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PROJECTIVE COMPACTIFICATION OF

DOLBEAULT MODULI SPACES

MARK ANDREA A. DE CATALDO

Abstract. We construct a relative projective compactification of Dolbeault moduli
spaces of Higgs bundles for reductive algebraic groups on families of projective mani-
folds that is compatible with the Hitchin morphism.
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1. Introduction

The purpose of this paper is to prove Theorem 3.1.1, which provides a natural projec-
tive compactification of Simpson’s Dolbeault moduli spaces of Higgs bundles for complex
reductive algebraic groups on projective manifolds. The compactification statement seems
to be folklore, but we could not locate a reference in the literature. The projectivity asser-
tion seems new. Remark 3.1.2 discusses the earlier work we are aware of; §3.7 discusses in
more detail the relation of this work to the work of A. Schmitt. In the course of proving
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our main result, we establish some complements which can be of independent interest.
Next, we discuss in more detail the contents of this paper.

The Dolbeault moduli space for a reductive algebraic group G for a family X/S of
projective manifolds is quasi projective over the base S. The associated Hitchin morphism
is proved to be proper in the case G = GLn by Simpson.

We observe in Proposition 2.2.2 that the Hitchin morphism is proper, in fact projective,
for every reductive algebraic group G. The properness assertion has been independently
proved for families of curves in arbitrary characteristic in [Al-Ha-He]. The target of the
Hitchin morphism is a global version for the family X/S of the quotient g//G. In this
context, the Chevalley restriction morphism being an isomorphism plays an important
role, albeit not a direct one in this paper. Since we could not locate in the literature
a reference for this fact in the case G reductive algebraic, we offer a proof in Lemma
2.4.1. Our proof of the properness of the Hitchin morphism consists of exhibiting it as the
first link in a factorization of another proper morphism. Since the second link is of great
Lie-theoretic importance, we show it is a finite morphism in Proposition 2.4.2.

Proposition 2.5.1 constructs a natural complex on the Dolbeault moduli space that,
locally over the base S, is the box product of the intersection complex of a typical fiber
(via the Non Abelian Hodge Theorem, the Dolbeault moduli space is topologically locally
trivial over the base) with the constant sheaf over the base. Once this is done, the last
assertion of the proposition, i.e. the vanishing φF = 0 of the vanishing cycle, follows
directly.

The main result of this paper is the compactification Theorem 3.1.1, the proof of which is
spread-out through several subsections of §3. We use Simpson’s compactification Theorem
3.2.1 in the context of suitable Gm-actions, of which we need the amplification provided by
Proposition 3.2.2; this slight improvement also allows to incorporate the Hitchin morphism
in the compactification framework. §3.4 constructs the desired compactification. Away
from the nilpotent cone, i.e. the fiber of the Hitchin morphism over the unique Gm-
fixed point of the Hitchin base, the stabilizers of the natural Gm-action on the Dolbeault
moduli space are finite; when the Dolbeault moduli space is an orbifold (this is rare, but
it happens in very interesting cases; see Remark 2.1.2), Lemma 3.5.1 allows to deduce
that the compactification is an orbifold as well; in this context, we could not locate in the
literature a needed technical statement, hence the lemma, which was suggested to us by M.
Brion. §3.6 contains the proof of our main Theorem 3.1.1. Proposition 3.8.1 contains some
topological complements that our compactification affords when the Dolbeault moduli
space is an orbifold (cf. Theorem 3.1.1.(6)).

As it is pointed out in Remark 3.1.3, Theorem 3.1.1, parts 1-5 holds in the more general
context of Λ-modules, with Λ of polynomial type. The proofs are identical. The case of
Higgs sheaves is then a special case, and the one of Dolbeault moduli spaces is an even
more special case. We have decided to write this paper in the context of Dolbeault moduli
spaces because of the extra appeal stemming from the Non Abelian Hodge Theorem.

Acknowledgments. The author thanks: Leticia Brambila Paz, Michel Brion, Vic-
tor Ginzburg, Jochen Heinloth, Andrea Maffei, Luca Migliorini, Mircea Mustaţă, Daniel
Bergh, Jörg Schürmann , Carlos Simpson and Geordie Williamson for useful conversations.
The author, who is partially supported by N.S.F. D.M.S. Grants n. 1600515 and 1901975,
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would also like to thank the Freiburg Research Institute for Advanced Studies for the
perfect working conditions; the research leading to these results has received funding from
the People Programme (Marie Curie Actions) of the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under REA grant agreement n. [609305]. I thank the
anonymous referees for their suggestions, especially in connection with their constructive
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1.1. Notation.
We work over the field of complex numbers C. A variety is a separated scheme of finite

type over C. All varieties in this paper turn out to be quasiprojective over any chosen
base variety S.

A standard reference for Higgs bundles and Dolbeault moduli spaces is [Si-1994-I,
Si-1994-II]. For the derived category of constructible sheaves, we refer the reader to
[de-Mi-2009]. For vanishing cycles, we refer the reader to [de-Ma-2018].

2. Dolbeault moduli spaces: review and complements

In this section, we review Simpson’s Dolbeault moduli spaces. The main reference for
this section is [Si-1994-II] where, among other things, C. Simpson proves the Non Abelian
Hodge Theorem in families over a base S. This section also contains some folklore comple-
ments that do not seem to be documented in the literature we are aware of: projectivity
of the Hitchin morphism for reductive algebraic groups (Proposition 2.2.2); the Cheval-
ley restriction isomorphism (Lemma 2.4.1); the finiteness assertion of Proposition 2.4.2.
Proposition 2.5.1 constructs a complex on the Dolbeault moduli space for a family of pro-
jective manifolds that restricts to the intersection cohomology complexes on the fibers;
this seems new.

In this section, we place ourselves in the following:

Set-up 2.0.1. Let G be a complex reductive algebraic group. Let X/S be a smooth pro-
jective morphism (family).

Given a point s ∈ S, we denote by Xs the corresponding member of the family. More
generally, a subscript −s, with s ∈ S, indicates the restriction of an object to the corre-
sponding fiber.

2.1. The Dolbeault moduli space.
LetMD(X/S,G)/S be the relative Dolbeault moduli space associated with the reductive

algebraic group G and the family X/S, and let:

πD(X/S,G) : MD(X/S,G) // S (1)

be the structural morphism. This moduli space universally corepresents the appropri-
ate functor. If s ∈ S, then the fiber πD(X/S,G)−1(s) is the Dolbeault moduli space
MD(Xs, G) associated with G and Xs.

