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A DRAW-DOWN REFLECTED SPECTRALLY NEGATIVE LÉVY PROCESS

WENYUAN WANG AND XIAOWEN ZHOU

Abstract. In this paper we study a spectrally negative Lévy process that is reflected at its draw-
down level whenever a draw-down time from the running supremum arrives. Using an excursion-
theoretical approach, for such a reflected process we find the Laplace transform of the upper exiting
time and an expression of the associated potential measure. When the reflected process is identified
as a risk process with capital injections, the expected total amount of discounted capital injections
prior to the exiting time and the Laplace transform of the accumulated capital injections until the
exiting time are also obtained. The results are expressed in terms of scale functions for spectrally
negative Lévy processes.

1. Introduction

The first passage problems have been studied extensively for spectrally negative Lévy processes
in recent years. Such problems often concern the Laplace transforms for quantities associated to
the exit times, the potential measures and the weighted occupation times. Using Wiener-Hopf
factorization and excursion theory, those Laplace transforms can often be expressed semi-explicitly
using scale functions for the spectrally negative Lévy processes. We refer to Bertoin (1996) and
Kyprianou (2006) and references therein for results along this line.

A draw-down time is the first downward passage time from a level that depends on the previous
supremum of the process via the so called draw-down function. It was first introduced and studied
for diffusion processes in Lehoczky (1977). More recently, progress has been made in investigating
the general draw-down times for spectrally negative Lévy processes. In Avram, Vu and Zhou (2019)
the linear draw-down time related two-sided exit problem is solved for a spectrally negative Lévy
type risk process. More fluctuation results for general draw-down times are obtained via excursion
theory arguments in Li, Vu and Zhou (2019). A draw-down time based dividend optimization is
further considered in Wang and Zhou (2018).

The spectrally negative Lévy process reflected either from its running supremum or from its
running infimum frequently appears in a wide variety of applications, such as the study of the water
level for a dam, the queueing theory (cf., Asmussen (1989), Borovkov (1976) and Prabhu (1997)), the
optimal stopping problems (cf., Baurdoux and Kyprianou (2008) and Shepp and Shiryaev (1994))
and the optimal control problems (cf., Avram et al. (2007), De Finetti (1957) and Gerber (1990))
for Lévy risk processes. We refer to Pistorius (2004, 2007), Zhou (2007) and Kyprianou (2006) and
references therein for a collection of results on reflected spectrally negative Lévy processes.

Given the previous results on the draw-down times and on the reflected processes for spectrally
negative Lévy processes, it is natural to introduce draw-down related reflected processes. The
main purpose of this paper is to propose a new process that is obtained by reflecting the spectrally
negative Lévy process from consecutive draw-down levels. Intuitively, given a draw-down function
this process first evolves like a spectrally negative Lévy process until immediately before the draw-
down time when it is to down-cross the associated draw-down level. After this moment, it starts
to evolve according to a spectrally negative Lévy process reflected at the draw-down level until it
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comes back to its historical high, after which time the process repeats the previous behavior all
over again for the updated draw-down times and draw-down levels. It naturally generalizes the
classical reflected process from the running infimum process to the reflected process whose reflecting
levels depend on the previous supremums of the process. In this paper we first develop some new
fluctuation identities for the draw-down reflected process, which generalize those for the spectrally
negative Lévy process reflected at its infimum.

Spectrally negative Lévy processes are often used in risk theory to model the surplus processes.
The reflected process at the infimum has the interpretation of a surplus process with capital injec-
tions; see Dickson and Waters (2004) and Avram et al. (2007) for some earlier work on risk models
with capital injections. The draw-down time can be treated as a generalized ruin time that depends
on the historical high of the surplus. The draw-down reflected process can thus be identified as a
Lévy risk model with capital injections to keep the surplus above the respective draw-down levels
so that the net drops of the surplus from its historical highs are kept within certain ranges that
can also depend on the historical highs. In this paper we also carry out capital injections related
computations that are interesting in risk theory.

Since the spectrally negative Lévy process reflected at its running supremum is a Markov process
and the running supremum process is a version of the local time at 0 for the reflected process,
the fluctuation behaviors of the underlying Lévy process can often be described by the Poisson
point process of excursions away from the running supremum. The desired results then follow
from excursion theory techniques such as compensation formulas. Using the excursion-theoretical
approach, Kyprianou and Pistorius (2003) derived the Laplace transform of a first passage time
which is the key to the evaluation of the Russian option; Avram et al. (2004) determined the
joint Laplace transform of the exit time and exit position from an interval containing the origin
of the process reflected at its supremum, which is then applied to solve the optimal stopping
problems associated with the pricing of Russian options and their Canadized versions; Pistorius
(2004) derived the q-resolvent kernels for the Lévy process reflected at its supremum killed upon
leaving [0, a]; Pistorius (2007) solved the problem of the Lehoczky and Skorokhod embedding
problem for the the spectrally negative Lévy process reflected at its supremum; Baurdoux (2007)
investigated the density of the resolvent measure of the killed Lévy process reflected at its infimum;
Kyprianou and Zhou (2009) obtained the Gerber-Shiu function for a generalized Lévy risk process.

The excursion theory also plays a key role in obtaining the results of this paper. Using the
excursion approach, some classical results on the spectrally negative Lévy process reflected from
the infimum are generalized to the process with draw-down reflection. In particular, we obtain
the Laplace transform for the upward exit time and the potential measure for such a draw-down
reflected process. We also find expressions on the expected present value of cumulated amount
of capital injections up to an upward exit time and the Laplace transform for the total amount
of capital injections until the exit time for the associated Lévy risk process. These results are
expressed in terms of scale functions for the spectrally negative Lévy process. When the general
supremum dependent draw-down time is reduced to the downward first passage time of a constant
boundary, we are able to recover the corresponding classical results in the existing literature.

The rest of the paper is arranged as follows. In Section 2 we first present some preliminary results
concerning the spectrally negative Lévy process and its reflection from below at a fixed level, and
then define the general draw-down reflected spectrally negative Lévy process. The associated
excursion process of excursions from the supremum is also introduced in this section. The main
results and their proofs are provided in Section 3. Some technical lemmas and discussions are also
included in this section.
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2. Spectrally negative Lévy process and its reflected processes

Write X ≡ {X(t); t ≥ 0}, defined on a probability space with probability laws {Px;x ∈ (−∞,∞)}
and natural filtration {Ft; t ≥ 0}, for a spectrally negative Lévy process that is not a purely
increasing linear drift or the negative of a subordinator. Denote its running supremum process as
X ≡ { sup

0≤s≤t
X(s), t ≥ 0} with X(0) = x under Px. Given a value a, the process X reflected from

below at the level a is defined as

X(t)− (X(t)− a) ∧ 0, t ≥ 0

where X(t) := inf0≤s≤tX(s) with X(0) = x under Px, denotes the running infimum process. Let
{Y (t), t ≥ 0} be the process X reflected from below at the level 0 (cf., Pistorius (2004)).

