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EXISTENCE RESULT FOR GENERALIZED VARIATIONAL

EQUALITY

ALLAHKARAM SHAFIE, FARID BOZORGNIA

Abstract. In this paper we prove the existence of solution to the Stam-
pachia variational inequality under weakened assumptions on the given
operator. As a consequence, we provide some sufficient conditions that
under them the generalized equation 0 ∈ T (x) has a solution. Further-
more, by using generalized results of continuity and monotonicity, we
extend the related existence results and we answer an open problem
proposed by Kassay and Miholka (J Optim Theory Appl 159 (2013)
721-740).

Keywords: Variational inequality; generalized monotonicity; generalized
continuity; existence results.

1. Introduction

The theory of variational inequality has been investigated extensively as
methodology to study of equilibrium problems. Equilibrium is a central
concept in numerous disciplines including economics, management science,
operations research, and engineering, see [5, 8, 11].

In 1966, Hartman and Stampacchia introduced the variational inequality
as a tool for the study of partial differential equations with applications
principally drawn from mechanics, see [1].

In [2] existence result for variational inequalities is given by generalized
monotone operators. As a consequence, the authors conclude the subjectiv-
ity for some classes of set-valued operators. By strengthening the continuity
assumptions, they show similar subjectivity results without any monotonic-
ity assumption.

Finding the zeroes of a set-valued map T (x) are particularly important.
Indeed, zeroes of the subdifferential operator of a function defined on the
same space are precisely the minimum points of this function. Hence, there
is an important link between the theory of (generalized) monotone operators
and optimization theory, see for instance [4, 7, 12].

2. Preliminarily and Mathematical background

Throughout this paper, X is Banach space, X∗ denotes its topological
dual and 〈·, ·〉 the duality pairing. For a nonempty set A ⊂ X, corA, clA, clwA,

Date: December 18, 2018.
F. Bozorgnia was supported by the Portuguese National Science Foundation through

FCT fellowships SFRH/BPD/33962/2009.

1

http://arxiv.org/abs/1812.06820v1


2 ALLAHKARAM SHAFIE, FARID BOZORGNIA

and convA, stand for the algebraic interior, closure, weakly closure, and con-
vex hull of the set A, respectively. Also for x∗ ∈ X∗ we denote R++x

∗ =
{tx∗ : t > 0}.

Let us recall the classical terminology of generalized monotonicity of set-
valued maps that we will use in the sequel. A set valued map T : X ⇒ X∗

is said to be

• Quasimonotone on a subset K, provided that for all x, y ∈ K,

∃x∗ ∈ T (x) : 〈x∗, y − x〉 > 0 ⇒ 〈y∗, y − x〉 ≥ 0 ∀y∗ ∈ T (y);

• Properly quasimonotone on a subset K, provided that for all

{x1, x2, · · · , xn} ⊆ K, and for all x ∈ conv{x1, x2, ..., xn},

there exists i ∈ {1, 2, · · · , n} such that

〈x∗i , xi − x〉 ≥ 0 ∀x∗i ∈ T (xi);

• Pseudomonotone on a subset K, provided that for all x, y ∈ K,

∃x∗ ∈ T (x) : 〈x∗, y − x〉 ≥ 0 ⇒ 〈y∗, y − x〉 ≥ 0 ∀y∗ ∈ T (y).

A set-valued operator T : X ⇒ X∗ is said to be upper sign-continuous on
a convex subset K, if for any x, y ∈ K, the following implication holds:

∀t ∈ (0, 1) inf
x∗

t
∈T (xt)

〈x∗t , y − x〉 ≥ 0 ⇒ sup
x∗∈T (x)

〈x∗, y − x〉 ≥ 0, (2.1)

where xt = tx+ (1 − t)y.
Accordingly, T is called lower sign-continuous on a convex subset K if,

for or any x, y ∈ K, the following implication holds:

∀t ∈ (0, 1) inf
x∗

t
∈T (xt)

〈x∗t , y − x〉 ≥ 0 ⇒ inf
x∗∈T (x)

〈x∗, y − x〉 ≥ 0. (2.2)

By these definitions it is clear that any lower sign-continuous map is also
upper sign-continuous. Furthermore, if T, S : X ⇒ X∗ be set-valued maps
and T ⊆ S and T be lower sign-continuous, then S is lower sign-continuous.

