Minimax theorems in a fully non-convex setting

Dedicated to Professor Wataru Takahashi, with esteem and friendship, on his 75th birthday

BIAGIO RICCERI

Abstract. In this paper, we establish two minimax theorems for functions $f : X \times I \to \mathbf{R}$, where I is a real interval, without assuming that $f(x, \cdot)$ is quasi-concave. Also, some related applications are presented.

Keywords. Minimax theorem; Connectedness; Real interval; Global extremum.

2010 Mathematics Subject Classification. 49J35; 49K35; 49K27; 90C47.

The most known minimax theorem ([7]) ensures the occurrence of the equality

$$
\sup_Y \inf_X f = \inf_X \sup_Y f
$$

for a function $f: X \times Y \to \mathbf{R}$ under the following assumptions: X, Y are convex sets in Hausdorff topological vector spaces, one of them is compact, f is lower semicontinuous and quasi-convex in X , and upper semicontinuous and quasi-concave in Y .

In the past years, we provided some contributions to the subject where, keeping the assumption of quasi-concavity on $f(x, \cdot)$, we proposed alternative hypotheses on $f(\cdot, y)$. Precisely, in [2], we assumed the inf-connectedness of $f(\cdot, y)$ and, the same time, that Y is a real interval, while, in [5], we assumed the inf-compactness and uniqueness of the global minimum of $f(\cdot, y)$.

In the present paper, we offer a new contribution where the hypothesis that $f(x, \cdot)$ is quasi-concave is no longer assumed.

Let T be a topological space. A function $g: T \to [-\infty, +\infty]$ is said to be relatively inf-compact if, for each $r \in \mathbf{R}$, there exists a compact set $K \subseteq T$ such that $g^{-1}(]-\infty,r[$ $\subseteq K$. Moreover, g is said to be inf-connected if, for each $r \in \mathbf{R}$, the set $g^{-1}(\cdot - \infty, r)$ is connected. For the basic notions on multifunctions, we refer to [1].

Our main results are as follows:

THEOREM 1. - Let X be a topological space, let I be a real interval and let $f : X \times I \to \mathbf{R}$ be a continuous function such that, for each $\lambda \in I$, the set of all global minima of the function $f(\cdot, \lambda)$ is connected. Moreover, assume that there exists a non-decreasing sequence of compact intervals, $\{I_n\}$, with $I = \bigcup_{n\in\mathbf{N}} I_n$, such that, for each $n \in \mathbb{N}$, the following conditions are satisfied:

- (a₁) the function inf_{$\lambda \in I_n$} $f(\cdot, \lambda)$ is relatively inf-compact;
- (b₁) for each $x \in X$, the set of all global maxima of the restriction of the function $f(x, \cdot)$ to I_n is connected. Then, one has

$$
\sup_{Y} \inf_{X} = \inf_{X} \sup_{Y} f.
$$

THEOREM 2. - Let X be a topological space, let I be a compact real interval and let $f: X \times I \to \mathbf{R}$ be an upper semicontinuous function such that $f(\cdot, \lambda)$ is continuous for all $\lambda \in I$. Assume that:

- (a₂) there exists a set $D \subseteq I$, dense in I, such that the function $f(\cdot, \lambda)$ is inf-connected for all $\lambda \in D$;
- (b_2) for each $x \in X$, the set of all global maxima of the function $f(x, \cdot)$ is connected.

