ Vn, the entropy of P t
n,p(x, ·) is at most the entropy

of Pt
p(e, ·) (details are in Proposition 6 below). As a consequence, for any fixed ε ∈ (0, 1), we have

(22) lim inf
t→∞

min
x∈Vn

Tmix
n,p (x, 1 − ε)

log n
≥ 1

h(p)
.

In the spirit of Theorem A, for a given probability vector p, a natural question is thus the following:

If a sequence of graphs on n vertices has a minimal asymptotic spectral radius in the sense that

limt→∞ lim supn→∞ σn,p(t) = ̺p, does it also have an asympotic minimal mixing time in the sense

that limn→∞
Tmix
n (ε)
logn = (log n)/h(p) for any fixed ε ∈ (0, 1)?

It turns out that in the anisotropic setup, the relation between spectral gap and mixing time

could be more subtle. We have an asymptotically minimal mixing time for the p-anisotropic random

walk if the spectral radius is asymptotically minimal for another anisotropy vector p′.

Theorem 1. Let d ≥ 3 be an integer, ∗ an involution on [d] and let p be a probability vector on [d]

which satisfies the condition (12). Then, there exists another probability vector p′ with the same

support than p such that the following holds. If a sequence of Schreier graphs Gn on n vertices as

in (10) satisfies for all integers t ≥ 1,

(23) lim
n→∞

σn,p′(t) = σp′(t),

then for every ε ∈ (0, 1)

(24) lim
n→∞

Tmix
n,p (ε)

log n
=

1

h(p)
.

Finally, if p satisfies (14) then p′ also satisfies (14).
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The condition (23) can be thought as a Ramanujan property for the anisotropic random walk

with probability p′. If (14) holds, condition (23) is equivalent to

lim
n→∞

̺n,p′ = ̺p′ .

In the non-reversible case, since σn,p(t) ≥ ̺n,p for any t ≥ 1, condition (23) implies that

lim sup
n→∞

̺n,p′ ≤ ̺p′ .

Note also that in some cases, this condition (23) can be relaxed to allow for no(1) singular values

outside a neighborhood of the interval [−̺p′ , ̺p′ ]; see Remark 5.1 below. An explicit expression for

the vector p′ is provided in the proof. In particular we have that p′ = p in only two cases. The

first one is the simple random walk: that is p is the uniform vector (pi = 1/d for all i ∈ [d]), and

our result is thus a generalization of Theorem A. The other case is the totally asymetric isotropic

walk. It corresponds to the case where ∗ has no fixed point and we have

∀i ∈ [d], pipi∗ = 0 and pi + pi∗ =
2

d
.

In that case we have ̺p =
√

2/d (see [28, Example 5.5]) and h(p) = log d
2 . From Poincaré inequality

(32) below, Theorem 1 is extremely easy to prove in this case. For p different from the uniform

vector, a source of example for Theorem 1 is in [15]. Up to the involution, we consider independent

permutations σi on [n] vertices: if i 6= i∗, σi is a uniform permutation on n elements and, if i∗ = i,

we take n even and σi is a uniform matching on n elements (where a matching is an involution

without fixed point). Then, in probability, the condition (23) is true for any probability vector p′

which satisfies the condition (14).

A couple of open questions concerning anisotropic random walks. Let us focus for simplicity on the

reversible case (14). We emphasize again that as soon as p is not the uniform vector, the condition

(23) differs from what would be the most natural generalization of the Ramanujan property in the

anisotropic setup. We call this property R(p):

(25) lim
n→∞

̺n,p = ̺p.

We believe that this is not an artifact of our proof and that the result would be false if (23) is

replaced by (25). More precisely we believe that for every p which is not the uniform vector there

should exists sequences of graph satisfying (25) but such that (24) does not hold. We cannot

however prove that R(p) and R(p′) are not equivalent. In fact, this question yields two natural

open problems:

(A) With the setup described above can one find a sequence of Schreier graphs and two proba-

bility vectors p and q satisfying (14) such that R(p) holds and R(q) does not?

(B) Given p 6= q satisfying (14) can one find a sequence of Schreier graphs such that R(p) holds

and R(q) does not?
8



While we believe that the answer to (B) (and hence also to (A)) is positive, to our knowledge, all

known examples of graphs satisfying R(p) for one value of p satisfy the property for all values of

p.

Minimal mixing time for covered random walks. We now present another extension of

Theorem A. We start with an extension of the notion of Schreier graph beyond the case of the free

group.

Definition 2 (Group action, covering and Schreier graph). Let G be a finitely generated group with

unit e and V a finite set. A map ϕ : G × V → V is an action of G on V , if we have

∀x ∈ V, ∀g, h ∈ G, ϕ(e, x) = x and ϕ(gh, x) = ϕ(g, ϕ(h, x))

For any g ∈ G, we denote by Sg the permutation matrix on V associated to the bijective map on

V : x 7→ ϕ(g, x).

If A is a finite symmetric subset of G then the Schreier graph of (G,A, ϕ) is the graph (with

possible loops and multiple edges) on V whose adjacency matrix is
∑

g∈A Sg. If G = (V,E) is the

Schreier graph of (G,A, ϕ), we say that (G,A) is a covering of G.

Let us check that this definition of a Schreier graph is equivalent to that given earlier. If the

adjacency matrix of a finite graph G = (V,E) is of the form (10), then G is the Schreier graph

of (SV ,A, ϕ) where SV is the symmetric group on V , A = (S1, . . . , Sd) and the covering map

is ϕ(σ, x) = σ(x). Conversely, if G is the Schreier graph of (G,A, ϕ) as in Definition 2 with

A = {a1, . . . , ad} then its adjacency matrix is of the form (10) where the involution ∗ : i 7→ i∗ is

defined as i∗ = j if and only if aj = a−1
i . Note that if the involution ∗ on [d] has q1 fixed points and

q1 + q2 equivalence classes then G is d-regular with d = q1 + 2q2. As already pointed, the infinite

tree Td is the Cayley graph of the group G(q1,q2)
free generated by q1 free copies of Z and q2 free copies of

Z/2Z with their natural generators denoted Afree. By considering the group homomorphism from

Gq1,q2
free to G which maps Afree to A, we deduce that all Schreier graphs are covered by (Gq1,q2

free ,Afree)

with the corresponding involution.

Remark 1.2. Note that if p is fixed, the definition of the p-anisotropic random walk Td is the

same (up to graph isomorphism) for all possible values of q1 and q2. However, the choice of the

group structure we endow Td with turns out to be of importance when considering coverings. As the

groups corresponding to different values of q1 and q2 are not isomorphic, there are d-regular graphs

G that can be expressed as the Schreier graph for G(q1,q2)
free (with q1 + 2q2 = d) for some values of q2

and not for others (more precisely it is harder to find a covering for smaller values of q2).

The standard example of an action on a finite set is the following. Let G be a finitely generated

group and H a subgroup of G with a finite index. Then the set of left cosets V = {gH : g ∈ G}
(with gH = {gh : h ∈ H}) is a finite set and ϕ defined by ϕ(a, bH) = abH is an action of G on V .
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We introduce now a notion of anisotropic walk on a (sequence of) Schreier graph. Fixing a

group G we assume that we have a sequence of finite sets (Vn) with #Vn = n and (ϕn) a sequence

of actions of G on Vn. We consider p to be a probability vector G with finite support. We are

interested in the random walk on Vn with transition matrix

(26) Pn,p =
∑

g∈A
pgSg,

where for g ∈ G, Sg is as in Definition 2 the permutation matrix associated to the action ϕn.

Note that if the support of p is contained in a finite symmetric set A, then Pn,p is an anisotropic

random walk on the Schreier graph of (G,A, ϕn). This situation extends the previous setup in

both directions: the underlying group is not necessarily the free group and the generating set is not

necessarily the natural set of generators. Note that the uniform measure on Vn is always stationnary

for this random walk. It is reversible if we assume

(27) ∀g ∈ G, pg = pg−1 .

We are going to compare the random walk on Vn with a random walk on G. To this end, we define

Pp the transition kernel of this random walk on G defined by

(28) Pp =
∑

g∈A
pgλ(g),

where, for g ∈ G, λ(g) is the left multiplication operator in (or the left regular representation of g)

defined on G by λ(g)(h) = gh.

Our aim is to provide an extension of Theorem 1 which gives a condition in terms of spectral

properties for the mixing time to be minimal.

Let ̺p and σp be the spectral radius and the singular radius of Pp and let σn,p be the singular

radius of Pn,p defined in (13). For integer t ≥ 1, we define σn,p(t) and σn,p(t) as in (16). From [26],

the Alon-Boppana lower bound (19) is still valid.

We wish to focus on sequences of random walks whose spectral gap is uniformly bounded away

from one. Hence, we will assume that ̺p < 1. This is equivalent to assuming that the subgroup

〈Ap〉 of G generated by Ap := {g : pg > 0} is non-amenable (or simply that G is non-amenable

if one takes as an assumption that Ap generates G). Recall that a group is said to be amenable

if it admits a finitely-additive left-invariant probability measure. The equivalent between non-

amenability of 〈Ap〉 and ̺p < 1 for p satisfying (27) was established by Kesten [32, 33]. In the

non-reversible case, see forthcoming Lemma 8.

As before, we can determine an asymptotic lower bound for the mixing time of the random walk

with generator Pn,p (valid for any sequence of group actions) in terms of the entropy rate of Pp

denoted by h(p) and defined by Equation (20). In Subsection 2.1 below, we will check that the

Avez lower bound h(p) ≥ −2 log ̺p holds and that the mixing time of the anisotropic random walk
10



on Gn is asymptotically larger than (1− o(1))(log n)/h(p) in the sense that for any fixed ε ∈ (0, 1),

uniformly in x ∈ Vn, the inequality (22) holds.

For a given probability vector p supported by a generator, a natural question is thus the following:

Are there spectral conditions for a sequence of actions (ϕn) of G on Vn with #Vn = n to guarantee

that the anisotropic random walk on Vn has an asymptotically minimal mixing time in the sense

that Tmix
n (ε) = (1 + o(1))(log n)/h(p) for any fixed ε ∈ (0, 1)?

Our answer to this question is based on the two following notions of group algebra.

Definition 3 (RD property). A finitely generated group G has the RD property (for Markov oper-

ators) if for every finitely supported probability vector p the singular radius σp = ‖Pp‖2→2 of Pp

is well controlled by the ℓ2-norm of p in the following sense : For any finite symmetric generating

set A of G, there exists a constant C = C(G,A) such that

(29) σp ≤ CRC‖p‖2,

where R is the diameter of the support of p in the Cayley graph associated with (G,A).

We refer to [18] for an introduction to the RD property. Among non-amenable groups, we note

that free groups and hyperbolic groups satisfy the RD property. Observe also that as the distance

corresponding to different generating sets are comparable (if dA and dA′ are the graph distance for

the Caley graph associated with generators A and A′ respectively we have dA′ ≤ CA,A′dA where

CA,A′ = maxy∈A′ dA(e, y)) it is sufficient to check (29) for a single finite symmetric generating set

A of G.

Recall that we automatically have σp ≤ ‖p‖1, and hence (29) is trivially satisfied when ‖p‖2 ≥
CR−C‖p‖1. Therefore, the condition (29) says something about σp for p which have large support

and whose mass is well spread on that support. In fact, as we have σp ≥ ‖p‖2, the property (29)

for a non-amenable group tells us in particular that σp is close to this trivial lower bound (in the

sense that σp = ‖p‖1+o(1)
2 ) when p is reasonably spread-out on the ball of radius R for large values

of R (recall that a non-amenable group has exponential growth).

Our second notion is the strong convergence of operators algebras which we define here in our

specific Markovian setting. It can be thought as an analog of the Ramanujan property for a sequence

of group actions on finite sets. It is a stronger assumption since the Ramanujan property only refers

to one particular random walk on the free group and the property below must be valid for every

random walk.

Definition 4 (Strong convergence). Let G be a finitely generated group, (Vn) a sequence of finite

sets and (ϕn) a sequence of covering maps of G on Vn. We say that the sequence of covering maps

(ϕn) converges strongly (on Markov operators) if for every finitely supported probability vector p,

we have

lim
n→∞

σn,p = σp.

11



where σp is the singular radius of Pp defined in (28) and σn,p is the singular radius of Pn,p defined

in (26) and (13).

From (17), the strong convergence of (ϕn) implies in particular that

(30) lim
t→∞

lim
n→∞

σn,p(t) = ̺p.

We are now ready to state the last result of this introduction.