For the case G = GLn, see [Si-1994-II, pp.16-17] and [Si-1994-I, Theorem 4.7]; the
Dolbeault moduli space is obtained as a good quotient of a parameter space Q by the action
of a special linear group. The morphism πD(X/S,GLn) is quasi-projective (cf. [Si-1994-I,
Theorem 4.7]), and the closed points in MD(Xs, GLn) parameterize Jordan equivalence
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classes of µ-semistable Higgs bundles of rank n on Xs with vanishing rational Chern
classes ci, ∀i > 0; (see [Si-1994-II, p.17]). There is also the construction stemming from
[Si-1994-II, Proposition 9.7] and [Si-1994-I, Theorem 4.10], where the Dolbeault moduli
space arises in connection with good and geometric quotients of Dolbeault representation
spaces modulo the action of GLn; this construction is used in the construction of moduli
spaces for G reductive [Si-1994-II, Proposition 9.7], via a closed embedding of G into
some GLn. There is also the construction relating Higgs sheaves to sheaves in the relative
cotangent bundle [Si-1994-II, p.18], which Simpson uses to prove the properness of the
Hitchin morphism for G = GLn.

For G reductive algebraic, the morphism πD(X/S,G) is again quasi-projective: combine
[Si-1994-II, Proposition 9.7], [Si-1994-II, Corollary 9.19] and [Stacks, Tag 0417, Pr. 58.49.2].
The closed points in MD(Xs, G) parameterize the set of isomorphism classes of princi-
pal Higgs bundles of semiharmonic type on Xs for the reductive algebraic group G (cf.
[Si-1994-II, Proposition 9.7]).

Remark 2.1.1. (Higgs vector bundles over curves) If X/S is a family of smooth
projective curves of genus g ≥ 2 and G = GLn, then, fiberwise over S, the Dolbeault
moduli spaces MD(Xs, G) are integral and normal see [Si-1994-II, Corollary 11.7].

The Dolbeault moduli spaces of a smooth projective variety are seldom nonsingular:
the only case I know of is the case G = GL1, where the moduli space is the cotangent
bundle to Pic0.

Remark 2.1.2. (Variant: Higgs vector bundles over curves with degree coprime
to the rank) The following variant of Dolbeault moduli spaces are nonsingular and con-
nected, moreover, the analogue of the Non Abelian Hodge Theorem holds for them: X/S is
a family of projective connected nonsingular curves of genus g ≥ 2, the reductive algebraic
group G = GLn, SLn, and we consider stable Higgs bundle of degree coprime to the rank.
For G = PGLn one gets the quotient of the SLn-moduli space by the abelian group scheme
Pic0X/S [n], which is finite over S. See [de-Ha-Mi-2012] and the references therein, and

[Si-1997, §6].

2.2. Projectivity of the Hitchin morphism.
When G = GLn, the Hitchin morphism

h(X/S,G) : MD(X/S,G) // A(X/S,G) (2)

is defined in [Si-1994-II, p.22]. Here, A(X/S,GLn) is the scheme representing the functor
sending S′/S to ⊕n

i=1H
0(X ′ := X×S S

′,Symi Ω1
X′/S); according to general facts, this rep-

resenting scheme is a cone SpecOS
(Q) over S, for a suitable coherent OS -moduleQ = ⊕iQi

(e.g. cf. [Wa-2011, Lemma 3.1.3]). In short: first, one chooses a homogeneous system of
generators (fi)

n
i=1 ⊆ C[gln//G] = C[gln]

GLn ⊆ C[gln] of degree i, e.g. trace(∧
i(−)); then,

given a Higgs bundle (E,φ) on X ′/S′, one combines the fi with the twisted endomorphism
φ to define the sections of SymiΩ1

X′/S . In the case where G is reductive algebraic, one

defines the Hitchin morphism in the same way, by choosing a homogeneous system of
generators fj ∈ C[g]G ⊆ C[g] with degrees dj given by the fundamental degrees of g.

https:/\protect \kern -.1667em\relax /stacks.maTheoremcolumbia.edu/tag/0417
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Remark 2.2.1. Note that for s ∈ S, we have that A(X/S,G)s = A(Xs, G). Let S
be connected. When dimX/S ≥ 2, the dimensions h0(Xs,Sym

iΩ1
Xs

) may jump up; see
[Ro-Ro-2014, §4.2]. These dimensions do not jump when dimX/S = 1, i.e. for families
of curves. Regardless of the relative dimension dimX/S of the family X/S, by Hodge
Theory, these dimensions do not jump for i = 1.

Proposition 2.2.2. (Projectivity of the Hitchin morphism (2)) The Hitchin mor-
phism (2)) is projective.

Proof. Since the Dolbeault moduli space structural morphism (1) is quasi-projective, it is
enough to prove that the Hitchin S-morphism (2) is proper.

In the case G = GLn, properness of the Hitchin morphism follows from [Si-1994-II,
Theorem 6.11]. In the case when G is reductive algebraic, we argue as follows. We first
embed G into some GLn as a closed subgroup. We thus obtain the commutative diagram
of S-morphisms:

MD(X/S,G)
ιM //

h(X/S,G)
��

MD(X/S,GLn)

h(X/S,GLn)
��

A(X/S,G)
ιA // A(X/S,GLn).

(3)

The morphism h(X/S,GLn) ◦ ιM is proper (cf. [Si-1994-II, Theorem 6.11 (h is proper)
and Corollary 9.15 (ιM is proper), or the more precise Corollary 9.19 (ιM is finite)]). It
follows that the morphism h(X/S,G) in (2) is proper, as predicated. �

Remark 2.2.3. The case of G = GLn and families X/S of arbitrary relative dimension
is due to C. Simpson [Si-1994-II]. Proposition 2.2.2 is a simple complement to Simpson’s
proof of properness. The case of G-semisimple for families of curves is due to G. Falt-
ings [Fa-1993, Theorem I.3]. The paper [Al-Ha-He] contains a proof of properness for G
reductive algebraic for families of curves in arbitrary characteristic.

Remark 2.2.4. (Complement: ιA is finite) We observe that, as one may expect, the
morphism ιA is finite. Since we could not locate a reference in the literature for this
seemingly well-known fact, we offer a proof in the slightly more general Proposition 2.4.2.