Then, one has

$$
\sup_{Y} \inf_{X} = \inf_{X} \sup_{Y} f.
$$

REMARK 1. - We want to remark that, in both Theorems 1 and 2, it is essential that I be a real interval. To see this, consider the following example. Take

$$
X = I = \{(t, s) \in \mathbf{R}^2 : t^2 + s^2 = 1\}
$$

and define $f: X \times I \to \mathbf{R}$ by

$$
f(t, s, u, v) = tu + sv
$$

for all $(t, s), (u, v) \in X$. Clearly, f is continuous, $f(\cdot, \cdot, u, v)$ is inf-connected and has a unique global minimum, and $f(t, s, \cdot, \cdot)$ has a unique global maximum. However, we have

$$
\sup_X \inf_I f = -1 < 1 = \inf_X \sup_I f.
$$

The common key tool in our proofs of Theorems 1 and 2 is provided by the following general principle:

THEOREM A $([2],$ Theorem 2.2). - Let X be a topological space, let I be a compact real interval and let $S \subseteq X \times I$ be a connected set whose projection on I is the whole of I.

Then, for every upper semicontinuous multifunction $\Phi: X \to 2^I$, with non-empty, closed and connected values, the graph of Φ intersects S.

Another known proposition which is used in the proof of Theorem 1 is as follows:

PROPOSITION A ([5], Proposition 2.1). - Let X be a topological space, Y a non-empty set, $y_0 \in Y$ and $f: X \times Y \to \mathbf{R}$ a function such that $f(\cdot, y)$ is lower semicontinuous for all $y \in Y$ and relatively inf-compact for y = y₀. Assume also that there is a non-decreasing sequence of sets $\{Y_n\}$, with $Y = \bigcup_{n\in\mathbb{N}} Y_n$, such that

$$
\sup_{Y_n} \inf_X f = \inf_X \sup_{Y_n} f
$$

for all $n \in \mathbb{N}$.

Then, one has

$$
\sup_Y \inf_X f = \inf_X \sup_Y f \ .
$$

A further result which is used in the proofs of Theorems 1 and 2 is provided by the following proposition which, in the given generality, is new:

PROPOSITION 1. - Let X, Y be two topological spaces and let $f: X \times Y \to \mathbf{R}$ be a lower semicontinuous function such that $f(x, \cdot)$ is continuous for all $x \in X$. Moreover, assume that, for each $y \in Y$, there exists a neighbourhood V of y such that the function $inf_{v\in V} f(\cdot, v)$ is relatively inf-compact. For each $y \in Y$, set

$$
F(y) = \left\{ u \in X : f(u, y) = \inf_{x \in X} f(x, y) \right\} .
$$

Then, the multifunction F is upper semicontinuous.

PROOF. Let $C \subseteq X$ be a closed set. We have to prove that $F^{-}(C)$ is closed. So, let $\{y_{\alpha}\}_{{\alpha \in D}}$ be a net in $F^{-}(C)$ converging to some $\tilde{y} \in Y$. For each $\alpha \in D$, pick $u_{\alpha} \in F(y_{\alpha}) \cap C$. By assumption, there is a neighbourhood V of \tilde{y} such that the function $\inf_{v \in V} f(v, v)$ is relatively inf-compact. Since the function $\inf_{x \in X} f(x, \cdot)$ is upper semicontinuous, we can assume that it is bounded above on V. Fix $\rho > \sup_{V} \inf_{X} f$. Then, there is a compact set $K \subseteq X$ such that

$$
\left\{ x \in X : \inf_{v \in V} f(x,v) < \rho \right\} \subseteq K \ .
$$

But

$$
\left\{ x \in X : \inf_{v \in V} f(x, v) < \rho \right\} = \bigcup_{v \in V} \left\{ x \in X : f(x, v) < \rho \right\}
$$

and so

$$
\bigcup_{v \in V} \{x \in X : f(x, v) < \rho\} \subseteq K \tag{1}
$$

Let $\alpha_1 \in D$ be such that $y_\alpha \in V$ for all $\alpha \geq \alpha_1$. Consequently, by (1), $u_\alpha \in K$ for all $\alpha \geq \alpha_1$. By compactness, the net $\{u_{\alpha}\}_{{\alpha\in D}}$ has a cluster point $\tilde{u} \in K$. Clearly, (\tilde{u}, \tilde{y}) is a cluster point in $X \times Y$ of the net $\{(u_{\alpha}, y_{\alpha})\}_{\alpha \in D}$. We claim that

