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TRANSITION DENSITIES OF SUBORDINATORS OF POSITIVE ORDER

TOMASZ GRZYWNY, ŁUKASZ LEŻAJ, AND BARTOSZ TROJAN

Abstract. We prove existence and asymptotic behavior of the transition density for a large class of subordinators
whose Laplace exponents satisfy lower scaling condition at infinity. Furthermore, we present lower and upper
bounds for the density. Sharp estimates are provided if additional upper scaling condition on the Laplace exponent
is imposed. In particular, we cover the case when the (minus) second derivative of the Laplace exponent is a
function regularly varying at infinity with regularity index bigger than −2.

1. Introduction

Asymptotic behavior as well as estimates of heat kernels have been intensively studied in the last decades.
The first results obtained by Pòlya [44], and Blumenthal and Getoor [4] for isotropic U-stable process in R3

provided the basis to studies of more complicated processes, e.g. subordinated Brownian motions [40, 49],
isotropic unimodal Lévy processes [6, 15, 21] and even more general symmetric Markov processes [11, 14].
One may, among others, list the articles on heat kernel estimates for jump processes of finite range [10]
or with lower intensity of higher jumps [39, 52]. While a great many of articles with explicit results is
devoted to symmetric processes or those which are, in appropriate sense, similar to the symmetric ones,
the nonsymmetric case is in general harder to handle due to lack of familiar structure. This problem was
approached in many different ways, see e.g. [7, 27, 28, 31, 32, 35, 36, 42, 43, 51]. For more specific class of
stable processes, see [25, 46, 54]. Overall, one has to impose some control on the nonsymmetry in order to
obtain estimates in an easy-to-handle form. This idea was applied in the recent paper [22] where the authors
considered the case of the Lévy measure being comparable to some unimodal Lévy measure. The methods
developed in [22, 23] contributed significantly to this paper. See also [32, 42] and the references therein.

In this article the central object is a subordinator, that is a one-dimensional Lévy process with nondecreasing
paths starting at 0, see Section 2 for the precise definition. The abstract introduction of the subordination
dates back to 1950s and is due to Bochner [5] and Philips [41]. In the language of the semigroup theory, for
a Bernstein function q and a bounded �0-semigroup

(
4−CA : C ≥ 0

)
with −A being its generator on some

Banach space �, via Bochner integral one can define an operator B = q(A) such that −B also generates a
bounded �0-semigroup

(
4−CB : C ≥ 0

)
on �. The semigroup

(
4−CB : C ≥ 0

)
is then said to be subordinated

to
(
4−CA : C ≥ 0

)
, and although it may be very different from the original one, its properties clearly follow

from properties of both the parent semigroup and the involved Bernstein function. See for example [18] and
the references therein. From probabilistic point of view, due to positivity and monotonicity, subordinators
naturally appear as a random time change functions of Lévy processes, or more generally, Markov processes.
Namely, if (-C : C ≥ 0) is a Markov process and ()C : C ≥ 0) is an independent subordinator then .C = -)C is
again a Markov process with a transition function given by

P
G (.C ∈ �) =

∫
[0,∞)

P
G (-B ∈ �) P()C ∈ dB).

The procedure just described is called a subordination of a Markov process and can be interpreted as a
probabilistic form of the equality B = q(A). Here A and B are (minus) generators of semigroups associated
to processes -C and .C , respectively. From analytical point of view, the transition density of .C (the integral
kernel of 4−CB ) can be obtained as a time average of transition density of -C with respect to distribution
of )C . Yet another approach is driven by PDEs, as the transition density is a heat kernel of a generalized
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heat equation. The generalization can be twofold: either by replacing the Laplace operator with another,
possibly nonlocal operator, or by introducing a more general fractional-time derivative instead of the classical
one. The latter case was recently considered in [38, 9, 12]. Here the solutions are expressed in terms of
corresponding (inverse) subordinators and thus their analysis is essential.

By taking A = −Δ and changing the time of (i.e. subordinating) Brownian motion one can obtain a
large class of subordinated Brownian motions. A principal example here is an U-stable subordinator with
the Laplace exponent q(_) = _U, U ∈ (0, 1), which gives rise to the symmetric, rotation-invariant U-stable
process and corresponds to the special case of fractional powers of semigroup

(
4−CA

U

: C ≥ 0
)
. For this

reason, distributional properties of subordinators were often studied with reference to heat kernel estimates of
subordinated Brownian motions (see e.g. [33, 16]). In [24] Hawkes investigated the growth of sample paths
of a stable subordinator and obtained the asymptotic behavior of its distribution function. Jain and Pruitt
[30] considered tail probability estimates for subordinators and, in the discrete case, nondecreasing random
walks. In a more general setting some related results were obtained in [17, 26, 42, 53]. In [8] new examples
of families of subordinators with explicit transition densities were given. Finally, in the recent paper [16] the
author under very restrictive assumptions derives explicit approximate expressions for the transition density
of approximately stable subordinators.

The result of the paper is asymptotic behavior as well as upper and lower estimates of transition densities
of subordinators satisfying scaling condition imposed on the second derivative of the Laplace exponent q.
Our standing assumption on −q′′ is the weak lower scaling condition at infinity with scaling parameter U− 2,
for some U > 0 (see (2.7) for definition). It is worth highlighting that we do not state our assumptions and
results in terms of the Laplace exponent q, as one could suspect, but in terms of its second derivative and
related function i(G) = G2(−q′′(G)) (see Theorems 3.3, 4.7 and 4.8). Usually the transition density of a
Lévy process is described by the generalized inverse of the real part of the characteristic exponent k−1(G)
(e.g. [23], [36]), but in our setting one can show that the lower scaling property implies that i−1(G) ≈ k−1(G)
for G sufficient large (see Proposition 4.3). In some cases, however, i may be significantly different from
the Laplace exponent q. However, if one assumes additional upper scaling condition with scaling parameter
V − 2 for V strictly between 0 and 1, then these two objects are comparable (see Proposition 4.6).

The main results of this paper are covered by Theorems 3.3, 4.7, 4.8, 4.11, and 4.17. Theorem 3.3 is
essential for the whole paper because it provides not only the existence of the transition density but also its
asymptotic behavior, which is later used in derivation of upper and lower estimates. The key argument in the
proof is the lower estimate on the holomorphic extension of the Laplace exponent q (see Lemma 3.1) which
justifies the inversion of the Laplace transform and allows us to perform the saddle point type approximation.
In Theorem 3.3 we only use the weak lower scaling property on the second derivative of the Laplace exponent.
In particular, we do not assume the absolute continuity of a(dG). Furthermore, the asymptotic is valid in
some region described in terms of both space and time variable. By freezing one of them, we obtain as
corollaries the results similar to [16], see e.g. Corollary 3.6. It is also worth highlighting that we obtain
a version of upper estimate on the transition density with no additional assumptions on the Lévy measure
a(dx), see Theorem 4.7. Clearly, putting some restrictions on a(dx) results in sharper estimates (Theorem
4.8), but it is interesting that the scaling property sole is enough to get some information. Our starting point
and the main object to work with is the Laplace exponent q. However, in many cases the primary object is
the Lévy measure a(dG) and results are presented in terms of or require its tail decay. Therefore, it would be
convenient to have a connection between those two objects. In Proposition 3.8 we prove that one can impose
scaling conditions on the tail of the Lévy measure a((G,∞)) instead, as they imply the scaling condition on
−q′′.

We also note that the main results of the article hold true when−q′′ is a function regularly varying at infinity
with regularity index U−2, where U > 0. This follows easily by Potter bounds for regularly varying functions
(see [3, Theorem 1.5.6]), which immediately imply both lower and upper scaling properties. Moreover, if
additionally U < 1 then, by Karamata’s theorem and monotone density theorem, regular variation of −q′′
with index U − 2 is equivalent to regular variation of q with index U. This is not the case for the case U = 1

where, in general, only the first direction holds true.
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Below we present the special case when global upper and lower scaling conditions are imposed with
0 < U ≤ V < 1, see Theorem 4.17.

Theorem A. Let T be a subordinator with the Laplace exponent q. Suppose that for some 0 < U ≤ V < 1,

the functions

(0,∞) ∋ G ↦→ G−Uq(G), and (0,∞) ∋ G ↦→ G−Vq(G)
are almost increasing and almost decreasing, respectively. We also assume that the Lévy measure a(dG) has

an almost monotone density a(G). Then the probability distribution of )C has a density ?(C, · ). Moreover,

for all C ∈ (0,∞) and G > 0,

?(C, G) ≈
{(
C
(
− q′′(F)

) )−1/2
exp

{
−C

(
q(F) − Fq′(F)

)}
, if 0 < Gq−1(1/C) ≤ 1,

CG−1q(1/G), if 1 < Gq−1(1/C),

where F = (q′)−1 (G/C).
We note that a similar result to Theorem A appeared in [13] in around the same time as our preprint.

Our assumptions, however, are weaker, as we assume almost monotonicity of the Lévy density instead of
monotonicity of the function C ↦→ Ca(C). Moreover, our estimates are genuinely sharp, i.e. the constants
appearing in the exponential factors are the same on both sides of the estimate, while estimates obtained in
[13] are qualitatively sharp, that is the constants in the exponential factors are different.

As a corollary, under the assumption of Theorem A, we obtain global two-sided estimate on the Green
function. Namely, for all G > 0,

� (G) ≈ 1

Gq(1/G) .

See Section 5 and Theorem 5.8 for details.
The article is organized as follows: In Section 2 we introduce our framework and collect some facts

concerning Bernstein functions and their scaling properties. Section 3 is devoted to the proof of Theorem 3.3
and its consequences. In Section 4 we provide both upper and lower estimates on the transition density and
discuss when these estimates coincide. Some applications of our results to subordination beyond the familiar
R3 setting and Green function estimates are presented in Section 5.

Acknowledgment. We thank professor Jerzy Zabczyk for drawing our attention to the problem considered in
this paper. The main results of this article were presented at the XV Probability Conference held from May 21
to 25, 2018, in Będlewo, Poland, and at the Semigroups of Operators: Theory and Applications Conference
held from September 30 to October 5, 2018, in Kazimierz Dolny, Poland. We thank the organizers for the
invitations.

Notation. By �1, 21, �2, 22, . . . we denote positive constants which may change from line to line. For two
functions 5 , 6 : (0,∞) → [0,∞) we write 5 (G) & 6(G), if there is 2 > 0 such that 5 (G) ≥ 26(G) for all
G > 0. An analogous rule is applied to the symbol .. We also have 5 (G) ≈ 6(G), if there exists � ≥ 1 such
that �−1 5 (G) ≤ 6(G) ≤ � 5 (G) for all G > 0. Finally, we set 0 ∧ 1 = min{0, 1} and 0 ∨ 1 = max{0, 1}.

2. Preliminaries

Let (Ω,F , P) be a probability space. Let T = ()C : C ≥ 0) be a subordinator, that is a Lévy process
in R with nondecreasing paths. Recall that a Lévy process is a càdlàg stochastic process with stationary
and independent increments such that )0 = 0 almost surely. There is a function k : R → C, called the
Lévy–Khintchine exponent of T, such that for all C ≥ 0 and b ∈ R,

E
(
48 b)C

)
= 4−C k ( b ) .

Moreover, there are 1 ≥ 0 and f-finite measure a on (0,∞) satisfying

(2.1)

∫
(0,∞)

min {1, B} a(dB) < ∞,



4 TOMASZ GRZYWNY, ŁUKASZ LEŻAJ, AND BARTOSZ TROJAN

such that for all b ∈ R,

(2.2)

k (b) = −8b1 −
∫
(0,∞)

(
48 b G − 1

)
a(dG)

= −8b
(
1 +

∫
(0,1)

G a(dG)
)
−

∫
(0,∞)

(
48 b G − 1 − 8bG1{G<1}

)
a(dG),

which is valid thanks to (2.1). By q : [0,∞) → [0,∞) we denote the Laplace exponent of T, namely

E
(
4−_)C

)
= 4−C q (_)

for all C ≥ 0 and _ ≥ 0. Let k∗ be the symmetric continuous and nondecreasing majorant of ℜk, that is

k∗(A) = sup
|I | ≤A

ℜk (I), A > 0.

Notice that
k∗ (k−1(B)

)
= B, and k−1 (k∗(B)

)
≥ B,

where k−1 is the generalized inverse function defined as

k−1 (B) = sup
{
A > 0: k∗(A) = B

}
.

To study the distribution function of the subordinator T, it is convenient to introduce two concentration
functions  and ℎ. They are defined as

(2.3)  (A) = 1

A2

∫
(0,A )

B2 a(dB), A > 0,

and

(2.4) ℎ(A) =
∫
(0,∞)

min
{
1, A−2B2

}
a(dB), A > 0.

Notice that ℎ(A) ≥  (A). Moreover, by the Fubini–Tonelli theorem, we get

ℎ(A) = 2

∫ ∞

A

 (B)B−1 dB.(2.5)

In view of [20, Lemma 4], we have
1

24
ℎ(A−1) ≤ k∗(A) ≤ 2ℎ(A−1).(2.6)

A function 5 : [0,∞) → [0,∞) is regularly varying at infinity of index U, if for all _ ≥ 1,

lim
G→∞

5 (_G)
5 (G) = _U.

Analogously, 5 is regular varying at the origin of index U, if for all _ ≥ 1,

lim
G→0+

5 (_G)
5 (G) = _U .

If U = 0 the function 5 is called slowly varying.
We next introduce a notion of scaling conditions frequently used in this article. We say that a function

5 : [0,∞) → [0,∞) has the weak lower scaling property at infinity, if there are U ∈ R, 2 ∈ (0, 1], and G0 ≥ 0

such that for all _ ≥ 1 and G > G0,

5 (_G) ≥ 2_U 5 (G).(2.7)

We denote it briefly as 5 ∈ WLSC(U, 2, G0). Observe that ifU > U′ then WLSC(U, 2, G0) ( WLSC(U′, 2, G0).
Analogously, 5 has the weak upper scaling property at infinity, if there are V ∈ R, � ≥ 1, and G0 ≥ 0 such
that for all _ ≥ 1 and G > G0,

5 (_G) ≤ �_V 5 (G).(2.8)

In this case we write 5 ∈ WUSC(V, �, G0).
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We say that a function 5 : [0,∞) → [0,∞) has doubling property on (G0,∞) for some G0 ≥ 0, if there is
� ≥ 1 such that for all G > G0,

�−1 5 (G) ≤ 5 (2G) ≤ � 5 (G).
Notice that a nonincreasing function with the weak lower scaling has doubling property. Analogously, a
nondecreasing function with the weak upper scaling.

A function 5 : [0,∞) → [0,∞) is almost increasing on (G0,∞) for some G0 ≥ 0, if there is 2 ∈ (0, 1] such
that for all H ≥ G > G0,

2 5 (G) ≤ 5 (H).
It is almost decreasing on (G0,∞), if there is � ≥ 1 such that for all H ≥ G > G0,

� 5 (G) ≥ 5 (H).
In view of [6, Lemma 11], 5 ∈ WLSC(U, 2, G0) if and only if the function

(G0,∞) ∋ G ↦→ G−U 5 (G)
is almost increasing. Similarly, 5 ∈ WUSC(V, �, G0) if and only if the function

(G0,∞) ∋ G ↦→ G−V 5 (G)
is almost decreasing. For a function 5 : [0,∞) → C its Laplace transform is defined as

L 5 (_) =
∫ ∞

0

4−_G 5 (G) dG.

2.1. Bernstein functions. In this section we recall some basic facts about Bernstein functions. A general
reference here is the book [48].

A function q : (0,∞) → [0,∞) is completely monotone if it is smooth and

(−1)=q (=) ≥ 0

for all = ∈ N0. It is a Bernstein function if q is a nonnegative smooth function such that q′ is completely
monotone.

Let q be a Bernstein function. In view of [29, Lemma 3.9.34], for all = ∈ N we have

(2.9) q(_) ≥ (−1)=+1
=!

_=q (=) (_), _ > 0.