Theorem 5. Let G be a finitely generated non-amenable group with the property RD, (Vn) a se-

quence of finite sets with #Vn = n and (ϕn) a sequence of actions of G on Vn which converges

strongly. Then for every finitely supported probability vector p on G such that ̺p < 1, the mixing

time of the random walk with transition matrix Pn,p satisfies, for every ε ∈ (0, 1),

lim
n→∞

Tmix
n,p (ε)

log n
=

1

h(p)
.

The assumption that the group actions converge strongly is a strong assumption. Notably,

Theorem 5 does not imply neither Theorem A nor Theorem 1. These two theorems rely on special

properties of free groups. Nevertheless, in some cases, it is possible to relax the assumption that the

group actions converge strongly by supposing instead that the strong convergence holds on some

vector spaces of codimension no(1) (we discuss this point further in Remark 4.2).

The paper [15] provides a source of examples for Theorem 5 by establishing that random actions

of the free group are strongly convergent. We consider an involution ∗ in [d] with q1 fixed points,

and G(q1,q2)
free the group generated by q1 free copies of Z/2Z and q2 = (d − q1)/2 free copies of Z

with its natural set of generators. We consider permutations αn,i, i ∈ [d] on [n] vertices which are

chosen such that:

(A) If i 6= i∗, αn,i is a uniform permutation on n elements and αn,i∗ = α−1
n,i .

(B) If i = i∗, αn,i is a uniform involution on n elements without fixed point (the construction

is made only for even n).

(C) The permutations are chosen independently for each equivalence class of the involution ∗.
We consider the action of G(q1,q2)

free on Vn = [n] defined by ϕn(ai, x) = αn,i(x). Then, in probability,

this sequence of actions is strongly convergent. These random actions on the free group are the only

known examples of strongly convergent sequences of actions, but it could indicate that choosing

the action at random among all possible choices might yield a strongly convergent sequence also

for other choices of non-amenable groups.

Minimal mixing time for color covered random walks. Finally, we also consider yet another

extension which allows in particular to consider random walks on n-lifts of a base graph (not

necessarily regular). Since the work of Amit and Linial [6, 7] and Friedman [23], this model has

attracted a substantial attention. In this context, we will give the analog of Theorem 5. To avoid

any confusion on notation, we postpone the treatment of this model to Section 6.
12



Organization of the paper. In Section 2 we provide a short proof for the entropic lower bound

(22) only stetched in this introduction, and provide a general result (Proposition 9) which allows

to estimate the mixing time of a Markov chain in terms of the distribution of a stopping time at

which the chain is close to equilibrium.

In Section 3, we provide a simple proof of Theorem A/B, proving and using a relation between

the k-non-backtracking random walk on trees and Chebychev polynomials.

In Section 4, we prove Theorem 4 concerning cutoff in the more general setup under the assump-

tion of Strong Convergence (Definition 4).

In Section 5, we prove Theorem 1 concerning anisotropic walks, by combining the ideas of Section

4 with an analysis of the resolvent of the anisotropic random walk on Td.
Finally, in Section 6 we deal with the model of color covered random walks.

Notation. If V is a countable set and M is a bounded operator in ℓ2(V ), we use the matrix

notation M(x, y) = 〈1x,M1y〉 for x, y ∈ V where 1x denotes the indicator function of x. The

integer part of real number t is denoted by ⌊t⌋.
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2. Preliminaries

2.1. The entropic time lower bound. For the sake of completeness we provide a complete proof

of the entropic lower bound (22) which is only sketched in the introduction. The result is stated

in the more general setup of Theorem 5. Recall that G is a finitely generated group, (Vn)n≥0 a

sequence of finite sets with #Vn = n, (ϕn)n≥0 a sequence of actions of G on Vn, that Pn,p, Pp

denote the transition matrices on Vn and G respectively defined by (26) and(28), and that h(p) is

the entropy rate associated with Pp.

Proposition 6. Let p be a finitely supported probability vector on G such that h(p) > 0. Given

any sequence (Vn), (ϕn)n≥0 as above, the mixing time associated with the random walk on Vn with

transition Pn,p satisfies for any ε ∈ (0, 1)

lim inf
n

min
x∈Vn

Tmix
n,p (x, 1− ε)

log n
≥ 1

h(p)
.

We consider Tmix
n,p (x, 1 − ε) (rather than Tmix

n,p (x, ε)) when lower bounds on the mixing time are

concerned so that for both the upper and the lower bound, it is sufficient to consider small values

of ε.
13



Proof. Let (Xt) denote the random walk on G starting from the unit e and with transition Pp. Its

distribution is denoted by P. The result is an almost direct consequence of the Shannon-McMillan-

Breiman Theorem [31, Theorem 2.1], which states that logPp(e,Xt) concentrates around its mean;

see (21). In particular given ε, δ > 0 we have for all t sufficiently large

P
[

logPt
p(e,Xt) < −(1 + δ)h(p)t

]

≤ ε/2.

Thus if one sets

Vδ(t) :=
{

g ∈ G : Pt
p(e, g) ≥ e−(1+δ)h(p)t

}

we have

|Vδ(t)| ≤ e(1+δ)h(p)t and P[Xt /∈ Vδ(t)] ≤ ε/2.

Now given x ∈ Vn arbitrary, we consider Xt := ϕn(Xt, x), which is a random walk with transition

matrix Pn,p started at x, and let Vδ(t) := {ϕn(g, x) : g ∈ Vδ(t)} , the image of Vδ(t) by the action.

We have, for all t sufficiently large

πn(Vδ(t)) =
|Vδ(t)|
n

≤ |Vδ(t)|
n

≤ e(1+δ)h(p)t

n
,

and P t
n,p(x, Vδ(t)) = P(Xt ∈ Vδ(t)) ≥ 1− ε/2. Thus we have

‖P t
n,p(x, ·) − πn‖TV ≥ 1− ε/2 − e(1+δ)h(p)t/n.

Considering t = ⌊log(nε/2)/((1 + δ)h(p))⌋, we conclude that for any arbitrarily small and ε, δ > 0,

we have for n sufficiently large

Tmix
n,p (x, 1 − ε) ≥ ⌊log(nε/2)/((1 + δ)h(p))⌋ ≥ (1− δ)

(log n)

h(p)
.

It concludes the proof. �

The next lemma is the classical Avez lower bound adapted to our definition of spectral radius.

It implies notably that if ̺p < 1 then h(p) > 0.

Lemma 7. If p is a finitely supported probability vector on G we have h(p) ≥ −2 log ̺p.

Proof. We may assume ̺p < 1. Let h ≥ 0 be such that ̺p < e−h. From (17), there exists an

integer t0 ≥ 1 such that for ‖Pt
p‖2 = ‖Pt

pPt
p
∗‖ ≤ e−2ht for all t ≥ t0. In particular,

∑

g∈G

(

Pt
p(e, g)

)2
=
(

Pt
p(P∗

p)
t
)

(e, e) ≤ e−2ht.

From Jensen inequality, we deduce that

∑

g∈G
Pt
p(e, g) log(Pt

p(e, g)) ≤ log





∑

g∈G

(

Pt
p(e, g)

)2



 ≤ −2ht.

It follows that h(p) ≥ 2h. �

We conclude this subsection with a corollary of Kesten’s criterion for non-amenability applicable

to non-reversible walks.
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Lemma 8. Let p be a finitely supported probability vector on G and Ap = {g : pg > 0}. The

subgroup 〈Ap〉 generated by Ap is non-amenable if and only if ̺p < 1.

Proof. It is convenient to introduce the lazy random walk, Lp = (I+Pp)/2 = Pδe/2+p/2 where I is

the identity operator. Assume that 〈Ap〉 is non-amenable. Then LpL∗
p is of the form Pp′ for some

p′ which satisfies (27) and 〈Ap〉 = 〈Ap′〉. Kesten’s result then implies that the singular radius of

Lp is smaller than 1− δ for some δ > 0. The operator norm of operators of the form Pp′ with p′ a

probability vector can be obtained by taking the supremum over non-negative functions. We can

thus compare the norm of L2t
p = ((I + Pp)/2)

2t with that of any term appearing in its binomial

expansion. In particular we have,

‖Pt
p‖2→2 ≤ 22t

(

2t

t

)−1

‖L2t
p ‖2→2 ≤ 2

√
t‖Lp‖2t2→2 ≤ 2

√
t(1− δ)2t,

(where we have used that
(2t
t

)

≥ 22t/(2
√
t). From (17), it follows that ̺p ≤ (1−δ)2 < 1. Conversely,

if ̺p < 1 then, from (17), the singular radius of Lt
p is strictly smaller than 1 for some t. From

the definition, it follows that the spectral radius of Pp′′ := Lt
p(Lt

p)
∗ is smaller than one, which, by

Kesten’s reciprocal implies the non-amenability of 〈Ap′′〉 = 〈Ap〉. �

2.2. Mixing time from stopping time. We present here a result derived from [9], which allows

to estimate the distance from equilibrium using arbitrary stopping times. In this subsection, (Xt)

is an arbitrary Markov chain on a finite set V with transition matrix P and for x ∈ V , Px denotes

the distribution of this process with initial condition X0 = x.

A classical way to obtain mixing time upper-bounds is via the use of strong stationary times

(see [36, Chapter 6]). A strong stationary time is defined as a stopping time T for the chain X

for which XT is at equilibrium and XT and T are independent. The standard bound [36, Lemma

6.11] says that if T is a strong stationary time for (1) then (the bound is in fact proved for the

separation distance which is larger)

‖P t(x, ·) − π‖TV ≤ Px[T > t].

A careful inspection of the proof in [36] reveals that one can allow XT to admit another dis-

tribution provided an adequate error term is added. However the assumption that XT and T are

independent is crucial in the mechanism of proof. However using recent techniques developed in

[30, 9] to compare mixing times with hitting times, we can by-pass this independence assumption

if the chain is reversible and if the mixing time is much larger than the relaxation time, at the cost

of a second error term. We will present a variant of this argument for general finite Markov chains

(which in particular does not require reversibility).

We say that a filtration (Ft), is adapted to (Xt) if for any t ≥ 0, x, y ∈ V .

(31) E[1{Xt=x,Xt+1=y} | Ft] = P (x, y)1{Xt=x},
15



(in particular this implies that Xt is Ft measurable). We denote by ℓ2(π) the vector space R
V

endowed with the scalar product,

〈f, g〉π =
∑

x∈V
π(x)f(x)g(x).

Let us recall the definition singular radius given in (16) for a finite Markov chain P with invariant

measure π

σ = ‖P|1⊥‖ℓ2(π)→ℓ2(π) = sup

{

‖P|1⊥f‖ℓ2(π)
‖f‖ℓ2(π)

: f 6= 0

}

.

For any integer t ≥ 1, we define the t-th singular radius as

σ(t) = ‖(P t)|1⊥‖1/tℓ2(π)→ℓ2(π)
.

Note that σ(t) ≤ σ. Moreover, in our context, the Poincaré inequality is the claim that for any

vector f ∈ R
V , with π(f) = 〈1, f〉π,

(32) ‖P tf − π(f)1‖ℓ2(π) = ‖(P t)|1⊥f‖ℓ2(π) ≤ σ(t)t‖f‖ℓ2(π).

This follows immediately from the definition of t-th singular radius. We control distance to equilib-

rium with the help of stopping time with the following result (in the present paper, the inequality

(33) is sufficient for all purposes, but since the result might have other applications, we also include

a reversible version which is significantly better when ̺ is close to 1).

Proposition 9. Let (Xt) be a finite irreducible Markov chain with transition matrix P , equilibrium

measure π and with t-th singular radius σ(t). If T is a stopping time with respect to a filtration

adapted to X and Px(XT ∈ ·) = ν, then we have for any positive integers t and s:

(33) ‖P t+s(x, ·) − π‖TV ≤ ‖ν − π‖TV + Px[T > t] + 2(1− σ(s))−1/3σ(s)2s/3.

Moreover if (Xt) is reversible and ̺ = σ(1) denotes the spectral radius of P , we have

(34) ‖P t+s(x, ·) − π‖TV ≤ ‖ν − π‖TV + Px[T > t] + 3̺2s/3.

Proof. In the reversible case, the main ingredient of our proof is [9, Corollary 2.4], which we

reformulate as follows. Given a set A ⊂ V , s ≥ 0 and ε > 0 we set

U(A, s, ε) := {y ∈ V : ∃t ≥ s, |P t(y,A)− π(A)| > ε}.

Then we have

π(U(A, s, ε)) ≤ 2ε−2̺2s.