2.3. Gm-equivariance of the Hitchin morphism.
The group Gm acts on the Hitchin S-morphism (2) as follows. It acts trivially on S.

it acts on the Dolbeault moduli space by scalar multiplication of Higgs fields (these are
suitable sections of a twisted adjoint bundle; cf [Si-1994-II, p.49]), and this action covers
the trivial action over S; see [Si-1994-II, p.17-18 and p.62]. It acts on the Hitchin base with
positive weights dj : let Q = ⊕jQj be the coherent sheaf on S whose symmetric OS-algebra
has spectrum representing the Hitchin base (cf. §2.2); we view it as a graded OS-algebra
by setting degQj := dj ; then t ∈ Gm acts by multiplication by tdi on each Qi. This action
also covers the trivial action over S. The Hitchin morphism is Gm-equivariant for the
aforementioned actions. Diagram (3), is a diagram of Gm-equivariant S-morphisms.

Remark 2.3.1. (Weighted projective completion of the Hitchin base) For cones
and their projective completions, see [Fu-1984, Appendix B5]. The Hitchin base A(X/S,G)
is the affine cone SpecOS

(S := Sym•(Q)) over S. By taking Proj of the associated graded
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algebra S[z], with z a free variable of weight 1, and with remaining weigths dj as spec-

ified above, we obtain the relative projective cone completion A(X/S,G) over S of the
Hitchin base. Its fibers over S are wighted projective spaces, with dimensions varying
upper-semicontinuously. It carries a natural Gm-action, compatible with the one on the
affine cone. The divisor at infinity is Cartier and made of Gm-fixed points.

Remark 2.3.2. (Existence of zero-limits for the Gm-action) An important con-
sequence of the properness of the Hitchin morphism is that, since the Gm-action on the
target of the Hitchin morphism is contracting, the zero-limits for the Gm-action exist in
the Dolbeault moduli spaces MD(Xs, G); these limits are fixed points and they dwell in the
fiber of the Hitchin morphism over the origin (the unique fixed point) of the target. See
[Si-1994-II, Corollary 9.20]. This important consequence allows us to use Simpson’s com-
pactification technique, amplified in Proposition 3.2.2, in the proof of our compactification
Theorem 3.1.1.

Remark 2.3.3. (Cohomological consequences for contracting Gm-actions) A well-
known consequence of the properness of the Hitchin morphism coupled with the fact that the
Gm-action on the target of the Hitchin morphism is contracting is that, given a projective
manifold X, we have natural isomorphisms:

H∗(MD(X,G),Q) = H∗(h(X,G)−1(o),Q)

between the rational cohomology groups of the Dolbeault moduli space and the one of
the fiber of the Hitchin morphism over the origin (nilpotent cone); the same holds for
IH∗(MD(X,G),Q) = H∗(h(X,G)−1(o), (ICMD(X,G),Q)|h(X,G)−1(o)). See [de-Hai-Li-2017,
Lemma 6.11 and Remark. 6.12]. In fact, the corresponding Leray spectral sequences are

E2-degenerate, and their E2-pages consist of only one non-zero column, i.e. E0q
2 .

2.4. Complement: minor variation on the Chevalley restriction theorem.
The standard formulation of Chevalley’s restriction theorem that we have been able to

locate in the literature [Hu, Ch-Gi] is as follows: let G be a complex connected semisimple
algebraic group, let g be the Lie algebra of G, let h be a Cartan subalgebra of g, let W
be the associated Weyl group; then the natural Chevalley restriction morphism g//G →
h/W is an isomorphism. It is well-known that the same conclusion holds if we replace
G semisimple and connected with G reductive algebraic. I thank V. Ginzburg and G.
Williamson for suggesting us how to prove it. I thank an anonymous referee for pointing
us to the fact that what follows can also be deduced from [Lu-Ri-1979, Theorem 4.2].

Lemma 2.4.1. Let G be connected and reductive algebraic. Then the Chevalley restriction
morphism g//G→ h/W is an isomorphism.

Proof. Let Zo ⊆ G be the identity component of the center of G: it coincides with the
radical of G and it is a torus [Mi-AGS, Thm. 5.1]. The quotient group q : G→ G′ := G/Zo

is semisimple [Mi-AGS, Pr. 2.5].
Let g denote the Lie algebra of G. Similarly, we have g′ for G′, and z for Zo.
Let T ′ ⊆ G′ be a maximal torus and let t′ be its Lie algebra. Then we have the

root-space decomposition of T ′-modules g′ = t

′ ⊕ r′.
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The Lie algebra g is a G-module for the (adjoint) action of G and, since Zo acts trivially
on g, the G-action factors through G′.

Since G is reductive algebraic, we have a non-canonical splitting g = z ⊕ g1 of G-
modules, as well as of G′-modules.

The differential dq : g = z ⊕ g1 → g

′ is G′-equivariant and split, and it identifies g1
and g′ as G′-modules.

Let T ⊆ G be the pre-image of T ′. It is a maximal torus; this can be seen, for example,
as a consequence of the Hofmann-Schereer Splitting Theorem, which, in particular, says
that the commutator subgroup intersects trivially a suitable torus, therefore it intersects
trivially the center; this implies T is commutative and, since Zo is connected, it is also
connected; one then shows it is a torus, and a maximal one, non-canonically isomorphic
to Zo × T ′.

We note that the Weyl group W := W (G,T ) = N(T )/T maps isomorphically, via q,
onto W ′ := W (G′, T ′) = N(T ′)/T ′.

We thus have the natural commutative diagram of C-algebras:

C[g′] //

��

C[t′]

��

C[g] //
C[t],

(4)

where: the horizontal maps are given by restrictions of functions; the vertical ones are
pull-backs of functions and, the l.h.s. one is a morphisms of G′-modules, the r.h.s. one is
a morphisms of W = W ′-modules.

By taking invariants in (4), we have the natural commutative diagram of C-algebras:

C[g′]G
′ ∼= //

1⊗−
��

C[t′]W
′

1⊗−
��

C[z]⊗
C

C[g1]
G′

= C[g]G
′

= C[g]G
1⊗−

∼=
//
C[z]⊗

C

C[t′1]
W ′

= C[t]W
′

= C[t]W ,

(5)

where: the top horizontal arrow is the Chevalley Restriction Isomorphism for the semisim-
ple G′; the vertical arrows map a function f to 1 ⊗ f ; the identifications on the bottom
horizontal arrows follow from the splitting of modules constructed above; the bottom hor-
izontal arrow is the tensor product of the identity on C[z] with the Chevalley restriction
morphism for G′, via the identifications given above.

The desired conclusion follows. �

The following was suggested to us by J. Heinloth. Since we do do not know of a
reference, we offer a proof. We thank V. Ginzburg for suggesting the one below. We
thank T. Haines, J. Heinloth, and J.E. Humphreys for helpful discussions.

Proposition 2.4.2. Let G→M be a finite morphism of complex reductive algebraic Lie
groups. Then the natural morphism induced by the adjoint actions:

g//G //
m//M (6)
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is finite.