Since q is concave, for each _ ≥ 1 and G > 0 we have

q(_G) ≤ q′(G) (_ − 1)G + q(G),
thus, by (2.9),

(2.10) q(_G) ≤ _q(G).
By [48, Theorem 3.2], there are two nonnegative numbers 0 and 1, and a Radon measure ` on (0,∞)
satisfying ∫

(0,∞)
min {1, B} `(dB) < ∞,

and such that

(2.11) q(_) = 0 + 1_ +
∫
(0,∞)

(
1 − 4−_B

)
`(dB).

A Bernstein function q is called complete Bernstein function if the measure ` has a completely monotone
density with respect to Lebesgue measure.

Proposition 2.1. Let 5 be a completely monotone function. Suppose that 5 has a doubling property on

(G0,∞) for some G0 ≥ 0. Then there is � > 0 such that for all G > G0,

5 (G) ≥ �G | 5 ′(G) |.
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Proof. Without loss of generality we can assume 5 . 0. Clearly,

5 (G) − 5 (G/2) =
∫ G

G/2
5 ′(B) dB ≤ 1

2
G 5 ′(G).

Since 5 is completely monotone, it is a positive function and

5 (G/2) ≥ 1

2
G | 5 ′(G) |,

which together with the doubling property, gives

5 (G) ≥ �G | 5 ′(G) |
for G > 2G0. Hence, we obtain our assertion in the case G0 = 0. If G0 > 0 we observe that the function

[G0, 2G0] ∋ G ↦→
G | 5 ′(G) |
5 (G)

is continuous and positive, thus bounded. This completes the proof. �

Proposition 2.2. Let 5 be a completely monotone function. Suppose that − 5 ′ ∈ WLSC(g, 2, G0) for some

2 ∈ (0, 1], G0 ≥ 0, and g ≤ −1. Then 5 ∈ WLSC(1 + g, 2, G0).
Analogously, if − 5 ′ ∈ WUSC(g, �, G0) for some � ≥ 1, G0 ≥ 0, and g ≤ −1, then ( 5 − 5 (∞)) ∈

WUSC(g, �, G0).
Proof. Let _ > 1. For H > G > G0, we have

5 (_G) − 5 (_H) = −
∫ _H

_G

5 ′(B) dB = −_
∫ H

G

5 ′(_B) dB

≥ −2_1+g
∫ H

G

5 ′(B) dB = 2_1+g ( 5 (G) − 5 (H)),

thus
5 (_G) ≥ 2_1+g 5 (G) + 5 (_H) − 2_1+g 5 (H).

Since 5 is nonnegative and nonincreasing, we can take H approaching infinity to get

5 (_G) ≥ 2_1+g 5 (G) +
(
1 − 2_1+g

)
lim
H→∞

5 (H)

≥ 2_1+g 5 (G),
where in the last inequality we have also used that 1 ≥ 2_1+g . The second part of the proposition can be
proved in much the same way. �

Proposition 2.3. Let q be a Bernstein function with q(0) = 0. Then q ∈ WLSC(U, 2, G0) for some 2 ∈ (0, 1],
G0 ≥ 0, and U > 0 if and only if q′ ∈ WLSC(U − 1, 2′, G0) for some 2′ ∈ (0, 1]. Furthermore, if

q ∈ WLSC(U, 2, G0) then there is � ≥ 1 such that for all G > G0,

Gq′(G) ≤ q(G) ≤ �Gq′(G).(2.12)

Proof. Assume first that q′ ∈ WLSC(U − 1, 2, G0). Without loss of generality we can assume q′ . 0. We
claim that (2.12) holds true. In view of (2.9), it is enough to show that there is � ≥ 1 such that for all G > G0,

q(G) ≤ �Gq′(G).
First, let us observe that, by the weak lower scaling property of q′,

q(G) − q(G0) =
∫ G

G0

q′(B) dB

≤ 2−1q′(G)
∫ G

G0

(
B/G

)−1+U
dB

≤ 1

2U
Gq′(G).(2.13)
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Thus we get the assertion in the case G0 = 0. If G0 > 0, it is enough to show that there is � > 0 such that for
all G > G0,

(2.14) Gq′(G) ≥ �.

Since q′ ∈ WLSC(U − 1, 2, G0), the function

(G0,∞) ∋ G ↦→ Gq′(G)

is almost increasing. Hence, for G ≥ 2G0 we have

Gq′(G) ≥ 22G0q′(2G0).

To conclude (2.14), we notice that q′(G) is positive and continuous in [G0, 2G0]. Now, by (2.14) we get

Gq′(G) ≥ �q(G0)

for all G > G0, which together with (2.13), implies (2.12) and the scaling property of q follows.
Now assume that q ∈ WLSC(U, 2, G0). By monotonicity of q′, for 0 < B < C,

q(CG) − q(BG)
q(G) ≤ G (C − B)q′(BG)

q(G) .

For B = 1, by the lower scaling we get

G (C − 1)q′(G)
q(G) ≥ q(CG)

q(G) − 1 ≥ 2CU − 1,

for all G > G0. Thus, for C = 21/U2−1/U, we obtain that Gq′(G) & q(G) for all G > G0. Invoking (2.9), we
conclude (2.12). In particular, q′ has the weak lower scaling property. This completes the proof. �

Proposition 2.4. Let q be a Bernstein function. Suppose that −q′′ ∈ WUSC(V − 2, �, G0) for some � ≥ 1,

G0 ≥ 0, and V < 1. Then for all G > G0,

q′(G) ≤ �

1 − VG (−q
′′(G)) + 1.

Proof. Without loss of generality we can assume q′′ . 0. By the scaling property, for G > G0 we have

q′(G) − 1
G (−q′′(G)) =

∫ ∞

G

C

G

(−q′′(C))
(−q′′(G))

dC

C

≤ �
∫ ∞

G

(
C

G

)−1+V
dC

C
= �

1

1 − V ,

which concludes the proof. �

Remark 2.5. Let q be a Bernstein function such that q(0) = 0. Suppose that −q′′ ∈ WLSC(U − 2, 2, G0),
for some 2 ∈ (0, 1], G0 ≥ 0, and U ∈ (0, 1]. Since q′ is completely monotone, by Proposition 2.2,
q′ ∈ WLSC(U − 1, 2, G0). Therefore, by Proposition 2.3, we conclude that q ∈ WLSC(U, 21, G0) for some
21 ∈ (0, 1].

Proposition 2.6. Let 5 be a completely monotone function. Suppose that

5 ∈ WLSC(U − 1, 2, G0) ∩ WUSC(V − 1, �, G0)

for some 2 ∈ (0, 1], � ≥ 1, G0 ≥ 0 and 0 < U ≤ V < 1. Then

− 5 ′ ∈ WLSC(U − 2, 2′, G0) ∩ WUSC(V − 2, � ′, G0)

for some 2′ ∈ (0, 1] and � ′ ≥ 1.
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Proof. By monotonicity of − 5 ′, for 0 < B < C,

(2.15)
−G (C − B) 5 ′(CG)

5 (G) ≤ 5 (BG) − 5 (CG)
5 (G) ≤ −G (C − B) 5 ′(BG)

5 (G) .

Taking B = 1 in the second inequality, the weak upper scaling property yields

−G (C − 1) 5 ′(G)
5 (G) ≥ 1 − 5 (CG)

5 (G) ≥ 1 − 2CV−1,

for all G > G0. By selecting C > 1 such that 2CV−1 ≤ 1

2
, we obtain G

(
− 5 ′(G)

)
& 5 (G) for G > G0. Similarly,

taking C = 1 in the first inequality in (2.15), by the weak lower scaling property we get

−G (1 − B) 5 ′(G)
5 (G) ≤ 5 (BG)

5 (G) − 1 ≤ 2−1BU−1 − 1,

for all G > G0/B. By selecting 0 < B < 1 such that BU−1 ≥ 22, we obtain G
(
− 5 ′(G)

)
. 5 (G) for G > G0/B.

Hence,

5 (G) ≈ G
(
− 5 ′(G)

)
,(2.16)

for all G > G0/B. Therefore, lower and upper scaling properties follow from (2.16) and the scaling properties
of 5 . This finishes the proof for the case G0 = 0. If G0 > 0, we notice that both 5 ad − 5 ′ are positive and
continuous, thus at the possible expense of worsening the constants we get (2.16) for all G > G0. �

Now, by combining Propositions 2.3 and 2.6, we immediately get the following corollary.

Corollary 2.7. Let q be a Bernstein function such that q(0) = 0. Suppose that

q ∈ WLSC(U, 2, G0) ∩ WUSC(V, �, G0)
for some 2 ∈ (0, 1], � ≥ 1, G0 ≥ 0 and 0 < U ≤ V < 1. Then

−q′′ ∈ WLSC(U − 2, 2′, G0) ∩ WUSC(V − 2, � ′, G0)
for some 2′ ∈ (0, 1] and � ′ ≥ 1.

Lemma 2.8. Let q be a Bernstein function. Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1],
G0 ≥ 0, and U > 0. There is a constant � > 0 such that for all G > G0,

� (−q′′(G)) ≤
∫
(0,1/G)

B2`(3B).

Moreover, the constant � depends only on U and 2.

Proof. Let 5 : (0,∞) → R be a function defined as

5 (C) =
∫
(0,C)

B2 `(dB).

We observe that, by the Fubini–Tonelli theorem, for G > 0 we have

L 5 (G) =
∫ ∞

0

4−GC
∫
(0,C)

B2 `(dB) dC

=

∫
(0,∞)

B2
∫ ∞

B

4−GC dC `(dB) = G−1 (−q′′(G)).

Since 5 is nondecreasing, for any B > 0,

−q′′(G) = GL 5 (G) ≥
∫ ∞

B

4−C 5
(
C/G

)
dC

≥ 4−B 5
(
B/G

)
.
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Hence, for any D > 2,

−q′′(G) =
∫ D

0

4−B 5
(
B/G

)
dB +

∫ ∞

D

4−B 5
(
B/G

)
dB

≤ 5
(
D/G

)
+

∫ ∞

D

4−B/2 (−q′′(G/2)) dB.

Therefore, setting G = _D > 2G0, by the weak lower scaling property of −q′′,
5 (1/_) ≥ −q′′(D_) − 24−D/2 (−q′′(D_/2))

≥
(
2U−22 − 24−D/2

)
(−q′′(D_/2)).

At this stage, we select D > 2 such that

2U−22 − 24−D/2 ≥ 2−22.

Then again, by the weak lower scaling property of −q′′, for _ > G0,

5 (1/_) ≥ 22−2 (−q′′(D_/2)) ≥ 222−UDU−2 (−q′′(_)),
which ends the proof. �

Lemma 2.9. Let q be a Bernstein function. Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1],
G0 ≥ 0, and U > 0. Then there exists a complete Bernstein function 5 such that 5 ≈ q for G > 0, and

− 5 ′′ ≈ −q′′ for G > G0.

Proof. Let us define

5 (_) = 0 + 1_ +
∫ ∞

0

_D

_D + 1
`(dD).

By [48, Theorem 6.2 (vi)] the function 5 is a complete Bernstein function. Since for H > 0,
H

H + 1
≈

(
1 − 4−H

)
,

we get 5 (_) ≈ q(_). Moreover,

5 ′′(_) = −2
∫ ∞

0

D2

_D + 1
`(dD).

Hence, by Lemma 2.8 we obtain − 5 ′′(_) ≈ −q′′(_) for _ > G0. �

3. Asymptotic behavior of densities

Let T = ()C : C ≥ 0) be a subordinator with the Lévy–Khintchine exponent k and the Laplace exponent q.
Since q is a Bernstein function, it admits the integral representation (2.11). As it may be easily checked (see
e.g. [48, Proposition 3.6]), we have ` = a, 0 = 0, and k (b) = q(−8b). In particular, q(0) = 0.

In this section we study the asymptotic behavior of the probability density of )C . In the whole section we
assume that q′′ . 0, otherwise )C = 1C is deterministic. The main result is Theorem 3.3. Let us start by
showing an estimate on the real part of the complex extension q.

Lemma 3.1. Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0. Then there

exists � > 0 such that for all F > G0 and _ ∈ R,

ℜ
(
q(F + 8_) − q(F)

)
≥ �_2

(
− q′′( |_ | ∨ F)

)
.

Proof. By the integral representation (2.11), for _ ∈ R we have

ℜ
(
q(F + 8_) − q(F)

)
=

∫
(0,∞)

(
1 − cos(_B)

)
4−FB a(dB).

In particular,
ℜ

(
q(F + 8_) − q(F)

)
= ℜ

(
q(F − 8_) − q(F)

)
.
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Thus it is sufficient to consider _ > 0. We can estimate

ℜ
(
q(F + 8_) − q(F)

)
≥

∫
(0,1/_)

(
1 − cos(_B)

)
4−FB a(dB)

& _2
∫
(0,1/_)

B24−FB a(dB).(3.1)

Due to Lemma 2.8 we obtain, for _ ≥ F,

ℜ
(
q(F + 8_) − q(F)

)
& _2

∫
(0,1/_)

B2 a(dB) & _2 (−q′′(_)).

If F > _ > 0 then, by (3.1), we have

ℜ
(
q(F + 8_) − q(F)

)
& _2

∫
(0,1/F)

B24−FB`(dB)

≥ 4−1_2
∫
(0,1/F)

B2`(dB)

which, by Lemma 2.8, completes the proof. �

Remark 3.2. Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0. Since

 (1/G) ≤ 4G2 (−q′′(G)),
by Lemma 2.8, we obtain

�G2(−q′′(G)) ≤  (1/G) ≤ 4G2 (−q′′(G))
for all G > G0.

Theorem 3.3. LetT be a subordinator with the Laplace exponent q. Suppose that −q′′ ∈ WLSC(U−2, 2, G0)
for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0. Then the probability distribution of )C is absolutely continuous for

all C > 0. If we denote its density by ?(C, · ), then for each n > 0 there is "0 > 0 such that���? (C, Cq′(F))√2cC (−q′′(F)) exp
{
C
(
q(F) − Fq′(F)

)}
− 1

��� ≤ n,
provided that F > G0 and CF2(−q′′(F)) > "0.

Proof. Let G = Cq′(F) and " > 0. We first show that

(3.2) ?(C, G) = 1

2c
· 4−CΦ(G/C ,0)√
C (−q′′(F))

∫
R

exp

{
− C

(
Φ

(
G

C
,

D√
C (−q′′(F))

)
−Φ

(
G

C
, 0

))}
dD,

provided that F > G0 and CF2(−q′′(F)) > " , where for _ ∈ R we have set

(3.3) Φ
(
G/C, _

)
= q(F + 8_) − G

C
(F + 8_).

To do so, let us recall that
E
(
4−_)C

)
= 4−C q (_) , _ ≥ 0.

Thus, by the Mellin’s inversion formula, if the limit

(3.4) lim
!→∞

1

2c8

∫ F+8!

F−8!
4−C q (_)+_G d_ exists,

then the probability distribution of )C has a density ?(C, · ) and

?(C, G) = lim
!→∞

1

2c8

∫ F+8!

F−8!
4−C q (_)+_G d_.

Therefore, our task is to justify the statement (3.4). For ! > 0, we write

1

2c8

∫ F+8!

F−8!
4−C q (_)+_G d_ =

1

2c

∫ !

−!
4−CΦ(G/C ,_) d_.
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By the change of variables

_ =
D√

C (−q′′(F))
,

we obtain∫ !

−!
4−CΦ(G/C ,_) d_ = 4−CΦ(G/C ,0)

∫ !

−!
exp

{
− C

(
Φ

(
G/C, _

)
−Φ

(
G/C, 0

) )}
d_

=
4−CΦ(G/C ,0)√
C (−q′′(F))

∫ !
√
C (−q′′ (F))

−!
√
C (−q′′ (F))

exp

{
− C

(
Φ

(
G

C
,

D√
C (−q′′(F))

)
−Φ

(
G

C
, 0

) )}
dD.