The draw-down time associated to a draw-down function ξ on (−∞,∞) satisfying ξ(x) < x, x ∈
(−∞,∞), the ξ-draw-down time in short, is defined as

τξ ≡ τξ(X) := inf{t ≥ 0 : X(t) < ξ(X(t))}

with the convention inf ∅ := ∞. We define the process X reflected at the ξ-draw-down time τξ as

X(t)− 1[τξ,∞)(t)

(

inf
τξ≤s≤t

X(s)− ξ(X(τξ))

)

∧ 0, t ≥ 0,

where we call ξ(X(τξ)) the draw-down level at the draw-down time τξ.
We now define the draw-down reflected process U forX. Intuitively, the process U initially agrees

with X until the first draw-down time of U . Then it starts to evolve according to X reflected at
the draw-down level until the next draw-down time of U when it is reflected at the draw-down level
again, and so on. Then given that U(s) = U(s) := sup0≤t≤s U(t), the process {U(t); t ≥ s} evolves

without reflection until the next draw-down time τξ; and given that U(s) > U(s), the process

{U(t); t ≥ s} is reflected from below at the current draw-down level ξ(U(s)) until it comes back to
the level U(s). Note that the process U is not a Markov process in general, but the process (U,U )
is Markovian. Write Px,y and Ex,y for the law of (U,U) such that U(0) = x and U(0) = y. For
simplicity, denote Px = Px,x and Ex = Ex,x.

To be more precise, define T0 := 0 and U(T0) := X(0). Suppose first that for n ≥ 1, U(t) has
been defined on [0, Tn] for Tn < ∞, n ≥ 1. Let Xn+1 be an independent copy of X starting at
U(Tn) and Un+1 be the process Xn+1 reflected at its ξ-draw-down time τξ(Xn+1). If τξ(Xn+1) = ∞,
let Tn+1 := ∞, and if τξ(Xn+1) <∞, let

Tn+1 := Tn + inf{t ≥ 0 : Un+1(t) > Xn+1(τξ(Xn+1))},

where Xn+1(t) := sup
0≤s≤t

Xn+1(s). Observe that Tn+1 <∞ if τξ(Xn+1) <∞. Then define

U(Tn+ t) := Un+1(t) for t ∈ [0, Tn+1−Tn) and U(Tn+1) := Un+1(Tn+1−Tn) if Tn+1 <∞.

Suppose now that U(t) has been defined on [0, Tn = ∞) for n ≥ 0. For convenience, let Tn+1 := ∞.
One can show that Tn ↑ ∞ as n→ ∞ under mild conditions on ξ; see Lemma 3.1.

For the process X, define its first up-crossing time of level b ∈ (−∞,∞) and first down-crossing
time of level c ∈ (−∞,∞), respectively, by

τ+b := inf{t ≥ 0 : X(t) > b} and τ−c := inf{t ≥ 0 : X(t) < c}.

For the processes Y and U , their first up-crossing times of b ∈ (−∞,∞) are defined respectively
by

σ+b := inf{t ≥ 0 : Y (t) > b} and κ+b := inf{t ≥ 0 : U(t) > b}.
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Let the Laplace exponent of X be given by

ψ(θ) := lnEx

(

eθ(X1−x)
)

= γθ +
1

2
σ2θ2 −

∫

(0,∞)

(

1− e−θx − θx1(0,1)(x)
)

ν(dx),

where ν is the Lévy measure satisfying
∫

(0,∞)

(

1 ∧ x2
)

ν(dx) <∞. It is known that ψ(θ) is finite for

θ ∈ [0,∞) in which case it is strictly convex and infinitely differentiable. As in Bertoin (1996), the

q-scale functions {W (q); q ≥ 0} of X are defined as follows. For each q ≥ 0, W (q) : [0,∞) → [0,∞)
is the unique strictly increasing and continuous function with Laplace transform

∫ ∞

0
e−θxW (q)(x)dx =

1

ψ(θ)− q
, for θ > Φ(q),

where Φ(q) is the largest solution of the equation ψ(θ) = q. Further define W (q)(x) = 0 for x < 0,

and write W for the 0-scale function W (0).
It is known thatW (q)(0) = 0 if and only if process X has sample paths of unbounded variation. If

X has sample paths of unbounded variation, or if X has sample paths of bounded variation and the
Lévy measure has no atoms, then the scale function W (q) is continuously differentiable over (0,∞).

By Loeffen (2008), if X has a Lévy measure which has a completely monotone density, thenW (q) is
twice continuously differentiable over (0,∞) whenX is of unbounded variation. Moreover, if process

X has a nontrivial Gaussian component, then W (q) is twice continuously differentiable over (0,∞).
The interested readers are referred to Chan et al. (2011) and Kuznetsov et al. (2012) for more
detailed discussions on the smoothness of scale functions. For results on numerical computation of
the scale function, the readers are referred to Hubalek and Kyprianou (2011) and the references
therein.

Further define

Z(q)(x) := 1 + q

∫ x

0
W (q)(z)dz, x ≥ 0,

and

Z(q)(x, θ) := eθx
(

1− (ψ(θ)− q)

∫ x

0
e−θzW (q)(z)dz

)

, θ ≥ 0, x ≥ 0,

with Z(x, θ) := Z(0)(x, θ), and

W
(q)

(x) :=

∫ x

0
W (q)(z)dz, q ≥ 0, x ≥ 0,

and

Z
(q)

(x) :=

∫ x

0
Z(q)(z)dz = x+ q

∫ x

0

∫ z

0
W (q)(w)dwdz, q ≥ 0, x ≥ 0.

In the sequel, without loss of generality we assume X1 ≡ X. By Li et al. (2017), we have

Ex(e
−qκ+

b 1{κ+
b
<τξ}

) = Ex

(

e−qτ
+
b 1{τ+

b
<τξ}

)

= exp

(

−

∫ b

x

W (q)′(ξ (z))

W (q)(ξ (z))
dz

)

,(1)

where ξ(z) = z − ξ(z). For x ∈ [0, b] and q ≥ 0, from Proposition 2 in Pistorius (2004) we have

Ex(e
−qσ+

b ) =
Z(q)(x)

Z(q)(b)
.(2)

By Kyprianou (2006), the resolvent measure corresponding to X is absolutely continuous with
respect to the Lebesgue measure with density given by

∫ ∞

0
e−qtPx(X(t) ∈ dy; t < τ−c ∧ τ+b )dt
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=

(

W (q)(x− c)

W (q)(b− c)
W (q)(b− y)−W (q)(x− y)

)

1(c,b)(y)dy,(3)

for x ∈ (c, b). By Pistorius (2004), the resolvent measure corresponding to Y is also absolutely
continuous with respect to the Lebesgue measure and has a version of density given by

∫ ∞

0
e−qtPx(Y (t) ∈ dy, t < σ+b )dt

=

(

Z(q)(x)

Z(q)(b)
W (q)(b− y)−W (q)(x− y)

)

1[0,b)(y)dy,(4)

where x ∈ [0, b).
Define the total amount of capital injections made until time t for the draw-down reflected process

as

R(t) :=−
N−1
∑

k=1

1[Tk−1+τξ(Xk),∞)(t)

(

inf
τξ(Xk)≤s≤Tk∧t−Tk−1

Xk(s)− ξ(Xk(τξ(Xk)))

)

∧ 0.

where N := inf{n : Tn = ∞} = inf{n : τξ(Xn) = ∞}. Then the expectation of the total discounted

capital injections until κ+b is defined by

Vξ(x; b) :=Ex

(

∫ κ+
b

0
e−qtdR(t)

)

, b ≥ x,

and the Laplace transform of the total non-discounted capital injection until κ+b is defined by

V ξ(x; b) :=Ex

(

e−θR(κ
+
b
)
)

, b ≥ x.