$$
f(\tilde{u}, \tilde{y}) \le \limsup_{\alpha} f(u_{\alpha}, y_{\alpha}).
$$

Arguing by contradiction, assume the contrary and fix r so that

$$
\limsup_{\alpha} f(u_{\alpha}, y_{\alpha}) < r < f(\tilde{u}, \tilde{y}) .
$$

Then, there would be $\alpha_2 \in D$ such that

$$
f(u_{\alpha}, y_{\alpha}) < r
$$

for all $\alpha \geq \alpha_2$. On the other hand, since, by assumption, the set $f^{-1}(]r, +\infty[$ is open, there would be $\alpha_3 \geq \alpha_2$ such that

$$
r < f(u_{\alpha_3}, y_{\alpha_3})
$$

which gives a contradiction. Now, fix $x \in X$. Then, since $u_{\alpha} \in F(y_{\alpha})$, we have

$$
f(\tilde{u}, \tilde{y}) \le \limsup_{\alpha} f(u_{\alpha}, y_{\alpha}) \le \lim_{\alpha} f(x, y_{\alpha}) = f(x, \tilde{y})
$$
.

That is, $\tilde{u} \in F(\tilde{y})$. Since C is closed, $\tilde{u} \in C$. Hence, $\tilde{y} \in F^{-}(C)$ and this ends the proof. \triangle

We now can prove Theorems 1 and 2.

Proof of Theorem 1. Fix $n \in \mathbb{N}$. Let us prove that

$$
\sup_{I_n} \inf_{X} f = \inf_{X} \sup_{I_n} f . \tag{2}
$$

Consider the multifunction $F: I_n \to 2^X$ defined by

$$
F(\lambda) = \left\{ u \in X : f(u, \lambda) = \inf_{x \in X} f(x, \lambda) \right\}
$$

for all $\lambda \in I_n$. Thanks to Proposition 1, F is upper semicontinuous and, by assumption, its values are non-empty, compact and connected. As a consequence, by Theorem 7.4.4 of [1], the graph of F is connected. Let S denote the graph of the inverse of F . So, S is connected as it is homeomorphic to the graph of F . Now, consider the multifunction $\Phi: X \to 2^{I_n}$ defined by

$$
\Phi(x) = \left\{ \mu \in I_n : f(x, \mu) = \sup_{\lambda \in I_n} f(x, \lambda) \right\}
$$

for all $x \in X$. By Proposition 1 again, the multifunction Φ is upper semicontinuous and, by assumption, its values are non-empty, closed and connected. After noticing that the projection of S on I_n is the whole of I_n , we can apply Theorem A. Therefore, there exists $(\tilde{x}, \lambda) \in S$ such that $\lambda \in \Phi(\tilde{x})$. That is

$$
f(\tilde{x}, \tilde{\lambda}) = \inf_{x \in X} f(x, \tilde{\lambda}) = \sup_{\lambda \in I_n} f(\tilde{x}, \lambda).
$$
 (3)

Clearly, (2) follows from (3). Now, the conclusion is a direct consequence of Proposition A. \triangle

Proof of Theorem 2. Arguing by contradiction, assume the contrary and fix a constant r so that

$$
\sup_I \inf_X f < r < \inf_X \sup_I f \ .
$$

Let $G: I \to 2^X$ be the multifunction defined by

$$
G(\lambda) = \{ x \in X : f(x, \lambda) < r \}
$$

for all $\lambda \in I$. Notice that $G(\lambda)$ is non-empty for all $\lambda \in I$ and connected for all $\lambda \in D$. Moreover, the graph of G is open in $X \times I$ and so G is lower semicontinuous. Then, by Proposition 5.7 of [3], the graph of G is connected and so the graph of the inverse of G , say S , is connected too. Consider the multifunction $\Phi: X \to 2^I$ defined by