Let us note here that −q′′ is nonincreasing and integrable at infinity, thus, we in fact have U ≤ 1. We claim
that there is � > 0 not depending on " , such that for all D ∈ R,

(3.5) Cℜ
(
Φ

(
G

C
,

D√
C (−q′′(F))

)
−Φ

(
G

C
, 0

))
≥ �

(
D2 ∧ (|D |U"1−U/2)

)
,

provided that F > G0 and CF2(−q′′(F)) > " . Indeed, by (3.3) and Lemma 3.1, for F > G0 we get

(3.6) Cℜ
(
Φ

(
G

C
,

D√
C (−q′′(F))

)
−Φ

(
G

C
, 0

))
&

|D |2
q′′(F) q

′′
( |D |√
C (−q′′(F))

∨ F
)
.

We next estimate the right-hand side of (3.6). If |D | ≤ F
√
C (−q′′(F)), then

|D |2
q′′(F) q

′′
( |D |√
C (−q′′(F))

∨ F
)
= |D |2.

Otherwise, since −q′′ ∈ WLSC(U − 2, 2, G0), we obtain

|D |2
q′′(F) q

′′
( |D |√
C (−q′′(F))

∨ F
)
≥ 2 |D |2

( |D |√
CF2(−q′′(F))

)−2+U

= 2 |D |U
(
CF2(−q′′(F))

)1−U/2
≥ 2"1−U/2 |D |U.

Hence, we deduce (3.5). To finish the proof of (3.4), we invoke the dominated convergence theorem.
Consequently, by Mellin’s inversion formula we obtain (3.2).

Our next task is to show that for each n > 0 there is "0 > 0 such that

(3.7)

�����
∫
R

exp

{
− C

(
Φ

(
G

C
,

D√
C (−q′′(F))

)
−Φ

(
G

C
, 0

))}
dD −

∫
R

4−
1

2
D2

dD

����� ≤ n,
provided that F > G0 and CF2(−q′′(F)) > "0. In view of (3.5), by taking "0 > 1 sufficiently large, we get

(3.8)

�����
∫
|D | ≥"1/4

0

exp

{
− C

(
Φ

(
G

C
,

D√
C (−q′′(F))

)
−Φ

(
G

C
, 0

))}
dD

����� ≤
∫
|D | ≥"1/4

0

4−� |D |U dD ≤ n,

and

(3.9)

∫
|D | ≥"1/4

0

4−
1

2
D2

dD ≤ n .

Next, we claim that there is � > 0 such that

(3.10)

����C
(
Φ

(
G

C
,

D√
C (−q′′(F))

)
−Φ

(
G

C
, 0

))
− 1

2
|D |2

���� ≤ � |D |3"− 1

2

0
.

Indeed, since

m_Φ
( G
C
, 0

)
= 0,
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by the Taylor’s formula, we get����C
(
Φ

(
G

C
,

D√
C (−q′′(F))

)
−Φ

(
G

C
, 0

))
− 1

2
|D |2

���� =
����12m2_Φ

( G
C
, b

) |D |2
−q′′(F) −

1

2
|D |2

����
=

|D |2
2|q′′(F) |

��q′′(F + 8b) − q′′(F)
��,(3.11)

where b is some number satisfying

(3.12) |b | ≤ |D |√
C (−q′′(F))

.

Observe that ��q′′(F + 8b) − q′′(F)
�� ≤ ∫

(0,∞)
B24−FB

��4−8 b B − 1
�� a(dB)

≤ 2|b |
∫
(0,∞)

B34−FB a(dB) = 2|b |q′′′(F).

Since −q′′ is a nonincreasing function with the weak lower scaling property, it is doubling. Thus, by
Proposition 2.1, for F > G0,

−q′′(F) & Fq′′′(F),
which together with (3.12) give��q′′(F + 8b) − q′′(F)

�� ≤ � |D |√
C (−q′′(F))

· −q
′′(F)
F

≤ �"− 1

2

0
|D | (−q′′(F)),(3.13)

whenever CF2(−q′′(F)) > "0. Now, (3.10) easily follows by (3.13) and (3.11).
Finally, since for any I ∈ C, ��4I − 1

�� ≤ |I |4 |I |,
by (3.10), we obtain�����

∫
|D | ≤"1/4

0

exp

{
− C

(
Φ

(
G

C
,

D√
C (−q′′(F))

)
−Φ

(
G

C
, 0

))}
− 4− 1

2
|D |2 dD

�����
≤ �"− 1

2

0

∫
|D | ≤"1/4

0

exp

{
− 1

2
|D |2 + �"− 1

2

0
|D |3

}
|D |3 dD ≤ n,

provided that "0 is sufficiently large, which, together with (3.8) and (3.9), completes the proof of (3.7) and
the theorem follows. �

Remark 3.4. If G0 = 0 then the constant "0 in Theorem 3.3 depends only on U and 2. If G0 > 0 it also
depends on

sup
G∈[G0,2G0 ]

Gq′′′(G)
−q′′(G) .

By Theorem 3.3, we immediately get the following corollaries.

Corollary 3.5. Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0. Then there

is "0 > 0 such that

?(C, G) ≈ 1√
C (−q′′(F))

exp
{
− C

(
q(F) − Fq′(F)

)}
,

uniformly on the set {
(C, G) ∈ R+ × R : C1 < G < Cq′(G+0) and CF2(−q′′(F)) > "0

}
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where F = (q′)−1 (G/C).
Corollary 3.6. Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0. Assume

also that 1 = 0. Then for any G > 0,

lim
C→∞

?(C, G)
√
C (−q′′(F)) exp

{
C
(
q(F) − Fq′(F)

)}
= (2c)−1/2,

where F = (q′)−1 (G/C).
By imposing on −q′′ an additional condition of the weak upper scaling, we can further simplify the

description of the set where the sharp estimates on ?(C, G) hold.

Corollary 3.7. Suppose that q ∈ WLSC(U, 2, G0) ∩ WUSC(V, �, G0) for some 2 ∈ (0, 1], � ≥ 1, G0 ≥ 0,

and 0 < U ≤ V < 1. Assume also that 1 = 0. Then there is X > 0 such that

?(C, G) ≈ 1√
C (−q′′(F))

exp
{
− C

(
q(F) − Fq′(F)

)}
,

uniformly on the set

(3.14)
{
(C, G) ∈ R+ × R : 0 < Gq−1(1/C) < X, and 0 ≤ Cq(G0) ≤ 1

}
where F = (q′)−1 (G/C).
Proof. By Proposition 2.3, there is �1 ≥ 1 such that for all D > G0,

q(D) ≤ �1Dq
′(D),

thus, for (C, G) belonging to the set (3.14),

G

C
< X

1

Cq−1(1/C) = X
q
(
q−1 (1/C)

)
q−1 (1/C)

≤ �1Xq
′ (q−1 (1/C)).(3.15)

By Proposition 2.3, q′ ∈ WLSC(−1 + U, 2, G0), hence for all � ≥ 1,

q′
(
�q−1 (1/C)

)
≥ 2�−1+Uq′

(
q−1 (1/C)

)
.

By taking X sufficiently small, we get

� =

(
2

�1X

) 1

1−U
≥ 1,

thus, by (3.15), we obtain
G

C
< q′

(
�q−1 (1/C)

)
,

which implies that

(3.16) F = (q′)−1(G/C) > �q−1 (1/C).
In particular, F > G0. On the other hand, by Propositions 2.3 and 2.4, there is 21 ∈ (0, 1] such that

CF2(−q′′(F)) ≥ 21Cq(F).
By Remark 2.5, q ∈ WLSC(U, 22, G0) for some 22 ∈ (0, 1]. Therefore,

Cq(F) = q(F)
q
(
q−1 (1/C)

) ≥ 22

(
F

q−1 (1/C)

)U
,

which together with (3.16), gives
CF2(−q′′(F)) & X− U

1−U > "0,

for X sufficiently small. Hence, by Corollary 3.5, we conclude the proof. �
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The following proposition provides a sufficient condition on the measure a that entails the weak lower
scaling property of −q′′, and allows us to apply Theorem 3.3.

Proposition 3.8. Suppose that there are G0 ≥ 0, � ≥ 1 and U > 0 such that for all 0 < A < 1/G0 and

0 < _ ≤ 1,

(3.17) a
(
(A,∞)

)
≤ �_Ua

(
(_A,∞)

)
.

Then −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1].

Proof. Let us first notice that by the Fubini–Tonelli theorem,

ℎ(A) = A−2
∫
(0,∞)

min
{
A2, B2

}
a(dB)

= A−2
∫ A

0

Ca
(
(C,∞)

)
dC.

Thus, by (3.17), for all 0 < A < 1/G0 and 0 < _ ≤ 1,

�_Uℎ(_A) = 2�_U

A2

∫ A

0

Ca
(
(_C,∞)

)
dC

≥ 2

A2

∫ A

0

Ca
(
(C,∞)

)
dC

= ℎ(A).(3.18)

Hence, by [23, Lemma 2.3], there is � ′ ≥ 1 such that for all 0 < A < 1/G0,
 (A) ≤ ℎ(A) ≤ � ′ (A).(3.19)

The integral representation of q entails that

4−1G−2 (1/G) ≤ −q′′(G) ≤ 422−2G−2ℎ(1/G), G > 0,

thus, by (3.19), we obtain
−q′′(G) ≈ G−2ℎ(1/G),

for all G > G0. Now, the weak lower scaling property of −q′′ is a consequence of (3.18). �

4. Estimates on the density

Let T = ()C : C ≥ 0) be a subordinator with the Lévy–Khintchine exponent k and the Laplace exponent q.
In this section we always assume that −q′′ ∈ WLSC(U− 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U ∈ (0, 1].
In particular, by Theorem 3.3, the probability distribution of )C has a density ?(C, · ). To express the majorant
on ?(C, · ), it is convenient to set

i(G) = G2(−q′′(G)), G > 0.

Obviously, i ∈ WLSC(U, 2, G0). Let i−1 denote the generalized inverse function defined as

i−1(G) = sup
{
A > 0: i∗(A) = G

}
where

i∗(A) = sup
0<G≤A

i(G).

We start by showing comparability between the two concentration functions  and ℎ defined in (2.3) and
(2.4), respectively.

Proposition 4.1. Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0. Then

there is � ≥ 1 such that for all 0 < A < 1/G0,
 (A) ≤ ℎ(A) ≤ � (A).
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Proof. Since ℎ(A) ≥  (A), it is enough to show that for some � ≥ 1 and 0 < A < 1/G0,
ℎ(A) ≤ � (A).

In view of (2.5), we have

(4.1) ℎ(A) = 2

∫ ∞

A

 (B)dB
B

= 2

∫
1/G0

A

 (B)dB
B

+ 2

∫ ∞

1/G0
 (B)dB

B
.

Let us consider the first term on the right-hand side of (4.1). By Remark 3.2 we have  (A) ≈ i(1/A), for
0 < A < 1/G0, which implies ∫

1/G0

A

 (B)dB
B
.  (A), 0 < A < 1/G0.

This finishes the proof in the case G0 = 0. If G0 > 0 then, for 1/(2G0) ≤ A < 1/G0, we have

 (A) & i(1/A) & i(G0) > 0.

Hence,  (A) & 1 for all 0 < A < 1/G0. Since the second term on the right-hand side of (4.1) is constant, the
proof is completed. �

Let us notice that by (2.6), Proposition 4.1 and Remark 3.2, we have

(4.2) k∗(G) ≈ ℎ(1/G) ≈  (1/G) ≈ i(G)
for all G > G0. In particular, there is 21 ∈ (0, 1] such that k∗ ∈ WLSC(U, 21, G0). Moreover,

k∗(G) .  (1/G) = G2
∫
(0,1/G)

B2 a(dB)

.

∫
(0,1/G)

(
1 − cos BG

)
a(dB),

thus, for all G > G0,

(4.3) k∗(G) . ℜk (G).
Since for _ ≥ 1 and G > 0,

(4.4) i(_G) ≤ _2i(G),
we get

(4.5) i∗(_G) ≤ _2i∗(G).

Proposition 4.2. Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0. Then for

all A > 2ℎ(1/G0),

(4.6)
1

ℎ−1 (A) ≈ k−1(A).

Furthermore, there is � ≥ 1 such that for all _ ≥ 1, and A > 2ℎ(1/G0),
k−1(_A) ≤ �_1/Uk−1(A).

Proof. By [22, (5.1)], we have
1

ℎ−1 (A/2) ≤ k−1(A) ≤ 1

ℎ−1 (24A)
for all A > 0. On the other hand, by Proposition 4.1 and [23, Lemma 2.3], there is � ≥ 1 such that for all
_ ≥ 1 and A > ℎ(1/G0),

(4.7)
1

ℎ−1 (_A) ≤ �_1/U 1

ℎ−1 (A) .
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Hence, for A > 2ℎ(1/G0),

(4.8) �−12−1/U
1

ℎ−1 (A) ≤ k−1(A) ≤ � (24)1/U 1

ℎ−1 (A) ,

proving (4.6). The weak upper scaling property of k−1 is a consequence of (4.7) and (4.8). �

Proposition 4.3. Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0. Then for

all G > G0,

(4.9) k∗(G) ≈ i∗(G),
and for all A > i(G0),
(4.10) k−1(A) ≈ i−1(A).
Furthermore, there is � ≥ 1 such that for all _ ≥ 1 and A > i(G0),

i−1(_A) ≤ �_1/Ui−1(A).

Proof. We start by showing that there is � ≥ 1 such that for all G > G0,

(4.11) �−1k∗(G) ≤ i∗(G) ≤ �k∗(G).
The first inequality in (4.11) immediately follows from (4.2). If G0 = 0 then the second inequality is also the
consequence of (4.2). In the case G0 > 0, we observe that for G > G0, we have

i∗(G) = max
{

sup
0<H≤G0

i(H), sup
G0≤H≤G

i(H)
}

. max
{
i∗(G0), k∗(G)

}
≤

(
1 + i

∗(G0)
k∗(G0)

)
k∗(G),

proving (4.11).
Now, using (4.11), we easily get

k−1(�−1A) ≤ i−1(A) ≤ k−1 (�A)
for all A > �k∗(G0). Hence, by Proposition 4.2,

i−1(A) ≈ k−1(A)
for A > �max

{
k∗(G0), 2ℎ(1/G0)

}
. Finally, since both k−1 and i−1 are positive and continuous, at the

possible expense of worsening the constant, we can extend the area of comparability to conclude (4.10).
Now, the scaling property of i−1 follows by (4.10) and Proposition 4.2. �

Remark 4.4. Note that, alternatively, one can define the (left-sided) generalized inverse

i−1(G) = inf{A > 0: i∗(A) = G},
where

i∗(A) = inf
A ≤G

i(G).

In such case we have

i∗
(
i−1(B)

)
= B, and i−1

(
i∗(B)

)
≤ B.

Clearly, for all G > 0,

i∗(G) ≤ i(G) ≤ i∗(G).
Let D > G0 and set

A0 = inf{A > 0: i∗(A) = D}.
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By Proposition 4.3, i∗ ∈ WLSC(U, 2, G0) for some 2 ∈ (0, 1] and G0 ≥ 0. Thus, for _ > 2−1/U, we get
i∗(_A0) > i∗(A0). It follows that for all D > G0,

sup{A > 0: i∗(A) = D} ≤ _ inf{A > 0: i∗(A) = D}
≤ _ inf{A > 0: i∗(A) = D}.

Thus, for all A > G0,
i−1

(
i∗(A)

)
. A.

Corollary 4.5. Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0. Then there

is � > 0 such that for all G > G0,

(4.12)
(
q(G) − Gq′(G)

)
≤ �i(G).

Proof. We have

(
q(G) − Gq′(G)

)
−

(
q(G0) − G0q′(G+0)

)
=

∫ G

G0

i(D)dD
D

=

∫
1

G0/G
i(GD)dD

D

where
q′(G+

0
) = lim

G→G+
0

q′(G).