By the following example we underline that this implication is not true
for lower semi-continuous mappings.

Example 2.1. Consider the following set-valued map T : R ⇒ R as

T (x) =

{

{−1, 0} x 6= 0,
{0} x = 0.

It is easy to cheek that convT is lower semi-continuous, but T is not lower
semi-continuous.

Algebraic interior is defined as

corK = {y ∈ K : ∀x ∈ X, ∃λ > 0 , ∀t ∈ [0, λ) y + tx ∈ K } .

Note that always intK ⊆ corK ⊆ K and algebraic interior is weaker than of
topological interior by the following example.

Example 2.2. Let X = lp, p ≥ 1 and consider the convex set K defined by
K =

{

x = (x(n))n∈N ∈ lp, ∀n ∈ N, x(n) ≥ 0
}

. Then intK = ∅ and

corK =
{

x = (x(n))n∈N ∈ lp, x(n) > 0 ∀n ∈ N
}

.
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Also, we say that the map T : X ⇒ X∗ is locally upper sign-continuous
at x, if there exists a convex neighbourhood U of x and an upper sign-
continuous submap Φx : U ⇒ X∗ with nonempty convex w∗-compact values,
satisfying

Φx(u) ⊂ T (u) \ {0}, for any, u ∈ U.

In the sequel, given a set-valued map T : X ⇒ X∗ we consider its convex
hull map convT : X ⇒ X∗ defined by convT (x) = conv(T (x)).

The proof of the following proposition is straightforward.

Proposition 2.1. Let T : X ⇒ X∗ be a set-valued map and x ∈ domT.
If T is locally upper sign-continuous at x, then convT is locally upper sign-
continuous at x.

The following example shows that the reverse of Proposition 2.1 is not
true.

Example 2.3. Let the set-valued map T : R ⇒ R be defined by

T (x) =

{

{−1, 1} x = 0,
[−1, 1] x 6= 0.

(2.3)

Note that
convT (x) = [−1, 1].

One can check that convT is locally upper sign-continuous but T is not
locally upper sign-continuous at x = 0.

Definition 2.1. A map T : X ⇒ X∗ is said to be weakly dually lower
semicontinuous on a subset K if for any x ∈ K and for any net (yα)α ⊆ K
such that yα ⇀ y, the following implication holds:

lim sup
α

inf
y∗
α
∈T (yα)

〈y∗α, yα − x〉 ≥ 0 ⇒ inf
y∗∈T (y)

〈y∗, y − x〉 ≥ 0 .

It is worth to mention that any weakly lower semicontinuous map on
K is weakly dually lower semicontinuous on K but this concept is strictly
weaker than the lower semicontinuouity. For example choose K = [−1, 1],
and define the set-valued map T : R ⇒ R by

T (x) =

{

[−1, 0], if x = 0,
{0}, otherwise.

T is dually lower semicontinuous on K but it is not lower semicontinuous at
x = 0. Also note that if T is a dually lower semicontinuous, then convT is so.
However, the reciprocal is not true in general. For instance the set-valued
map T : R ⇒ R defined by

T (x) =

{

Q, if x ≥ 0,
Qc, if x < 0,

is not dually lower semicontinuous but convT = R is dually lower semicon-
tinuous.

The variational inequality problem which we consider in this paper can
be formulated as follows. Given a nonempty and convex subset K of X, find
an element x̄ ∈ K such that

sup
x∗∈T (x̄)

〈x∗, y − x̄〉 ≥ 0 ∀y ∈ K. (VI)
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We will consider the following concepts of solutions of the Stampacchia
variational inequality.

• Stampacchia solutions:

S(T,K) = {x ∈ K : ∃x∗ ∈ T (x) with 〈x∗, y − x〉 ≥ 0, ∀y ∈ K} .

• Star Stampacchia solutions:

S∗(T,K) = {x ∈ K : ∃x∗ ∈ T (x) \ {0},with 〈x∗, y − x〉 ≥ 0, ∀y ∈ K} .

• Weak Stampacchia solutions:

Sw(T,K) = {x ∈ K : ∀y ∈ K ∃x∗ ∈ T (x)with 〈x∗, y − x〉 ≥ 0 } . (2.4)

• Minty solutions

M(T,K) = {x ∈ K : ∀y∗ ∈ T (y) , ∀y ∈ K, 〈y∗, y − x〉 ≥ 0 } .