We also briefly recall concepts in excursion theory for the reflected process {X(t)−X(t); t ≥ 0},
and we refer to Bertoin (1996) for more details. For x ∈ (−∞,∞), the process {L(t) := X(t)−x, t ≥
0} serves as a local time at 0 for the Markov process {X(t) − X(t); t ≥ 0} under Px. Let the
corresponding inverse local time be defined as

L−1(t) := inf{s ≥ 0 : L(s) > t} = sup{s ≥ 0 : L(s) ≤ t}.

Further let L−1(t−) := lim
s↑t

L−1(s). Define a Poisson point process {(t, et); t ≥ 0} as

et(s) := X(L−1(t))−X(L−1(t−) + s), s ∈ (0, L−1(t)− L−1(t−)],

whenever the lifetime of et is positive, i.e. L
−1(t)−L−1(t−) > 0. Whenever L−1(t)−L−1(t−) = 0,

define et := Υ with Υ being an additional isolated point. A result of Itô states that e is a
Poisson point process with characteristic measure n if {X(t)−X(t); t ≥ 0} is recurrent; otherwise
{et; t ≤ L(∞)} is a Poisson point process stopped at the first excursion of infinite lifetime. Here, n
is a measure on the space E of excursions, i.e. the space E of càdlàg functions f satisfying

f : (0, ζ) → (0,∞) for some ζ = ζ(f) ∈ (0,∞],

f : {ζ} → (0,∞) if ζ <∞,

where ζ = ζ(f) is the excursion length or lifetime; see Definition 6.13 of Kyprianou (2006) for the
definition of E . Denote by ε(·), or ε for short, a generic excursion belonging to the space E of
canonical excursions. The excursion height of a canonical excursion ε is denoted by ε = sup

t∈[0,ζ]
ε(t).

The first passage time of a canonical excursion ε is defined by

ρ+b ≡ ρ+b (ε) := inf{t ∈ [0, ζ] : ε(t) > b},
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with the convention inf ∅ := ζ.
Denote by εg the excursion (away from 0) with left-end point g for the reflected process {X(t)−

X(t); t ≥ 0}, and ζg and εg denote its lifetime and excursion height, respectively; see Section IV.4
of Bertoin (1996).

3. Main results

In this section we present several results concerning the general draw-down reflected process U .
Recall ξ(x) = x− ξ(x). We first give the following Lemma 3.1 guaranteeing the well-definedness of
the process U .

Lemma 3.1. Given x ∈ (−∞,∞), if ξ is bounded from below on [x,∞), i.e.

α := inf
y∈[x,∞)

ξ(y) > 0,

we have Px

(

lim
n→∞

Tn = ∞
)

= 1.

Proof: For q ∈ (0,∞), by the strong Markov property of (U,U ) and (2), one gets

Ez

(

e−qT1
)

=Ez

(

e−qτξ1{τξ<∞} Ez

(

e−q (T1−τξ)
∣

∣

∣
Fτξ

))

=Ez

(

e−qτξ1{τξ<∞}

[

E

(

e−qσ
+
z

)∣

∣

∣

z=ξ(X(τξ))

])

=Ez

(

e−qτξ1{τξ<∞}

Z(q)
(

ξ
(

X(τξ)
))

)

≤
1

Z(q) (α)
, z ∈ [x,∞),(5)

where, X(τξ) ≥ z ≥ x and e−qτξ ≤ 1 Pz-a.s. for τξ < ∞, the definition of α and the increasing

property of Z(q) are used in the inequality. Hence, by (5) and U(Tn−1) ≥ x Px-a.s. for Tn−1 <∞,
one has

Ex

(

e−qTn
)

=Ex

(

e−qTn−11{Tn−1<∞} Ex

(

e−q (Tn−Tn−1)
∣

∣

∣
FTn−1

))

=Ex

(

e−qTn−11{Tn−1<∞} EU(Tn−1)

(

e−qT1
))

≤
Ex

(

e−qTn−1
)

Z(q) (α)
, n ≥ 2.(6)

By recursively using (5) and (6), one can derive

Ex

(

e−qTn
)

≤

(

1

Z(q) (α)

)n

, n ≥ 1.

Thus, we have

lim
n→∞

Ex

(

e−qTn
)

=0.

Then limn→∞ Tn = ∞ Px-a.s. since Tn is increasing in n. �

In preparation for the proofs of Theorems 3.1-3.4 in the sequel, we need the following lemma
whose proof is similar to that of Proposition 3.1 in Li et al. (2019) and is omitted.
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Lemma 3.2. For θ, q > 0, x ≤ b and measurable function φ : (−∞,∞) → (−∞,∞), we have

Ex

(

e−qτξ eθX(τξ) φ
(

X(τξ)
)

; τξ < τ+b

)

=

∫ b

x

φ (s) eθξ(s) exp

(

−

∫ s

x

W (q)′(ξ (z))

W (q)(ξ (z))
dz

)

×

(

W (q)′(ξ(s))

W (q)(ξ(s))
Z(q)(ξ(s), θ)− θZ(q)(ξ(s), θ)− (q − ψ(θ))W (q)(ξ(s))

)

ds.(7)

In particular, we have

Ex

(

e−qτξ φ
(

X(τξ)
)

; τξ < τ+b
)

=

∫ b

x

φ (s) exp

(

−

∫ s

x

W (q)′(ξ (z))

W (q)(ξ (z))
dz

)

×

(

W (q)′(ξ(s))

W (q)(ξ(s))
Z(q)(ξ(s))− qW (q)(ξ(s))

)

ds,(8)

and

Ex

(

eθX(τξ) φ
(

X(τξ)
)

; τξ < τ+b

)

=

∫ b

x

φ (s) eθξ(s) exp

(

−

∫ s

x

W ′(ξ (z))

W (ξ (z))
dz

)

×

(

W ′(ξ(s))

W (ξ(s))
Z (ξ(s), θ)− θZ (ξ(s), θ) + ψ(θ)W (ξ(s))

)

ds,(9)

and

Ex

(

e−qτξ
(

ξ
(

X(τξ)
)

−X(τξ)
)

; τξ < τ+b
)

=

∫ b

x

exp

(

−

∫ s

x

W (q)′(ξ (z))

W (q)(ξ (z))
dz

)

×

(

Z(q)(ξ(s))− ψ′(0+)W (q)(ξ(s))−
Z

(q)
(ξ(s))− ψ′(0+)W

(q)
(ξ(s))

W (q)(ξ(s))
W (q)′(ξ(s))

)

ds.(10)

We start with the Laplace transform of the upper exiting time for the process U .