By the weak lower scaling property of i, for any G0/G < D ≤ 1, we have

i(G) ≥ 2D−Ui(GD),
thus (

q(G) − Gq′(G)
)
−

(
q(G0) − G0q′(G+0)

)
. i(G)

∫
1

0

DU−1 dD,

which proves (4.12) if G0 = 0. For G0 > 0 one can use continuity and positivity of i. �

Proposition 4.6. Suppose that −q′′ ∈ WLSC(U−2, 2, G0) ∩WUSC(V−2, �, G0) for some 2 ∈ (0, 1], � ≥ 1,

G0 ≥ 0, and 0 < U ≤ V < 1. Assume also that 1 = 0. Then for all G > G0,

(4.13) i∗(G) ≈ q(G),
and for all A > i(G0),
(4.14) i−1(A) ≈ q−1 (A).
Furthermore, there is 2′ ∈ (0, 1] such that for all _ ≥ 1 and A > 1/i∗(G0),
(4.15) i−1(_A) ≥ 2′_1/Vi−1(A).
Proof. Let us observe that, by (2.9), Proposition 2.3 and Proposition 2.4, there is 21 ∈ (0, 1] such that for all
G > G0,

(4.16) 2q(G) ≥ i(G) ≥ 21q(G).
Now the proof of the lemma is similar to the proof of Proposition 4.3 therefore it is omitted. �

4.1. Estimates from above. In this section we show the upper estimates on ?(C, · ). Before embarking on
the proof let us introduce some notation. Given a set � ⊂ R, we define

X(�) = inf
{
|G | : G ∈ �

}
,

and
diam(�) = sup

{
|G − H | : G, H ∈ �

}
.

Let

1A = 1 +
∫
(0,A )

B a(dB), A > 0.
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In view of (2.2), the above definition of 1A is in line with the usual one (see e.g. [32, formula (4)] or [23,
formula (1.2)]). Let us define Z : [0,∞) → [0,∞],

Z (B) =


∞ if B = 0,

i∗(1/B) if 0 < B ≤ G−1
0
,

�q(1/B) if G−1
0
< B,

where � = i∗(G0)/q(G0) ∈ (0, 2].
Theorem 4.7. Let T be a subordinator with the Lévy–Khintchine exponent k and the Laplace exponent q.

Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0. Then the probability

distribution of )C has a density ?(C, · ). Moreover, there is � > 0 such that for all C ∈ (0, 1/i(G0)) and G ∈ R,

(4.17) ?
(
C, G + C11/k−1 (1/C)

)
≤ �i−1(1/C) ·min

{
1, CZ ( |G |)

}
.

In particular, for all C ∈ (0, 1/i(G0)) and G ≥ 24Cq′(k−1(1/C)),
(4.18) ?(C, G + C1) ≤ �i−1(1/C) ·min

{
1, CZ (G)

}
.

Proof. Without loss of generality we can assume 1 = 0. Indeed, otherwise it is enough to consider a shifted
process )̃C = )C − C1. Next, let us observe that for any Borel set � ⊂ R, we have

a(�) .
∫
(X (�) ,∞)

(
1 − 4−B/X (�)

)
a(dB)

≤ q
(
1/X(�)

)
.(4.19)

Furthermore, for X(�) < 1/G0, by Proposition 4.1 and Remark 3.2,

a(�) ≤ ℎ(X(�))
. i∗(1/X(�)).

Thus, a(�) . Z (X(�)). We claim that Z has doubling property on (0,∞). Indeed, since −q′′ is nonincreasing
function with the weak lower scaling property, it has doubling property on (G0,∞), thus for 0 < B < G−1

0
,

Z
(
1

2
B
)
≈ 4B−2 (−q′′(2/B)) . B−2 (−q′′(1/B)) . Z (B).

This completes the argument in the case G0 = 0. If G0 > 0, then by (2.10), for B > 2G−1
0

we have

Z
(
1

2
B
)
= �q(2/B) ≤ 2�q(1/B) ≤ 2Z (B).

Lastly, the function [
1

2
G0, G0] ∋ G ↦→

i∗(2G)
q(G)

is continuous, thus it is bounded.
Next, for B > 0 and G ∈ R,

B ∨ |G | − 1

2
|G | ≥ 1

2
B,

thus, by motonicity and doubling property of Z , we get

Z
(
B ∨ |G | − 1

2
|G |

)
. Z (B).

Hence, by (2.4) and (4.2), for A > 0,∫
(A ,∞)

Z
(
B ∨ G − 1

2
G
)
a(dG) . Z (B)ℎ(A)

. Z (B)k∗(1/A).(4.20)

Since k∗ has the weak lower scaling property and satisfies (4.3), by [23, Proposition 3.4] together with
Proposition 4.2, there are � > 0 and C1 ∈ (0,∞] such that for all C ∈ (0, C1),

(4.21)

∫
R

4−Cℜk ( b ) |b | db ≤ �
(
k−1(1/C)

)2
.
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If G0 = 0 then C1 = ∞. If C1 < 1/i(G0) we can expand the above estimate for C1 ≤ C < 1/i(G0) using positivity
of the right hand side and monotonicity of the left hand side.

In view of (4.19), (4.20) and (4.21), by [32, Theorem 1] with W = 0, there are �1, �2, �3 > 0 such that for
all C ∈ (0, 1/i(G0)) and G ∈ R,

?
(
C, G + C11/k−1 (1/C)

)
≤ �1k

−1(1/C) ·min

{
1, CZ

(
1

4
|G |

)
+ exp

{
− �2 |G |k−1(1/C) log

(
1 + �3 |G |k−1 (1/C)

)}}
.

Let us consider G > 0 and C ∈ (0, 1/i(G0)) such that CZ (G) ≤ 1. We claim that

(4.22) exp
{
− �2Gk

−1(1/C) log
(
1 + �3Gk

−1(1/C)
)}
. CZ (G).

First suppose that G > G−1
0

. Let us observe that the function

[0,∞) ∋ D ↦→ D exp
{
− �2D log

(
1 + �3D

)}
is bounded. Therefore,

(4.23) exp
{
− �2Gk

−1(1/C) log
(
1 + �3Gk

−1(1/C)
)}
.

1

Gk−1(1/C) .

Since Gq−1 (1/C) ≥ 1, by (2.10), we have

(4.24) Cq(1/G) = q(1/G)
q
(
Gq−1(1/C) · 1/G

) ≥ 1

Gq−1 (1/C) .

Next, in light of (2.9), for all H > 0,
1

2
i∗(H) ≤ q(H),

hence, by the monotonicity of q−1,

q−1(1/C) = q−1
(
1

2
i∗(i−1(2/C))

)
≤ q−1

(
q(i−1(2/C))

)
= i−1(2/C)
≤ �k−1(1/C)(4.25)

where in the last step we have used Proposition 4.3. Putting (4.23), (4.24), and (4.25) together, we obtain
(4.22) as claimed.

Now let 0 < G ≤ G−1
0

. Observe that the function

[0,∞) ∋ D ↦→ D2 exp
{
− �2D log

(
1 + �3D

)}
is also bounded. Hence,

(4.26) exp
{
− �2Gk

−1(1/C) log
(
1 + �3Gk

−1(1/C)
)}
.

1(
Gk−1(1/C)

)2 .
Since Gi−1(1/C) ≥ 1, using (4.5) we get

Ci∗(1/G) = i∗(1/G)
i∗

(
Gi−1(1/C) · 1/G

) ≥ 1(
Gi−1(1/C)

)2 .(4.27)

Hence, putting together (4.26) and (4.27), and invoking Proposition 4.2 we again obtain (4.22).
Finally, using doubling property of Z we get

Z
(
1

4
G
)
. Z (G),

thus an another application of Proposition 4.3 leads to (4.17).
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For the proof of (4.18), we observe that

q′(_) =
∫
(0,∞)

G4−_G a(dG) ≥ 4−1
∫
(0,1/_)

G a(dG).

Thus,

11/k−1 (1/C) =

∫
(0,1/k−1 (1/C))

G a(dG) ≤ 4q′(k−1(1/C)).

Hence, by monotonicity and doubling property of Z , for G > 24Cq′(k−1(1/C)), we obtain

Z
(
G − C11/k−1 (1/C)

)
≤ Z

(
G

2

)
. Z (G),

and the theorem follows. �

Now we define [ : [0,∞) → [0,∞],

[(B) = B−1Z (B) =


∞ if B = 0,

B−1i∗(1/B) if 0 < B ≤ G−1
0
,

�B−1q(1/B) if G−1
0
< B,

where � = i∗(G0)/q(G0) ∈ (0, 2]. Notice that, by (2.9), if 2CZ ( |G |) ≤ 1 then Ci∗(1/|G |) ≤ 1, and so

[( |G |) = |G |−1Z ( |G |)
≤ i−1(1/C)Z ( |G |).

Therefore,
min

{
i−1(1/C), C[( |G |)

}
≤ 4i−1(1/C) ·min

{
1, CZ ( |G |)

}
.

Theorem 4.8. Let T be a subordinator with the Lévy–Khintchine exponent k and the Laplace exponent q.

Suppose that −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0. We also assume that the

Lévy measure a has an almost monotone density a(G). Then the probability distribution of )C has a density

?(C, · ). Moreover, there is � > 0 such that for all C ∈ (0, 1/i(G0)) and G ∈ R,

(4.28) ?
(
C, G + C11/k−1 (1/C)

)
≤ �min

{
i−1(1/C), C[( |G |)

}
.

In particular, for all C ∈ (0, 1/i(G0)) and G ≥ 24Cq′(k−1(1/C)),
(4.29) ?(C, G + C1) ≤ �min

{
i−1(1/C), C[(G)

}
.

Proof. Without loss of generality we can assume 1 = 0. Let us observe that for any _ > 0,

q(_) ≥
∫

1/_

0

(
1 − 4−_B

)
a(B) dB & a(1/_)_−1,

and

−q′′(_) ≥
∫

1/_

0

B24−_Ba(B) dB & a(1/_)_−3.

Hence,

(4.30) a(G) . [(G) for all G > 0.

Since [ is nonincreasing, for any Borel subset � ⊂ R,

a(�) .
∫
�∩(0,∞)

[(G) dG . [
(
X(�)

)
diam(�).(4.31)

Arguing as in the proof of Theorem 4.7 we conclude that [ has doubling property on (0,∞). Using that and
monotonicity of [, for B > 0 and G ∈ R,

[
(
B ∨ G − 1

2
G
)
≤ [

(
1

2
B
)
. [(B).
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Therefore, by (4.2), for A > 0,

(4.32)

∫ ∞

A

[
(
B ∨ G − 1

2
G
)
a(G) dG . [(B)k∗(1/A).

Since k∗ has the weak lower scaling property and satisfies (4.3), by [23, Theorem 3.1] and Proposition 4.2,
there are � > 0 and C1 ∈ (0,∞] such that for all C ∈ (0, C1),

(4.33)

∫
R

4−Cℜk ( b ) db ≤ �k−1(1/C).

If G0 = 0 then C1 = ∞. If C1 < 48/i(G0) we can expand the above estimate for C1 ≤ C < 48/i(G0) using
positivity of the right hand side and monotonicity of the left hand side.

In view of (4.31), (4.32), and (4.33), by [22, Theorem 5.2], there is � > 0 such that for all C ∈ (0, 1/i(G0))
and G ∈ R,

?
(
C, G + C11/k−1 (1/C)

)
≤ �k−1(1/C) ·min

{
1, C

(
k−1(1/C)

)−1
[( |G |) +

(
1 + |G |k−1(1/C)

)−3}
.

We claim that

(4.34)
k−1 (1/C)(

1 + |G |k−1(1/C)
)3 . C[( |G |)

whenever C[( |G |) ≤ �
2
i−1(1/C).

First, let us show that for any n ∈ (0, 1], the condition C[( |G |) ≤ �n
2
i−1(1/C) implies that

(4.35) Ci∗
(
1

|G |

)
≤ n |G |i−1

(
1

C

)
.

Indeed, by (2.9), we have |G |[( |G |) ≥ �
2
i∗(1/|G |), thus

n |G |i−1
(
1

C

)
≥ 2

�
C |G |[( |G |) ≥ Ci∗

(
1

|G |

)
.

Notice also that n1/3 |G |i−1(1/C) ≥ 1 since otherwise, by (4.5),

1 < Ci∗
(

1

n1/3 |G |

)
<

1

n2/3
Ci∗

(
1

|G |

)
,

which entails that n2/3 < Ci∗(1/|G |), i.e. n1/3 |G |i−1(1/C) < n−2/3Ci∗(1/|G |) contrary to (4.35).
To show (4.34), let us suppose that C[( |G |) ≤ �

2
i−1(1/C), thus |G |i−1(1/C) ≥ 1. By (4.5), we have

Ci∗(1/|G |) = i∗(1/|G |)
i∗

(
|G |i−1(1/C) · 1/|G |

) ≥ 1

( |G |i−1(1/C))2 ,

which, by Proposition 4.3, gives

C |G |[( |G |) ≥ �
2
Ci∗(1/|G |) & |G |k−1(1/C)

(1 + |G |k−1 (1/C))3 ,

proving (4.34), and (4.28) follows. The inequality (4.29) holds by the same argument as in the proof of
Theorem 4.7. �

Remark 4.9. In statements of Theorems 4.7 and 4.8, we can replace 11/k−1 (1/C) by 11/i−1 (1/C) . Indeed, let
us observe that if 0 < A1 ≤ A2 < 1/G0 then��1A1 − 1A2 �� ≤

∫
(A1 ,A2 ]

B a(dB)

≤ A−1
1
A2
2
ℎ(A2)

. A−1
1
A2
2
k∗(1/A2),(4.36)
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where in the last estimate we have used (4.2). Hence, by (4.9), we get

(4.37)
��1A1 − 1A2 �� . A−11 A22i∗(1/A2).

Therefore, by (4.36), (4.37), and Proposition 4.3, there is � ≥ 1 such that

(4.38)
���11/k−1 (1/C) − 11/i−1 (1/C)

��� ≤ � 1

Ci−1(1/C) ,

provided that 0 < C < 1/i(G0). Now, let us suppose that 8�2CZ
(
|G |

)
≤ 1. Then, by (2.10) and (4.5),

1

C
≥ 8�2Z

(
|G |

)
≥ 4�2i∗

(
1

|G |

)
≥ i∗

(
2�

|G |

)
,

that is

(4.39) |G | ≥ 2�

i−1(1/C) .

Hence, by (4.38), ���G + C (11/k−1 (1/C) − 11/i−1 (1/C)
)��� ≥ |G | − �

i−1(1/C) ≥ |G |
2
,

which together with monotonicity and the doubling property of Z , gives

Z
(��G + C (11/k−1 (1/C) − 11/i−1 (1/C)

) ��) . Z ( |G |) .
Similarly, if C[( |G |) ≤ �n

2
i−1(1/C), then

|G |i−1(1/C) ≥ n−1/3,
thus, by taking n = (2�)−3, we obtain (4.39). Hence, by monotonicity and the doubling property of [, we
again obtain

[

(���G + C (11/k−1 (1/C) − 11/i−1 (1/C)
)���
)
. [( |G |).

4.2. Estimates from below. In this section we develop estimates from below on the density ?(C, · ). The
main result is Theorem 4.11. Its proof is inspired by the ideas from [42], see also [23]. Thanks to Theorem
3.3, we can generalize results obtained in [42] to the case when −q′′ satisfies the weak lower scaling of index
U − 2 for U > 0 together with a certain additional condition. We use the following variant of the celebrated
Pruitt’s result [45, Section 3] adapted to subordinators.

Proposition 4.10. Let T be a subordinator with the Lévy–Khintchine exponent

k (b) = −8b1 −
∫
(0,∞)

(
48 b G − 1

)
a(dG).

Then there is an absolute constant 2 > 0 such that for all _ > 0 and C > 0,

P

(
sup
0≤B≤C

��)B − B1_�� ≥ _) ≤ 2Cℎ(_).

Proof. We are going to apply the estimates [45, (3.2)]. To do so, we need to express the Lévy–Khintchine
exponent of )B − B1_ in the form used in [45, Section 3], namely

k̃ (b) = k (b) + 8b1_ = −8b
(
1 − 1_ +

∫
(0,∞)

H

1 + |H |2 a(dH)
)
−

∫
(0,∞)

(
48 b H − 1 − 8Hb

1 + |H |2
)
a(dH).