From the definition of total variation distance we deduce

(35) ν(U(A, s, ε)) ≤ 2ε−2̺2s + ‖ν − π‖TV.
16



For every x, t and s, using the triangle inequality and the fact that XT ∼ ν we obtain (using the

short-hand notation U for U(A, s, ε)) that

P t+s(x,A) − π(A) ≤
t
∑

i=0

∑

y/∈U
Px(T = i ;XT = y)(P s+t−i(y,A)− π(A)) + Px[T > t] + ν(U).

From the definition of U(A, t, ε) the double sum above is smaller than ε. Thus, from (35), we obtain

(maximizing over A)

‖P t+s(x, ·) − π‖TV ≤ Px[T > t] + ‖ν − π‖TV + 2ε−2̺2s + ε,

and one can conclude by choosing ε = ̺2s/3. In the general case, we define for integer s ≥ 0

V (A, s, ε) := {y ∈ V : |P s(y,A) − π(A)| > ε} and U(A, s, ε) =

∞
⋃

t=s

V (A, k, ε).

In particular, we recover the above definition for U(A, s, ε). From Markov inequality and (32), for

any integer t ≥ 0, we have

π(V (A, t, ε)) ≤ ε−2‖P t1A − π(A)1‖2ℓ2(π) ≤ ε−2σ(t)2tπ(A).

Since σt is non-increasing, we thus have for any s and A,

π(U(A, s, ε)) ≤
∞
∑

k=s

π(V (A, k, ε)) ≤ ε−2(1− σ(s)2)−1σ(s)2s.

We deduce a slightly modified form of Equation (35)

ν(U(A, s, ε)) ≤ ε−2(1− σ(s)2)−1σ(s)2s + ‖ν − π‖TV.

We may thus reproduce the same argument. �

3. Simple random walks on Ramanujan graphs revisited

3.1. Sketch of proof of Theorem A and Theorem B. In order to prove Theorem A and

Theorem B, we apply Proposition 9 for a stopping time defined using a coupling between the

random walk on Gn and that on Td, the infinite d-regular tree. This coupling is defined thanks to

a covering map from Td to Gn.

We denote by e the root vertex of Td. Let X be the simple random walk on Td starting from

e. Given x ∈ Vn, we fix a local graph homeomorphism ϕ : Td → Gn (each vertex v in Td has its d

neighbors mapped to the d neighbors of ϕ(v) in Gn) such that ϕ(e) = x. We may construct the

simple random walk on Gn by setting Xt := ϕ(Xt). For a well chosen integer k ≥ 1, we define the

stopping time τ as

(36) τ = inf{t ≥ 0 : Dist(Xt, e) = k},

where Dist(v, e) is the distance of the vertex v in Td to the root e. With k = logn
log(d−1)(1 + o(1)),

we show that at the time τ , Xτ = ϕ(Xτ ) is close to equilibrium. More precisely, we use that

the distribution of Xτ can be expressed as an explicit polynomial of the transition matrix Pn (cf.
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Lemma 10), and thus its ℓ2-norm can be controlled in terms of the spectral radius of Pn (cf. Lemma

12). This spectral bound turns out to be optimal.

Then the proof is concluded easily by using Proposition 9 and the fact that the detailed behavior

of τ , which is a hitting time for a biased random walk, is known. It is worth mentioning that

this reasoning leads to a more quantitative result in Proposition 11 below (which can also be

obtained using methods from [39]). We note also that the variables Xτ and τ are independent and

Proposition 9 in its full strength is not really needed here.

3.2. Non-backtracking walks and Chebyshev polynomials. In this subsection, let us consider

G = (V,E) an arbitrary simple d-regular graph. Given k ≥ 1 integer, we let

Wk := {(xi)ki=0 ∈ V k+1 : ∀i ∈ [k], {xi−1, xi} ∈ E}

denote the set of paths of length k in G. Given x, y ∈ V , we define the set of non-backtracking

paths of length k from x to y as (with the convention that [0] is the empty set)

NBk(x, y) := {x ∈Wk : x0 = x, xk = y , ∀i ∈ [k − 1], xi−1 6= xi+1},

and NBk(x) :=
⋃

y∈V NBk(x, y). We define the non-backtracking operator of length k on G to be

the following stochastic matrix on V × V ,

Qk(x, y) :=
#NBk(x, y)

#NBk(x)
=

#NBk(x, y)

d(d− 1)k−1
.

We let P denote the transition matrix for the simple random walk on G (i.e. P = Q1). The

following well known result (see e.g. [5, 45] and [16] for an early reference) will help us to control

the spectral radius of Qk in terms of that of P .

Lemma 10. For every integer k, there exists a polynomial pk such that Qk = pk(P ) for every

simple d-regular graph G. More precisely we have

pk(x) =
1

d(d− 1)k/2

(

(d− 1)Uk

(

x

̺

)

− Uk−2

(

x

̺

))

,

where ̺ := (2
√
d− 1)/d and (Uk), k ≥ −1, are the Chebyshev polynomials of the second type defined

rescursively by

U−1 = 0, U0 = 1, and Uk+1(x) = 2xUk(x)− Uk−1(x).

Proof (sketch). For a more detailed proof, we refer to the above mentionned references [5, 16, 45].

It is sufficient to check that the identity Qk = pk(P ) is valid on the d-regular infinite tree Td
(it is the universal covering of G and the preimage by a covering map of the non-bactracking

paths on G are the non-backtracking paths on Td). We set Q̄k := d(d − 1)k−1Qk. Using that

Q̄k(x, y) = 1{Dist(x,y)=k} it is simple to check that

(37) Q̄k+1 = dPQ̄k − Q̄k−1.
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The result follows then by induction on k. We find p1 = x, p2 = x2d/(d− 1)− 1/(d− 1) and, from

(37),

pk+1 =
d

d− 1
xpk −

1

d− 1
pk−1.

It is then immediate to check that this recursion coincides with the recursion satisfied by the

polynomials d−1(d− 1)−k/2((d− 1)Uk(x/̺)− Uk−2( x/̺)). The conclusion follows. �

The polynomials (pk) are called the Geronimus polynomials (in reference to [25]) or the non-

backtracking polynomials.

3.3. Proof of Theorem A. Recall that ̺n denotes the spectral radius for Pn restricted to non-

constant function. We let

ηn := max

(

0,
d̺n

2
√
d− 1

− 1

)

quantify by how much Gn is far from being a Ramanujan graph. Theorem A is a consequence of

this more quantitative statement.

Proposition 11. Let (Gn) be a sequence of d-regular graphs on n vertices such that limn→∞ ηn = 0.

There exists a constant C and a sequence δn tending to zero such that for all ε ∈ (0, 1) for all n

sufficiently large (depending on ε)

(38) Tmix
n (ε) ≤

(

d

(d− 2) log(d− 1)
+ C

√
ηn

)

log n+ (Φ(ε) + δn)
√

log n,

where, if Z is a standard normal distribution, the function Φ(·) is defined as the inverse of

s 7→ P

[

Z ≥ (d− 2)3/2

2
√

d(d− 1)
s

]

.

In particular if limn→∞ ηn log n = 0, then

(39) Tmix
n (ε) =

d

(d− 2) log(d− 1)
log n+Φ(ε)

√

log n+ o(
√

log n).

Note that the upper-bound in (39) is an immediate consequence of (38), while the lower bound

(displayed in [39, Fact 2.1]) - which is valid for any d-regular graph - follows from the argument

sketched in the introduction. We note also that it follows from [13] that, if Gn is a uniform random

d-regular graph on n vertices then ηn
√
log n converges to 0 in probability. Hence, we recover the

main result of [40] from Proposition 11. The remainder of this subsection is devoted to the proof

of Proposition 11. The proof includes a technical lemma whose proof is postponed to the end of

the section.

Proof of Proposition 11. We apply the content of the previous subsection to our problem. Let x be

in Vn and ϕ : Td → Gn be as in Section 3.1 be a local graph homeomorphism such that ϕ(e) = x,

where e is the root of Td. Let Xt be the simple random walk on Td started at the root vertex

e. Then Xt := ϕ(Xt) is a simple random walk on Gn starting from x. For an integer k to be

chosen later on, let τ be defined as in (36). Since non-backtracking paths in a tree are geodesic
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paths, it is immediate to see that the distribution of Xτ is given by Qk,n(x, ·) where Qk,n(x, ·) is

the non-backtracking operator on Gn. Hence in particular the standard ℓ2 upper-bound on total

variation distance (2) applied for t = 1 yields

(40) ‖Qk,n(x, ·) − πn‖TV ≤ rk,n
√
n.

where, using Lemma 10

rk,n := max
λ∈Sp(Qk,n)\1

|λ| = max
λ∈Sp(Pn)\1

pk(λ).

Hence if one sets

k = kn := min

{

k : rk,n ≤ 1√
n log n

}

,

we deduce from (40) that ‖Qkn,n(x, ·)−πn‖TV ≤ (log n)−1. We now apply Proposition 9 for T = τ .

We obtain that, provided that ̺n ≤ 1 − δ (which is true for all n large enough if ηn → 0 for e.g.

δ = 1/20), for all t ≥ 0,

(41) dn(x, t+ s) ≤ ‖Qkn,n(x, ·) − πn‖TV + P[τ ≥ t] + 3(1 − δ)2s/3.

The last term can be made smaller than (log n)−1 for all n large enough by choosing s = sn :=

(log log n)2. Hence, setting

tn(ε) := inf
{

t : P[τ > t] ≤ ε− 2(log n)−1
}

,

we obtain

Tmix
n (ε) ≤ tn(ε) + sn.

Now, the central limit theorem for the biased random walk on the line implies that

Dist(Xt, o)− t((d− 2)/d)

2
√
d− 1/d

converges weakly to a standard normal distribution. We may thus easily estimate tn as a function

of kn. Hence, the only missing part is an estimate for kn.

Lemma 12. For any integer d ≥ 3, there exists a constant C such that for all n sufficiently large

we have

kn ≤







logn
log(d−1) +C (log log n) , if η ≤ (log n)−2(log log n)2,

logn
log(d−1)(1 + C

√
η) if η ≥ (log n)−2(log log n)2.

The above estimates combined with the use of the Central Limit Theorem (details are left to the

reader) imply that

tn(ε) ≤
(

d

(d− 2) log(d− 1)
+ C

√
ηn

)

log n+ (Φ(ε) + δn)
√

log n.

This concludes the proof of Proposition 11 (provided that Lemma 12 has been established). �
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Proof of Lemma 12. We use the following classic identities, valid for all θ ∈ R\{0} and k ∈ N,

(42) Uk(cosh θ) =
sinh((k + 1)θ)

sinh θ
and Uk(cos θ) =

sin((k + 1)θ)

sin θ
.

We note that Uk is either an even or an odd function (depending on the parity of k). We thus have

for any λ,

|pk(λ)| ≤
1

d(d − 1)k/2
[(d− 1)|Uk(|λ|/̺)| + |Uk−2(λ/̺)|]

Using the fact (it can be checked using (42)) that |Uk(x)| ≤ k + 1 on [0, 1] and Uk(x) is increasing

on [1,∞) we obtain that

(43) max
λ∈Sp(Pn)\1

|pk(λ)| ≤
1

d(d− 1)k/2
[(d− 1)Uk(1 + ηn) + Uk−2(1 + ηn)].

and hence rk,n ≤ (d − 1)−k/2Uk(1 + ηn). Using the identity (42) we obtain that there exists a

constant C such that

rk,n ≤ C

(d− 1)k/2
min(η−1/2, k)eCk

√
η.

This is sufficient to obtain the desired estimate on kn. �

3.4. Proof of Theorem B. Let η > 0. To prove Theorem B, we use (41) with kn replaced by

k′n = logn
log(d−1) (1 + η/2). By the law of large numbers τ = τ(k) is asymptotically equivalent to kd

d−2

when k goes to infinity. Hence, to prove Theorem B, it is sufficient to show that, there exists c > 0

such that for all n large enough, we have ‖Qk′n,n(x, ·)− πn‖TV ≤ n−cη for at least n1−2cη vertices x

in Vn. It is thus sufficient to show that for all n sufficiently large,

(44)
∑

x∈Vn

‖Qk′n,n(x, ·) − πn‖TV ≤ n1−3cη.

To take into account the information we have about the multiplicity of eigenvalues, we must be

more precise than (40) in our decomposition. For λ ∈ Sp(Pn)\{1} we let αλ(x) be the square norm

of the projection of the vector δx onto Eλ
n , the eigenspace of Pn corresponding to λ, that is

αλ(x) := max
f∈Eλ

n

f(x)2
∑

y∈Vn
f(y)2

.