Theorem 3.1. For q > 0 and x ≤ b, we have

Ex(e
−qκ+

b ) = exp

(

−

∫ b

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

.(11)

Proof: Denote by f(x) the left hand side of (11). We have

f(x) = Ex

(

e−qκ
+
b 1{κ+

b
<τξ}

)

+ Ex

(

e−qκ
+
b 1{τξ<κ

+
b
}

)

(12)

Note that by definition, τξ < κ+b implies X(τξ) < b which further implies T1 < κ+b . Hence, taking
use of (2) and (8) we get

Ex

(

e−qκ
+
b 1{τξ<κ

+
b
}

)

= Ex

(

e−qκ
+
b 1{τξ<T1<κ

+
b
}

)

=Ex

(

e−qτξ1{τξ<τ+b }

[

E

(

e−qσ
+
z

)∣

∣

∣

z=ξ(X(τξ))

]

f(X(τξ))

)

=Ex

(

e−qτξ1{τξ<τ+b }

f(X(τξ))

Z(q)(ξ(X(τξ)))

)
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=

∫ b

x

f(s) exp

(

−

∫ s

x

W (q)′(ξ(z))

W (q)(ξ(z))
dz

)(

W (q)′(ξ(s))

W (q)(ξ(s))
−
qW (q)(ξ(s))

Z(q)(ξ(s))

)

ds.(13)

Combining (1), (12) and (13), we obtain

f(x)=exp

(

−

∫ b

x

W (q)′(ξ (z))

W (q)(ξ (z))
dz

)

+

∫ b

x

f(s) exp

(

−

∫ s

x

W (q)′(ξ(z))

W (q)(ξ(z))
dz

)(

W (q)′(ξ(s))

W (q)(ξ(s))
−
qW (q)(ξ(s))

Z(q)(ξ(s))

)

ds, x ≤ b.(14)

Taking derivative on both sides of (14) with respect to x, we have

f ′(x)=
W (q)′(ξ (x))

W (q)(ξ (x))
f(x)− f(x)

(

W (q)′(ξ(x))

W (q)(ξ(x))
−
qW (q)(ξ(x))

Z(q)(ξ(x))

)

=f(x)
qW (q)(ξ(x))

Z(q)(ξ(x))
, x ≤ b.(15)

Solving (15) we obtain

f(x)=C + exp

(

−

∫ b

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

, x ≤ b,(16)

for some constant C. The boundary condition f(b) = 1 together with (16) yields (11). �

Remark 3.1. If ξ(x) = kx− d for some k ∈ (−∞, 1) and d ∈ (0,∞), we have

Ex(e
−qκ+

b )=exp

(

−

∫ b

x

qW (q)((1− k)z + d)

Z(q)((1− k)z + d)
dz

)

=exp

(

−
1

1− k

∫ (1−k)b+d

(1−k)x+d

qW (q)(z)

Z(q)(z)
dz

)

=

(

Z(q)((1 − k)x+ d)

Z(q)((1− k)b+ d)

)
1

1−k

.

We then obtain an expression of the resolvent density for the process U .

Theorem 3.2. For q > 0, x ≤ b and u ≤ b, the resolvent measure of U is absolutely continuous
with respect to the Lebesgue measure with density given by

∫ ∞

0
e−qtPx(U(t) ∈ du, t < κ+b )dt

=W (q)(0) exp

(

−

∫ u

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

1(x,b)(u)du+

∫ b

x

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

×

(

W (q)′(y − u)−
qW (q)(ξ(y))

Z(q)(ξ(y))
W (q)(y − u)

)

1(ξ(y),y)(u)dydu.(17)
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Proof: Recall U(t) = sups∈[0,t] U(s) and let eq be an exponential random variable independent of
X. For q > 0, x ≤ b and any continuous, non-negative and bounded function h, let

qg(x) :=

∫ ∞

0
qe−qtEx(h(U(t)); t < κ+b )dt

= Ex

(

h(X(eq))1{X(eq)<X(eq), eq<τ
+
b
∧τξ}

)

+ Ex

(

h(U(eq))1{U(eq)<U(eq),τξ<eq<κ
+
b
}

)

+Ex

(
∫ ∞

0
qe−qth(X(t))1{X(t)=X (t), t<τ+

b
∧τξ}

dt

)

+ Ex

(

h(U(eq))1{U(eq)=U(eq),τξ<eq<κ
+
b
}

)

:= qg1(x) + qg2(x) + qg3(x) + qg4(x).

Note that
∫ t

0 1{X(s)=X(s)}ds =W (q)(0)X(t) under P0, see Chapters IV and VII of Bertoin (1996),

the proof of Part (ii) of Theorem 1 in Pistorius (2004) or the first three paragraphs in Section 5 of
Li et al. (2019). By (1) we have

qg3(x)=Ex

(
∫ ∞

0
qe−qL

−1(L(t))h(X(L−1(L(t))))1{X(t)=X (t), L−1(L(t))<τ+
b
∧τξ}

dt

)

=W (0)Ex

(∫ ∞

0
qe−qL

−1(L(t))h(X(L−1(L(t))))1{L−1(L(t))<τ+
b
∧τξ}

dLt

)

= qW (0)

∫ b−x

0
Ex

(

e−qL
−1(t)

1{L−1(t)<τξ}

)

h(x+ t)dt

= qW (0)

∫ b

x

exp

(

−

∫ s

x

W (q)′(ξ (z))

W (q)(ξ (z))
dz

)

h(s)ds,(18)

where we have used the fact that L−1(t) has the same law as the first exit time τ+x+t under Px.

By the strong Markov property of (U,U ), the memoryless property of the exponentially dis-
tributed random variable, (2) and (8), we have

qg4(x)=Ex

(

Ex

(

h(U(eq))1{U(eq)=U(eq),τξ<eq<κ
+
b
}

∣

∣

∣
FT1

))

=Ex

(

1{T1<eq∧κ
+
b
}EX(τξ)

(

h(U(eq))1{U(eq)=U(eq),eq<κ
+
b
}

))

=Ex

(

1{T1<eq∧κ
+
b
}

(

qg3(X(τξ)) + qg4(X(τξ))
)

)

=Ex

(

Ex

(

e−qT11{T1<κ+b }

(

qg3(X(τξ)) + qg4(X(τξ))
)

∣

∣

∣
Fτξ

))

= qEx

(

e−qτξ1{τξ<κ+b }

1

Z(q)(ξ(X(τξ)))

(

g3(X(τξ)) + g4(X(τξ))
)

)

= q

∫ b

x

(g3(s) + g4(s)) exp

(

−

∫ s

x

W (q)′(ξ(z))

W (q)(ξ(z))
dz

)(

W (q)′(ξ(s))

W (q)(ξ(s))
−
qW (q)(ξ(s))

Z(q)(ξ(s))

)

ds,(19)

where we also used the fact that τξ < κ+b implies T1 < κ+b (see also (13)), and the tact that τξ < eq
combined with U(eq) = U(eq) implies T1 ≤ eq.