Since ∫
(0,_]

H |H |2
1 + |H |2 a(dH) −

∫
(_,∞)

H

1 + |H |2 a(dH) =
∫
(0,_]

H a(dH) −
∫
(0,∞)

H

1 + |H |2 a(dH),
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we have

" (_) = 1

_

����1 − 1_ +
∫
(0,∞)

H

1 + |H |2 a(dH) +
∫
(0,_]

H |H |2
1 + |H |2 a(dH) −

∫
(_,∞)

H

1 + |H |2 a(dH)
����

=
1

_

����1 − 1_ +
∫
(0,_]

H a(dH)
���� = 0.

Hence, by [45, (3.2)],

P

(
sup
0≤B≤C

��)B − B1_�� ≥ _) ≤ 2Bℎ(_),

as desired. �

Theorem 4.11. LetT be a subordinator with the Laplace exponent q. Suppose that−q′′ ∈ WLSC(U−2, 2, G0)
for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0, and assume that one of the following conditions holds true:

(i) −q′′ ∈ WUSC(V − 2, �, G0) for some � ≥ 1 and U ≤ V < 1, or

(ii) −q′′ is a function regularly varying at infinity with index −1. If G0 = 0 we also assume that −q′′ is

regularly varying at zero with index −1.

Then there exists d0 > 0, so that for all 0 < d1 < d0, 0 < d2 there is � > 0 such that for all C ∈ (0, 1/i(G0)),
and all G > 0 satisfying

− d1

i−1(1/C) ≤ G − Cq′
(
i−1(1/C)

)
≤ d2

i−1(1/C) ,

we have

(4.40) ? (C, G) ≥ �i−1(1/C).
Remark 4.12. From the proof of Theorem 4.11 it stems that if G0 = 0, one can obtain the same statement
under the condition that −q′′ is (−1)-regular at infinity and satisfies upper scaling at 0 with U ≤ V < 1.
Alternatively, one can assume that −q′′ satisfies upper scaling at infinity with U ≤ V < 1 and varies regularly
at zero with index −1. The same remark applies to Proposition 4.14.

Proof. First let us observe that it is enough to prove that (4.40) holds true for a certain " ≥ 1, all C ∈
(0, 1/i(G0)) and all G > 0 satisfying

− d1

i−1("/C) ≤ G − Cq′
(
i−1(1/C)

)
≤ d2

i−1("/C) .

Indeed, since i−1 is nondecreasing and has upper scaling property (see Proposition 4.3), it has a doubling
property. Hence, the lemma will follow immediately with possibly modified d0.

Without loss of generality we can assume that 1 = 0. Let _ > 0, whose value will be specified later. We
decompose the Lévy measure a(dG) as follows: Let a1(dG) be the restriction of 1

2
a(dG) to the interval (0, _],

and
a2 (dG) = a(dG) − a1 (dG).

We set

q1 (D) =
∫
(0,∞)

(
1 − 4−DB

)
a1(dB), q2 (D) =

∫
(0,∞)

(
1 − 4−DB

)
a2(dB).

Let us denote by T
( 9) the subordinator having the Laplace exponent q 9 , for 9 ∈ {1, 2}. Let k 9 (b) = q 9 (−8b).

Notice that 1

2
a ≤ a2 ≤ a, thus

1

2
q ≤ q2 ≤ q,

and for every = ∈ N,

(4.41) 1

2
(−1)=+1q (=) ≤ (−1)=+1q (=)

2
≤ (−1)=+1q (=) .

Therefore, for all D > 0,

(4.42) 1

2
i(D) ≤ i2(D) ≤ i(D).



24 TOMASZ GRZYWNY, ŁUKASZ LEŻAJ, AND BARTOSZ TROJAN

Next, by Theorem 3.3, the random variables ) (2)
C and )C are absolutely continuous. Let us denote by ? (2) (C, · )

and ?(C, · ) the densities of ) (2)
C and )C , respectively.

Let " ≥ 2"0 + 1, where "0 is determined in Corollary 3.5 for the process T
(2) . For 0 < C < 1/i(G0),

we set
GC = Cq

′
2

(
i−1("/C)

)
.

Since i−1("/C) > G0, we have
GC

C
= q′

2

(
i−1("/C)

)
≤ q′

2
(G0).

Let
F2 = (q′

2
)−1(GC/C) = i−1("/C).

Then, by (4.42) we get

i2(F2) ≥
1

2
i
(
i−1("/C)

)
=
"

2C
≥ "0

C
.

Moreover, by Corollary 4.5 together with (4.42) we get

C
(
q2(F2) − F2q

′
2
(F2)

)
. Ci2

(
F2

)
. 1.

Hence, by Corollary 3.5,

(4.43) ? (2) (C, GC ) &
1√

C (−q′′
2
) (F2)

.

Notice that, by (4.41) and Remark 3.4, the implied constant in (4.43) is independent of C and _. Since

(−q′′
2
) (F2) ≤ (−q′′)

(
i−1("/C)

)
=

"

C
(
i−1("/C)

)2 ,
by (4.43) and monotonicity of i−1, we get

(4.44) ? (2) (C, GC ) ≥ �1i
−1(1/C),

for some constant �1 > 0.
Next, by the Fourier inversion formula

sup
G∈R

��mG ? (2) (C, G)�� .
∫
R

4−Cℜk2 ( b ) |b | db

.

∫
R

4−
C
2
ℜk ( b ) |b | db,

thus, by [23, Proposition 3.4], and Propositions 4.2 and 4.3 we see that there is �2 > 0 such that for all
C ∈ (0, 1/i(G0)),

sup
G∈R

��mG ? (2) (C, G)�� ≤ �2

(
i−1(1/C)

)2
.

By the mean value theorem, for H ∈ R, we get��? (2) (C, H + GC ) − ? (2) (C, GC )�� ≤ �2 |H |
(
i−1(1/C)

)2
.

Hence, for H ∈ R satisfying

|H | ≤ �1

2�2i−1(1/C)
,

by (4.44), we get

? (2) (C, H + GC ) ≥ ? (2) (C, GC ) − �2 |H |
(
i−1(1/C)

)2
≥ �1

2
i−1(1/C).
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Therefore,

?(C, G) =
∫
R

? (2) (C, G − H)P
(
)
(1)
C ∈ dH

)
≥ �1

2
i−1(1/C) · P

(��G − GC − ) (1)
C

�� ≤ �0

i−1(1/C)

)

≥ �1

2
i−1(1/C) · P

(��G − GC − ) (1)
C

�� ≤ �0

i−1("/C)

)

=
�1

2
i−1(1/C) · P

(���G − G̃C − (
1

2
C1_ − (G̃C − GC )

)
−

(
)
(1)
C − 1

2
C1_

) ��� ≤ �0

i−1("/C)

)
,

where we have set �0 = �1(2�2)−1 and

G̃C = Cq
′(i−1("/C)

)
.

Let d0 =
1

2
�0 and

_ =
1

i−1("/C) .(4.45)

We have

1

2
C1_ − (G̃C − GC ) =

1

2
C1_ − Cq′1(1/_)

=
C

2

∫
(0,_]

B
(
1 − 4−B/_

)
a(dB).

Thus, 1

2
C1_ − (G̃C − GC ) is nonnegative and in view of (4.2) and (4.45),

1

2
C1_ − (G̃C − GC ) ≤ �3C_i(1/_)

=
�3"

i−1("/C) ,(4.46)

for some constant �3 > 0. Next, setting

d(C) = _−1
(
1

2
C1_ − (G̃C − GC )

)
,

we get

inf
C∈(0,1/i (G0 ))

{
P

(���G − G̃C − _d(C) − (
)
(1)
C − 1

2
C1_

)��� ≤ �0_

)
: G ≥ 0,−d1_ ≤ G − G̃C ≤ d2_

}

≥ inf
C∈(0,1/i (G0))

{
P

(���H − _−1 () (1)
C − 1

2
C1_

)��� ≤ �0

)
: − d1 − d(C) ≤ H ≤ d2

}
.(4.47)

Hence, the problem is reduced to showing that the infimum above is positive. Let us consider a collection
{.C : C ∈ (0, 1/i(G0))} of infinitely divisible nonnegative random variables .C = _−1

(
)
(1)
C − 1

2
C1_

)
. The Lévy

measure corresponding to .C is

(4.48) `C (�) = Ca1
(
_�

)
for any Borel subset � ⊂ R. Since for each ' > 1,

1
(1)
'_

=

∫
(0,'_]

H a1(dH)

=
1

2

∫
(0,_]

H a(dH) = 1

2
1_,
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by Proposition 4.10,

P
(
|.C | ≥ '

)
= P

(���) (1)
C − 1

2
C1_

��� ≥ '_
)

. C

∫
(0,∞)

min
{
1, '−2_−2B2

}
a1(dB),

thus,

P
(
|.C | ≥ '

)
. C_−2'−2

∫
(0,_]

B2 a(dB)

. C'−2ℎ(_)

. C'−2i(1/_)
where in the last estimate we have used (4.2). Therefore, recalling (4.45) we conclude that the collection is
tight. Next, let

(
(.C= , H=) : = ∈ N

)
be a sequence realizing the infimum in (4.47). By the Prokhorov theorem,

we can assume that (.C= : = ∈ N) is weakly convergent to the random variable .0. We note that .C= has the
probability distribution supported in

[
− 1

2
C=_

−1
= 1_=

,∞
)

where _= is defined as _ corresponding to C=.
Suppose that (C= : = ∈ N) contains a subsequence convergent to C0 > 0. Then .0 = .C0 and the support of

its probability distribution equals
[
− 1

2
C0_

−1
0
1_0 ,∞

)
. Since d(C0) ≤ 1

2
C0_

−1
0
1_0 , we easily conclude that the

infimum in (4.47) is positive.
Hence, it remains to investigate the case when (C= : = ∈ N) has no positive accumulation points. If zero is

the only accumulation point then (_= : = ∈ N) has a subsequence convergent to zero. Otherwise (C=) diverges
to infinity, thus G0 = 0 and (_=) contains a subsequence diverging to infinity. In view of (4.46), d(C) is
uniformly bounded in C. Thus, after taking a subsequence we may and do assume that there exists a limit

d̃ = lim
=→∞

d(C=).

By compactness we can also assume that (H= : = ∈ N) converges to H0 ∈ [−d1 − d̃, d2]. Consequently, to
prove that the infimum in (4.47) is positive it is sufficient to show that

(4.49) P
(
|H0 − .0 | ≤ 1

2
�0

)
> 0.

Observe that (4.49) is trivially satisfied if the support of the probability distribution of .0 is the whole real
line. Therefore, we can assume that .0 is purely non-Gaussian. In view of [47, Theorem 8.7], it is also
infinitely divisible.

Given F : R→ R a continuous function satisfying��F (G) − 1
�� ≤ � ′|G |, and

��F (G)�� ≤ � ′|G |−1,(4.50)

we write the Lévy–Khintchine exponent of .C= in the form

k= (b) = −8bW= −
∫
(0,∞)

(
48 b B − 1 − 8bBF (B)

)
`C= (dB)

where

W= =

∫
(0,∞)

BF (B) `C= (dB) − 1

2
_−1= C=1_=

.

Since (.C= : = ∈ N) converges weakly to .0, there are W0 ∈ R and f-finite measure `0 on (0,∞) satisfying∫
(0,∞)

min
{
1, B2

}
`0(dB) < ∞,

such that the Lévy–Khintchine exponent of .0 is

k0(b) = −8bW0 −
∫
(0,∞)

(
48 b B − 1 − 8bBF (B)

)
`0(dB)
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where

(4.51) W0 = lim
=→∞

W=.

Moreover, for any bounded continuous function 5 : R→ R vanishing in a neighborhood of zero, we have

(4.52) lim
=→∞

∫
(0,∞)

5 (B) `C= (dB) =
∫
(0,∞)

5 (B) `0(dB).

Next, let us fix F satisfying (4.50) which equals 1 on [0, 1]. In view of (4.48) and the definition of a1 the
support of `C= is contained in [0, 1]. Hence, W= = 0 for every = ∈ N and consequently, W0 = 0. We also
conclude that supp `0 ⊂ [0, 1].

At this stage we consider the cases (i) and (ii) separately. In (ii) we need to distinguish two possibilities: if
(C=) tends to zero then also (_=) approaches to zero, and we impose that −q′′ is a function regularly varying
at infinity with index −1; otherwise (C=) tends to infinity as well as (_=), thus G0 = 0 and we additionally
assume that −q′′ is a function regularly varying at zero with index −1. For the sake of clarity of presentation,
we restrict attention to the first possibility only. In the second one the reasoning is analogous. We show that
the support of the probability distribution of .0 is the whole real line. By [47, Theorem 24.10], the latter can
be deduced from

(4.53)

∫
(0,∞)

min{1, B} `0(dB) = ∞.

Since supp `0 ⊂ [0, 1], for each n ∈ (0, 1) we can write∫
(0,∞)

min{1, B} `0 (dB) ≥
∫
(n /2,1]

B `0 (dB),

thus to conclude (4.53), it is enough to show that

(4.54)

∫
(n /2,1]

B `0 (dB) & log n−1.

For the proof, for any n ∈ (0, 1) we define the following bounded continuous function

5n (B) =




0 if B < n/2,
2B − n, if n/2 ≤ B < n,
B if n ≤ B < 1,

1 if B ≥ 1.

(4.55)

We have, in view of (4.52),

(4.56)

∫
(n /2,1]

B `0(dB) ≥
∫
(0,1]

5n (B) `0(dB) = lim
=→∞

∫
(0,1]

5n (B) `C= (dB) ≥ lim inf
=→∞

∫
(n ,1]

B `C= (dB).

Let us estimate the last integral. We write∫
(n ,1]

B `C (ds) = C_−1
∫
(_n ,_]

B a1(dB)

=
1

2
C_−1

∫
(_n ,_]

B a(dB).

By the Fubini–Tonelli theorem, we get∫
[_n ,_)

B a(dB) =
∫ _

_n

D−2
∫
(0,D]

B2 a(dB) dD + _ (_) − _n (_n).

Thus,

(4.57) 2

∫
[n ,1)

B `C (dB) = C_−1
∫ _

_n

 (D) dD + C (_) − Cn (_n).



28 TOMASZ GRZYWNY, ŁUKASZ LEŻAJ, AND BARTOSZ TROJAN

Setting I = 1/_, by (4.2) and (4.45), we obtain

C (_) ≈ Ci(I) ≈ 1.

Moreover, since i is 1-regularly varying function at infinity, we have

Cn (_n) ≈ Cni(I/n) = "n i(I/n)
i(I) → ",

as I tends to infinity. Therefore, it remains to estimate the integral in (4.57). Using (4.2) we get

C_−1
∫ _

_n

 (D) dD ≈ I

i(I)

∫ I−1

n I−1
i
(
D−1

)
dD

=
I

i(I)

∫ n −1I

I

D−2i(D) dD

=
q′(I) − q′

(
n−1I

)
I
(
− q′′(I)

) .

Since −q′′(B) = B−1ℓ(B) for a certain function ℓ slowly varying at infinity, by [3, Theorem 1.5.6],

q′(I) − q′
(
n−1I

)
I
(
− q′′(I)

) =

∫ n −1

1

ℓ(IC)
ℓ(I)

dC

C
→ log n−1,

as I tends to infinity. Hence,

lim inf
=→∞

∫
(n ,1]

B `C= (dB) & log n−1,

which by (4.56) implies (4.54).
Next, let us consider the case (i) that is when −q′′ ∈ WUSC(V − 2, �, G0) with � ≥ 1 and U ≤ V < 1. We

claim that for all n ∈ (0, 1),

(4.58)

∫
(0,n )

B2 `0(dB) > 0.

To see this, it is enough to show that there is � > 0 such that for all n ∈ (0, 1] and C ∈ (0, 1/i(G0)),

(4.59)

∫
(0,n )

B2 `C (dB) ≥ �n2−U.

For the proof, we select a continuous function on R such that

1(−1,1) ≤ [ ≤ 1(−2,2) ,

and for each g > 0 set
[g (G) = [(g−1G).