We recall that x ∈ K is a local solution of the Minty variational inequality
if there exists a neighborhood U of x such that x ∈ M(T,K ∩ U). The set
of all local solution is denoted by LM(T,K). It is obvious that M(T,K) ⊆
LM(T,K). The following example illustrates that converse is not necessarily
true.

Example 2.4. Let T : R ⇒ R be set-valued map as

T (x) =

{

{1} x ∈ (−1, 1),
{2} x /∈ (−1, 1).

Clearly 0 ∈ LM(T,K) but 0 /∈ M(T,K).

Remark 2.1. One can see that the solution of Stampacchia variational in-
equality problem is also the solution of the problem (VI).

The topic of variational inequality appears in the calculus of variations in
minimizing a functional over a convex set of constraints. The Euler equation
must be replaced by a set of inequalities. Here, we briefly mention the
classical obstacle problem. Consider the following functional, I(u), defined

I(u) =

∫

Ω
L(x, u,∇u)dx.

The Lagrangian L(x, u, z) is assumed to be jointly convex in (u, z), proper,
and lower semi-continuous. The obstacle problem is formulated as a con-
strained minimization:

u∗ = argmin
u∈K

I(u);

where the convex constraint set K is given by

K = {u ∈ H,u ≥ ϕ in Ω, u = g on the boundary}.

Let DI be the derivative associated with the Gâteaux differentiable func-
tional I, i.e.

d

dε
I(u+ εv)|ε=0 = 〈DI(u), v〉 .

Then the minimization problem is equivalent to finding u∗ ∈ K such that:

〈DI(u∗), u∗ − v〉 > 0, ∀v ∈ K.
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3. Existence results

In this section, we present our results.

Lemma 3.1. Let A be a subset of X and x∗ ∈ X∗ be nonzero and y ∈ X be
given. If 〈x∗, x− y〉 ≥ 0 for all x ∈ A, then 〈x∗, x− y〉 > 0 for all x ∈ corA.

Proof. Suppose on the contrary, there exists x0 ∈ corA with 〈x∗, x− y〉 ≤ 0
this gives 〈x∗, x− y〉 = 0. Consider z ∈ X so there is a positive net tα ⊂ R
such that x0 + tαz −→ x0. For x0 ∈ corA there exists β such that

x+ tβz ∈ corA ⊆ A,

which by assumption implies that 〈x∗, x0 + tβz − y〉 ≥ 0. From the last
relation, we obtain

〈x∗, x0 + tβz − y〉 = 〈x∗, x0 − y〉+ tβ〈x
∗, z〉 = tβ〈x

∗, z〉 ≥ 0,

hence 〈x∗, z〉 ≥ 0. Next, since z ∈ X is arbitrary, we conclude that x∗ = 0
which is contradiction. �

Notice that if A is convex set, then the reverse of Lemma 3.1 holds.
We need the following lemma in the sequel.

Lemma 3.2. Let A be a convex subset of X and corA 6= ∅. Then

clwA = clw(corA).

Proof. Clearly, we have clw(corA) ⊆ clwA. To see the reverse inclusion, let
x ∈ clwA, a ∈ corA, then there exists xα ∈ A such that xα ⇀ x. Thanks to
Lemma 1.9 in [6], one has [a, xα) ⊂ corA. Next choose 0 < tα < 1 such that
tα −→ 0. Hence tαa+ (1− tα)xα ∈ corA. On the other hand

tαa+ (1− tα)xα ⇀ x,

which implies that x ∈ clw(corA). �

In the next Lemma, we provide conditions on the map T that relate the
LM solutions and Sw solutions.

Lemma 3.3. Let K be nonempty convex subset of X and T : X ⇒ X∗ be a
set-valued map. If convT is locally upper sign-continuous, then

LM(T,K) ⊆ Sw(T,K).

Proof. First assume that x ∈ LM(T,K), then there exists a convex neigh-
borhood Ux of x such that x ∈ M(T,K ∩Ux). On the other hand, by locally
upper sign-continuity of convT there exists a convex neighborhood Vx of
x, and an upper sign-continuous submap Φx : Vx ⇒ X∗ with non-empty
convex w∗-compact values satisfying

Φx(v) ⊆ convT (v) \ {0}, for any v ∈ Vx.