By the compensation formula, the memoryless property for exponential random variable and
(11), qg1(x) can be expressed as

Ex

(

∫ ∞

0

∑

g

e−qg
∏

r<g

1{εr≤ξ(x+L(r)), L(g)≤b−x}
h (x+ L(g) − εg(t− g))
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×qe−q(t−g)1{g<t<g+ζg∧ρ+
ξ(x+L(g))

(g)}dt

)

=Ex

(

∑

g

e−qg
∏

r<g

1{εr≤ξ(x+L(r)), L(g)≤b−x}

×

∫ ∞

0
qe−qsh (x+ L(g)− εg(s))1{s<ζg∧ρ+

ξ(x+L(g))
(g)}ds

)

=Ex

(

∫ ∞

0
e−qt

∏

r<t

1{εr≤ξ(x+L(r)), L(t)≤b−x}

×

(∫

E

∫ ∞

0
qe−qsh (x+ L(t)− ε(s)) 1{s<ζ∧ρ+

ξ(x+L(t))
}ds n (dε)

)

dL(t)

)

=q

∫ b−x

0
Ex

(

e−qL
−1
t−1{L−1

t−<τξ}

)

∫ ∞

0
n

(

e−qsh(x+ t− ε(s))1{s<ζ∧ρ+
ξ(x+t)

}

)

dsdt

=q

∫ b

x

exp

(

−

∫ t

x

W (q)′(ξ(z))

W (q)(ξ(z))
dz

)

∫ ∞

0
n

(

e−qsh(t− ε(s))1{s<ζ∧ρ+
ξ(t)

}

)

dsdt,(20)

where g is the left-end point of the excursion εg, as introduced at the end of Section 2. Applying
the same arguments as in (18) and (20) we have

Ex

(

h(X(eq))1{eq<τ+b ∧τ−c }

)

=Ex

(

h(X(eq))1{X(eq)=X(eq), eq<τ
+
b
∧τ−c }

)

+ Ex

(

h(X(eq))1{X(eq)<X(eq), eq<τ
+
b
∧τ−c }

)

=q

∫ b

x

W (q)(x− c)

W (q)(t− c)

(

W (0)h(t) +

∫ ∞

0
n
(

e−qsh(t− ε(s))1{s<ζ∧ρ+t−c}

)

ds

)

dt,(21)

where the identity

Ex−c

(

e−qτ
+
t−c ; τ+t−c < τ−0

)

=
W (q)(x− c)

W (q)(t− c)
, −∞ < c ≤ x ≤ t <∞,

is used. Equating the right hand sides of (21) and (3) and then differentiating the resulting equation
with respect to b gives

W (q)(x− c)

W (q)(b− c)

(

W (0)h(b) +

∫ ∞

0
n
(

e−qsh(b− ε(s))1{s<ζ∧ρ+
b−c

}

)

ds

)

=
W (q)(x− c)

W (q)(b− c)

(

h(b)W (0) +

∫ b

c

h(y)

(

W (q)′(b− y)−
W (q)′(b− c)

W (q)(b− c)
W (q)(b− y)

)

dy

)

,

or equivalently,
∫ ∞

0
n
(

e−qsh(b− ε(s))1{s<ζ∧ρ+
b−c

}

)

ds

=

∫ b

c

h(y)

(

W (q)′(b− y)−
W (q)′(b− c)

W (q)(b− c)
W (q)(b− y)

)

dy.(22)

Combining (22) and (20), we get

g1(x)=

∫ b

x

e
−

∫ s

x

W (q)′(ξ(z))

W (q)(ξ(z))
dz
∫ s

ξ(s)
h(y)

(

W (q)′(s− y)−
W (q)′(ξ(s))

W (q)(ξ(s))
W (q)(s− y)

)

dyds.(23)
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Using the memoryless property of exponential random variable, qg2(x) can be rewritten as

qg2(x) = Ex

(

h(U(eq))1{U(eq)<U(eq), τξ<eq<T1<κ
+
b
}

)

+Ex

(

h(U(eq))1{U(eq)<U (eq), τξ<T1<eq<κ
+
b
}

)

= Ex

(

h(U(eq))1{τξ<eq<T1<κ+b }

)

+ Ex

(

h(U(eq))1{U(eq)<U(eq), τξ<T1<eq<κ
+
b
}

)

:= qg21(x) + qg22(x),(24)

where we also took use of the fact that τξ < κ+b implies T1 < κ+b as in (13).
Using (4) and (8) we have

qg21(x)=Ex

(

Ex

(

h(U(eq))1{τξ<eq<T1<κ+b }

∣

∣

∣
Fτξ

))

=Ex

(

1{τξ < eq ∧ κ
+
b }Ex

(

h(U(eq))1{eq<T1}
∣

∣Fτξ
))

=Ex

(

1{τξ<eq∧κ
+
b
} E

(

h(ξ(z) + Y (eq))1{eq<σ+
ξ(z)

}

)∣

∣

∣

∣

z=X(τξ)

)

= qEx

(

1{τξ<eq∧κ
+
b
}

∫ ξ(X(τξ))

0
h(ξ(X(τξ)) + y)

W (q)(ξ(X(τξ))− y)

Z(q)(ξ(X(τξ)))
dy

)

= q

∫ b

x

exp

(

−

∫ s

x

W (q)′(ξ(z))

W (q)(ξ(z))
dz

)(

W (q)′(ξ(s))

W (q)(ξ(s))
−
qW (q)(ξ(s))

Z(q)(ξ(s))

)

×

∫ ξ(s)

0
h(ξ(s) + y)W (q)(ξ(s)− y)dyds.(25)

In addition, observing that τξ < T1 for τξ <∞, by (2) and (8) one can rewrite qg22(x) as

qg22(x)=Ex

(

Ex

(

h(U(eq))1{U(eq)<U (eq), τξ<T1<eq<κ
+
b
}

∣

∣

∣FT1

))

=Ex

(

1{T1<eq∧κ
+
b
}

(

qg1(X(τξ)) + qg2(X(τξ))
)

)

=Ex

(

Ex

(

e−qT11{T1<κ+b }

(

qg1(X(τξ)) + qg2(X(τξ))
)

∣

∣

∣Fτξ

))

=Ex

(

e−qτξ1{τξ<κ+b }

1

Z(q)(ξ(X(τξ)))

(

qg1(X(τξ)) + qg2(X(τξ))
)

)

= q

∫ b

x

(g1(s) + g2(s)) e
−

∫ s

x

W (q)′(ξ(z))

W (q)(ξ(z))
dz

(

W (q)′(ξ(s))

W (q)(ξ(s))
−
qW (q)(ξ(s))

Z(q)(ξ(s))

)

ds.(26)

Combining (18), (19), (23), (24), (25) and (26), we obtain the following differential equation on
g(x).