Since for 0 < 2g < n ,∫
(0,∞)

B2
(
[n (B) − [g (B)

)
`C (dB) +

∫
(0,2g)

B2[g (B) `C (dB) ≥
∫
(0,n )

B2 `C (dB),

by (4.59) and (4.52),∫
(0,∞)

B2
(
[n (B) − [g (B)

)
`0(dB) + lim sup

=→∞

∫
(0,∞)

B2[g (B) `C= (dB) ≥ �n2−U.

Since .C= and .0 are purely non-Gaussian, by [47, Theorem 8.7(2)],

lim
g→0+

lim sup
=→∞

∫
(−g,g)

B2 `C= (dB) = 0,

thus, ∫
(0,n )

B2 `0(dB) ≥ �n2−U,
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which entails (4.58).
We now turn to showing (4.59). We have∫

(0,n )
B2 `C (dB) = C_−2

∫
(0,_n )

B2 a1 (dB)

=
1

2
C_−2

∫
(0,_n )

B2 a(dB)

=
1

2
Cn2 (_n),

thus, by (4.2) and the weak lower scaling property of i,∫
(0,n )

B2 `C (dB) & Cn2i
(
n−1_−1

)
& Cn2−Ui(1/_),

which, together with the definition of _, implies (4.59).
Since the support of the probability distribution of .0 is not the whole real line, by [42, Lemma 2.5], the

inequality (4.58) implies that

(4.60)

∫
(0,∞)

min{1, B} `0 (dB) < ∞

and the support of .0 equals [j,∞) where

(4.61) j = W0 −
∫
(0,∞)

BF (B) `0(dB) = −
∫
(0,1]

B `0(dB).

To conclude (4.49), it is enough to show that j ≤ −d̃. Since d(C=) ≤ 1

2
C=_

−1
= 1_=

, the latter can be deduced
from

(4.62)
j = − lim

=→∞
1

2
C=_

−1
= 1_=

= − lim
=→∞

∫
(0,1]

B `C= (dB)

where the last equality is a consequence of (4.48) since∫
(0,1]

B `C (ds) = C_−1
∫
(0,_]

B a1 (dB)

=
1

2
C_−1

∫
(0,_]

B a(dB).(4.63)

Therefore, the problem is reduced to showing (4.62). By the monotone convergence theorem and (4.52) we
have

(4.64)

j = − lim
n→0+

∫
(0,1]

5n (B) `0(dB)

= − lim
n→0+

lim
=→∞

∫
(0,1]

5n (B) `C= (dB),

and

(4.65) lim
n→0+

∫
(0,1]

5n (B) `C= (dB) =
∫
(0,1]

B `C= (dB),

where 5n is as in (4.55). Hence, we just need to justify the change in the order of limits. In view of the
Moore–Osgood theorem [19, Chapter VII], it is enough to show that the limit in (4.65) is uniform with respect
to = ∈ N.
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We write ����
∫
(0,1]

B `C (dB) −
∫
(0,1]

5n (B) `C (dB)
���� ≤

∫
(0,n /2]

B `C (dB) +
∫
(n /2,n ]

(n − B) `C (dB)

≤
∫
(0,n ]

B `C (dB).

By (4.63) and the Fubini–Tonelli theorem, we have

2C−1_

∫
(0,n ]

B `C (dB) =
∫
(0,_n ]

B a(dB) =
∫ _n

0

D−2
∫
(0,D]

B2 a(dB) dD + _n (_n)

≈
∫ _n

0

i
(
D−1

)
dD + _ni

(
_−1n−1

)
.

By almost monotonicity of i,∫
(0,n ]

B `C (dB) ≈ C_−1
∫ _n

0

i
(
D−1

)
dD + Cni

(
_−1n−1

)

≈ C_−1
∫ _n

0

i
(
D−1

)
dD.(4.66)

Now, setting I = i−1("/C), by (4.45), we get

C_−1
∫ _n

0

i
(
D−1

)
dD = Ci−1("/C)

∫ n /i−1 ("/C)

0

i
(
D−1

)
dD

≈ I

i(I)

∫ n I−1

0

i
(
D−1

)
dD

=
I

i(I)

∫ ∞

n −1I
D−2i(D) dD

=
q′

(
n−1I

)
I
(
− q′′(I)

) .(4.67)

In view of Proposition 2.4, by the upper scaling of −q′′, there is 2 > 0 such that for all I > G0,

q′
(
n−1I

)
I
(
− q′′(I)

) ≤ 2n1−V .

Hence, the limit in (4.65) is uniform with respect to = ∈ N which justifies (4.62). This completes the proof
of (4.49) and the lemma follows. �

Theorem 4.13. Let T be a subordinator with the Laplace exponent q. Suppose that q ∈ WLSC(U, 2, G0) ∩
WUSC(V, �, G0) for some 2 ∈ (0, 1], � ≥ 1, G0 ≥ 0, and 0 < U ≤ V < 1. We also assume that 1 = 0. Then

for all 0 < j1 < j2 there is � ′ ≥ 1 such that for all C ∈ (0, 1/i(G0)) and G > 0 satisfying

j1 ≤ Gq−1(1/C) ≤ j2,

we have

(4.68) � ′−1q−1 (1/C) ≤ ?(C, G) ≤ � ′q−1(1/C).
Proof. First let us notice that Corollary 2.7 implies that −q′′ ∈ WLSC(U − 2, 2, G0) ∩ WUSC(V − 2, �, G0).
Therefore, the hypothesis of Theorem 4.11 is satisfied.

It is enough to show the first inequality in (4.68) since the latter is an easy consequence of (4.28) and
Proposition 4.6. For C ∈ (0, 1/i(G0)) and " ≥ 1, we set

GC = Cq
′(i−1("/C)

)
.
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By Proposition 4.6, the function i−1 possesses the weak lower scaling property. Moreover, there is �1 ≥ 1

such that for all A > max
{
i∗(G0), q(G0)

}
,

(4.69) �−1
1
i−1(A) ≤ q−1 (A) ≤ �1i

−1(A).
Hence, by Proposition 2.4, there is �2 ≥ 1, such that

(4.70) GC ≤ �2"
1−1/V 1

i−1(1/C) .

We select " ≥ 1 satisfying

�1�2"
1−1/V < j1.

Let d1 = d0/2 where d0 is determined in Theorem 4.11. Then, by (4.69) and (4.70), we have

GC −
d1

i−1(1/C) ≤ �1�2"
1−1/V 1

q−1 (1/C)
<

j1

q−1 (1/C) .(4.71)

Now set d2 = �1j2. Then, by (4.69), we have

(4.72) GC +
d2

i−1(1/C) >
d2

�1q
−1 (1/C) =

j2

q−1 (1/C) .

Putting (4.72) and (4.71) together, we conclude that[
j1

q−1 (1/C) ,
j2

q−1 (1/C)

]
⊆

(
GC −

d1

i−1(1/C) , GC +
d2

i−1(1/C)

)
.

Therefore, by Theorem 4.11, for all C ∈ (0, 1/i(G0)) and G > 0 satisfying

j1 ≤ Gq−1(1/C) ≤ j2,

we have
?(C, G) & i−1(1/C).

In view of (4.69), this completes the proof of the theorem. �

Proposition 4.14. Let T be a subordinator with the Laplace exponent q. Suppose that −q′′ ∈ WLSC(U −
2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0, and U > 0, and assume that one of the following conditions holds true:

(i) −q′′ ∈ WUSC(V − 2, �, G0) for some � ≥ 1 and U ≤ V < 1, or

(ii) −q′′ is a function regularly varying at infinity with index −1. If G0 = 0, we also assume that −q′′ is

regularly varying at zero with index −1.

We also assume that the Lévy measure a(dG) has an almost monotone density a(G). Then the probability

distribution of)C has a density ?(C, ·). Moreover, there are d0 > 0, and� > 0 such that for all C ∈ (0, 1/i(G0))
and

G ≥ 2Cq′
(
i−1(1/C)

)
+ 2d0

i−1(1/C) ,

we have

?(C, G) ≥ �Ca(G).
Proof. Let _ > 0. We begin by decomposing the Lévy measure a(dG). Let a1(dG) = a1 (G) dG and
a2(dG) = a2(G) dG where

a1(G) = a(G) − a2(G), and a2(G) = 1

2
a(G)1[_,∞) (G).

For D > 0, we set

q1 (D) = 1D +
∫
(0,∞)

(
1 − 4−DB

)
a1(dB), and q2(D) =

∫
(0,∞)

(
1 − 4−DB

)
a2(dB).
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Let T( 9) be the Lévy process having the Laplace exponent q 9 , for 9 ∈ {1, 2}. Since 1

2
a ≤ a1 ≤ a, we have

1

2
q ≤ q1 ≤ q,

and for all = ∈ N,

(4.73) 1

2
(−1)=+1q (=) ≤ (−1)=+1q (=)

1
≤ (−1)=+1q (=) .

Thus
1

2
i ≤ i1 ≤ i,

and so for all D > 0,

(4.74) i−1
1
(D/2) ≤ i−1(D) ≤ i−1

1
(D).

In particular, −q′′
1

has the weak lower scaling property. Therefore, by Theorem 3.3, ) (1)
C and )C are absolutely

continuous. Let us denote by ?(C, · ) and ? (1) (C, · ) the densities of )C and ) (1)
C , respectively. Observe that

T
(2) is a compound Poisson process with the probability distribution denoted by %C (dG). By [47, Remark

27.3],

(4.75) %C (dG) ≥ C4−Ca2 (R)a2 (G) dG.
We apply Theorem 4.11 to the process T(1) . For C > 0, we set

GC = Cq
′
1

(
i−1
1
(1/C)

)
.

Then there are � > 0 and d0 > 0, such that for all C ∈ (0, 1/i(G0)) and G ≥ 0 satisfying

GC −
d0

i−1
1
(1/C)

≤ G ≤ GC +
d0

i−1
1
(1/C)

,

we have
? (1) (C, G) ≥ �i−1

1
(1/C).

Therefore, if

_ = GC +
d0

i−1
1
(1/C)

,

then

(4.76)

∫ _

0

? (1) (C, G) dG & 1.

Next, if _ ≥ d0/i−1(1/C) then, by (4.2),

Ca2(R) = 1

2
C

∫ ∞

_

a(G) dG

≤ 1

2
Cℎ

(
d0/i−1(1/C)

)
. Cℎ

(
1/i−1(1/C)

)
. 1,(4.77)

where the penultimate inequality follows either by monotonicity of ℎ or by [23, Lemma 2.1 (4)]. Finally, by
(4.75) and (4.77), for G ≥ 2_ we can compute

?(C, G) =
∫
R

? (1) (C, G − H)%C (dH)

& C

∫
R

? (1) (C, G − H)a2(H) dH

=
1

2
C

∫ G

_

? (1) (C, G − H)a(H) dH.
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Hence, by the monotonicity of a, we get

?(C, G) & Ca(G)
∫ G−_

0

? (1) (C, H) dH

≥ Ca(G)
∫ _

0

? (1) (C, H) dH

& Ca(G),
where in the last estimate we have used (4.76). Using (4.73), and (4.74), we can easily show that

_ = GC +
d0

i−1
1
(1/C)

≤ Cq′
(
i−1(1/C)

)
+ d0

i−1(1/C) ,

and the proposition follows. �

4.3. Sharp two-sided estimates. In this section we present sharp two-sided estimates on the density ?(C, · )
assuming both the weak lower and upper scaling properties on −q′′. First, following [6, Lemma 13], we
prove an auxiliary result.

Proposition 4.15. Assume that the Lévy measure a(dG) has an almost monotone density a(G). Suppose that

−q′′ ∈ WUSC(W, �, G0) for some � ≥ 1, G0 ≥ 0 and W < 0. Then there are 0 ∈ (0, 1] and 2 ∈ (0, 1] such

that for all 0 < G < 0/G0,

a(G) ≥ 2G−3
(
− q′′(1/G)

)
.

Proof. Let 0 ∈ (0, 1]. Recall that by (4.30) we have a(B) ≤ �1B
−3 ( − q′′(1/B)) for any B > 0. Hence, for

any D > 0,

−q′′(D) =
∫ 0D−1

0

B24−DBa(B) dB +
∫ ∞

0D−1
B24−DBa(B) dB

≤ �1

∫ 0D−1

0

B−14−DB
(
− q′′(1/B)

)
dB + �2a(0D−1)

∫ ∞

0D−1
B24−DB dB(4.78)

where �2 is a constant from the almost monotonicity of a. If D > G0, then by the scaling property of −q′′ we
obtain

�1

∫ 0D−1

0

B−14−DB
(
− q′′(1/B)

)
dB ≤ �

∫ 0D−1

0

B−14−DB (BD)−W
(
− q′′(D)

)
dB

≤ �
(
− q′′(D)

) ∫ 0

0

B−1−W4−B dB.

By selecting 0 ∈ (0, 1] such that

2�

∫ 0

0

B−1−W4−B dB ≤ 1,

we get ∫ 0D−1

0

B−14−DB
(
− q′′(1/B)

)
dB ≤ 1

2

(
− q′′(D)

)
.

Since ∫ ∞

0D−1
B24−DB dB = D−34−0 (02 + 20 + 2),

by (4.78), we obtain

a(0D−1) ≥ 40

2(02 + 20 + 2) D
3
(
− q′′(D)

)
,

provided that D > G0. Now, by the monotonicity of −q′′ we conclude the proof. �

In view of Propositions 2.3 and 2.4, we immediately obtain the following corollary.
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Corollary 4.16. Assume that the Lévy measure a(dG) has an almost monotone density a(G). Suppose that

1 = 0 and q ∈ WLSC(U, 2, G0) ∩ WUSC(V, �, G0) for some 2 ∈ (0, 1], � ≥ 1, G0 ≥ 0 and 0 < U ≤ V < 1.

Then there are 0 ∈ (0, 1] and 2′ ∈ (0, 1] such that for all 0 < G < 0/G0,
a(G) ≥ 2′G−1q(1/G).

We are now ready to prove our main result in this section.

Theorem 4.17. Let T be a subordinator with the Laplace exponent q. Suppose that q ∈ WLSC(U, 2, G0) ∩
WUSC(V, �, G0) for some 2 ∈ (0, 1], � ≥ 1, G0 ≥ 0, and 0 < U ≤ V < 1. We also assume that 1 = 0 and

that the Lévy measure a(dG) has an almost monotone density a(G). Then there is G1 ∈ (0,∞] such that for

all C ∈ (0, 1/i(G0)) and G ∈ (0, G1),

?(C, G) ≈
{(
C (−q′′(F))

)− 1

2 exp
{
− C

(
q(F) − Fq′(F)

)}
if 0 < Gq−1(1/C) ≤ 1,

CG−1q(1/G) if 1 < Gq−1(1/C),

where F = (q′)−1 (G/C). If G0 = 0 then G1 = ∞.

Proof. First let us note that by Corollary 2.7, −q′′ ∈ WLSC(U − 2, 2, G0) ∩WUSC(V − 2, �, G0). Therefore,
we are in position to apply Proposition 4.14. By Corollary 3.7, for j1 = min {1, X}, we have

?(C, G) ≈
(
C (−q′′(F))

)− 1

2 exp
{
− C

(
q(F) − Fq′(F)

)}
,

whenever 0 < Gq−1(1/C) ≤ j1. Next, by Proposition 2.4 and (4.2), for C ∈ (0, 1/i(G0)), we get

Cq′
(
k−1 (1/C)

)
.

1

k−1(1/C) ,

thus, by Propositions 4.3 and 4.6, there is �1 > 0 such that

24Cq′
(
k−1(1/C)

)
+

2d′
0

i−1(1/C) ≤ �1

1

q−1 (1/C)
where d′

0
is the value of d0 determined in Proposition 4.14. Let j2 = max {1, �1, j1}. By Proposition 4.14,

and Corollary 4.16, there is 0 ∈ (0, 1] such that if Gq−1(1/C) > j2 and 0 < G < 0/G0, then

?(C, G) & Ca(G)
& CG−1q(1/G).

Furthermore, by (4.29), if Gq−1(1/C) > j2, then

?(C, G) . C[(G)
. CG−1q(1/G)

where in the last step we have also used (4.13). Lastly, by Theorem 4.13 there is �2 ≥ 1 such that for all
C ∈ (0, 1/i(G0)) and G > 0 satisfying

j1 ≤ Gq−1(1/C) ≤ j2,

we have

(4.79) �−1
2
q−1 (1/C) ≤ ?(C, G) ≤ �2q

−1 (1/C).
We next claim that the following holds true.