Proof. Let Go,Mo denote the respective connected components of the identity. There is
the natural commutative diagram of morphism:

g//Go //

��

m//Mo

��

g//G //
m//M,

(7)

where the vertical arrows are finite and surjective. It follows that if the top horizontal
arrow is finite, then so is the bottom one (properness follows from surjectivity, and quasi-
finiteness is evident), so that we may assume that the reductive algebraic groups G and
M are connected.

Since the morphism G→M is assumed to be finite, the differential g→m is injective
and we may view g as dwelling inside m.

By using the maximality of Cartan subalgebras, we can choose Cartan subalgebras
h(g) ⊆ h(m). Let W (h(g)) and W (h(m)) be the corresponding Weyl groups.

The morphism g//G = h(g)/W (h(g)→m//M = h(m)/W (h(m) (cf. Lemma 2.4.1) is
finite because the Weyl groups are finite and h(g) ⊆ h(m). �

Remark 2.4.3. Even if the given morphism of reductive algebraic groups is a closed
embedding, the morphism (6) may fail to be a closed embedding. Consider the classical
embedding SO(4) ⊆ GL4 (more generally, SO(2n) ⊆ GL2n): then the algebra of invariants
is a polynomial algebra with generators s2, p2, where p2 is the Pfaffian and satisfies p22 =
det, the determinant; it follows that, in this case, (6) is 2 : 1 onto its image.

2.5. Vanishing of vanishing cycles.
In general, due to the possible singularity of the base S of the family X/S, the inter-

section complex of the Dolbeault moduli space over S does not restrict to the intersection
complexes of the Dolbeault moduli spaces of the fibers over s ∈ S. A priori, even if S is
nonsingular, it is not immediately clear that there should be a complex on the Dolbeault
moduli space M/S that restricts to the intersection complexes of the Dolbeault moduli
spaces of the fibers over s ∈ S.

The following proposition is an application of the gluing Lemma [Be-Be-De-1982, Thm.
3.2.4], and it ensures that there is a natural complex on the Dolbeault moduli space M/S
which restricts to the intersection complexes of the Dolbeault moduli spaces of the fibers
over s ∈ S. The vanishing φF = 0 is an amplification of [de-Ma-2018, Lm. 4.1.9 and
Corollary 4.1.4].

Proposition 2.5.1. (The complex F and the vanishing φF = 0) Let p : M → S be
a morphism of varieties that is topologically locally trivial over the base S. Then there is
a complex F ∈ D(M) that, locally over S, is a box product of the intersection complex of
a typical fiber with the constant sheaf QS. In particular, F restricts to the intersection
complexes of the fibers Ms of M/S. If S is a non singular curve and s ∈ S is a point,
then the vanishing cycle complex φF = 0.
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Proof. We may assume that S is connected. Let M be an algebraic variety which is a
representative of the homeomorphism class of the fibers of M/S. Note that M is not
necessarily irreducible, nor connected; the intersection complex of such varieties is defined
to be the direct sum of the intersection complexes of its irreducible components as in
[de-2012], or in [de-Ma-2018], where it is also proved that it is a homeomorphism invariant
by reducing to the pure-dimensional case, proved by M. Goresky and R. MacPherson.
This is proved directly by Ben Wu in [Wu-2020]. Let {Sa} be an open covering of S such
that the Sa are contractible and such that M/S is trivialized over the open sets Sa by

means of Sa-homeomorphisms φa : Ma := p−1(Sa)
∼
→ Sa ×M. Let qa : Sa ×M→M be

the projection.
We set Sab = Sa ∩ Sb = Sb ∩ Sa = Sba. Similarly for triple intersections. We also have

Mab, qab, etc. We denote the restrictions of the φ’s as follows: φa|b := φa|Mab
. We also have

the transition Sab-homeomorphisms φba := φb|a ◦ φ
−1
a|b

and their restrictions, denoted φba|c

to triple intersections. The cocycle identities then read as follows: φcb|a ◦ φba|c = φca|b.
Let I := ICM be the intersection complex of M. By [de-Ma-2018, Lm. 4.1.3 and its

proof], I is perverse semisimple and it is characterized by the following conditions being
met: being perverse semisimple; having its simple summands supported precisely on the
irreducible components ofM; being the direct sum ⊕T o

QT o[dimT ] of the constant sheaves
on any Zariski dense open subset T o the regular part T reg of each irreducible component
T ofM, shifted by the dimension of such component.

Let Fa := φ∗
aq

∗
aI ∈ D(Ma). We have the chain of canonical identifications: (first Hom

in D(Ma), the others in D(M)):

Hom(Fa, Fa[i]) = Hom(I, qa∗φa∗φ
∗
aq

∗
aI[i]) = Hom(I, qa∗q

∗
aI[i]) = Hom(I, I[i]), (8)

where: the first equality holds by the usual adjunction between pull-back and push-
forward; the second equality holds because φa is a homeomorphism; the third equality
holds is by the Vietoris-Begle Theorem [Ka-Sh-1990, Pr. 2.7.8], in view of the contractibil-
ity of Sa. Since I is perverse, we have that the last term in (8) vanishes ∀i < 0, and we
get that:

Hom(Fa, Fa[i]) = 0, ∀i < 0. (9)

We denote restrictions as follows Fa|b := Fa|Mab
. By adjunction again, we have:

Hom(Fa|b, Fb|a = Hom(I, qab∗φa|b∗
φ∗
b|aq

∗
abI). (10)

By the characterization of I, the second argument in the last term is canonically isomorphic
to I. Let ρba ∈ Hom(Fa|b, Fb|a) be the element corresponding to this identification via (10).
It follows that the ρ’s satisfy the cocycle condition.

In view of the glueing lemma [Be-Be-De-1982, Thm. 3.2.4], we have an object F , unique
up to unique isomorphism, that glues the Fa.

The vanishing φF = 0 follows directly from the local triviality of F over S. �

Remark 2.5.2. (Twisting by local systems) Once we have constructed F as in the
proof of Proposition 2.5.1, we can twist it by the pull-back of any rank one local system on
S and obtain other constructible complexes that restrict to the intersection complexes of
the fibers. These correspond to modified choices of the gluing data given by the ρ’s in the
aforementioned proof.
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Remark 2.5.3. The evident variant of Proposition 2.5.1 in the context of the twisted
Dolbeault spaces of Remark 2.1.2 holds, with the same proof.

3. Projective compactification of Dolbeault moduli spaces

We freely use the the Set-up 2.0.1 and the notation and results in §2.