$$
\Phi(x) = \left\{ \mu \in I : f(x, \mu) = \sup_{\lambda \in I} f(x, \lambda) \right\}
$$

for all $x \in X$. Notice that $\Phi(x)$ is non-empty, closed and connected, in view of (b_2) . By Proposition 1, the multifunction Φ is upper semicontinuous. Now, we can apply Theorem A. So, there exists $(\hat{x}, \hat{\lambda}) \in S$ such that $\hat{\lambda} \in \Phi(\hat{x})$. This implies that

$$
f(\hat{x}, \hat{\lambda}) < r < \inf_{X} \sup_{I} f \le \sup_{\lambda \in I} f(\hat{x}, \lambda) = f(\hat{x}, \hat{\lambda})
$$

which is absurd. \triangle

Here is an application of Theorem 1.

THEOREM 3. - Let $(H,\langle\cdot,\cdot\rangle)$ be a real inner product space, let $K\subset H$ be a compact and convex set, with $0 \notin K$, and let $f : X \to K$ be a continuous function, where

$$
X = \bigcup_{\lambda \in \mathbf{R}} \lambda K \ .
$$

Assume that there are two numbers α , c, with

$$
\inf_{x \in X} ||f(x)|| < c < ||f(0)|| \;,
$$

such that:

(a) $\{x \in X : \langle x, f(x) \rangle = \alpha\} \subset \{x \in X : ||f(x)|| < c\}$;

(b) $\{x \in X : c^2 \langle x, f(x) \rangle = \alpha ||f(x)||^2\} \subset \{x \in X : ||f(x)|| \ge c\}$.

Then, there exists $\lambda \in \mathbf{R}$ such that the set

$$
\{x \in X : x = \tilde{\lambda}f(x)\}\
$$

is disconnected.

PROOF. Consider the function $\varphi: X \times \mathbf{R} \to \mathbf{R}$ defined by

$$
\varphi(x,\lambda) = ||x - \lambda f(x)||^2 - c^2\lambda^2 + 2\alpha\lambda
$$

for all $(x, \lambda) \in X \times \mathbf{R}$. Notice that

$$
\varphi(x,\lambda) = ||x||^2 + (||f(x)||^2 - c^2)\lambda^2 - 2(\langle x, f(x) \rangle - \alpha)\lambda.
$$
 (4)

Further, observe that, when $||f(x)|| \geq c$, in view of (a), we have

$$
\sup_{\lambda \in \mathbf{R}} \varphi(x, \lambda) = +\infty \tag{5}
$$

as well as

$$
\varphi(x, -\lambda) \neq \varphi(x, \lambda) \tag{6}
$$

for all $\lambda > 0$. When $||f(x)|| \ge c$ again, the function $\varphi(x, \cdot)$ is convex and so, by (6), for each $\lambda > 0$, its restriction to $[-\lambda, \lambda]$ it has a unique global maximum. Clearly, $\varphi(x, \cdot)$ has the same uniqueness property also

when $||f(x)|| < c$. Now, observe that, for each $\lambda \in \mathbf{R}$, the function λf has a fixed point in X, in view of the Schauder theorem. Hence, we have

$$
\sup_{\lambda \in \mathbf{R}} \inf_{x \in X} \varphi(x, \lambda) = \sup_{\lambda \in \mathbf{R}} (-c^2 \lambda^2 + 2\alpha \lambda) = \frac{\alpha^2}{c^2} . \tag{7}
$$

We claim that

$$
\frac{\alpha^2}{c^2} < \inf_{x \in X} \sup_{\lambda \in \mathbf{R}} \varphi(x, \lambda) \tag{8}
$$