g′(x)=
W (q)′(ξ(x))

W (q)(ξ(x))
g(x) −W (0)h(x) − (g3(x) + g4(x))

(

W (q)′(ξ(x))

W (q)(ξ(x))
−
qW (q)(ξ(s))

Z(q)(ξ(s))

)

−

∫ x

ξ(x)
h(y)

(

W (q)′(x− y)−
W (q)′(ξ(x))

W (q)(ξ(x))
W (q)(x− y)

)

dy

− (g1(x) + g2(x))

(

W (q)′(ξ(x))

W (q)(ξ(x))
−
qW (q)(ξ(x))

Z(q)(ξ(x))

)
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−

(

W (q)′(ξ(x))

W (q)(ξ(x))
−
qW (q)(ξ(x))

Z(q)(ξ(x))

)

∫ ξ(x)

0
h(ξ(x) + y)W (q)(ξ(x)− y)dy

=
qW (q)(ξ(x))

Z(q)(ξ(x))
g(x) −W (0)h(x)−

∫ x

ξ(x)
h(y)

(

W (q)′(x− y)−
W (q)′(ξ(x))

W (q)(ξ(x))
W (q)(x− y)

)

dy

−

(

W (q)′(ξ(x))

W (q)(ξ(x))
−
qW (q)(ξ(x))

Z(q)(ξ(x))

)

∫ x

ξ(x)
h(y)W (q)(x− y)dy

=
qW (q)(ξ(x))

Z(q)(ξ(x))
g(x) −W (0)h(x)−

∫ x

ξ(x)
h(y)

(

W (q)′(x− y)−
qW (q)(ξ(x))

W (q)(ξ(x))
W (q)(x− y)

)

dy,(27)

with boundary condition g(b) = 0. Solving equation (27) yields

g(x)=

∫ ∞

0
e−qtEx(h(U(t)); t < κ+b )dt

=W (q)(0)

∫ b

x

h(y) exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

dy +

∫ b

x

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

×

∫ y

ξ(y)
h(z)

(

W (q)′(y − z)−
qW (q)(ξ(y))

Z(q)(ξ(y))
W (q)(y − z)

)

dzdy.(28)

The resolvent density (17) follows immediately from (28). �

Remark 3.2. Note that
∫ ∞

0
e−qtPx(U(t) ≤ u, t < κ+b )dt

=W (q)(0)

(

∫ u

x

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

dy 1(x,b)(u) +

∫ b

x

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

dy 1u≥b

)

+

∫ b

x

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)(

∫ y

ξ(y)

(

W (q)′(y − z)−
qW (q)(ξ(y))

Z(q)(ξ(y))
W (q)(y − z)

)

dz 1u≥y

+

∫ u

ξ(y)

(

W (q)′(y − z)−
qW (q)(ξ(y))

Z(q)(ξ(y))
W (q)(y − z)

)

dz 1ξ(y)<u<y

)

dy.(29)

Letting u = b in (29), we get

1− Ex(e
−qκ+

b )

q
=

∫ ∞

0
e−qtPx(t < κ+b )dt

=

∫ ∞

0
e−qtPx(U(t) ≤ b, t < κ+b )dt

=W (q)(0)

∫ b

x

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

dy

+

∫ b

x

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

∫ y

ξ(y)

(

W (q)′(y − z)−
qW (q)(ξ(y))

Z(q)(ξ(y))
W (q)(y − z)

)

dzdy

=

∫ b

x

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

1

q

qW (q)(ξ(y))

Z(q)(ξ(y))
dy
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=
1

q
−

1

q
exp

(

−

∫ b

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

,

which coincides with (11) of Proposition 3.1.

Remark 3.3. Letting ξ ≡ 0 in (17) and noting that

exp

(

−

∫ u

x

qW (q)(z)

Z(q)(z)
dz

)

=
Z(q)(x)

Z(q)(u)
,

we get
∫ ∞

0
e−qtPx(U(t) ∈ du, t < κ+b )dt

=
W (q)(0)Z(q)(x)1(x,b)(u)

Z(q)(u)
du+

∫ b

x

Z(q)(x)

Z(q)(y)

(

W (q)′(y − u)−
qW (q)(y)

Z(q)(y)
W (q)(y − u)

)

1(0,y)(u)dydu

=
W (q)(0)Z(q)(x)1(x,b)(u)

Z(q)(u)
du+ Z(q)(x)

∫ b

x

d

dy

[

W (q)(y − u)

Z(q)(y)

]

1(0,y)(u)dydu

=





W (q)(0)

Z(q)(u)
+
W (q)(y − u)

Z(q)(y)

∣

∣

∣

∣

∣

b

u



Z(q)(x)1(x,b)(u)du+
W (q)(y − u)

Z(q)(y)

∣

∣

∣

∣

∣

b

x

Z(q)(x)1(0,x)(u)du

=

(

Z(q)(x)

Z(q)(b)
W (q)(b− u)−W (q)(x− u)

)

1(0,b)(u)du,

which coincides with (i) of Theorem 1 in Pistorius (2004).

The following result gives an expression of the expectation of the total discounted capital injec-
tions until time κ+b .

Theorem 3.3. For q > 0 and x ≤ b, we have

Vξ(x; b)=

∫ b

x

(

Z(q)(ξ(y)) − ψ′(0+)W (q)(ξ(y))
)

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

dy

+

∫ b

x

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

qW (q)(ξ(y))

Z(q)(ξ(y))

(

−Z
(q)

(ξ(y)) + ψ′(0+)W
(q)

(ξ(y))
)

dy.(30)

Proof: For q > 0 and x ≤ b, we have

Vξ(x; b) = Ex

(

∫ κ+
b

0
e−qtdR(t)

)

= Ex

(

e−qτξ1{τξ<κ+b }

(

ξ(X(τξ))−X(τξ)
)

)

+Ex

(

1{τξ<κ
+
b
}

∫ T1

τξ+
e−qtdR(t)

)

+ Ex

(

1{τξ<κ
+
b
}

∫ κ+
b

T1

e−qtdR(t)

)

:=V1(x; b) + V2(x; b) + V3(x; b).(31)

By (10), V1(x; b) can be expressed as

V1(x; b)=

∫ b

x

exp

(

−

∫ s

x

W (q)′(ξ (z))

W (q)(ξ (z))
dz

)

(

Z(q)(ξ(s))− ψ′(0+)W (q)(ξ(s))
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−
Z

(q)
(ξ(s))− ψ′(0+)W

(q)
(ξ(s))

W (q)(ξ(s))
W (q)′(ξ(s))

)

ds.(32)

By the Markov property for the reflected process (U,U ),

V2(x; b)=Ex

(

e−qτξ1{τξ<τ+b }V0(0; ξ(X(τξ)))
)

.(33)