Hence, x ∈ M(T,K∩Ux∩Vx). Now, let y be an element ofK, sinceK∩Ux∩Vx

is convex then there exists y1 ∈ [x, y] ∩ Ux ∩ Vx such that

[x, y1] ⊆ K ∩ Ux ∩ Vx.

Thus one has

〈z∗, z − x〉 ≥ 0, for all z ∈ [x, y1] and z∗ ∈ Φx(z).
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Hence

inf
z∈[x,y1]

inf
z∗∈Φx(z)

〈z∗, z − x〉 ≥ 0.

Upper sign-continuity of Φx implies that

sup
x∗∈Φx(x)

〈x∗, z − x〉 ≥ 0, ∀z ∈ [x, y1].

Now, for z = y1 one can obtain

sup
x∗∈Φx(x)

〈x∗, y1 − x〉 ≥ 0.

Since Φx(x) is compact, there exists x∗y ∈ Φx(x) ⊆ convT (x) \ {0} such that
〈

x∗y, y1 − x
〉

≥ 0.

On the other hand, there exists 0 < t < 1 such that y1 = tx + (1 − t)y
and therefore

〈

x∗y, y − x
〉

≥ 0. Now since x∗y ∈ convT (x), then there exists
0 ≤ ti ≤ 1 such that

x∗y =
n
∑

i=1

tix
∗

iy,
n
∑

i=1

ti = 1, x∗iy ∈ T (x).

This implies
〈

n
∑

i=1

tix
∗

iy, y − x

〉

=

n
∑

i=1

ti
〈

x∗iy, y − x
〉

≥ 0.

Therefore there exists 0 ≤ j ≤ 1 such that
〈

x∗jy, y − x
〉

≥ 0 and so one has

x ∈ Sw(T,K). �

Proposition 3.4. [3] Let K be a nonempty, convex subset of the topological
vector space X and let T : X ⇒ X∗ be quasimonotone and is not properly
quasimonotone. Then one has LM(T,K) 6= ∅.

We need the following Lemma in the sequel.

Lemma 3.5. Let K be a weakly compact subset of X. If T : X ⇒ X∗ is
quasimonotone, then LM(T,K) 6= ∅.

Proof. The proof is straightforward by Theorem 5.1 in [9] and Proposition
3.4. �

The following Theorem is an extension of Theorem 3.1 in [4] without
coercivity, locally bounded and hemiclosed conditions on T and reflexivity
of Banach space X.

Theorem 3.6. Let K be a nonempty convex subset of X. Assume that T :
X ⇒ X∗ be a quasimonotone operator that is not properly quasimonotone. If
convT is locally upper sign-continuous, then the variational inequality (VI)
has a solution. If moreover, K = X and for all x ∈ K, T (x) is weakly
compact, then the generalized equation 0 ∈ T (x) admits a solution.

Proof. By Lemma 3.3 and Proposition 3.4 and Remark 2.1 it is easy to
cheek the existence of solution (VI). Now, let x̄ be a solution of variational
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inequality (VI). Since T (x̄) is weakly compact for y ∈ K there exists x∗y ∈
T (x̄) such that

0 ≤ sup
x∗∈T (x)

〈x∗, y − x〉 =
〈

x∗y, y − x
〉

.

This means that {0} cannot be strongly separated from the closed convex
set T (x) and therefore, 0 ∈ T (x). �

In the case that operator T is properly quasimonotone, we can not use the
Proposition 3.6. In order to overcome this flaw, under the weaker condition
of Theorem 2.1 of [3] one can get the following result without any coercivity
condition.

Theorem 3.7. Let K,U be nonempty convex subsets of X and K ∩ corU be
nonempty and weakly compact. Further, let T : X ⇒ X∗ be a quasimonotone
operator on K. If T is locally upper sign-continuous, then the variational
inequality (VI) has a solution.

Proof. Suppose that T be properly quasimonotone, hence by Lemma 3.5 one
has LM(T,K ∩ corU) 6= ∅. Choose x0 ∈ LM(T,K ∩ corU), then

∃x∗0 ∈ T (x0), ∀y ∈ K ∩ corU ; 〈x∗0, y − x0〉 ≥ 0.