First, observe that, since $0 \notin K$, every closed and bounded subset of X is compact. This easily implies that, for each $\mu > 0$, the function $x \to \inf_{|\lambda| < \mu} \varphi(x, \lambda)$ is relatively inf-compact. Consequently, the sublevel sets of the function $x \to \sup_{\lambda \in \mathbb{R}} \varphi(x, \lambda)$ (which is finite if $||f(x)|| < c$) are compact. Therefore, there exists $\tilde{x} \in X$ such that

$$
\sup_{\lambda \in \mathbf{R}} \varphi(\tilde{x}, \lambda) = \inf_{x \in X} \sup_{\lambda \in \mathbf{R}} \varphi(x, \lambda) .
$$
 (9)

So, by (5), one has $|| f(\tilde{x}) || < c$. Clearly, we also have

$$
\sup_{\lambda \in \mathbf{R}} \varphi(\tilde{x}, \lambda) = \|\tilde{x}\|^2 + \frac{|\langle \tilde{x}, f(\tilde{x}) \rangle - \alpha|^2}{c^2 - \|f(\tilde{x})\|^2} \,. \tag{10}
$$

Let us prove that

$$
\|\tilde{x}\|^2 + \frac{\langle \tilde{x}, f(\tilde{x}) \rangle - \alpha|^2}{c^2 - \|f(\tilde{x})\|^2} > \frac{\alpha^2}{c^2} . \tag{11}
$$

After some manipulations, one realizes that (11) is equivalent to

$$
\frac{1}{c^2 - \|f(\tilde{x})\|^2} \left(2\alpha \langle \tilde{x}, f(\tilde{x}) \rangle - |\langle \tilde{x}, f(\tilde{x}) \rangle|^2 - \frac{\alpha^2}{c^2} \|f(\tilde{x})\|^2 \right) < \|\tilde{x}\|^2. \tag{12}
$$

Now, for each $y \in X \setminus \{0\}$, $t \in \mathbf{R}$, set

$$
I(y,t) = \{x \in H : \langle x, y \rangle = t\}.
$$

Consider the inequality

$$
\frac{1}{c^2 - \|y\|^2} \left(2\alpha t - t^2 - \frac{\alpha^2}{c^2} \|y\|^2\right) < \frac{t^2}{\|y\|^2} \tag{13}
$$

After some manipulations, one realizes that (13) is equivalent to

$$
(\alpha \|y\|^2 - t c^2)^2 > 0.
$$

So, (13) is satisfied if and only if

$$
\alpha \|y\|^2 \neq t c^2 \tag{14}
$$

Observe that

$$
\frac{|t|}{\|y\|} = \text{dist}(0, I(y, t)) \le \text{dist}(0, I(y, t) \cap X) \tag{15}
$$

Therefore, if (14) is satisfied, for each $x \in I(y, t) \cap X$, in view of (13) and (15), we have

$$
\frac{1}{c^2 - \|y\|^2} \left(2\alpha \langle x, y \rangle - |\langle x, y \rangle|^2 - \frac{\alpha^2}{c^2} \|y\|^2 \right) < \|x\|^2 \,. \tag{16}
$$

At this point, taking into account that $c^2\langle \tilde{x}, f(\tilde{x})\rangle \neq \alpha ||f(\tilde{x})||^2$ (by (b)), we draw (12) from (16) since $\tilde{x} \in I(f(\tilde{x}),\langle \tilde{x}, f(\tilde{x}) \rangle)$. Summarizing: taking $I = \mathbf{R}$ and $I_n = [-n, n]$ $(n \in \mathbf{N})$, the continuous function φ satisfies (a_1) and (b_1) of Theorem 1, but, in view of $(7) - (11)$, it does not satisfy the conclusion of that theorem. As a consequence, there exists $\tilde{\lambda} \in \mathbf{R}$ such that the set of all global minima of $\varphi(\cdot, \tilde{\lambda})$ is disconnected. But such a set agrees with the set of all solutions of the equation $x = \tilde{\lambda} f(x)$, and the proof is complete. \triangle