By the proof of Theorem 1 of Avram et al. (2007), we have

V0(0; ξ(X(τξ))) = −
ψ′(0+)

q
+
Z

(q)
(ξ(X(τξ))) +

ψ′(0+)
q

Z(q)(ξ(X(τξ)))
,

which together with (33) and (8) gives

V2(x; b)=Ex



e−qτξ1{τξ<τ+b }



−
ψ′(0+)

q
+
Z

(q)
(ξ(X(τξ))) +

ψ′(0+)
q

Z(q)(ξ(X(τξ)))









=

∫ b

x



−
ψ′(0+)

q
+
Z

(q)
(ξ(s)) + ψ′(0+)

q

Z(q)(ξ(s))



 exp

(

−

∫ s

x

W (q)′(ξ(z))

W (q)(ξ(z))
dz

)

×

(

W (q)′(ξ(s))

W (q)(ξ(s))
Z(q)(ξ(s))− qW (q)(ξ(s))

)

ds.(34)

Making use of (8) again, one can get

V3(x; b)=Ex

(

Ex

(

1{τξ<κ
+
b
}

∫ κ+
b

T1

e−qtdR(t)

∣

∣

∣

∣

∣

FT1

))

=Ex

(

Ex

(

e−qT11{τξ<κ+b }Vξ(X(τξ); b)
∣

∣

∣
Fτξ

))

=Ex

(

e−qτξ1{τξ<τ+b }

1

Z(q)(ξ(X(τξ)))
Vξ(X(τξ); b)

)

=

∫ b

x

Vξ(s; b)e
−

∫ s

x

W (q)′(ξ(z))

W (q)(ξ(z))
dz

(

W (q)′(ξ(s))

W (q)(ξ(s))
−
qW (q)(ξ(s))

Z(q)(ξ(s))

)

ds.(35)

Denote by V ′
ξ (x; b) the derivative of Vξ(x; b) with respect to its first argument. Combining (31),

(32), (34) and (35) we have

V ′
ξ (x; b)=

W (q)′(ξ(x))

W (q)(ξ(x))
Vξ(x; b)− Vξ(x; b)

(

W (q)′(ξ(x))

W (q)(ξ(x))
−
qW (q)(ξ(x))

Z(q)(ξ(x))

)

−

(

Z(q)(ξ(x))− ψ′(0+)W (q)(ξ(x))−
Z

(q)
(ξ(x))− ψ′(0+)W

(q)
(ξ(x))

W (q)(ξ(x))
W (q)′(ξ(x))

)

−



−
ψ′(0+)

q
+
Z

(q)
(ξ(x)) + ψ′(0+)

q

Z(q)(ξ(x))





(

W (q)′(ξ(x))

W (q)(ξ(x))
Z(q)(ξ(x))− qW (q)(ξ(x))

)

=
qW (q)(ξ(x))

Z(q)(ξ(x))
Vξ(x; b)
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−Z(q)(ξ(x)) + ψ′(0+)W (q)(ξ(x)) +
Z

(q)
(ξ(x))− ψ′(0+)W

(q)
(ξ(x))

W (q)(ξ(x))
W (q)′(ξ(x))

+
−Z

(q)
(ξ(x)) + ψ′(0+)W

(q)
(ξ(x))

Z(q)(ξ(x))

(

W (q)′(ξ(x))

W (q)(ξ(x))
Z(q)(ξ(x)) − qW (q)(ξ(x))

)

=
qW (q)(ξ(x))

Z(q)(ξ(x))
Vξ(x; b) − Z(q)(ξ(x)) + ψ′(0+)W (q)(ξ(x))

−
qW (q)(ξ(x))

Z(q)(ξ(x))

(

−Z
(q)

(ξ(x)) + ψ′(0+)W
(q)

(ξ(x))
)

.(36)

Solving (36) with boundary condition Vξ(b, b) = 0, we obtain (30). �

Remark 3.4. In particular, for ξ ≡ 0 we have

V0(x; b)=

∫ b

x

(

Z(q)(y)− ψ′(0+)W (q)(y)
)

exp

(

−

∫ y

x

qW (q)(z)

Z(q)(z)
dz

)

dy

+

∫ b

x

exp

(

−

∫ y

x

qW (q)(z)

Z(q)(z)
dz

)

qW (q)(y)

Z(q)(y)

(

−Z
(q)

(y) + ψ′(0+)W
(q)

(y)
)

dy

=

∫ b

x

(

Z(q)(y)− ψ′(0+)W (q)(y)
) Z(q)(x)

Z(q)(y)
dy

+

∫ b

x

Z(q)(x)

Z(q)(y)

qW (q)(y)

Z(q)(y)

(

−Z
(q)

(y) + ψ′(0+)W
(q)

(y)
)

dy

=−Z(q)(x)
−Z

(q)
(y) + ψ′(0+)W

(q)
(y)

Z(q)(y)

∣

∣

∣

∣

∣

y=b

y=x

=−Z
(q)

(x) + ψ′(0+)W
(q)

(x) +
Z(q)(x)

Z(q)(b)

(

Z
(q)

(b)− ψ′(0+)W
(q)

(b)
)

=−Z
(q)

(x)−
ψ′(0+)

q
+
Z(q)(x)

Z(q)(b)

(

Z
(q)

(b) +
ψ′(0+)

q

)

,

which coincides with the corresponding results (the first block of equations) on page 167 of Avram
et al. (2007).

Remark 3.5. Letting b → ∞ in (30), we recover the following expression of the expected total
discounted capital injections.

Vξ(x;∞)=

∫ ∞

x

(

Z(q)(ξ(y))− ψ′(0+)W (q)(ξ(y))
)

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

dy

+

∫ ∞

x

exp

(

−

∫ y

x

qW (q)(ξ(z))

Z(q)(ξ(z))
dz

)

qW (q)(ξ(y))

Z(q)(ξ(y))

(

−Z
(q)

(ξ(y)) + ψ′(0+)W
(q)

(ξ(y))
)

dy.

Letting ξ(x) ≡ 0 in the above equality, we get

V0(x;∞)=−Z
(q)

(x)−
ψ′(0+)

q
+ lim
b→∞

Z(q)(x)

Z(q)(b)

(

Z
(q)

(b) +
ψ′(0+)

q

)
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=−Z
(q)

(x)−
ψ′(0+)

q
+ Z(q)(x) lim

b→∞

W (q)(b)

W (q)′(b)

=−Z
(q)

(x)−
ψ′(0+)

q
+
Z(q)(x)

Φ(q)
,

which coincides with the results obtained by letting a→ ∞ in (4.4) of Avram et al. (2007).

The next result gives an expression of the Laplace transform of the accumulated capital injections
until time κ+b .