From the spectral theorem, we have
∑

x∈Vn
αλ(x) = dim(Eλ

n). Using the Cauchy-Schwartz inequal-

ity and the decomposition on the eigenspaces of Pn we obtain

(2‖Qk,n(x, ·)− πn‖TV)
2 ≤ n

∑

y∈Vn

(

Qk,n(x, y)−
1

n

)2

=
∑

λ∈Sp(Pn)\{1}
npk(λ)

2αλ(x).

Hence, averaging over x, we have

1

n

∑

x∈Vn

‖Qk,n(x, ·) − πn‖2TV ≤
∑

λ∈Sp(Pn)\{1}
pk(λ)

2dim(Eλ
n).
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Using the fact (recall (43)) that pk(λ) ≤ (d− 1)−k/2(k + 1) when λ ≤ ̺, we obtain that

(45)
∑

λ∈Sp(Pn)∩[−̺,̺]

pk(λ)
2dim(Eλ

n) ≤ (d− 1)−k(k + 1)2n.

For λ /∈ [−̺, ̺], as a consequence of (42) we have

lim sup
k→∞

1

k
log |pk(λ)| ≤ lim

k→∞
1

k
logUk(|λ|/̺) −

1

2
log(d− 1)

= log

(

|λ|/̺−
√

(λ/̺)2 − 1

)

− 1

2
log(d− 1).

Hence recalling the definition of I(u) in (7) and the assumption ̺n ≤ 1− δ, we arrive at

(46) lim sup
n→∞

1

log n
log

∑

λ∈Sp(Pn)\[−̺,̺]

pk′n(λ)
2dim(Eλ

n)

≤ sup
u∈[̺,1−δ]









(1 + η/2)









2 log

(

u/̺−
√

(u/̺)2 − 1

)

log(d− 1)
− 1









+ I(u)









,

(where we have used the upper semi-continuity of u 7→ I(u)). Using the assumption (8), we obtain

that the left-hand side of (46) is at most c0η with

c0 :=
1

2
−

log

(

(1− δ)/̺ −
√

((1− δ)/̺)2 − 1

)

log(d− 1)
> 0.

Together with (45), it concludes the proof of (44) with c = c0/4. �

Remark 3.1 (Variant of Theorem B). If H is a vector space of RVn with #Vn = n, we define the

flat-dimension of H as dim0(H) = nmaxx∈Vn ‖PH1x‖22 where PH is the orthogonal projection onto

H. This definition implies dim0(H) ≥ dim(H), dim0(span(πn)) = 1 and dim0(span(1x)) = n. If

the graph Gn is a transitive graph and H is the invariant vector space generated by k eigenvalues of

Pn, then we have dim0(H) = dim(H). Now, we define I0 exactly as I in (7) except that we replace

in (7) dim(Eλ
n) by dim0(E

λ
n). The proof of Theorem B actually proves that (6) holds if ̺n < 1− δ

and for all u > ̺, (8) holds with I0 instead of I.

4. Covered random walks: proof of Theorem 5

4.1. Notation. In this section, we fix a finitely supported probability vector p on G and we denote

by (Xt)t≥0 the random walk on G with transition kernel Pp started at X0 = e, the unit of G. The

underlying probability distribution of the process (Xt)t≥0 on GN will be denoted by P(·). Finally,

if ϕn is the action of G on Vn as in Theorem 5, given a fixed x ∈ Vn, we set Xt = ϕn(Xt, x). Then

(Xt)t≥0 is a trajectory of the Markov chain on Vn with transition kernel Pn,p and initial condition

x.
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4.2. Proof strategy. Our strategy shares some similarities with that adopted in the Ramanujan

case: we try to build a backbone walk (Ys)s≥0 with Ys = Xτs using stopping times which are defined

in terms of the walk performed on the covering (our terms backbone comes from the fact that

the complete walk can be recovered from the backbone by adding the missing pieces). The two

important properties that our backbone walk must satisfy are the following :

(i) At each step, one jumps more or less uniformly to one of k vertices for a large k.

(ii) The spectral gap associated with the backbone walk is close to the Alon-Boppana bound.

The second property is obtained from our assumptions that the RD property on G holds and that

the sequence of actions converges strongly. To obtain a backbone walk that jumps close to uniformly

on large sets, we perform an explicit construction based on the Green’s operator associated to Pp.

To conclude, we need to relate the mixing time of the backbone walk to that of the original

one. This is done using the tools developed in Subsection 2.2 which relate mixing times and hitting

times. Indeed hitting times of the backbone walk provide an upper bound for the hitting times of

the original walk.

4.3. Construction of the backbone walk from the Green’s operator. Given k a large in-

teger, our task is to find a stopping time τ for the process (Xt) starting from X0 = e such that Xτ

is close to be uniformly distributed on a set of k vertices. We denote by A = {a1, . . . , ad} be the

symmetric support of Pp. We define Γ as the Cayley graph of G generated by A. By construction

(Xt) is a random walk on Γ. We are going to choose our stopping time of the form

(47) τ := inf {t ≥ 0 : Xt /∈ U},

where U is finite and contains e. Notably, τ is almost surely finite and Xτ is supported on the set

∂U defined by

∂U := {g /∈ U : a−1
i g ∈ U for some i ∈ [d]},

which satisfies #∂U ≤ (d− 1)#U .

Now let us specify our choice for U . We let Rp = (I −Pp)
−1 be the Green’s operator associated

with Pp. The Green’s operator is a well defined bounded operator, since ̺p < 1, 1 is not in the

spectrum of Pp. We define u to be the image of the coordinate vector at e by Rp. The scalar u(g)

corresponds to the expected number of visits at g starting from e:

(48) u(g) := Rp(e, g) =

∞
∑

t=0

Pt
p(e, g).

Given k ≥ 1 we define the set

(49) U :=

{

g ∈ G : u(g) >
1

k

}

.

In the reversible case, our set U can be interpreted as the complement of a ball around e in the

Green metric on G associated to Pp. The Green metric is defined for all g, h ∈ G by d(g, h) =
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logRp(e, e)− logRp(g, h) and it is closely related to the entropy of the random walk (Xt), see [12].

Our backbone walk is the induced walk on the successive exit times from U . More precisely, we

define τ0 := 0, τ1 = τ and, for integer s ≥ 1, τs+1 := inf{t ≥ τs : XtX−1
τs /∈ U}. We finally set

Ys := Xτs . We denote by Q the transition kernel associated with the Markov chain (Ys): for any

g, h ∈ G,

(50) Q(g, h) = P(Xτ = hg−1).

By construction, we have Q = Pq where, for all g ∈ G,

(51) qg := Q(e, g) = P [Y1 = g] = P [Xτ = g] .

We let (Ys) be the projection of the walk (Ys) onto Vn, Ys := ϕn(Ys, x), and let Qn denote

the associated transition kernel. This Markov chain is our backbone walk. The following result

establishes that U has the desired property.

Proposition 13. Assume that ̺p < 1. Then there exists a constant C such that for every integer

k ≥ 2, the set defined by Equation (49) satisfies e ∈ U , #U ≤ Ck log k, diam(U) ≤ C log k (where

diam denotes the diameter for the graph distance in Γ) and such that for q defined by (51),

(52) ∀g ∈ ∂U, qg ≤
1

k
.

Proof. By definition of the function u, we have e ∈ U and for any g ∈ ∂U , qg = P [Xτ = g] ≤ u(g) ≤
1/k, as requested. We now check that the cardinality of U is controlled by k log k. This is a simple

consequence of the assumption that ̺p < 1. We fix ̺ such that ̺p < ̺ < 1. Then, from (17), there

exists s ≥ 1, such that ‖Pt
p‖ ≤ ̺t for all t ≥ s. Hence, there exists a constant C0 ≥ 1, such that

‖Pt
p‖ ≤ C0̺

t for all t ≥ 1. Notably, we deduce that for all g, h ∈ G,

(53) Pt
p(g, h) ≤ ‖Pt

p‖ ≤ C0̺
t,

(see forthcoming Lemma 25 for an improvement of this inequality). Thus, if Dist(g, e) is the graph

distance between g and e in Γ,

u(g) =
∑

t≥|g|
Pt
p(e, g) ≤ C0(1− ̺)−1̺Dist(g,e).

This implies that U is included in the ball Br of radius r = ⌊C1 log k⌋ around the unit e. For any

integer b ≥ 1, we find

#U

k
≤

∑

g∈U
u(g) ≤

∑

g∈Br

∞
∑

t=1

Pt
p(e, g)

≤
br
∑

t=1

∑

g∈Br

Pt
p(e, g) +

∞
∑

t=br+1

∑

g∈Br

Pt
p(e, g)

≤ br +
∞
∑

t=br+1

(#Br)C0̺
t.
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We choose b > 0 such that (d − 1)̺b < 1. Since #Br ≤ d(d − 1)r−1, we thus find that #U/k is at

most C2 log k as requested (with C2 = 2bC1). �

4.4. Deducing mixing times from RD property and the strong convergence. To compare

the original walk with the backbone walk, the first requirement is to control how much time each

backbone step requires on average. This can be deduced from the definition of the entropy of G.
Recall the definition of τ in (47).

Lemma 14. Assume that ̺p < 1. For any ε > 0, there exists k(ε) > 1 such that for all integers

k ≥ k(ε),

E[τ ] ≤ (1 + ε)
log k

h(p)
.

Proof. Given t1 < t2 <∞, we decompose the expectation in three contributions (τ ≤ t1, τ ∈ (t1, t2],

τ > t2) and obtain

(54) E[τ ] ≤ t1 + t2P(τ > t1) + E[τ1I{τ>t2}].

We set

t1 := (1 + ε/2)
log k

h(p)
and t2 := C log k

for some adequate constant C, and prove that the second and third term in (54) are smaller than

(ε/4)(log k/h(p)). We start by bounding the tail probability of τ . Recall that ̺p is the spectral

radius of Pp. We fix ̺ such that ̺p < ̺ < 1. From (53),

P(τ > t) ≤ P(Xt ∈ U) ≤
∑

g∈U
Pt
p(e, g) ≤ #UC0̺

t.

Hence, for any s > 0,

P

(

τ >
log(C0#U) + s

log(1/̺)

)

≤ e−s.

By Proposition 13, we deduce for some choice of constant C > 0, for any s > 0 and integer k ≥ 2,

P(τ > (C/2)(log k + s)) ≤ e−s.

It follows that for any ε > 0, for all k large enough

E
[

τ1I{τ>t2}
]

≤ 1

log k
≤ ε log k

4h(p)
.

Now to control the second term, we need to show that P(τ > t1) ≤ ε/(4Ch(p)). Set

H =
{

g ∈ G : Pt1
p (e, g) ≤ e−(1−ε/3)t1h(p)

}

,

and arguing as above,

P(τ > t1) ≤ P(Xt1 ∈ U) ≤
∑

g∈U∩H
Pt1
p (e, g) + P(Xt /∈ H).
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Now, from (21), if k is large enough, P(Xt /∈ H) ≤ ε/(8Ch(p)) and, by Proposition 13,

∑

g∈U∩H
Pt1
p (e, g) ≤ #Ue−(1−ε/3)t1h(p) ≤ (Ck log k)k−(1+ε/10) ≤ ε/(8Ch(p)),

as requested. �

Remark 4.1. The above proof actually shows that the conclusion of Lemma 14 is true for any exit

time from a set of cardinality k1+o(1). On the other hand (21) and the lower bound u(Xt) ≥ Pt
p(e,Xt)

imply easily that E[τ ] ≥ (1− ε)(log k)/h(p) for all k large enough. Hence, our set U asymptotically

maximizes the mean exit time (among all sets of cardinality k1+o(1)).

All ingredients are now gathered to conclude.

Proof of Theorem 5. We fix ε ∈ (0, 1), δ > 0 and x ∈ Vn arbitrary and prove that for n sufficiently

large

Tmix
n,p (x, ε) ≤ (1 + δ) log n/h(p).

We consider τ constructed with U from Proposition 13 for some large k which we are going to

choose depending on δ but not on n, and we set m := ⌊(1+ δ/4)(log n)/ log k⌋. We use Proposition

9 for the walk Xt := ϕn(Xt, x) with

T = τm, t = tn = ⌊(1 + δ) log n/h(p)− log log n⌋ and s = sn = ⌊log log n⌋.

We have

(55) ‖P tn+sn
n,p (x, ·)− π‖TV ≤ ‖Qm

n − π‖TV + P[τm > tn] + 2(1 − σn,p(sn))
−1/3σn,p(sn)

2sn/3.