REMARK 2. - We do not know whether Theorem 3 is still true when $0 \in K$ and (b) is (necessarily) changed in

$$
\{x \in X : f(x) \neq 0, c^2 \langle x, f(x) \rangle = \alpha ||f(x)||^2\} \subset \{x \in X : ||f(x)|| \ge c\}.
$$

However, the proof of Theorem 3 shows that the following is true:

THEOREM 4. - Let $(X,\langle\cdot,\cdot\rangle)$ be a finite-dimensional real Hilbert space and let $f : X \to X$ be a continuous function with bounded range. Assume that there are two numbers α, c , with

$$
\inf_{x \in X} ||f(x)|| < c < ||f(0)|| \; ,
$$

such that:

 $(a') \ \{x \in X : \langle x, f(x) \rangle = \alpha\} \subset \{x \in X : ||f(x)|| < c\}$;

 $(b') \ \{x \in X : f(x) \neq 0, \ c^2 \langle x, f(x) \rangle = \alpha ||f(x)||^2\} \subset \{x \in X : ||f(x)|| \geq c\}$.

Then, there exists $\tilde{\lambda} \in \mathbf{R}$ such that the set

$$
\{x \in X : x = \tilde{\lambda}f(x)\}\
$$

is disconnected.

Finally, we present two applications of Theorem 2.

THEOREM 5. - Let X be a Banach space, let $\varphi \in X^* \setminus \{0\}$ and let $\psi : X \to \mathbf{R}$ be a Lipschitzian functional whose Lipschitz constant is equal to $\|\varphi\|_{X^*}$. Moreover, let [a, b] be a compact real interval, γ : $[a,b] \to [-1,1]$ a convex (resp. concave) and continuous function, with $\text{int}(\gamma^{-1}(\{-1,1\})) = \emptyset$, and $c \in \mathbb{R}$. Assume that

$$
\gamma(a)\psi(x) + ca \neq \gamma(b)\psi(x) + cb
$$

for all $x \in X$ such that $\psi(x) > 0$ (resp. $\psi(x) < 0$).

Then (with the convention sup $\emptyset = -\infty$), one has

$$
\sup_{\lambda \in \gamma^{-1}(\{-1,1\})}\inf_{x \in X} (\varphi(x) + \gamma(\lambda)\psi(x) + c\lambda) = \inf_{x \in X} \sup_{\lambda \in [a,b]} (\varphi(x) + \gamma(\lambda)\psi(x) + c\lambda).
$$

PROOF. Consider the continuous function $f: X \times [a, b] \to \mathbf{R}$ defined by

$$
f(x,\lambda) = \varphi(x) + \gamma(\lambda)\psi(x) + c\lambda
$$

for all $(x, \lambda) \in X \times [a, b]$. By Theorem 2 of [4], for each $\lambda \in \gamma^{-1}([-1, 1])$, the function $f(\cdot, \lambda)$ is inf-connected and unbounded below. Also, notice that $\gamma^{-1}([-1,1])$, by assumption, is dense in [a, b]. Now fix $x \in X$. If $\psi(x) > 0$ (resp. $\psi(x) < 0$) the function $f(x, \cdot)$ is convex and, by assumption, $f(x, a) \neq f(x, b)$. As a consequence, the unique global maximum of this function is either a or b. If $\psi(x) \leq 0$, the function is concave and so, obviously, the set of all its global maxima is connected. Now, the conclusion follows directly from Theorem 2. \triangle

Let (T, \mathcal{F}, μ) be a σ -finite measure space, E a real Banach space and $p \geq 1$.

As usual, $L^p(T, E)$ denotes the space of all (equivalence classes of) strongly μ -measurable functions $u: T \to E$ such that $\int_T ||u(t)||^p d\mu < +\infty$, equipped with the norm

$$
\| u \|_{L^p(T,E)} = \left(\int_T \| u(t) \|^{p} d\mu \right)^{\frac{1}{p}}.
$$

A set $D \subseteq L^p(T, E)$ is said to be decomposable if, for every $u, v \in D$ and every $A \in \mathcal{F}$, the function

$$
t \to \chi_A(t)u(t) + (1 - \chi_A(t))v(t)
$$

belongs to D, where χ_A denotes the characteristic function of A.