3.1. The projective compactification statement.
Denote the Hitchin S-morphism (2) for the smooth projective family X/S and the

reductive algebraic group G simply by:

h : M // A. (11)

The structural S-morphism for M/S is usually not proper: just consider the Gm-action
which rescales the Higgs field so that its image under the Hitchin morphism escapes to
infinity. It is desirable to produce a compactification of M relative to this morphism
that retains many of the properties of M , especially in connection with the Hitchin mor-
phism. We provide such a compactification in Theorem 3.1.1. In some special cases, this
compactification has some precursors; see Remark 3.1.2.

When dealing with Cartesian diagrams, we denote parallel arrows with the same symbol.
This abuse of notation does not create conflicts in what follows.

Theorem 3.1.1. (Relative projective compactification of Dolbeault moduli spaces)
Let X/S be a smooth projective family, let G be a reductive algebraic group and consider
the Hitchin S-morphism h (11). There is a Cartesian diagram of S-varieties:

Z

h

��

a // M

h
��

M

h

��

boo

W
a // A A

boo

(12)

such that:

(1) The S-structural morphisms for the varieties in the left-hand and middle columns
are projective (in general, M and A are not proper over S).

(2) The morphisms h of Hitchin-type are projective.
(3) All morphisms in (12), including the omitted structural morphisms to S, are Gm-

equivariant morphisms of Gm-varieties. The Gm-actions on Z and W are trivial.
(4) The morphism a and b are complementary closed and open embeddings, respec-

tively. The varieties W and Z support effective Cartier divisors in M/S and in
A/S, respectively.

(5) The fibers of A/S are non-canonically Gm-equivariantly isomorphic to weighted
projective spaces (cf. Remark 2.2.1).

(6) Assume that vM : M → S and vA : A→ S are smooth (see Remark 2.1.2). Then:
(a) M,A,Z and W are orbifold fibrations over S (:= the fibers are orbifolds);

if, in addition, S is nonsingular, then M,A,Z and W are orbifolds.
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(b) There is an augmented commutative diagram:

Z̃

r

��

M̃

r

��

Z

h

��

a // M

h
��

M

h

��

boo

W
a // A A,

boo

(13)

where the morphisms r are “resolution of singularities over S” of Z and

(M,M) respectively, in the sense that vZ̃ : Z̃ → S and v˜M
: M̃ → S are

smooth and projective, r : M̃ →M is an isomorphism over M , and, for every

s ∈ S, the morphisms rs : Z̃s → Zs and rs : M̃ s → M s are birational (hence

resolution of singularities)1; the boundary M̃ \M is a simple normal crossing

divisor in M̃ over S.

Remark 3.1.2. (Relation to earlier work.)
The paper [Si-1997] provides a compactification of the de Rham moduli space for a

smooth projective family X/S and a reductive algebraic G; to my knowledge, the projec-
tivity of this compactification is unknown. The proof of Theorem 3.1.1 is an adaptation
of Simpson’s construction from the de Rham case to the Dolbeault case.

The paper [Ma-2002, §4] provides a modular compactification in the set-up or Remark
2.1.2.

The paper [Ha-1998] provides a projective compactification of the Hitchin morphism in
the case of a curve of genus at least two and G = SL2, via the method of symplectic cuts.
In the same set-up, the paper [Ed-Gr-1998] provides a birational projective model for the
Dolbeault moduli space in the case G = GLn.

[Ha-Vi-2015, Theorem 1.3.1 and (1.2.3)] provides a compactification of the Dolbeault
moduli space over S = Spec(C) in the twisted case (cf. Remark 2.1.2) of a curve of genus
at least two with G = GLn, SLn, PGLn. In connection with this construction, the reader
can consult [Ed-Gr-1998].

The paper [Sh-1998] provides a projective and modular compactification of the moduli
of Hitchin pairs on a projective manifold. Roughly speaking, Schmitt’s Hitchin pairs on
a projective manifold share the same definition as Higgs pairs for G = GLn, except that
they are not subject to the integrability condition ϕ ∧ ϕ = 0 on the Higgs field ϕ, which
is automatically satisfied on curves, but is an actual condition in higher dimensions. Note
that this implies that, unlike the case of curves and GLn, in higher dimension the Hitchin
morphism is often not surjective. The reader is referred to the preprint [Ch-Ng-2019] for a
study of the Hitchin morphism in higher dimensions. On a curve, and for G = GLn, the two
are closely related: Schmitt’s compactification compactifies Simpson’s Dolbeault moduli
space. In higher dimensions, Schmitt’s compactification contains a compactification of

1in general it is not possible to resolve, say, Z and at the same time resolve all the fibers of Z/S
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Simpson’s as a Zariski closed subvariety. That Schmitt’s compactification should coincide
with the one provided by this paper (and by [Ha-Vi-2015]’s) should coincide for curves and
G = GLn, was suggested to us by Leticia Brambila Paz. In §3.7, following a suggestion
of A. Schmitt, we identify, the two compactifications, Schmitt’s [Sh-1998, Theorem 7.1]
and the one of Theorem 3.1.1, when X is a curve of genus at least two, and we consider
Higgs bundles for the group GLn, with degree coprime to the rank. Even in this case, the
compactification given in this paper, while not modular in nature, has interesting features,
e.g. Theorem 3.1.1.(6), that do not seem readily affordable via the methods in [Sh-1998].

Remark 3.1.3. (Λ-modules of polynomial type) The main result of this paper,
namely Theorem 3.1.1, parts 1-5, is stated and proved in the case of Dolbeault moduli
spaces for G reductive algebraic. These results hold, with essentially the same proofs, for
moduli spaces of Higgs sheaves with fixed Hilbert polynomial and, more generally, for mod-
uli spaces of Λ-modules with fixed Hilbert polynomial for Λ a sheaf of rings of differential
operators of polynomial type (cf. [Si-1994-II, §1,2,3] for definitions and main results; see
also [Si-1994-II, Theorem 6.11], on the properness of the Hitchin morphism, which also
holds in this context, with the same proof). In fact, the construction of the compactifi-
cation in §3.4 relies on the properness of the Hitchin morphism, on the rather general
results on quotients by Gm-actions in §3.2, and on the Gm-linearization results in §3.3,
especially Corollary 3.3.3; all of these results have evident valid counterparts in case of Λ
of polynomial type.

3.2. A compactification technique due to C. Simpson.
In this section we recall and slightly amplify Simpson’s construction of suitable com-

pactifications given in [Si-1997, §11].
Let S be a variety endowed with the trivial Gm-action. Let V and V ′ be varieties over

S, endowed with a Gm-action covering the trivial Gm-action over S, so that the structural
morphisms V, V ′ → S are Gm-equivariant. Let V → V ′ be a Gm-equivariant proper
S-morphism.