We are going to show that for n sufficiently large each of the three terms in the r.h.s. are smaller

than ε/3.

We start with the third term. To deal with it we prove the following statement

(56) lim sup
n→∞
s→∞

σn,p(s) ≤ ̺p,

where the limit can be taken over arbitray sequences of n and s which both go to infinity (though it

is sufficient for our purpose to know that the lim sup is < 1). If s = as0+b with a, b, s1 non-negative

integers, we have

‖(P s
n,p)1⊥‖2→2 ≤ ‖(P s0

n,p)1⊥‖a2→2‖(P b
n,p)1⊥‖2→2 ≤ ‖(P s0

n,p)1⊥‖a2→2.

Applied to a = ⌊s/s0⌋, we deduce that for all t ≥ t1,

(57) σn,p(s) ≤ σn,p(s0)
1− s0−1

s .

From (30), we can choose s0(δ) and n0(δ) such that σn,p(s0) ≤ ̺p + δ/2 and we can deduce from

(57) that σn,p(s) ≤ ̺p + δ for n ≥ n0(δ) and s ≥ s1(δ) sufficiently large. Let us now move the

second and third term in (34)
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The probability P[τm > tn] is small as a consequence of the law of large numbers. Indeed

choosing k(δ) sufficiently large Lemma, 14, guaranties that tn ≥ (1 + δ/2)mE[τ ]. The smallness of

‖Qm
n − π‖TV is obtained using spectral estimates for Qn. Since G has the RD property (29), we

deduce from Proposition 13 that for some constants C,C ′ (depending on p)

σq = ‖Pq‖ ≤ C(log k)C
(

k−2#∂U
)1/2 ≤ C ′k−1/2(log k)C+1/2.

Now, the assumption that (ϕn) converges strongly applied to q implies that for all n large enough

(depending on k), the singular radius σn,q of Qn satisfies.

σn,q ≤ 2C ′k−1/2(log k)C+1/2.

Then, we use the Cauchy-Schwarz inequality and the usual ℓ2-distance bound (32). We obtain that

for any m ≥ 1,

(58) ‖Qm
n (x, ·) − πn‖TV ≤

√
n‖Qm

n (x, ·) − πn‖2 ≤
√
nσmn,q,

and we can conclude replacing m by its value. �

Remark 4.2 (Relaxation of the definition of the spectral radius.). We may relax a little bit the

assumption of strong convergence. If H is a vector subspace of RVn which is invariant under Pn,p,

we set σHn,p to be the operator norm of Pn,p on the orthogonal of H. Recall the definition of the

flat-dimension dim0 in Remark 3.1.

Now, we say that the sequence of actions (ϕn) converges relatively strongly if for any finitely

supported probability vector p ∈ ℓ2(G), we have lim supn σn,p < 1 and limn σ
Hn
n,p = σp for a sequence

(Hn) of invariant vector spaces such that πn ∈ Hn and dim0(Hn) ≤ nεn with limn εn = 0. Then

Theorem 5 also holds under this weaker assumption. Indeed, we simply replace the bound (58) by

the bound valid for any invariant vector space H of Qn which contains πn:

(59) ‖Qm
n (x, ·)− πn‖TV ≤

√
n‖Qm

n (x, ·)− πn‖2 ≤
√
nσmn,q

√

dim0(H)/n +
√
n
(

σHn,q
)m

,

which follows directly from the spectral theorem and the observation that, if PH is the orthogonal

projection onto a vector space H, then,

‖PHf‖2 ≤
∑

x

|f(x)|‖PH1x‖2 ≤ ‖f‖1
√

dim0(H)/n.

Finally, we notice that if dim0(H) = no(1) and lim supn σn,q < 1 then the first term on the right-

hand side of (59) goes to 0 as soon as m is of order log n.

5. Anisotropic random walks: proof of Theorem 1

5.1. Notation. In this section, we fix an involution as in Theorem 1. We define G as the group

obtained by k free copies of Z and l free copies of Z/2Z where k + l is the number of equivalence

classes of the involution, as detailed below Definition 2. We denote by A = {g1, . . . , gd} its natural

set of generators. The probability vector p = (p1, . . . , pd) as in Theorem 1 is identified with a
27



vector in ℓ2(G) defined by, for all i ∈ [d], pgi = pi and pg = 0 otherwise. As in the previous section,

we denote by (Xt)t≥0 the random walk on G with transition kernel Pp started at X0 = e, the unit

of G. The underlying probability distribution of the process (Xt)t≥0 on GN will be denoted by

P(·). Finally, we define ϕn as the action of G on Vn such that for all i ∈ [d], Sgi = Si where Si is

as in (11) and Sg is the permutation matrix associated to ϕn(g, ·). Finally, given x ∈ Vn we set

Xt = ϕn(Xt, x), that is (Xt)t≥0 is a trajectory of the Markov chain on Vn with transition kernel

Pn,p with initial condition x.

5.2. Proof strategy and organization. Our starting point is to use the same stopping time

strategy that for the previous section. But instead of using the RD property to conclude, we are

going to show that the generator of the backbone random walk can be reasonably approximated by

a polynomial in Pn,p′ , the generator of the random walk with anisotropy given by p′. Our first job is

thus to identify the value of p′ which is possible. We perform this approximation for the backbone

walk on the covering graph G (it is then sufficient to use the covering to have an approximation for

the walk on Vn). With the definition of the stopping set U in (49), a natural object to compare Q
to is the Green’s operator which is expressed as a series in Pp. After a suitable truncation, we can

in fact obtain a polynomial in Pp which is a good approximation of Q . By good approximation in

the ℓ1 sense we mean that one can find a polynomial R which is such that

(60) Q(x, y) ≤ R(Pp)(x, y)

for all x and y, and also such that ‖R(Pp)(e, ·)‖ℓ1(G) is not much larger than ‖Q(e, ·)‖ℓ1(G) (which
is equal to 1). However, for our spectral computations, we want an approximation of Q in the ℓ2

sense and it turns out that the above one is not satisfactory. In the same way that the Green’s

operator helps to find a good approximation in ℓ1, we want to use the operator R′
p defined by

R′
p(x, y) :=

√

Rp(x, y)

to find a good approximation of Q ∈ ℓ2(G). What makes this approach successful for anisotropic

random walk on free groups is that R′
p correspond to a point of the resolvent of another anisotropic

random walk Pp′ for a vector p′ which has the same support as p. Again we can approximate the

resolvent operator by a polynomial by an ad-hoc truncation procedure.

Our study of the resolvent of the random walk, presented in Section 5.3, allows us to derive

an explicit relation between p and p′. Then in Section 5.4 we show that this relation combined

with a technical but somehow natural truncation proceedure yields relevant bound on the kernel

of the backbone walk (Proposition 21). Combining this with a few ℓ2 computations (Lemma 22)

this allows us to prove Theorem 1 by adapting the approach used for Theorem 5.

5.3. The relation between p and p′ via resolvent. The resolvent of Pp is defined for z /∈ σ(Pp)

by

Rz
p = (zI − Pp)

−1.
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In the above expression, I is the identity operator on ℓ2(G). Since we are particularly interested in

the behavior of the operator Rz
p as |z| > ̺p approaches ̺p, we consider the following alternative

definition of Rz
p(x, y) (which coincides with one above for |z| > ̺p),

(61) Rz
p(x, y) :=

∑

t≥0

z−(t+1)Pt
p(x, y).

As shown in [24] (see Lemma 16 below), the above series converges for all x and y if and only if

|z| ≥ ̺′p where (̺′p)
−1 is the radius of convergence of the series Pt

p(e, e). It is given by the following

generalization of the Akemann-Ostrand formula (see [24, Equation (2.6)]),

(62) ̺′p = min
s>0

{

2s+

d
∑

i=1

(

√

s2 + pipi∗ − s
)

}

,

and satisfies ̺′p ≤ ̺p (with equality in the symmetric case pi = p∗i for all i ∈ [d]).

As our group is non-amenable, the vector (R1
p(e, x))x∈G is very close to be integrable (it does

not belong to ℓ1(G) but (Rz
p(e, x))x∈G is in ℓ1(G) for all z > 1), while (R̺p

p (e, x))x∈G is close to

be in ℓ2(G) in the same sense. What we prove in this section (and which is made plausible by the

observation above) is the following:

Proposition 15. Given p a probability vector on [d] such that (12) holds, there exists a unique

probability vector p′ and a real C = C(p) such that for all x, y ∈ G,

R1
p(x, y) = C

(

R̺
p′

p′ (x, y)
)2
.

To our knowledge, this quadratic identity has not been discovered before. It is of fundamental

importance in what follows: it establishes a relation between the vector (R1
p(e, x))x∈G - which,

as seen in Section 4.4 is intimately connected with the entropy h(p) - and (R̺
p′

p′ (e, x))x∈G , the

resolvent of Pp′ at its spectral edge. As a consequence of the tree structure of the Cayley graph

associated with (G,A), that can be identified with the regular tree Td, the resolvent admits a simple

“multiplicative” expression (this is a well established result that can be found e.g. in [24] or [22]).

Indeed, Rz
p(e, x) can be obtained by multiplying Rz

p(e, e) by a quantity rzi (p) for each edge of type

i which is crossed on the minimal path linking e to x. Hence to prove Proposition 15, we need to

find a probability vector p′ such that for all i ∈ [d], r1i (p) =
(

r
̺
p′

i (p′)
)2

.

We need some extra-notation to give an expression for the coefficients ri. Let us denote by Rz
p,i

the resolvent of the operator Pp,i = Pp − (piδe ⊗ δgi + pi∗δgi ⊗ δe) (defined as in (61) for |z| ≥ ̺′p)

obtained from Pp by removing the transitions between e and gi. Finally we let γzi be the diagonal

coefficient of Rz
p,i:

(63) γzi = γzi (p) := Rz
p,i(e, e) =

∑

t≥0

∑

t≥0

z−(t+1)Pt
p,i(e, e).

Note that Pt
p(e, e) is a function of pipi∗ , i ∈ [d] (since every transitions from e to e involves the

same number of multiplication by gi and gi∗ . It implies in particular that γzi = γzi∗ . Note that the
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reference in [24] only treats the case q2 = d/2 and assumes that every coordinates are positive. The

positivity assumption however is not used in the proof (save for the fact that the return probability

to zero decays exponentially, which is ensured by (12)). The proof also adapts to arbitrary values

of q1 and q2 without any change (cf. [22, Proposition 3.4] which only deals with the case q1 = d).

Lemma 16 (see Lemma 2 and Lemma 3 in [24], [22]). For any reduced word x = gi1 . . . gin ∈ G
written in reduced form (that is gik+1

6= gi∗
k
for all k) and |z| ≥ ̺′p (recall (62))

Rz
p(e, x) = Rz

p(e, e)

n
∏

t=1

pitγ
z
it .

Moreover,

(64) Rz
p(e, e) =



z −
∑

j∈[d]
pj∗pjγ

z
j





−1

and γzi =



z −
∑

j 6=i∗

pj∗pjγ
z
j





−1

.

The above lemma allows to compute explicitly the resolvent operator.

Lemma 17. We assume that (12) holds and that z ∈ [̺′p,∞). If s = sz = 1/(2Rz
p(e, e)) and

ri = piγ
z
i , we have riri∗ < 1,

ri =

√

s2 + pipi∗ − s

pi∗
when pi∗ > 0, ri =

pi
2s

when pi∗ = 0 and pi =
2sri

1− riri∗
.

Moreover, sz is the largest real solution of the following equation in x

z = 2x+
d
∑

j=1

(

√

x2 + pjpj∗ − x

)

.

Proof. From (64), and the fact that γi = γi∗ (recall (63)) we have 2s = z −∑j pj∗rj and pipi∗γ
2
i +

2sγi − 1 = 0. The inequality riri∗ = pipi∗γ
2
i < 1 and the formulas follow (also in the case

pipi∗ = 0). It remains to prove that s is the largest solution of f(x) = z with f(x) = 2x +
∑

j

(

√

x2 + pjpj∗ − x
)

. Since f is strictly convex and has a unique minimizer xmin ≥ 0 such that

f(xmin) = ̺′p. The equation f(x) = z has either zero, one or two solutions according to whether

z < ̺′p, z = ̺′p, z > ̺′p. In the latter case, we let x−(z) < xmin < x+(z) denote the two solutions.