Claim 4.18. There exist 0 < 21 ≤ 1 ≤ 22 such that for all C ∈ (0, 21/i(G0)) and G > 0 satisfying

j1 ≤ Gq−1(1/C) ≤ j2,

we have

(4.80) Cq′
(
q−1 (22/C)

)
≤ G ≤ Cq′

(
q−1 (21/C)

)
.
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By Proposition 4.6, there is �3 ≥ 1 such that for A > i(G0),
�−1
3
i−1(A) ≤ q−1 (A) ≤ �3i

−1(A).
Let 22 = (j12′�−2

3
)−V/(1−V) ∈ [1,∞), where 2′ is taken from (4.15). Then

2−1
2
q−1 (22/C) ≥ �−2

3
2′2−1+1/V

2
q−1 (1/C) = j−1

1
q−1 (1/C).

Consequently, by Proposition 2.3,

G ≥ j1

q−1 (1/C) ≥ C
q
(
q−1 (22/C)

)
q−1 (22/C)

≥ Cq′
(
q−1 (22/C)

)
.(4.81)

Moreover, there is �4 ≥ 1 such that �4Gq
′(G) ≥ q(G) provided that G > G0. Therefore, if j2 ≤ �−1

4
, then

j2

q−1 (1/C) = j2C
q
(
q−1 (1/C)

)
q−1 (1/C)

≤ Cq′
(
q−1 (1/C)

)
,(4.82)

which yields (4.80) with 21 = 1. Otherwise, if j2 > �−1
4

, then we set 21 =
(
�4j2�

2

3
(2′)−1

)−V/(1−V) ∈ (0, 1].
Hence, by Proposition 4.6, for all C ∈ (0, 21/i(G0)),

�4j2

21
q−1 (21/C) ≤ �4j2�

2

3
(2′)−12−1+1/V

1
q−1(1/C) = q−1 (1/C).

Therefore,

G ≤ j2

q−1 (1/C)

≤ C j2
21

· q
−1 (21/C)
q−1 (1/C) ·

q
(
q−1 (21/C)

)
q−1 (21/C)

≤ Cq′
(
q−1(21/C)

)
,

which combined with (4.81) and (4.82), implies (4.80).
Now, using Claim 4.18 and Propositions 4.3 and 4.6 we deduce that for C ∈ (0, 21/i(G0)) and j1 ≤

Gq−1(1/C) ≤ j2,

(4.83) F ≤ q−1 (22/C) . q−1 (1/C),
and

(4.84) F ≥ q−1 (21/C) & q−1 (1/C).
Hence, CFq′(F) ≈ 1 and

(4.85) exp
{
− C

(
q(F) − Fq′(F)

)}
≈ 1.

Next, by Propositions 2.4 and 2.1,

F2
(
− q′′(F)

)
≈ Fq′(F),

thus, by (4.83) and (4.84), we obtain

1√
C
(
− q′′(F)

) ≈ F√
CFq′(F)

≈ q−1 (1/C),

which, together with (4.85), implies that(
C (−q′′(F))

)− 1

2 exp
{
− C

(
q(F) − Fq′(F)

)}
≈ q−1(1/C),
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for C ∈ (0, 21/i(G0)) and j1 ≤ Gq−1 (1/C) ≤ j2. In view of (4.79), the theorem follows in the case G0 = 0.
Now, it remains to observe that in the case G0 > 0 we may use positivity and continuity to conclude the claim
for all C ∈ (0, 1/i(G0)). �

5. Applications

5.1. Subordination. Let (�, g) be a locally compact separable metric space with a Radon measure ` having
full support on �. Assume that (-C : C ≥ 0) is a homogeneous in time Markov process on � with density
ℎ(C, · , · ), that is

P ( -C ∈ �| -0 = G) =
∫
�

ℎ(C, G, H) `(dH)

for any Borel set � ⊂ �, G ∈ � and C > 0. Assume that for all C > 0 and G, H ∈ �,

(5.1) C
− =

WΦ1

(
g(G, H)C−

1

W

)
≤ ℎ(C, G, H) ≤ C−

=
WΦ2

(
g(G, H)C−

1

W

)
where = and W are some positive constants, Φ1 and Φ2 are nonnegative nonincreasing function on [0,∞)
such that Φ1(1) > 0 and

(5.2) sup
B≥0

Φ2(B) (1 + B)=+W < ∞.

By � (C, G, H) we denote the heat kernel for the subordinate process
(
-)C : C ≥ 0

)
, that is

� (C, G, H) =
∫ ∞

0

ℎ(B, G, H)� (C,dB),

where
� (C, B) = P

(
)C ≥ B

)
.

Suppose that q ∈ WLSC(U, 2, G0) ∩WUSC(V, �, G0) for some 2 ∈ (0, 1], � ≥ 1, G0 > 0, and 0 < U ≤ V < 1.
We also assume that

lim
G→∞

q′(G) = 1 = 0,

and that the Lévy measure a(dG) has an almost monotone density a(G).
Claim 5.1. For all G, H ∈ � satisfying g(G, H)−W > G0, and any C ∈ (0, 1/i(G0)),

� (C, G, H) ≈
{
Cq

(
g(G, H)−W

)
g(G, H)−= if 0 < Cq

(
g(G, H)−W

)
≤ 1,(

q−1(1/C)
) =
W if 1 ≤ Cq

(
g(G, H)−W

)
.

By Proposition 2.3, q′ ∈ WLSC(U − 1, 2, G0) ∩ WUSC(V − 1, �, G0). Let 0 < A < q′(G+
0
). If 0 < _ ≤ �

then by setting

� = �
1

1−V _
− 1

1−V ,

the weak upper scaling property of q′ implies that

_A = _q′
(
(q′)−1 (A)

)
≥ q′

(
� (q′)−1(A)

)
.

Therefore,

(5.3) (q′)−1 (_A) ≤ �
1

1−V _
− 1

1−V (q′)−1(A).
Analogously, we can prove the lower estimate: If 0 < _ ≤ 2 then by setting

� = 2
1

1−U _−
1

1−U ,

we obtain
_A = _q′

(
(q′)−1 (A)

)
≤ q′

(
� (q′)−1(A)

)
,

and consequently,

(5.4) (q′)−1(_A) ≥ 2 1

1−U _−
1

1−U (q′)−1(A).
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Since (q′)−1 is nonincreasing the last inequality is valid for all 0 < _ ≤ 1. Let

� (C, G, H) = ©«
∫ 1

q−1 (1/C )

0

+
∫ ∞

1

q−1(1/C )

ª®¬
ℎ(B, G, H)� (C,dB)

= �1 (C, G, H) + �2 (C, G, H).
By Theorem 4.17,

�1 ≈
1

q−1(1/C)

∫
1

0

ℎ

(
D

q−1 (1/C) , G, H
)

1√
C (−q′′(F))

exp
(
− C

(
q(F) − Fq′(F)

))
dD(5.5)

where

F = (q′)−1
(

D

Cq−1(1/C)

)
.

Recall that, by Proposition 2.3, for all A > G0 we have

(5.6) Aq′(A) ≤ q(A) ≤ �1Aq
′(A).

We can assume that
Cq

(
2(��1)

1

1−V G0

)
< 1.

By (5.6) and the weak upper scaling of q′, we get

q′
(
q−1 (1/C)

)
≤ 1

Cq−1(1/C) ≤ �1q
′(q−1 (1/C))

≤ q′
(
(��1)−

1

1−V q−1 (1/C)
)
,

thus

(q′)−1
(

1

Cq−1(1/C)

)
≈ q−1 (1/C).

Hence, by (5.3) and (5.4), we obtain

(5.7) D−
1

1−U q−1(1/C) . F . D−
1

1−V q−1(1/C), D ∈ (0, 1].
Moreover, since F > G0, by (5.6) and Proposition 4.6,

Fq′(F) & q(F) − Fq′(F) =
∫ F

0

i(D)dD
D

≥
∫ F

G0

i(D)dD
D
& Fq′(F).

Thus, (5.7) entails that

(5.8) D−
U

1−U . C
(
q(F) − Fq′(F)

)
. D

− V
1−V , D ∈ (0, 1].

Next, by Proposition 4.6 and (5.6), we get

1√
C (−q′′(F))

≈ F√
Cq(F)

≈
√
D−1q−1 (1/C)F.

Therefore, by (5.7),

(5.9) D
− 2−U

2(1−U) q−1 (1/C) . 1√
C (−q′′(F))

. D
− 2−V

2(1−V) q−1 (1/C), D ∈ (0, 1].

Now, by (5.5) and (5.1) together with (5.8) and (5.9), we can estimate

�1 .
(
q−1(1/C)

) =
W

∫
1

0

Φ2

(
D
− 1

W �
1

W

)
D
− =

W
− 2−V

2(1−V) exp
(
− � ′′D−

U
1−U

)
dD,(5.10)
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and

�1 &
(
q−1(1/C)

) =
W

∫
1

0

Φ1

(
D
− 1

W �
1

W

)
D
− =

W
− 2−U

2(1−U) exp
(
− � ′D−

V

1−V
)
dD,(5.11)

where
� = g(G, H)Wq−1 (1/C).

Suppose that � ≤ 1. Since Φ1 and Φ2 are nonincreasing, by (5.10) and (5.11), we easily see that

�1 ≈
(
q−1 (1/C)

) =
W .

We also have

�2 .

∫ ∞

1

q−1 (1/C )

B
− =

W ?(C, B) dB .
(
q−1 (1/C)

) =
W .

Therefore,

� (C, G, H) ≈
(
q−1 (1/C)

) =
W .

We now turn to the case � > 1. By (5.2) and (5.10),

�1 .
(
q−1 (1/C)

) =
W �

− =
W
−1

∫
1

0

D
− V

2(1−V) exp
(
− � ′′D−

U
1−U

)
dD

. �−1g(G, H)−=.(5.12)

It remains to estimate �2. Let us observe that for all A > G0, if D ≥ 1 then by the weak upper scaling of q, we
have

q(A) ≤ q(AD) ≤ �DVq(A).
On the other hand, if 0 < D ≤ 1 then by (2.10) and the monotonicity of q, we get

Dq(A) ≤ q(AD) ≤ q(A).
Therefore, for all D > 0 and A > G0,

(5.13) min {1, D}q(A) ≤ q(AD) ≤ �max {1, DV}q(A).
Since g(G, H)−W > G0, by Theorem 4.17, (5.1), and estimates (5.13), we get

�2 . Cq
(
g(G, H)−W

)
g(G, H)−=

∫ ∞

1/�
Φ2

(
D
− 1

W

)
D
− =

W
−1

max
{
1, D−V

}
dD,

and

�2 & Cq
(
g(G, H)−W

)
g(G, H)−=

∫ ∞

1/�
Φ1

(
D
− 1

W

)
D
− =

W
−1

min {1, D} dD.

By (5.2), we have ∫
1

0

Φ2

(
D
− 1

W

)
D
− =

W
−V−1

dD .

∫
1

0

D−V dD < ∞,

thus,
�2 ≈ Cq

(
g(G, H)−W

)
g(G, H)−=.

Finally, since � > 1, by (2.10), we have

Cq
(
g(G, H)−W

)
= Cq

(
�−1q−1(1/C)

)
≥ �−1,

hence, by (5.12),
�1 . Cq

(
g(G, H)−W

)
g(G, H)−=,

proving the claim.
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Example 5.2. Let (�, g) be a nested fractal with the geodesic metric on �. Let 3F and 3 5 be the walk
dimension and the Hausdorff dimension of�, respectively. Let (-C : C ≥ 0) be the diffusion on� constructed
in [2, Section 7]. By [2, Theorem 8.18], the corresponding heat kernel satisfies (5.1) with = = 3 5 , W = 3F ,
and

Φ1 (B) = Φ2(B) = exp
(
−B

W
W−1

)
.

Let T be a subordinator with the Laplace exponent

q(B) = BU logf (2 + B),
where U ∈ (0, 1) and f ∈ R. Then, by Claim 5.1, the process (-)C : C ≥ 0) has density � (C, G, H) such that
for all G, H ∈ � and C > 0,

• if C > g(G, H)UW log−f (2 + g(G, H)−W) then

� (C, G, H) ≈ C−
=
UW log

− f=
UW

(
2 + C−1

)
,

• if C < g(G, H)UW log−f (2 + g(G, H)−W) then

� (C, G, H) ≈ Cg(G, H)−UW−= logf
(
2 + g(G, H)−W

)
.

Example 5.3. Let (�, g) be a complete manifold without boundary, having nonnegative Ricci curvature.
Then by [37], the heat kernel corresponding to the Laplace–Beltrami operator on � satisfies estimates (5.1)
with

Φ1 (B) = 4−�1B
2

, Φ2 (B) = 4−�2B
2

.

Now, one can take T with a Lévy-Khintchine exponent regularly varying at infinity with index U ∈ (0, 1) and
apply Claim 5.1 to obtain the asymptotic behavior of subordinate process.

5.2. Green function estimates. Let T = ()C : C ≥ 0) be a subordinator with the Laplace exponent q. If −q′′
has the weak lower scaling property of index U− 2 for some U > 0, then the probability distribution of )C has
a density ?(C, · ), see Theorem 3.3. In this section we want to derive sharp estimates on the Green function
based on Sections 3 and 4. Let us recall that the Green function is

� (G) =
∫ ∞

0

?(C, G) dC, G > 0.

We set

5 (G) = i(G)
q′(G) , G > 0.

Let us denote by 5 −1 the generalized inverse of 5 , i.e.

5 −1 (G) = sup{A > 0: 5 ∗ (A) = G}
where

5 ∗ (A) = sup
0<G≤A

5 (G).

Notice that by (2.9) and Proposition 2.3, for all G > G0,

5 ∗ (G) . G.(5.14)

In view of (4.2) and Proposition 4.3, the function i is almost increasing, thus by monotonicity of q′, 5 is
almost increasing as well. Therefore, there is 20 ∈ (0, 1] such that for all G > G0,

(5.15) 20 5
∗ (G) ≤ 5 (G) ≤ 5 ∗ (G).

Moreover, 5 has the doubling property on (G0,∞). Since i belongs to WLSC(U, 2, G0), by monotonicity of
q′, we conclude that 5 belongs to WLSC(U, 2, G0). It follows that 5 −1 ∈ WUSC(1/U,�, 5 ∗ (G0)) for some
� ≥ 1 and since 5 −1 is increasing, we infer that 5 −1 also has doubling property on ( 5 ∗ (G0),∞).
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Proposition 5.4. Suppose that 1 = 0 and −q′′ ∈ WLSC(U − 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0 and U > 0.

Then for each � > 0 and " > 0 there is � ≥ 1 so that for all G < �/G0,

�−1 1

Gq(1/G) ≤
∫ ∞

G

q′ ( 5 −1 ("/G) )

?(C, G) dC ≤ � 1

Gq(1/G) .

In particular, for each � > 0 there is � > 0 such that for all G < �/G0,

� (G) ≥ � 1

Gq(1/G) .

Proof. For " > 0 and G > 0 we set

�" (G) =
∫ ∞

G

q′ ( 5 −1 ("/G) )

?(C, G) dC.

Let us first show that for each " > 0 there are �" > 0 and � ≥ 1 such that for all G < �"/G0,

�−1 1

Gq(1/G) ≤
∫ ∞

G

q′ ( 5 −1 ("/G) )

?(C, G) dC ≤ � 1

Gq(1/G) .(5.16)

Let

�" = min
{
", 2−1

0
"0

}
·min

{
1,

G0

5 ∗ (G0)

}
where "0 is determined in Corollary 3.5, and 20 is taken from (5.15). We claim that the following holds true.