We thank Carlos Simpson for discussions relating to the following issue. We warmly
thank the anonymous referee that brought this issue to the surface. [Si-1997, §11, The-
orems 11.1 and 11.2] are missing the seemingly necessary hypothesis that there exists a
Gm-linearization for a relatively ample line bundle on V (and for us in this paper, also
on V ′). In general, a Gm-linearization for a given line bundle may fail to exist when the
underlying variety is not normal; see [Br-2015, Introduction and Example 2.15].

We thus make the following additional assumption with respect to [Si-1997, §11]. We
assume that V and V ′ carry relatively ample line bundles with respect to the structural
morphism to S, and that these line bundles admit Gm-linearizations; we do not require
any kind of compatibility between the line bundles, nor between their Gm-linearizations.

Theorem 3.2.1. ([Si-1997, Thm. 11.2]) Assume that V/S carries a relatively ample line
bundle admitting a Gm-linearization. Assume the fixed point set V Gm ⊆ V is proper over
S, and that that 0-limits exist in V . Let U ⊆ V be the subset such that the ∞-limits do
not exist (this subset may be empty; e.g. V/S proper). Then U is open in V and there is
a universal geometric quotient U/Gm. This quotient is separated and proper over S.
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Part (1,2) of the following proposition can be proved along the same lines of the proof of
Simpson’s Theorem 3.2.1. We simply note the following: the assumption i) on surjectivity
implies easily the assumption ii) on the fixed point set and 0-limits. One applies Simp-
son’s technique to V and to V ′ to find the universal geometric quotients. The descended
morphism between the universal geometric quotient arises from the equivariance of the
morphism U → U ′. The properness and separateness over S are proved by Simpson. The
properness of the descended morphism follows from the properness of (U/Gm)/S (all our
morphisms of schemes are separated and of finite type). What needs proof is part (3).

Proposition 3.2.2. Assume that V/S and V ′/S carry relatively ample line bundles ad-
mitting Gm-linearizations. Assume the fixed point set V Gm ⊆ V is proper over S. Assume
that 0-limits exist in V. Assume that either: i) the Gm-equivariant proper S-morphism

V → V ′ is surjective, or ii) the fixed point set V ′Gm ⊆ V ′ is proper over S and the 0-limits
exist in V ′. Let U ⊆ V (U ′ ⊆ V ′, resp.) be the subset such that the ∞-limits do not exist.
Then:

(1) U (U ′, resp,) is open in V (V ′, resp.);
(2) the pre-image of U ′ is U ; the proper morphism U → U ′ descends to a proper S-

morphism U/Gm → U ′/Gm between the geometric quotients, both of which are
proper and separated over S;

(3) if the morphism V → V ′ is projective, then so is the descended morphism U/Gm →
U ′/Gm; if, in addition, (U ′/Gm)/S is also projective, then (U/Gm)/S is projective.

Proof. As it was pointed out before the statement, we only need to prove part (3). The
last part of (3) follows since the composition of projective morphisms is projective (all
our schemes are quasi separated and all our morphisms are quasi compact; here and in
what follows we make such remarks and the reader can consult either EGA, or [Stacks],
to see that these are the needed conditions for the validity of our assertions). Let LU

be an(U/S)-ample line bundle admitting a Gm-linearization. The (U/S)-ample LU is
automatically (U/U ′)-ample (all our morphisms are quasi compact). Since by definition U
does not contain any Gm-fixed point, all the stabilizers of the Gm-action on U are finite,
hence cyclic. There is an integer τ > 0 such that the Gm-linearization on L⊗τ

U induced by
the one on LU has trivial stabilizers (all our morphisms are of finite presentation and all
our schemes are Noetherian). By Kempf’s Descent Lemma [Dr-Na-1989, Théorème 2.3]
(the proof given there for good GIT quotients remains valid in the present context of a
geometric quotient), there is a line bundle L on U/Gm such that it pulls-back to L⊗τ

U as
a Gm-bundle.

We claim that L is ((U/Gm)/(U ′/Gm))-ample. If this were the case, then we would be
done, because then the descended morphism, being proper and quasi projective, would
be projective (all our schemes are quasi compact and quasi separated). In view of the
properness of the descended morphism, in order to argue the desired relative ampleness,
we observe that it is equivalent to the ampleness of L when restricted to all closed fibers
of the descended morphism (cf. EGA III1, 4.7.1). On the other hand, given any such fiber
F[u′] over a point [u′] ∈ U ′/Gm with representative u′ ∈ U ′, the fiber Uu′ of U → U ′ over

u′ maps finitely and surjectively onto F[u′], this map being the quotient by the finite Gm-
stabilizer of u′. The restriction of the (U/U ′)-ample LU to Uu′ is automatically ample. It
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follows that the pull-back of L|F[u′]
via the finite surjective morphism Uu′ → F[u′] is ample,

so that L|F[u′]
is ample as well (see [Stacks, Tag 0B5V]). As seen above, this implies our

claim that L is ((U/Gm)/(U ′/Gm))-ample. �

3.3. Gm-action on M/S and Gm-linearizability of LM .
Let X/S be smooth and projective with structural morphism f : X → S, let OX(1) be

an (X/S)-very ample line bundle on X, let P be a Hilbert polynomial, let H be a vector
bundle of finite rank on X, let Λ := Sym•(H∨) be the symmetric OX -algebra associated
with H∨. In terms of triples (H, δ, γ) as in [Si-1994-I, p.82], here we set δ = 0 and γ as in
[Si-1994-I, p.85]. We thus view Λ as a sheaf of rings of differential operators of polynomial
type on X/S. In what follows, given a scheme S′/S, a superscript −′ denotes an object
after the base change S′/S, e.g. X ′/S′, OX′(1), etc.

Simpson constructs the coarse moduli space M/S that universally corepresents the
functor M# that assigns to S′/S the set of isomorphism classes of p-semistable Λ-modules
on X ′ with Hilbert polynomial P wrt to OX′(1) (more precisely, on the closed fibers X ′

s

wrt to OX′
s
(1)). This moduli space comes equipped with an (M/S)-ample line bundle.

The case of Higgs bundles is the special case H := Ω1
X/S . The Dolbeault moduli space

is the even more special case discussed in [Si-1994-II, p.16]. Next, let us summarize the
construction of M/S. For details we refer the reader to [Si-1994-I, §1,2,3]. There are
integers N,m > 0 such that what follows holds.