A real-valued function on $T \times E$ is said to be a Caratéodory function if it is measurable in T and continuous in E.

THEOREM 6. - Let (T, \mathcal{F}, μ) be a σ -finite non-atomic measure space, E a real Banach space, $p \in$ $[1, +\infty[, X \subseteq L^p(T, E)$ a decomposable set, $[a, b]$ a compact real interval, $\gamma : [a, b] \to \mathbf{R}$ a convex (resp. concave) and continuous function. Moreover, let $\varphi, \psi, \omega : T \times E \to \mathbf{R}$ be three Carathéodory functions such that, for some $M \in L^1(T)$, $k \in \mathbf{R}$, one has

$$
\max\{|\varphi(t,x)|, |\psi(t,x)|, |\omega(t,x)|\} \le M(t) + k||x||^p
$$

for all $(t, x) \in T \times E$ and

$$
\gamma(a)\int_T \psi(t, u(t))d\mu + a\int_T \omega(t, u(t))d\mu \neq \gamma(b)\int_T \psi(t, u(t))d\mu + b\int_T \omega(t, u(t))d\mu
$$

for all $u \in X$ such that $\int_T \psi(t, u(t)) d\mu > 0$ (resp. $\int_T \psi(t, u(t)) d\mu < 0$).

Then, one has

$$
\sup_{\lambda \in [a,b]} \inf_{u \in X} \left(\int_T (\varphi(t, u(t)) + \gamma(\lambda)\psi(t, u(t))) + \lambda \omega(t, u(t))) d\mu \right) =
$$

$$
\inf_{u \in X} \sup_{\lambda \in [a,b]} \left(\int_T (\varphi(t, u(t)) + \gamma(\lambda)\psi(t, u(t))) + \lambda \omega(t, u(t)) d\mu \right) .
$$

PROOF. The proof goes on exactly as that of Theorem 5. So, one considers the function $f: X \times [a, b] \rightarrow$ R defined by

$$
f(u, \lambda) = \int_T (\varphi(t, u(t)) + \gamma(\lambda)\psi(t, u(t))) + \lambda\omega(t, u(t)))d\mu
$$

for all $(u, \lambda) \in X \times [a, b]$, and realizes that it satisfies the hypotheses of Theorem 2. In particular, for each $\lambda \in [a, b]$, the inf-connectedness of the function $f(\cdot, \lambda)$ is due to [6], Théorème 7. Δ

Acknowledgement. The author has been supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, "Piano della Ricerca 2016/2018 Linea di intervento 2".

References

[1] E. KLEIN and A. C. THOMPSON, Theory of correspondences, John Wiley & Sons, 1984.

[2] B. RICCERI, Some topological mini-max theorems via an alternative principle for multifunctions, Arch. Math. (Basel), 60 (1993), 367-377.

- [3] B. RICCERI, Nonlinear eigenvalue problems, in "Handbook of Nonconvex Analysis and Applications"
- D. Y. Gao and D. Motreanu eds., 543-595, International Press, 2010.
- [4] B. RICCERI, On the infimum of certain functionals, in "Essays in Mathematics and its Applications In Honor of Vladimir Arnold", Th. M. Rassias and P. M. Pardalos eds., 361-367, Springer, 2016.

[5] B. RICCERI, On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl., 2 (2017), 99-152.

[6] J. SAINT RAYMOND, Connexité des sous-niveaux des fonctionnelles intégrales, Rend. Circ. Mat. Palermo, 44 (1995), 162-168.

[7] M. SION, *On general minimax theorems*, Pacific J. Math., **8** (1958), 171-176.

Department of Mathematics and Informatics University of Catania Viale A. Doria 6 95125 Catania, Italy e-mail address: ricceri@dmi.unict.it