Claim 5.5. For each " > 0 there is � ≥ 1 so that for all G < �"/G0,

(5.17) �−1 1

q′
(
5 −1 (1/G)

) ≤ �" (G) ≤ � 1

q′
(
5 −1 (1/G)

) .
Suppose that

(5.18) C >
G

q′
(
5 −1 ("1/G)

)
with "1 = 2−1

0
"0. Notice that for G < �"/G0, we have G < "1/ 5 ∗ (G0). Hence, G0 ≤ 5 −1

(
"1/G

)
, thus by

monotonicity of q′, we obtain
G

C
≤ q′

(
5 −1 ("1/G)

)
≤ q′(G0).(5.19)

Moreover, for F = (q′)−1 (G/C) the condition (5.18) implies that

5 ∗ (F) ≥ "1/G,
which together with (5.15) gives

Ci(F) = G 5 (F) ≥ 20G 5 ∗(F)
≥ "0.(5.20)

Now, to justify the claim, let us first consider " ≥ "1. In view of (5.19) and (5.20) we can apply Corollary
3.5 to get

�" (G) ≈
∫ ∞

G

q′ ( 5 −1 ("/G) )

1√
C (−q′′(F))

exp
{
− C

(
q(F) − Fq′(F)

)}
dC.

Since, by Proposition 4.1 and Remark 3.2, for all F > G0,

q(F) − Fq′(F) ≈ ℎ(1/F)
≈  (1/F)
≈ F2

(
− q′′(F)

)
,
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after the change of variables C = G/q′(B), we can find �2 ≥ 1 such that for all G < �"/G0,∫ ∞

5 −1 ("/G)
exp{−�2G 5 (B)}

√
G 5 (B) dB

Bq′(B) . �" (G) .
∫ ∞

5 −1 ("/G)
exp{−�−1

2
G 5 (B)}

√
G 5 (B) dB

Bq′(B) .(5.21)

Recall that 5 −1 has the doubling property on ( 5 ∗ (G0),∞). Using now Proposition 2.3 and (5.15), we get

�" (G) &
∫

2 5 −1 ("/G)

5 −1 ("/G)
exp{−�2G 5

∗(B)}
√
G 5 ∗(B) dB

q(B)

&
1

q
(
5 −1("/G)

) 5 −1 ("/G)

&
1

q′
(
5 −1 ("/G)

) ,(5.22)

where the implicit constants may depend on " . Therefore, by monotonicity of 5 −1 and q′, the estimate
(5.22) gives

�" (G) & 1

q′
(
5 −1 (1/G)

) .(5.23)

This proves the first inequality in (5.17).
We next observe that (5.14) entails that 5 −1 (B) & B for B > 5 ∗ (G0), thus, by (5.23),

� (G) ≥ �"1
(G) & 1

q′(1/G)

&
1

Gq(1/G)(5.24)

where the last estimate follows by Proposition 2.3.
We next show the second inequality in (5.17). By (5.21), Proposition 2.3 and monotonicity of q,

�" (G) .
∫ ∞

5 −1 ("/G)
exp

{
− �−1

2
G 5 (B)

}√
G 5 (B) dB

q(B)

≤ 1

q
(
5 −1 ("/G)

) ∫ ∞

5 −1 ("/G)
exp

{
− �−1

2
G 5 (B)

}√
G 5 (B) dB

≤ 1

q
(
5 −1 ("/G)

) ∫ ∞

5 −1 ("/G)
exp

{
− 1

2�2
G 5 (B)

}
dB

where in the last inequality we have used

exp
{
− �−1

2
G 5 (B)

}√
G 5 (B) ≤ exp

{
− 1

2�2
G 5 (B)

}
.

Since i ∈ WLSC(U, 2, G0), by [6, Lemma 16],∫
R

exp
{
− �−1

2
G 5 ( |B |)

}
dB . 5 −1

(
"1/G

)
.

Finally, the doubling property of 5 −1, monotonicity of q, and Proposition 2.3 give

�" (G) . 1

q
(
5 −1 ("/G)

) 5 −1 ("1/G
)

.
1

q′
(
5 −1 (1/G)

)
where the implied constant may depend on " . This finishes the proof of (5.17) for " ≥ "1.
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We next consider 0 < " < "1. By monotonicity, the lower estimate remains valid for all " > 0.
Therefore, it is enough to show that for each 0 < " < "1, there is � ≥ 1 such that for all G < �"/G0,∫ G

q′ ( 5 −1 ("1/G) )

G

q′ ( 5 −1 ("/G) )

?(C, G) dC ≤ � 1

q′
(
5 −1 (1/G)

) .
By [23, Theorem 3.1], there is C0 > 0 such that for all 0 < C < C0,

?(C, G) . i−1(1/C).
If G0 = 0 then C0 = ∞. Since i is almost increasing we have

G

q′
(
5 −1 ("1/G)

) ≤ "1

i
(
5 −1 ("1/G)

)
.

"1

i
(
5 −1 ("1G0/�)

) .
Hence, by continuity and positivity of ?(C, G) and i−1(1/C), we can take

C0 ≥ G

q′
(
5 −1 ("1/G)

) .
Therefore, by the change of variables C = G/q′(B) we get∫ G

q′ ( 5 −1 ("1/G) )

G

q′ ( 5 −1 ("/G) )

?(C, G) dC .
∫ G

q′ ( 5 −1 ("1/G) )

G

q′ ( 5 −1 ("/G) )

i−1(1/C) dC

= G

∫ 5 −1 ("1/G)

5 −1 ("/G)
i−1

(
q′(B)
G

)
5 (B) dB

B2q′(B) .

Next, by monotonicity and the doubling property of 5 −1 and q′, we obtain∫ G

q′ ( 5 −1 ("1/G) )

G

q′ ( 5 −1 ("/G) )

?(C, G) dC . 1(
5 −1 ("/G)

)2 · 1

q′
(
5 −1 ("1/G)

) ∫ 5 −1 ("1/G)

5 −1 ("/G)
i−1

(
q′(B)
G

)
dB

.
1(

5 −1 (1/G)
)2 · 1

q′
(
5 −1 (1/G)

) ∫ 5 −1 ("1/G)

5 −1 ("/G)
i−1

(
q′(B)
G

)
dB.(5.25)

Since, by (5.15), for B ≥ 5 −1 ("/G) we have

q′(B)
G

=
i(B)
G 5 (B) . i

∗(B),

by monotonicity of i−1, Proposition 4.3, Remark 4.4 and the doubling property of 5 −1 and i−1, we get∫ 5 −1 ("1/G)

5 −1 ("/G)
i−1

(
q′(B)
G

)
dB .

(
5 −1 (1/G)

)2
,

which together with (5.25) gives (5.17) for 0 < " < "1. This completes the proof of Claim 5.5.
Our next task is to deduce (5.16) from Claim 5.5. By Lemma 2.9 and Proposition 2.3, there is a complete

Bernstein function q̃ such that q̃ ≈ q, and

5 (G) ≈ 5̃ (G) =
G2

(
− q̃′′(G)

)
q̃′(G)

for all G > G0. Let T̃ be a subordinator with the Laplace exponent q̃. By ?̃(C, · ) we denote the density of the
probability distribution of )̃C . We set

�̃ (G) =
∫ ∞

0

?̃(C, G) dC
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and

�̃" (G) =
∫ ∞

G

q̃′ ( 5̃ −1 ("/G) )

?̃(C, G) dC.

Fix " > 0. By Claim 5.5, there is �" > 0 such that for all G < �"/G0,

(5.26)

�̃" (G) ≈ 1

q̃′
(
5̃ −1 (1/G)

)
≈ 1

q′
(
5 −1 (1/G)

) .
On the other hand, since q̃ is the complete Bernstein function, by (5.24) and [34, Corollary 2.6], there is
�3 ≥ 1 such that

�−1
3

1

Gq̃(1/G)
≤ �̃" (G) ≤ �̃ (G) ≤ �3

1

Gq̃(1/G)
.

Therefore, by (5.26), for G < �"/G0,

(5.27)

1

q′
(
5 −1(1/G)

) ≈ �̃" (G) ≈ 1

Gq̃(1/G)

≈ 1

Gq(1/G) ,

and (5.16) follows for all � ≤ �" . Let us now consider � > �" . Observe that the functions[
�"

G0
,
�

G0

]
∋ G ↦→ 1

Gq(1/G) ,

and [
�"

G0
,
�

G0

]
∋ G ↦→

∫ ∞

G

q′ ( 5 −1 ("/G) )

?(C, G) dC,

are both positive and continuous, thus they are bounded for each �. Therefore, at the possible expense of
worsening the constant we can conclude the proof of the proposition. �

Proposition 5.6. Suppose that 1 = 0, −q′′ ∈ WLSC(U− 2, 2, G0) for some 2 ∈ (0, 1], G0 ≥ 0 and U > 0, and

that the Lévy measure a(dG) is absolutely continuous with respect to the Lebesgue measure with a monotone

density a(G). Then there is n ∈ (0, 1) such that for each � > 0, there is � ≥ 1 such that for all G < �/G0,∫ G

q′ ( 5 −1 (1/G) ) n

0

?(C, G) dC ≤ � 1

Gq(1/G) .

Proof. In view of (5.27), it is enough to show that for some n ∈ (0, 1) and all � > 0 there is � ≥ 1, such that
for all G < �/G0, ∫ G

q′ ( 5 −1 (1/G) ) n

0

?(C, G) dC ≤ � 1

q′
(
5 −1 (1/G)

) .(5.28)

Let n ∈ (0, 1) and

� = min

{
1,

G0

5 ∗ (G0)

}
.

Suppose that

(5.29) C ≤ G

q′
(
5 −1 (1/G)

) n,
that is

C ≤ 1

i∗
(
5 −1 (1/G)

) n .
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Hence, by monotonicity of i−1 and q′,

G ≥ 1

5 ∗
(
i−1(n/C)

) =
C

n
q′

(
i−1(n/C)

)
≥ C

n
q′

(
i−1(1/C)

)
.

By Proposition 4.3 and the scaling property of q′, there are 2 ∈ (0, 1] and � ≥ 1 such that

G ≥ C

n
q′

(
�k−1(1/C)

)
≥ C

n
2�U−1q′

(
k−1 (1/C)

)
.

Therefore, by taking n = (24)−12�U−1, we get

G ≥ 24Cq′
(
k−1(1/C)

)
.

Since a(G) is the monotone density of a(dG), by Theorem 4.8 we get∫ G

q′ ( 5 −1 (1/G) ) n

0

?(C, G) dC . i(1/G)
G

(
G

q′
(
5 −1 (1/G)

) )2.
By (5.14), 5 −1 (B) & B for B > 5 ∗ (G0), thus using (4.4),

Gi(1/G)
q′

(
5 −1 (1/G)

) ≤ i(1/G)
i
(
5 −1 (1/G)

) . 1,

which entails (5.28). The extension to arbitrary � follows by continuity and positivity argument as in the
proof of Proposition 5.4. �

It is possible to get the same conclusion as in Proposition 5.6 without imposing the existence of the
monotone density of a(dG), however instead we need to assume the weak upper scaling property in −q′′.

Proposition 5.7. Suppose that 1 = 0 and −q′′ ∈ WLSC(U − 2, 2, G0) ∩ WUSC(V − 2, �, G0) for some

2 ∈ (0, 1], � ≥ 1, G0 ≥ 0 and 1

2
< U ≤ V < 1. Then there is n ∈ (0, 1) such that for each � > 0, there is

�1 ≥ 1, so that for all G < �/G0, ∫ G

q′ ( 5 −1 (1/G) ) n

0

?(C, G) dC ≤ �1

1

Gq(1/G) .(5.30)

Proof. Let

� = min

{
1,

G0

5 ∗ (G0)

}
.

By repeating the same reasoning as in the proof of Proposition 5.6, we can see that the condition

C ≤ G

q′( 5 −1 (1/G)) n,

implies

G ≥ 24Cq′
(
k−1(1/C)

)
,

for n = (24)−12�U−1. Therefore, we can apply Theorem 4.7 to get

(5.31)

∫ G

q′ ( 5 −1 (1/G) ) n

0

?(C, G) dC . i(1/G)
∫ G

q′ ( 5 −1 (1/G) ) n

0

Ci−1(1/C) dC
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where the implied constant may depend on n . Since U > 1

2
, by Proposition 4.3, [1, Theorem 3] and the

doubling property of i−1, we obtain∫ G

q′ ( 5 −1 (1/G) ) n

0

Ci−1(1/C) dC .
(

G

q′
(
5 −1 (1/G)

) )2i−1 (q′
(
5 −1 (1/G)

)
nG

)

.

(
G

q′
(
5 −1 (1/G)

) )2i−1 (q′
(
5 −1 (1/G)

)
G

)
.(5.32)

In view of (5.15), we have

q′
(
5 −1 (1/G)

)
G

=
i∗

(
5 −1 (1/G)

)
G 5 ∗

(
5 −1 (1/G)

)
. i∗

(
5 −1 (1/G)

)
,

thus, by Proposition 4.3 and Remark 4.4,

i(1/G)G2
q′

(
5 −1 (1/G)

) i−1(q′
(
5 −1 (1/G)

)
G

)
.

i∗(1/G)G2
q′

(
5 −1 (1/G)

) 5 −1 (1/G)
= G 5 −1 (1/G) i∗(1/G)

i∗
(
5 −1 (1/G)

) .
In view of Propositions 2.3 and 4.6, we have 5 (B) ≈ B for B > G0, thus, 5 −1 (B) ≈ B, for B > 5 ∗ (G0). Hence,

i(1/G)G2
q′

(
5 −1 (1/G)

) i−1 (q′
(
5 −1 (1/G)

)
G

)
. 1.

Therefore, by (5.31) and (5.32) we conclude that∫ G

q′ ( 5 −1 (1/G) ) n

0

?(C, G) dC . 1

q′
(
5 −1 (1/G)

) ,
which, by Proposition 5.4 and (5.27), entails (5.30). The extension to arbitrary � follows by positivity and
continuity argument. �

Theorem 5.8. Let T be a subordinator with the Laplace exponent q. Suppose that

q ∈ WLSC(U, 2, G0) ∩ WUSC(V, �, G0)
for some 2 ∈ (0, 1], � ≥ 1, G0 ≥ 0, and 0 < U ≤ V < 1. We assume that one of the following conditions

holds:

(i) The Lévy measure a(dG) is absolutely continuous with respect to the Lebesgue measure with mono-

tone density a(G), or

(ii) U > 1

2
.

Then for each � > 0 there is �1 ≥ 1 such that for all G < �/G0,

�−1
1

1

Gq(1/G) ≤ � (G) ≤ �1

1

Gq(1/G) .

Proof. By Corollary 2.7, −q′′ ∈ WLSC(U − 2, 2, G0) ∩ WUSC(V − 2, �, G0). Let ?(C, · ) be the transition
density of )C . In view of Propositions 5.4, 5.6 and 5.7, and (5.27), it is enough to show that for each � > 0

and n ∈ (0, 1) there is �1 > 0 such that for all G < �/G0,∫ G

q′ ( 5 −1 (1/G) )

G

q′ ( 5 −1 (1/G) ) n
?(C, G) dC ≤ �1

1

q′
(
5 −1 (1/G)

) .(5.33)

By [23, Theorem 3.1], there is C0 > 0 such that for all C ∈ (0, C0),
?(C, G) . i−1(1/C).
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If G0 = 0 then C0 = ∞. We can take

C0 ≥ G

q′
(
5 −1 (1/G)

) .
Therefore, by monotonicity of i−1, we get∫ G

q′ ( 5 −1 (1/G) )

G

q′ ( 5 −1 (1/G) ) n
?(C, G) dC .

∫ G

q′ ( 5 −1 (1/G) )

G

q′ ( 5 −1 (1/G) ) n
i−1(1/C) dC

≤ G

q′
(
5 −1 (1/G)

) i−1 (q′
(
5 −1 (1/G)

)
nG

)
.

By the doubling property of i−1, definition of 5 and Remark 4.4,

i−1
(
q′

(
5 −1(1/G)

)
nG

)
. i−1

(
q′

(
5 −1 (1/G)

)
G

)

≤ 5 −1 (1/G)

.
1

G
,

since by the weak upper scaling property of −q′′, 5 (B) ≈ B for all B > 5 ∗(G0). Consequently, we obtain
(5.33) and the theorem follows. �
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