As sz is an increasing function of z we have sz > xmin for z > ̺′p and thus s(z) = x+(z). �

Lemma 18. Let z ∈ [̺p,∞) and ri = piγ
z
i . We have

d
∑

i=1

ri(1− ri∗)

1− riri∗
= 1 ⇔ z = 1 and

d
∑

i=1

r2i (1− r2i∗)

1− (riri∗)2
= 1 ⇔ z = ̺p.

The result is a direct consequence of the following combinatorial statement (whose proof we

include in the appendix for completeness).
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Lemma 19. For any (αi)
d
i=1 in [0, 1)d, the function defined on G by F (x) :=

∏n
t=1 αit if x =

gi1 . . . gin in reduced form, then F is integrable for the uniform counting measure on G if and only

if
d
∑

i=1

αi(1− αi∗)

1− αiαi∗
< 1.

Proof of Lemma 18. From (61),
∑

x∈G Rz
p(e, x) <∞ if and only if z > 1. On the other hand, from

spectral considerations, ‖Rz
pδe‖2 is finite for z > ̺p and diverges as z goes to ̺p. Hence, recalling

definition (61), we have
∑

x∈G
(

Rz
p(e, x)

)2
<∞ if and only if z > ̺p. Lemma 19 implies that

d
∑

i=1

ri(1− ri∗)

1− riri∗
< 1 ⇔ z > 1 and

d
∑

i=1

r2i (1− (ri∗)
2)

1− (riri∗)2
< 1 ⇔ z > ̺p.

We can conclude using the fact that (cf. (63)) the γzi s are continuous functions of z. �

Now we are ready to identify the value of p′ which is such that (15) holds. We set, for i ∈ [d],

rzi (p) = piγ
z
i (p) and we introduce the vectors a and b whose coordinates are given for all i ∈ [d] by

ai(p) := r1i (p) and bi(p) := r
̺p
i (p).

The formulas for the coordinates ai and bi of a and b are given in Lemma 17 and Lemma 18 can be

used to determine ̺p (this characterization of ̺p could also be deduced from [35, Corollary 3.1]).

Notably, by Lemma 17 we have aiai∗ , bibi∗ ∈ [0, 1). We can now reformulate and prove Proposition

15.

Proposition 20. For any probability vector p on [d], there exists a unique probability vector p′ on

[d] with the same support as p such that for all i ∈ [d], we have

ai(p) =
(

bi(p
′)
)2
.

It is given by the formula, for all i ∈ [d],

p′i =

√

ai(p)

1−
√

ai(p)ai∗(p)





∑

j∈[d]

√

aj(p)

1−
√

aj(p)aj∗(p)





−1

.

Proof of Proposition 20. For ease of notation, we set r′i =
√

ai(p). Assume that p′ is a probability

vector such that bi(p
′) = r′i for all i ∈ [d]. By Lemma 17, (p′i)i∈[d] is the probability vector

proportional to (r′i/(1 − r′ir
′
i∗))i∈[d] and hence we have uniqueness. We now prove existence. We

set p′i = 2sr′i/(1− r′ir
′
i∗) where s is the normalization constant such that p′ is a probability vector.

Now setting

(65) z = 2s+

d
∑

j=1

(√

s2 + p′jp
′
j∗ − s

)

,

we only need to check that s = 2/Rz
p′(e, e). Indeed if this is the case, Lemma 17 implies that

r′i = rzi (p
′) and Lemma 18 implies that z = ̺p′ . In view of (65) and of the proof of Lemma
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17, we only need to discard the possibility that s < xmin where xmin is the minimizer of f(x) :=

2x+
∑d

j=1

(
√

x2 + p′jp
′
j∗ − x

)

. Our definitions for p′i and s imply that

(66) r′i =

√

s2 + p′ip
′
i∗ − s

p′i∗
if p′i∗ > 0 and r′i =

p′i
2s

if not.

Since both expressions above are monotone in s, if s < xmin, one would have r′i > q
̺′
p′

i (p′) whenever

p′i > 0 since r
̺′
p′

i (p) is obtained by substituting s by xmin in (66) (here we use the definition (62)

which implies that ̺′p′ = f(xmin), as well as Lemma 17). As ̺′p′ ≤ ̺p′ , this also implies that

r′i > r
̺
p′

i (p′) and thus that

(67)

d
∑

i=1

(r′i)
2(1− (r′i∗)

2)

1− (r′ir
′
i∗)

2
> 1

which yields a contradiction to the definition of r′i. �

5.4. Deducing mixing time from a bounding kernel. Our aim now is to work with the same

stopping time and backbone walk as in Section 4.3 and use the information we have to approximate

the transition matrix of the backbone walk Qn = Pn,q where the probability vector q was defined

below (51), with a power series of Pn,p′ the transition matridx of the nearest neighbor random walk

associated with p′ of Proposition 20. We further define Q′
n to be the following truncated series

(which approximates a multiple of the resolvent of Pn,p′ at z = ̺p′)

Q′
n :=

1√
k

⌊log k⌋4
∑

t=0

(

Pn,p′

̺p′

)t

.

(The fact that ̺p′ is positive can be deduced from the expression (61) with a few simple computa-

tions. It also follows from the forthcoming Lemma 25).

Proposition 21. Given p a probability vector on [d], there exists a real C = C(p) such that for p′

given by Proposition 20, we have, for all x, y ∈ Vn

Qn(x, y) ≤ CQ′
n(x, y)

We postpone the proof of this proposition to Section 5.6 and deduce Theorem 1 out of it. The

proof includes a few technical lemmas whose proofs are postponed to the end of this section.

Proof of Theorem 1. Our first step is to use the comparison above to obtain spectral estimates for

Qn. We cannot control directly the spectral gap but we can estimate the contraction of functions

with large variance. More precisely, given a matrix A of size n× n and 1 ≤ u ≤ √
n, we define

(68) κu(A) :=

√

max
f :‖f‖2≥ u√

n
‖f‖1

〈Af,Af〉
〈f, f〉 .

Note that κ1(A) is the operator norm of A and κ√n(A) is the square root of the maximal diagonal

entry of A∗A. For general u, the scalar κu(A) can be thought of as a kind of pseudo-norm of A
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restricted to vectors which are localized in terms of their ℓ2 over ℓ1 ratio. The function u 7→ κu(A)

can be thought of as a spectral analog (for a matrix) of the isoperimetric profile of a graph (if A is

the adjacency matrix of a graph, the isoperimetric profile is essentially obtained by restricting the

maximum in (68) to functions f which are indicator functions of a subset of vertices).

Lemma 22. Let A,B be two n×n matrices such that B is a bistochastic matrix. Assume that for

some real c ≥ 0 and all x, y ∈ [n], we have |A(x, y)| ≤ cB(x, y) then for all 1 ≤ u ≤ √
n,

(69) κu(A) ≤ cσ(B) +
c

u
,

where σ(B) = ‖B|1I⊥‖2→2 is the singular radius of B.

From Proposition 21, we may apply Lemma 22 when A = Qn and B = αQ′
n, with α =

k−1/2
∑[log k]4

t=0 ̺−t
p′ and c = Cα−1 for the constant C given by Proposition 21. In this case, from the

triangle inequality, we have

(70) cσ(B) =

∥

∥

∥

∥

∥

∥

C√
k

⌊log k⌋4
∑

t=0

(P t
n,p′)|1I⊥

̺t
p′

∥

∥

∥

∥

∥

∥

≤ C√
k

⌊log k⌋4
∑

t=0

(

σn,p′(t)

̺p′

)t

,

and, since ̺p′ > 0 (see forthcoming Lemma 25), for some adequate choice of C ′

c =
C√
k

⌊log k⌋4
∑

t=0

̺−t
p′ ≤ eC

′(log k)4 .

We now bound (70). For that, we use the next proposition which quantifies the convergence of

σp(t) to ̺p in (14).

Proposition 23. For any probability vector p and integer t ≥ 1, we have

̺p ≤ σp(t) ≤ (t+ 1)2/t̺p.

From Proposition 23, we deduce that

⌊log k⌋4
∑

t=0

(

σp′(t)

̺p′

)t

≤ ((log k)4 + 1)3,

Using Assumption (23) and Lemma 22, for any fixed k ≥ 5, for all n ≥ n0(k) sufficiently large, we

obtain

(71) κu(Qn) ≤
(log k)13√

k
.

Now we want to use this estimate to build an adapted time for the original walk Pn,p. The idea

is first to iterate Qn several times in order to contract the ℓ2 norm below the threshold u and then

use the original transition matrix Pn,p to finish the job. For this purpose, for a large integer k (we

assume k > (log k)26) which will be conveniently fixed later on, and for n ≥ 3, we set

an :=

⌊

log n

log k − 26 log log k

⌋

and bn := ⌊log log n⌋.
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We define T := bn+ τan where (τs)s≥0 are as in Subsection 4.3 the successive times of the backbone

walk. Our spectral estimates (71) implies that XT is close to equilibrium:

Lemma 24. For any fixed integer k ≥ 3, let an, bn be as above and T = bn + τan . If Assumption

(23) holds, then we have

lim
n→∞

max
x∈Vn

‖Px[XT ∈ ·]− πn‖TV = 0.

To show that

max
x∈Vn

Tmix
n,p (x, ε) ≤ (1 + δ)(log n)/h(p)

for n sufficiently large, we use Proposition 9 with t = tn and s = sn where

T = bn + τan , tn := ⌊(1 + δ/2)(log n)/h(p)⌋ and sn := ⌊(δ/2)(log n)/h(p)⌋.

With this setup, the first term in (33) tends to zero according to Lemma 24. For the third one we

need to show that σn,p(sn) is bounded away from one. Since (30) holds for p′ we have (cf. (56))

(72) lim sup
n→∞
s→∞

σn,p′(s) = ̺p′ < 1.

Now since p and p′ have the same support one can compare σn,p′(s) and σn,p′(s). More precisely

applying [36, Lemma 13.22] to the operators Ps
p(P∗

p)
s and Ps

p′(P∗
p′)s yields for every s and n

(73)
1− σn,p(s)

2s

1− σn,p′(s)2s
≥ min

i∈[d]

(

pi
p′i

)2s

.

Hence lim supn≥1 σn,p(s0) < 1 for some s0 and thus from (57) we get èthat

(74) lim sup
n→∞
s→∞

σn,p(s) < 1.

It remains to show that

lim
n→∞

P[τan > t− bn] = 0.

From the law of large number and Lemma 14, for any δ > 0, we may choose an integer k sufficiently

large such that

lim
n→∞

P

[

T ≤
(

1 +
δ

4

)

an
log k

h(p)

]

= 1.

This concludes the proof of Theorem 1. �

Proof of Lemma 22. The statement is an immediate consequence the following functional inequality

valid for every f

(75)
√

〈Af,Af〉 ≤ cσ(B)‖f‖2 +
c√
n
‖f‖1.

Since B is bistochastic, the constant functions are left invariant by B and its transpose. It follows

that σ(B) is the operator norm of B projected on functions with zero sum. Now given f , if |f | is
the vector |f |(x) := |f(x)| and |A| is the matrix |A|(x, y) := |A(x, y)|, we have

〈Af,Af〉 ≤ 〈|A||f |, |A||f |〉 ≤ c2〈B|f |, B|f |〉.
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The orthogonal projection of |f | on zero sums functions is f(x) := |f |(x)− ‖f‖1/n. We have

(76) 〈B|f |, B|f |〉 = ‖f‖21/n+ 〈Bf,Bf〉 ≤ ‖f‖21/n+ σ(B)2‖f‖22.

We deduce (75) using the triangle inequality,
√
a2 + b2 ≤ |a|+ |b|. �

Proof of Lemma 24. Recall T = bn + τan . The distribution of XT can be written as

Px[XT ∈ ·] = (P bn
n,pQ

an
n )(x, ·).

We first show that for any x ∈ Vn (recall u = uk := e(log k)
5
)

(77) ‖Qan
n (x, ·)− πn‖2 ≤

2u√
n
.

Since Qn is a contraction, we note that ‖Qt
n(x, ·)− πn‖2 is non-decreasing in t. Moreover,

‖Qt+1
n (x, ·) − πn‖2 = ‖Qn(Q

t
n(x, ·)− πn)‖2 ≤ max

(

κu(Q)‖Qt
n(x, ·) − πn‖2,

2u√
n

)

,

where we have used that ‖Qt
n(x, ·)− πn‖1 ≤ 2. Hence, an immediate induction yields for all t ≥ 0,

‖Qt
n(x, ·)− πn‖2 ≤ max

(

κu(Q)t,
2u√
n

)

.