Now for every z ∈ K there exists t > 0 such that

x0 + t(z − x0) ∈ K ∩ corU,

which implies that 〈x∗0, z − x0〉 ≥ 0. Therefore x0 ∈ S(T,K) which completes
the proof. �

Lemma 3.8. Let K be a convex subset of X with corK 6= ∅ and the set val-
ued map T : X ⇒ X∗ be quasimonotone and weakly dually lower semicontin-
uous on K. If S(T,K) * M(T,K), then the generalized equation 0 ∈ T (x)
admits a solution.

Proof. Suppose that for all x ∈ X we have 0 /∈ T (x), and x ∈ S(T,K) be
given. Hence, there exists x∗ ∈ T (x) such that

〈x∗, y − x〉 ≥ 0, for all y ∈ K, and x∗ 6= 0.

By Lemma 3.1 it follows that

〈x∗, z − x〉 > 0, ∀z ∈ corK.

For any y ∈ K by Lemma 3.2 there exists net yα ∈ corK such that yα ⇀ y.
Consequently, for any α, 〈x∗, yα − x〉 > 0 and thus by quasimonotonicity,

〈y∗α, yα − x〉 ≥ 0, for all y∗α ∈ T (yα).

Finally, by weakly dually lower semicontinuity at T one has 〈y∗, y − x〉 ≥ 0
for each y∗ ∈ T (y). The later indicates that x ∈ M(T,K), therefore

S(T,K) * M(T,K).

�

Remark 3.1. It is worth to note that the condition (D) or (4.1) in [7] on the
set K ⊆ X is equivalent to M(T,K) 6= ∅. Also if intK 6= ∅ in condition D
then LM(T,K) 6= ∅.
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The proof of the following Propositions (3.9) and (3.10) are straightfor-
ward.

Proposition 3.9. Assume that T : X ⇒ X∗ is an upper sign-continuous
set-valued on K whose values are convex and compact sets. If M(T,K) 6= ∅,
then the variational inequality (V I) has a solution.

Proposition 3.10. Assume that T : X ⇒ X∗ is a locally upper sign-
continuous set-valued on K whose values are convex and w∗-compact sets.
If M(T,K) 6= ∅, then the generalization 0 ∈ T (x) has a solution.

Lemma 3.11. Let K be an algebraically open set in X. Then one has
S(T,K) ⊆ ZT . Here ZT is the set all zeros of T, i.e ZT = {x ∈ X : 0 ∈
T (x)}.

Proof. Suppose that x̄ ∈ S(T,K), then there exists x∗ ∈ T (x̄) such that for
all y ∈ K one has 〈x∗, y − x̄〉 ≥ 0. Since x̄ ∈ corK hence for given x ∈ X
one have x̄+ tx ∈ K for some t > 0. So we have 〈x∗, (x̄+ tx)− x̄〉 ≥ 0 which
implies that 〈x∗, x〉 ≥ 0 and this means that x∗ = 0 thus 0 ∈ T (x̄). �

Proposition 3.12. Let T be a quasimonotone operator, which convT is
lower semi-continuous at x ∈ corK. Then

(∀x∗ ∈ X∗ \ {0}, T (x) 6⊆ R++x
∗) ⇐⇒ 0 ∈ T (x).

Proof. Suppose in the contrary, 0 /∈ T (x) then there exists x∗ ∈ T (x) and
y∗ ∈ T (x) \ {0} such that for every λ > 0, one has x∗ 6= λy∗. Hence there
exists w ∈ X such that

〈x∗, w〉 > 0 > 〈y∗, w〉.

Obviously x∗ ∈ convT (x) and x + 1
n
w −→ x. By using the lower semi-

continuity of convT, there exists y∗n ∈ convT (x+ 1
n
w) such that y∗n −→ y∗.

On the other hand, one can have

〈x∗, (x+
1

n
w)− x〉 > 0.

Since T is quasimonotone,then for y∗n ∈ convT (x+ 1
n
w) it holds

〈y∗n, (x+
1

n
w)− x〉 ≥ 0,

and thus 〈y∗, w〉 ≥ 0, which is contradiction. �

By similar argument in previous proposition one can prove the following.

Proposition 3.13. Let T be a quasimonotone operator, which is lower sin
continuous on K, and x ∈ corK. Then

(∀x∗ ∈ X∗ \ {0}, T (x) 6⊆ R++x
∗) ⇐⇒ 0 ∈ T (x).
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