Theorem 3.4. For any θ > 0 and x ≤ b, we have

V ξ(x; b)=exp

(

−

∫ b

x

(

θ −
ψ(θ)W (ξ(y))

Z(ξ(y), θ)

)

dy

)

.(37)

Proof: For q > 0 and x ≤ b, we have

V ξ(x; b) := Ex

(

e−θR(κ
+
b
)
)

=Ex

(

e−θ(ξ(X(τξ))−X(τξ))−θ(R(T1)−R(τξ))−θ(R(κ+b )−R(T1)); τξ < κ+b

)

+ Px

(

τξ > τ+b
)

=Ex

(

e−θ(ξ(X(τξ))−X(τξ))e−θ(R(T1)−R(τξ))Ex

(

e−θ(R(κ
+
b
)−R(T1))

∣

∣

∣
FT1

)

; τξ < κ+b

)

+exp

(

−

∫ b

x

W ′(ξ (z))

W (ξ (z))
dz

)

=Ex

(

e−θ(ξ(X(τξ))−X(τξ))V ξ

(

X(τξ), b
)

V 0(0; ξ(X(τξ))); τξ < τ+b

)

+exp

(

−

∫ b

x

W ′(ξ (z))

W (ξ (z))
dz

)

.(38)

By (24) of Albrecher et al. (2016), we have

V 0(0; ξ(X(τξ)))= E

(

e−θR0(σ
+
z )
)∣

∣

∣

z=ξ(X(τξ))

= E

(

e−θR0(σ
+
z );σ+z <∞

)∣

∣

∣

z=ξ(X(τξ))

=
Z(0, θ)

Z(ξ(X(τξ)), θ)

=
1

Z(ξ(X(τξ)), θ)
,(39)

where R0(t) := −X(t)∧ 0, and for the second equality of (39) we need the fact that if ψ′(0+) ≥ 0,
then lim

t→∞
X(t) = ∞, and we have

lim
t→∞

sup
s∈[0,t]

Y (s) ≥ lim
t→∞

X(t) = ∞,

which implies σ+z <∞ Px-a.s.; if ψ
′(0+) < 0 and σ+z = ∞ a.s., then we have R0(σ

+
z ) = ∞ because

lim
t→∞

X(t) = −∞ when ψ′(0+) < 0. That is to say, either ψ′(0+) ≥ 0 or ψ′(0+) < 0, we always

have

Ex

(

e−θR0(σ
+
z )
)

= Ex

(

e−θR0(σ
+
z );σ+z <∞

)

.
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Using (9), we have

Ex

(

eθX(τξ)
e−θξ(X(τξ))V ξ

(

X(τξ), b
)

Z(ξ(X(τξ)), θ)
; τξ < τ+b

)

=

∫ b

x

V ξ (s, b)

Z(ξ(s), θ)
e
−

∫ s

x

W ′(ξ(z))

W (ξ(z))
dz
(

W ′(ξ(s))

W (ξ(s))
Z(ξ(s), θ)− θZ(ξ(s), θ) + ψ(θ)W (ξ(s))

)

ds.(40)

Applying both (39) and (40) to (38), we have

V ξ(x; b)=exp

(

−

∫ b

x

W ′(ξ (z))

W (ξ (z))
dz

)

+ Ex

(

eθX(τξ)
e−θξ(X(τξ))V ξ

(

X(τξ), b
)

Z(ξ(X(τξ)), θ)
; τξ < τ+b

)

=exp

(

−

∫ b

x

W ′(ξ (z))

W (ξ (z))
dz

)

+

∫ b

x

Vξ (s; b)

Z(ξ(s), θ)
e
−

∫ s

x

W ′(ξ(z))

W (ξ(z))
dz
(

W ′(ξ(s))

W (ξ(s))
Z(ξ(s), θ)− θZ(ξ(s), θ) + ψ(θ)W (ξ(s))

)

ds.(41)

Taking derivatives on both sides of (41) with respect to x, we have

V
′
ξ(x; b)=

W ′(ξ (x))

W (ξ (x))
V ξ(x; b)

−
V ξ (x; b)

Z(ξ(x), θ)

(

W ′(ξ(x))

W (ξ(x))
Z(ξ(x), θ)− θZ(ξ(x), θ) + ψ(θ)W (ξ(x))

)

=

(

θ −
ψ(θ)W (ξ(x))

Z(ξ(x), θ)

)

V ξ(x; b).(42)

Solving (42) with boundary condition V (b; b) = 1 we obtain (37). �

Remark 3.6. Letting ξ(x) ≡ 0 in (37), we get

V 0(x; b)=exp

(

−

∫ b

x

(

θ −
ψ(θ)W (y)

Z(y, θ)

)

dy

)

=exp

(

−

∫ b

x

Z ′(y, θ)

Z(y, θ)
dy

)

=
Z(x, θ)

Z(b, θ)
,(43)

which recovers (24) of Albrecher et al. (2016).

Remark 3.7. By Theorem 3.4, one can deduce that, for q > 0 and x ≤ b

Ex

(

e−qκ
+
b
−θR(κ+

b
)
)

=Ex

(

e−qκ
+
b
−θR(κ+

b
);κ+b <∞

)

=Ex

(

e−θR(κ
+
b
);κ+b <∞, κ+b < eq

)

=exp

(

−

∫ b

x

(

θ −
ψq(θ)W

(q)(ξ(y))

Z(q)(ξ(y), θ)

)

dy

)

,

where eq is an exponential random variable with rate q independent of X, and ψq(θ) = ψ(θ) − q,

W (q) and Z(q) correspond to the Laplace exponent and scale functions of the Lévy process killed at
rate q.
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Remark 3.8. It is easy to see that Theorem 3.3 and Theorem 3.4 agree with each other in some
special cases. By Theorem 3.3 we have

Ex

(

R(κ+b )
)

= Ex

(

∫ κ+
b

0
dR(t)

)

= lim
q↓0

Vξ(x; b)=

∫ b

x

(

1− ψ′(0+)W (ξ(y))
)

dy,(44)

where lim
q↓0

Z(q)(x) = 1 is used. In the meanwhile, it holds that

Ex

(

−R(κ+b )
)

= lim
θ↓0

d

dθ
V ξ(x; b).(45)

By Theorem 3.4 we have

d

dθ
V ξ(x; b)=exp

(

−

∫ b

x

(

θ −
ψ(θ)W (ξ(y))

Z(ξ(y), θ)

)

dy

)

×

∫ b

x

−

(

1−
ψ′(θ)W (ξ(y))

Z(ξ(y), θ)
+
ψ(θ)W (ξ(y))

[Z(ξ(y), θ)]2
d

dθ
Z(ξ(y), θ)

)

dy,

with
d

dθ
Z(x, θ) = xZ(x, θ)− eθxψ′(θ)

∫ x

0
e−θzW (z)dz + eθxψ(θ)

∫ x

0
ze−θzW (z)dz,

by the definition of Z(x, θ). Hence,

lim
θ↓0

d

dθ
Z(x, θ) = x− ψ′(0+)

∫ x

0
W (z)dz,

and

lim
θ↓0

d

dθ
V ξ(x; b)=−

∫ b

x

(

1− ψ′(0+)W (ξ(y))
)

dy.(46)

Plugging (46) into (45) we recover (44).
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times. Bernoulli, 22(3), 1364-1382.

[2] Asmussen, S., 1989. Applied Probability and Queues, Wiley series in probability.
[3] Avram, F., Palmowski, Z. and Pistorius, M., 2007. On the optimal dividend problem for a spectrally negative
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