Thus, our bound (71) and our choice for an imply (77). To conclude the proof, we use the usual ℓ2

bound and combine it with (77). This gives

(78)

‖P bn
n,pQ

an
n (x, ·)−πn‖TV ≤

√
n

2
‖P bn

n,pQ
an
n (x, ·)−πn‖2 ≤

√
n

2
σp,n(bn)

bn‖Qan(x, ·)−πn‖2 ≤ σp,n(bn)
bnu.

Finally we conclude by using (72) and that bn tends to infinity. �

Remark 5.1 (Relaxation of our assumption concerning the spectral radius). As in Remark 3.1,

we denote by dim0(H) the flat-dimension of a vector space H of R
Vn and we set ̺Hn,p to be the

operator norm of Pn,p on the orthogonal of H. We may modify Theorem 1 as follows: if (Hn) is a

sequence of invariant vector spaces of Pn,p′ such that limn ̺
Hn

n,p′ = ̺p′ and dim0(Hn) ≤ no(1) (that

is limn log dim0(Hn)/ log n = 0) then the conclusion of Theorem 1 holds.

Indeed, in Lemma 22, if H is an invariant subspace of the bistochastic matrix B and its transpose,

then (69) can be improved to κu(A) ≤ c̺H(B) + c
√

dim0(H)/u, where ̺H(B) is the operator

norm of B on the orthogonal of H. Recall that if PH is the orthogonal projection onto H, then

‖PHg‖2 ≤ ‖g‖1
√

dim0(H)/n. Setting g = |f | − PH |f |, we may thus replace the bound (76) by

〈B|f |, B|f |〉 ≤ ‖f‖21 dim0(H)/n + 〈Bg,Bg〉 ≤ ‖f‖21 dim0(H)/n + ̺H(B)‖f‖22. It gives the claimed

improvement of (69). The rest of the argument is essentially unchanged (the sequence bn has to be

chosen so that εn log n≪ bn ≪ log n).

Remark 5.2 (More quantitative bound on the mixing time). A more quantitative upper bound on

Tmix
n (ε) can be obtained by choosing kn tending to infinity, and using a more quantitative version
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of Proposition 6 for anisotropic walks on trees. In the reversible case (14), optimizing all choices

of parameters in our proof, we obtain a result of the form

Tmix
n,p (ε) ≤ log n

h(p)
+ C(log n)2/3

provided that ̺n,p′ converges fast enough to ̺p′ as n go to infinity (more specifically we require

̺n,p′ ≤ ̺p′ + C(log n)−1/3). Note that our correction term is larger than (log n)1/2, and thus the

proof developed in this section does not allow to obtain the anisotropic counter-part of Equations

(38), (39), which allow to describe more accurately the profile of relaxation to equilibrium provided

some quantitative information about the convergence (23) is given.

5.5. Proof of Proposition 23. We start with a general lemma on the spectral radius of the

operator Pp and the probability of transitions.

Lemma 25. Let G be a finitely generated group. For any probability vector p ∈ ℓ2(G), any integer

t ≥ 1, any x ∈ G, we have

‖Pt
pδx‖2 ≤ ̺tp.

Proof. We may assume x = e without loss of generality. Since Pt
p is the generator of a random walk

with spectral radius ̺tp we may also assume that t = 1. We have that ‖Ppδe‖2 ≤ σp(1) = ‖Pp‖2→2.

If the reversibility condition (14) holds, then σp(1) = ̺p and the lemma follows. In the general

case, we use the group structure to obtain the required bound. We first write that for any integer

k ≥ 1,

‖Ppδe‖2k2 =

(

∑

x∈G
Pp(e, x)

2

)k

=
∑

x1,...,xk

(Pp(e, x1) · · · Pp(e, xk))
2 .

Using that Pp(xg, yg) = Pp(x, y) for all x, y, g in G, we may write

Pp(e, x1) · · · Pp(e, xk) = Pp(e, x1)Pp(x1, x2x1) · · · Pp(xk−1 · · · x1, xk · · · x1),

and

∑

x∈G

(

Pk
p(e, x)

)2
=
∑

x





∑

x1,...,xk−1

Pp(e, x1)Pp(x1, x2x1) · · · Pp(xk−1 · · · x1, x)





2

≥
∑

x

∑

x1,...,xk−1

(Pp(e, x1)Pp(x1, x2x1) · · · Pp(xk−1 · · · x1, x))2

=
∑

x1,...,xk

(Pp(e, x1)Pp(x1, x2x1) · · · Pp(xk−1 · · · x1, xk · · · x1))2 .

We deduce that

‖Ppδe‖2k2 ≤ ‖Pk
pδe‖22 ≤ σp(k)

2.

We now let k tend to infinity and apply (17). �

Proposition 23 is now an immediate consequence of the RD property (29) for the free group.
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Proof of Proposition 23. Haagerup inequality (that is, RD property for free groups) implies that

for any t ≥ 0,

σp(t)
t = ‖Pt

p‖2→2 ≤ (t+ 1)2‖Pt
pδe‖2,

see [27, Lemma 1.4] (the proof is written in the case of the free group, denoted by Gd,0
free with our

notation, but applies also to Gq1,q2
free with q1 + 2q2 = d). It remains to use Lemma 25. �

5.6. Proof of Proposition 21. The matrices Qn and Pn,p′ are both defined as the transition

kernel corresponding to projections of Markov chains on the group G on Vn. From (26)-(28), if q

is a finitely supported probability vector on G, for all x, y in Vn,

Pn,q(x, y) =
∑

g∈G
Pq(e, g)1I(ϕn(g, x) = y),

where ϕn is the action of G on Vn. It is thus sufficient to prove the inequality for the corresponding

kernels Q (as in (51)) and Pp′ on G, that is

(79) ∀x ∈ G, Q(e, x) ≤ C√
k

⌊log k⌋4
∑

t=0

(Pp′

̺p′

)t

(e, x).

Since Q(e, x) = 0 for all x /∈ ∂U , it is sufficient to check (79) for x ∈ ∂U . By Lemma 16, if

z ≥ ̺p and x = giy for some gi ∈ A, then Rz(e, x) ≥ cRz(e, y) for some positive c = c(p, z). Since

R1(e, y) ≥ 1/k for all y ∈ U , we find for all x ∈ ∂U ,

Q(e, x) ≤ 1

k
≤ C√

k

√

R1
p(e, x),

with C = 1/
√
c. Thus, from Proposition 15, for some new constant C = C(p), for all x ∈ ∂U ,

Q(e, x) ≤ C√
k
R̺

p′
p′ (e, x).

To deduce (79) from this last bound, we expand the resolvent as a power series. It requires some

care because, when the reversibility condition (14) holds, z = ̺p′ is precisely the threshold ̺′p for

the convergence the power series (61).

With the notation of Lemma 16, for any p and i ∈ [d], the function z 7→ γzi is decreasing in

z ≥ ̺p. Moreover, by Lemma 17, using the strict convexity of the function f there, we have for all

z ≥ ̺p, γ
̺p
i − γzi ≤ C

√
z − ̺p for some C = C(p) (the inequality is even valid without square-root

when ̺p < ̺′p for an adequate choice of constant). By Lemma 16, it follows that for some new

C = C(p) for all x ∈ G,

|R̺p
p (e, x) −Rz

p(e, x)| ≤ C(|x|+ 1)
√

z − ̺pR̺p
p (e, x),

where |x| is the distance of x to e in the tree Td and where we have used the telescopic sum

decomposition (with the convention that a product over an empty set is one)

k
∏

i=1

ai −
k
∏

i=1

bi =

k
∑

j=1

(

j−1
∏

i=1

ai

)

(bj − aj)





k
∏

i=j+1

bi



 .
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By Lemma 13, the diameter of ∂U being at most C log k, we find that for all x ∈ ∂U , R̺p
p (e, x) ≤

2Rz
p(e, x) provided that 0 ≤ z − ̺p ≤ c(log k)−2 for some positive constant c = c(p) > 0. We now

fix z = ̺p′ + c(p′)(log k)−2. From what precedes, for all x ∈ ∂U ,

R̺
p′

p′ (e, x) ≤ 2Rz
p′(e, x) =

2

z

∞
∑

t=0

(Pp′

z

)t

(e, x).

By Lemma 25, we have Pt
p′(e, x) ≤ ̺tp′ and, for some new constant C = C(p′), for any s ≥ 0,

∞
∑

t=s

(Pp′

z

)t

(e, x) ≤ C(log k)2e
− s

C(log k)2 .

We now recall that by Proposition 15, for all x ∈ ∂U , Rz
p′(e, x) ≥ R̺

p′
p′ (e, x)/2 ≥ c/

√
k. It follows

that if s = ⌊C ′ log k⌋3 for some large enough constant C ′, we have

1

z

∞
∑

t=s

(Pp′

z

)t

(e, x) ≤ 1

2
Rz

p′(e, x).

Consequently, for this value of s,

Rz
p′(e, x) ≤ 2

z

s
∑

t=0

(Pp′

z

)t

(e, x) ≤ 2

̺p′

s
∑

t=0

(Pp′

̺p′

)t

(e, x).

This concludes the proof of (79) �

6. Random walks covered by a colored group

6.1. Minimal mixing time for color covered random walks. We now present a last extension

of our results. As in the setting of Theorem 5, we assume that for a finitely generated non-amenable

group G, we have a sequence of finite sets (Vn) with #Vn = n and (ϕn) a sequence of actions of

G on Vn. Let r ≥ 1 be an integer. We think of [r] = {1, . . . , r} as a set of colors. An element

p ∈ Mr(R)
G is written as a matrix-valued vector p = (pg)g∈G with pg ∈ Mr(R). The support of p

is then the subset of G such that pg is not the null matrix. We consider p ∈ Mr(R)
G with finite

support such that

P1,p :=
∑

g∈G
pg

is an irreducible stochastic matrix on [r] with invariant probability measure µ. Then, we denote

by Pp the operator on ℓ2(G × [r]) defined by

(80) Pp =
∑

g∈G
pg ⊗ λ(g),

where λ(g) is as in (28) and ⊗ is the tensor product. In probabilistic terms, Pp is the transition

kernel of a random walk (Xt) on G × [r] where the probability to jump from (g, u) to (h, v) is
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phg−1(u, v). We denote by ̺p the spectral radius of Pp and by h(p) the entropy rate of Pp defined

by: for any u0 ∈ [r],

h(p) = lim
t→∞

−1

t

∑

(g,u)∈G×[r]

Pt
p((e, u0), (g, u)) log Pt

p((e, u0), (g, u)).

The fact that h(p) does not depend on u0 is an easy consequence of the assumption that P1,p is

irreducible. Again, if G is non-amenable and ̺p < 1 holds, then h(p) > 0. Besides, the proof of

Shannon-McMillan-Breiman Theorem in [31, Theorem 2.1], actually proves that if X0 = (e, u0),

a.s.

(81) h(p) = lim
t→∞

−
logPt

p((e, u0),Xt)

t
.

With (Sg)g∈G as in (26), we define the stochastic matrix on R
Vn×[r]

(82) Pn,p =
∑

g∈G
pg ⊗ Sg.

This matrix is the transition kernel a Markov chain on Vn × [r] covered by (Xt) in the sense that

if we define for (g, u) ∈ G × [r] and x ∈ Vn, ϕ̄n((g, u), x) := (ϕn(g, x), u) then Xt := ϕ̄n(Xt, x) is

a Markov chain with transition matrix Pn,p started at (x, u0). The measure πn(x, u) = µ(u)/n is

an invariant probability of Pn,p. Moreover, since (81) holds, the proof of Proposition 6 actually

implies that mixing time of Xt, T
mix
n,p (x, ε), satisfies for any fixed ε ∈ (0, 1) and uniformly in x ∈ Vn,

the lower bound (22).

This setting allows to consider a random walk on the n-lift of a base graph. More precisely, let G1

be a finite simple connected graph with d/2 undirected edges on the vertex set [r]. We consider the

free group Gfree with d/2 generators and their d/2 inverses (g1, . . . , gd), that is g
−1
i = gi∗ for some

involution on [d] without fixed point. Each generator gi is associated to a directed edge (ui, vi) of

G1 and g−1
i = (vi, ui) is the inverse directed edge. We consider the action of Gfree on [n] defined

by ϕn(gi, x) = σi(x) where (σ1, . . . , σd) are permutation matrices such that σ−1
i = σi∗ . Then, if

Ek,ℓ ∈ Mr(R) is the canonical matrix defined by Ek,ℓ(i, j) = 1I{(k,ℓ)=(i,j)}, then the graph Gn with

vertex set [n] × [r] and adjacency matrix
∑

iEui,vi ⊗ Si is a simple graph which is called a n-lift

(or a n-covering) of G1: the [n]× [r] → [r] map ψ(x, u) = u is n to 1 and, for any (x, u), the image

by ψ of the adjacent vertices of (x, u) in Gn coincides with the adjacent vertices of ψ(x, u) in G1.

If du is the degree of the vertex u in G1 and pgi = Eui,vi/dui
then P1,p and Pn,p are the transition

matrices of the simple random walks on G1 and Gn respectively.

We are ready to state the analog of Theorem 5.

Theorem 26. Let G be a finitely generated non-amenable group with the property RD, (Vn) a

sequence of finite sets with #Vn = n and (ϕn) a sequence of actions of G on Vn which converges

strongly. For any integer r ≥ 1 and any finitely supported p ∈Mr(R)
G such that ̺p < 1 and P1,p is
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an irreducible aperiodic Markov chain, the mixing time of the random walk with transition matrix

Pn,p satisfies, for every ε ∈ (0, 1),

lim
n→∞

Tmix
n,p (ε)

log n
=

1

h(p)
.

Note that in the above statement the RD property and the strong convergence property are

defined in terms of scalar valued vectors p ∈ ℓ2(G). From [15], an example of application of

Theorem 26 is the random walk on a random n-lift of a weighted base graph such that P1,p is

irreducible and aperiodic (see [19] for a recent alternative and independent proof of this case).

6.2. Proof of Theorem 26. We let (Xt) be the random walk with kernel Pp started from X0 =

(e, u0). For (g, u) ∈ G × [r] and x ∈ Vn, we set ϕ̄n((g, u), x) = (ϕn(g, x), u) and let Xt := ϕ̄n(Xt, x)

be a Markov chain with transition matrix Pn,p started at (x, u0). We adapt the arguments of

Section 4 to our matrix-valued context.

6.2.1. Relative spectral radius, strong convergence and RD property. Let q = (qg) ∈ Mr(R)
G with

finite support. We define ℓ2(µ) as the Hilbert space on R
r endowed with the scalar product

〈f, g〉µ =
∑

i µ(i)f̄(i)g(i). Similarly, ℓ2n(µ) and ℓ2G(µ) are the Hilbert spaces on the vector spaces

R
Vn×[r] and R

G×[r] endowed with the scalar products:

〈f, g〉µ =
∑

(x,i)∈X×[r]

µ(i)f̄(x, i)g(x, i),

with X = Vn and X = G respectively. We note that the subspace of RVn×[r]: Hr = R
r⊗1 of vectors

f of the form for some g ∈ R
r, f(x, i) = g(i) is an invariant subspace of dimension r for Pn,q and

its adjoint in ℓ2n(µ). Hence Pn,q admits a direct sum decomposition on Hr ⊕H⊥
r . We note also the

restriction of Pn,q to Hr coincides with P1,q. We define the relative singular radius as the following

operator norm

(83) σ̄n,q := ‖(Pn,q)|H⊥
r
‖ℓ2n(µ)→ℓ2n(µ)

.

From [41, p256] (see also [44]), if (ϕn) converges strongly then we have

(84) lim
n→∞

σ̄n,q = σq,

where σq := ‖Pq‖ℓ2G(µ)→ℓ2G(µ)
.

Besides, let Eij ∈Mr(R) be the canonical matrix with all entries zero but entry (i, j) equal to 1.

The ℓ2(µ) → ℓ2(µ) operator norm of Eij is
√

µ(i)/µ(j). Since ̺q coincides with the ℓ2G(µ) → ℓ2G(µ)

operator norm, from the triangle inequality, we have

σq =

∥

∥

∥

∥

∥

∥

∑

i,j∈[r]2

∑

g∈G
qg(i, j)Eij ⊗ λ(g)

∥

∥

∥

∥

∥

∥

ℓ2G(µ)→ℓ2G(µ)

≤
∑

(i,j)∈[r]2

√

µ(i)

µ(j)
σq(i,j),
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where q(i, j) = (qg(i, j)) ∈ R
G and σq(i,j) is the singular radius of Pq(i,j) in ℓ

2(G). It follows, that if
G has the RD property and R is the diameter of the support of q (in the Cayley graph associated

to any symmetric generating set A) then, for some constant C(G,A) > 0,

(85) σq ≤ CRC
∑

(i,j)∈[r]2

√

µ(i)

µ(j)

√

∑

g∈G
qg(i, j)2 ≤ Cr2RC

√

∑

g∈G
‖qg‖2ℓ2(µ)→ℓ2(µ)

,

where we have used that
√

µ(i)/µ(j)|qg(i, j)| = ‖qg(i, j)Eij‖ℓ2(µ)→ℓ2(µ) ≤ ‖qg‖ℓ2(µ)→ℓ2(µ).

6.2.2. Skeleton Walk. We now adapt the argument of Subsection 4.3. We let Rp = (IG×[r]−Pp)
−1

be the Green’s operator associated with Pp. For g, h ∈ G, we denote by Rp(g, h) ∈ Mr(R) the

matrix whose entry (i, j) is Rp((g, i), (h, j)). For g ∈ G, we define u(g) ∈Mr(R) as the matrix

u(g) := Rp(e, g) =
∞
∑

t=0

Pt
p(e, g),

where Pt
p(g, h) ∈Mr(R) has entry (i, j) equal to Pt

p((g, i), (h, j)). Given k ≥ 1, we define the set

(86) U :=
{

g ∈ G : ‖u(g)‖ℓ2(µ)→ℓ2(µ) ≥ 1/k
}

.

The backbone walk is the induced walk on the successive exit times from U : τ0 := 0, τ1 = τ and,

for integer s ≥ 1, τs+1 := inf{t ≥ τk : XtX−1
τs /∈ U}. We define Q = Pq as the transition kernel of

the random walk Xτm .

From (81) and ̺p < 1, the proofs and statements of Proposition 13 and Lemma 14 continue to

hold in our new setting (in (52), we replace qg ≤ 1/k by ‖qg‖ℓ2(µ)→ℓ2(µ) ≤ 1/k).

6.2.3. Deducing mixing time from RD property and the strong convergence. We may now conclude

the proof of Theorem 26 by adapting the content of Subsection 4.4.

Proof of Theorem 26. We fix ε ∈ (0, 1), δ > 0 and (x, u0) ∈ Vn× [r] and prove that for n sufficiently

large

Tmix
n,p ((x, u0), ε) ≤ (1 + δ) log n/h(p).

Let (τm) and U be as above for some large k to be chosen. We set m := ⌊(1 + δ/4)(log n)/ log k⌋.
For integer s ≥ 1, the relative s-th singular radius is

σ̄n,p(s) := ‖(P s
n,p)|H⊥

r
‖1/s
ℓ2n(µ)→ℓ2n(µ)

and σp(s) := ‖Ps
p‖

1/s

ℓ2G(µ)→ℓ2G(µ)
.

From (84), for all s ≥ 1, limn σ̄n,p(s) = σp(s) < 1. Since ̺p < 1 and lims→∞ σp(s) = ̺p, we deduce

that for all s ≥ s0 large enough and all n ≤ n0 large enough, σn,p(s) ≤ 1− δ0 for some δ0 > 0 (we

argue as below (57)). Moreover, since P1,p is irreducible and aperiodic, we have that σ1,p < 1. We

deduce that for δ = min(δ0, 1− σ1,p) > 0, for all s ≥ s0 and all n ≥ n0

(87) σn,p(s) = ‖(P s
n,p)|1I⊥‖

1/s
ℓ2n(µ)→ℓ2n(µ)

= max(σ̄n,p(s), σ1,p(s)) ≤ 1− δ.

We use Proposition 9 for the walk Xt = ϕ̄n(Xt, x) with

T = τm + s, t = ⌊(1 + δ) log n/h− 2 log log n⌋ and s = ⌊log log n⌋.
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For our choice of s, it follows from (87) that the third term in (33) is smaller than ε/3. It remains

to prove that for n sufficiently large

(88) P[τm > t] ≤ ε/3 and ‖P s
n,pQ

m
n ((x, u0), ·) − πn‖TV ≤ ε/3.

where Qn = Pn,q is the Markov chain of the induced walk Xτm = ϕ̄n(Xτm , x) on Vn × [r]. For the

first inequality of (88), we choose k(δ) sufficiently large and it is a consequence of Lemma 14 and

the law of large numbers.

The second inequality of (88) is obtained using spectral estimates for Qn = Pn,q. The Cauchy-

Schwarz inequality gives

(89) ‖P s
n,pQ

m
n ((x, u0), ·) − πn‖TV ≤ C0

√
n‖Qm

n P
s
n,pf‖ℓ2n(µ),

with C0 =
√

r/mini µ(i) and f(y, v) = δ(x,u0)(y, v)/µ(v)−1/n. Let ΠH be the orthogonal projection

in ℓ2n(µ) onto a vector space H. We find

(90) ‖Qm
n P

s
n,pf‖ℓ2n(µ) ≤ ‖Qm

n P
s
n,pΠHrf‖ℓ2n(µ) + ‖Qm

n P
s
n,pΠH⊥

r
f‖ℓ2n(µ).

We now compute a spectral bound of the two terms on the right-hand side of (90). We first observe

that ‖f‖ℓ2n(µ) ≤ 1 and ‖ΠHrf‖ℓ2n(µ) ≤ C/
√
n with C = 1/

√

mini µ(i). Since 〈f, 1I〉µ = 0, we find

from (87) and the fact that Qn is a contraction in ℓ2n(µ),

(91) ‖Qm
n P

s
n,pΠHrf‖ℓ2n(µ) ≤ ‖P s

n,pΠHrf‖ℓ2n(µ) ≤
C√
n
σn,p(s)

s ≤ C√
n
(1− δ)s.

We now give a bound of the second term on the right-hand side of (90). From (85) and Proposition

13, we have for some constant C

σq ≤ Ck−1/2(log k)C .

From (84) we deduce that for all n large enough,

σ̄n,q ≤ 2Ck−1/2(log k)C .

Since ‖f‖ℓ2n(µ) ≤ 1, P s
n,pΠH⊥

r
= ΠH⊥

r
P s
n,p and Pn,p is a contraction in ℓ2n(µ), we deduce that

(92) ‖Qm
n P

s
n,pΠH⊥

r
f‖ℓ2n(µ) ≤ σ̄mn,q‖f‖ℓ2n(µ) ≤ 2Ck−1/2(log k)C

Equation (89) together with (90)-(91)-(92) guaranties that Xτm+s is close to equilibrium in total

variation. It concludes the proof of (88). �

7. Proof of Lemma 19

Let us consider A the set of finite words in the alphabet [d], B the set of words without repetition

in [d] and for a fixed involution ∗ on [d], C the set of finite words in which the patterns ii∗ and i∗i

do not appear.
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Given α = (αi)
d
i=1 a set of non-negative numbers in [0, 1)d, we define the function Fα(i1. . . . .it) =

αi1 · · ·αit . We have immediately

(93)
∑

A
Fα(i) <∞ ⇔

∑

[d]

αi < 1.

Now a word i ∈ A can be encoded by a word j ∈ B and and a sequence (nt)
|j|
t=1 which counts

how many time each letter is repeated. For this reason we have, given β = (βi)
d
i=1,

∑

A Fβ(i) =
∑

B Fβ′(i), where β′i =
∑

n≥1 β
n
i = βi/(1 − βi). Hence taking βi = αi/(1 + αi) we obtain

(94)
∑

B
Fα(i) <∞ ⇔

∑

[d]

αi

1 + αi
< 1.

Finally to encode a word in i ∈ C, we first consider a finite word j without repetition in [d′] where

d′ is the number of conjugation classes for ∗. Let B′ be the set of such words j. Then, to encode i,

we have to replace each of the letter of j by a pattern. If the conjugation class j ∈ [d′] is a single

element {i} in [d], there is only one possible pattern which is i. We thus define the weight of j as

γj := αi. Otherwise, the conjugation class j ∈ [d′] is a pair {i, i∗}. Then the possible patterns are

(i∗)n and in, with n ≥ 1. This gives a total weight γj := αi/(1−αi) +αi∗/(1−αi∗). We thus have
∑

i∈C Fα(i) =
∑

j∈B′ Fγ(j). In particular the sum is finite if and only if

(95)
∑

j∈[d′]

γj
1 + γj

=
∑

i∈[d]

(

αi

1 + αi
1{i=i∗} +

1

2

αi(1− αi)
−1 + αi∗(1− αi∗)

−1

1 + αi(1− αi)−1 + αi∗(1− αi∗)−1
1{i 6=i∗}

)

< 1.

This is the required statement. �
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