The polynomial type Λ = Sym•
OX

(H∨) is Z≥0-graded. The group Gm acts on Λ by

setting the action of t ∈ Gm to be multiplication by ti in degree i. The part Λ1 = OX⊕H
∨

inherits the grading in degrees zero and one, and a Gm-action. Let V = C

P (N). Simpson
constructs the moduli space M/S as a good quotient (terminology defined in [Si-1994-I,
p.61]) Q//SL(V ) of a quasi projective variety Q/S on which the special linear group SL(V )
acts, and which is equipped with a (Q/S)-very ample line bundle LQ. A suitable power

L⊗ν
Q of LQ descends via the good quotient by SL(V ) to an (M/S)-ample line bundle

on M . If S′/S is a variety over S, then an S′-point of Q is an equivalence class [q] of
quotients q : V ⊗

C

Λ1(−N) → E on X ′, where two quotients are identified if they have
the same kernel. The fiber of LQ over this S′-point is the line bundle det f ′

∗E(m). Let
u = (u0, u1) be a graded automorphism of V ⊗

C

Λ1(−N). It defines a new equivalence class
of quotients [q(u)], by taking q(u) : V ⊗

C

Λ1(−N) → E(u), where q(u) is the quotient of

V ⊗
C

Λ1(−N) by u(Ker q). Then u yields an isomorphism ũ : det f ′
∗E(m)

≃
→ det f ′

∗E(u)(m).
Let g ∈ SL(V ). Define g = (g0, g1), by setting g0 = g ⊗ 1O(−N) and g1 = g ⊗ 1H∨(−N).
Then g · [q] := [q(u)] defines an SL(V )-action on Q. The construction g̃ defines an SL(V )-
linearization of LQ, i.e. an SL(V )-action on the total space T (LQ) of the line bundle LQ

that lifts the SL(V )-action on Q. Given t ∈ Gm, we set t = (t0, t1), with t0 = 1V ⊗1O(−N)

and t1 : 1V ⊗ t1H∨(−N). By repeating what above, we obtain a Gm-action on Q and a
lift of it to LQ. Clearly,, since g ◦ t = t ◦ g, the two actions commute with each other,
and we get an action of SL(V ) × Gm on Q and an SL(V ) × Gm-linearization of LQ. If
we repeat the good quotient construction Q//SL(V ) by replacing Q with T (L⊗ν

Q ) and

LQ with its pullback to T (L⊗ν
Q ), we see that the total space T (LM ) is the corresponding

good quotient by SL(V ) of T (L⊗ν
Q ). Via the universal property of good quotients (they

https://stacks.maTheoremcolumbia.edu/tag/0B5V
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corepresent the appropriate quotient functor), since the Gm-actions commutes with the
SL(V )-action, the Gm-action on T (L⊗ν

Q ) descends to a Gm-action on T (LM ), so that LM

finds itself Gm-linearized.
We have thus proved the following

Proposition 3.3.1. (Gm-linearization of LM on M) The SL(V ) and Gm-linearized
(Q/S)-very ample line bundle LQ on Q descends to an (M/S)-ample line bundle LM on
M which inherits a Gm-linearization from the one of LQ.

Recalling that:

(1) moduli of p-semistable Higgs bundles on X/S with given Hilbert polynomial with
respect to a given OX(1) are the special case H = Ω1

X/S , and that Dolbeault

moduli spaces are unions of connected components of Higgs moduli spaces with a
special polynomial ([Si-1994-II, p.16, bottom]);

(2) diagram (3) is Gm-equivariant (cf. §2.3), so that we can pull back the Gm-
linearized (M/S)-ample line bundle LM(GLn) via ιM , and thus obtain a Gm-
linearized (M(G)/S)-ample line bundle LM(G);

we immediately obtain the following two corollaries.

Corollary 3.3.2. (Gm-linearized M/S-ample line bundle) The Dolbeault moduli
space M/S for a reductive algebraic G, endowed with the classical Gm-action (scalar
multiplication of Higgs field) admits an (M/S)-ample line bundle LM endowed with a
Gm-linearization. The same is true for moduli spaces of p-semistable Higgs sheaves with a
fixed Hilbert polynomial. The same is true, in the case of Λ of polynomial type, for moduli
spaces of p-semistable Λ-modules with a fixed Hilbert polynomial.

Corollary 3.3.3. (Gm-linearized ((M ×A
1)/S)-ample line bundle) Let M/S be any

of the three moduli spaces in Corollary 3.3.2. The pull-back LM×A1 of the line bundle L to
M × A

1 via the Gm-equivariant projection morphism M × A
1 → M (see the forthcoming

§3.4) is ((M × A
1)/S)-ample and it inherits via pull-back the Gm-linearization of LM

given by Proposition 3.3.2. The analogous conclusions hold for the restriction LU of the
line bundle LM×A1 to the open Gm-invariant subvariety U ⊆M × A

1 (cf. §3.4).

3.4. Construction of the compactification of Dolbeault moduli spaces.
In this subsection, we use Proposition 3.2.2, and its notation, to construct the desired

relative compactification M/S → A/S as in diagram (12). The proof of Theorem 3.1.1
concerning the properties of this construction, can be found in §3.6.

In what follows, we let 0 ∈ A1 be the origin on the affine line, and, for every s ∈ S,
we let os ∈ As, be the distinguished (the unique Gm-fixed) point in As and we denote
by o : S → A the corresponding section of A → S. Let Mo := S ×A M ⊆ M be the
S-subvariety of M union of all fibers Mos := h−1

s (os) ⊆ Ms (the nilpotent cone for each
s).

We let V := M ×A
1, with the Gm-action defined by setting t · (m,x) := (t ·m, tx). The

Gm-fixed point set in V sits inside M = M × {0} and coincides with the Gm-fixed-point
set on M. It is immediate to verify that, in this situation, due to the properness of the
Hitchin morphism, we have that U = (M × A

1) \ ((M \Mo)× {0}).
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We now repeat what above, by replacing M by A. Let V ′ := A×A
1, endowed with the

action t · (a, x) := (t · a, tx). The Gm-fixed point set in V ′ sits inside A = A × {0} and
coincides with the Gm-fixed-point set on A, which, in turn, is the image O of the S-section
O : S → A given by the “origins” os ∈ As, ∀s ∈ S. It is immediate to verify that, in this
situation, U ′ = (A× A

1) \ ((A \O)× {0}).
Let U0 be the S-variety fiber of the evident morphism U → A

1 over 0 ∈ A
1, and similarly

for U ′
0. Let U∗ be the S-variety pre-image in U of Gm ⊆ A

1, and similarly for U ′∗. Let
(a : U0 → U ← U∗ : b) and (a : U0 → U ← U∗ : b) be the resulting complementary closed
and and open embeddings. We have the following commutative diagram of DM stacks (all
stabilizers are finite cyclic) over S:

U0
a //

h
��

��
✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

U

h

��

��
✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

U∗

h

��

boo

��
❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

U ′
0

a //

��
✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

✺

U ′

��
✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

U ′∗boo

��
❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

[U0/Gm]
a //

h
��

��
✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

[U/Gm]

h
��

��
❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

[U∗/Gm]

h
��

boo

��
❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

❀

[U ′
0/Gm]

a //

��
✾

✾

✾

✾

✾

✾

✾

✾

✾

✾

✾

✾

✾

✾

✾

✾

✾

✾

[U ′/Gm]

��
✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

[U ′∗/Gm]
boo

��
✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

✿

Z
a //

h

��

M

h
��

M

h

��

boo := U0/Gm
a //

h
��

U/Gm

h
��

U∗/Gm

h
��

boo

W
a // A A

boo := U ′
0/Gm

a // U ′/Gm U ′∗/Gm,
boo

(14)

where each of the six rectangles with arrows ha = ah and hb = bh is Cartesian.
Note that, by construction, it is clear that M = U∗/Gm and A = U ′∗/Gm. The two

adjacent rectangles on the bottom l.h.s. are defined to be the two adjacent rectangles on
the bottom r.h.s.

3.5. A Gm-variation on Luna slice theorem.
We need the following seemingly standard result in the proof of Theorem 3.1.1.(6). We

thank M. Brion for pointing it out to us.

Lemma 3.5.1. (Good orbifold charts) Let X be an integral normal Gm-variety with
finite stabilizers such that the geometric quotient Y := X/Gm exists and is separated. Then
for every point x ∈ X, and with image y ∈ Y, there exists a Gm-stable affine neighborhood
Ux of x in X, an affine neighborhood Vy of y in Y and a commutative diagram: (the top
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horizontal morphism is induced by the Gm-action):

Gm ×
Γx Nx

≃ //

/Gm

��

Ux

/Gm

��

Nx/Γx
≃ // Vy,

(15)

exhibiting Vy as the geometric quotient of Ux, and where Γx ⊆ Gm is the stabilizer of x and
Nx ⊆ Ux is a Γx-stable closed integral affine –nonsingular if X is nonsingular– subvariety
of Ux.

Proof. We limit ourselves to constructing Ux and Nx, leaving the remaining standard
details to the reader. By a theorem of H. Sumihiro’s [Su-1974, Thm.1], X is covered
by Gm-invariant open affine subvarieties. Every such subvariety, call it still X, admits a
closed Gm-equivariant embedding into a vector space with a linear action: choose a finite
dimensional vector subspace W ⊆ C[X] of the coordinate ring of X which is Gm-stable
and generates the C-algebra C[X]; then the corresponding map from X to the dual of W
is the desired embedding. By considering such an embedding, we are reduced to the case
where X = V is a finite dimensional vector space endowed with a linear Gm-action. Let
V = ⊕iVi be a weight decomposition with weights ni. Let d := g.c.d.{ni}. Let

∑
i aini = d

be any linear combination of the weights yielding d, subject to ai 6= 0, ∀i. Since Γx is
assumed to be finite, x 6= 0 ∈ V. Let us first assume that x ∈ V is not on any coordinate
hyperplane Hi (span of the Vj ’s with j 6= i). Then x =

∑
vi for a unique collection vi ∈ Vi

with vi 6= 0, ∀i. Set Ux := V \ ∪iHi: it is a Gm-invariant open affine neighborhood of
x. The vi form a basis of Gm-eigenvectors for V. We define a function f : Ux → Gm by
sending a vector u =

∑
i zivi 7→

∏
i z

ai
i . The function f is Gm-equivariant, provided we

endow the target Gm with the standard weight d Gm-action. Note that f(x) = 1. Set
Nx := f−1(1). If x lies in any multiple intersection of coordinate hyperplanes, we first
project to such multiple intersection and then repeat the argument given above. �

3.6. Proof of the compactification Theorem 3.1.1.

Proof. The desired Cartesian diagram dwells in the bottom l.h.s. corner of (14).
Statement (3) on Gm-equivariance is clear by construction.
Statement (4) concerning the morphisms a and b is also clear by construction. Since

W is the divisor at infinity of a relative projective completion of a cone, it is Cartier (cf.
[Fu-1984, Appendix B5]). The same is true for its pre-image Z.

Statement (5) is clear by construction.
We now prove statement (2) to the effect that the morphisms h are projective. It is

enough to show that M/A is projective and, in view of the fact that M/A is proper, it
is enough to produce an (M/A)-ample line bundle (our schemes are quasi compact and
quasi separated). In order to do so, we apply Corollary 3.3.3 and Proposition 3.2.2.(3).

We now prove statement (1) to the effect that the structural morphisms for M,A,W
and Z over S are projective. It is clear that the “relative weighted projective space”
A/S is projective, as it is the Proj of a suitable graded OS-algebra associated with the
symmetric OS-algebra giving A/S; see §2.3. Since M/A is projective by assertion (2),
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we have that the compositum M/S is projective (all our schemes are quasi compact and
quasi separated). It follows that W/S and Z/S are projective as well.

As to assertion (6): part (a) follows from Lemma 3.5.1; part (b) follows from [Be-2017,
Thm. 1.2]. �

3.7. Comparison with A. Schmitt’s Compactification.
The goal of this section is to observe that in the special case mentioned in Remark 2.1.2,

i.e. when X is a nonsingular projective curve and we take GLn Higgs bundles of degree
coprime to the rank, then the compactification constructed in Theorem 3.1.1, coincides
with the corresponding moduli of Hitchin pairs constructed by A. Schmitt in [Sh-1998].
We thank A. Schmitt for providing us with the sketch of the needed argument; see the
proof of Proposition 3.7.1. It seems likely that the two compactifications coincide more
generally for (untwisted) Dolbeault moduli space of families of projective manifolds of any
dimension; we have not verified this.

Let X/C be a nonsingular projective manifold, let OX(1) be an ample line bundle on
X, let L be a line bundle on X and let P be a polynomial.

In the paper [Sh-1998], A. Schmitt introduced the notion of Hitchin pairs (E, ǫ, ϕ) of
type (P,L) on X: E is a torsion-free coherent sheaf on X, ϕ : E → E ⊗ L is a twisted
endomorphism, ǫ ∈ C, and P is the Hilbert polynomial of (E,OX (1)).

Note that in the definition of an Hitchin pair, the twisted endomorphism ϕ is not
subject to the Higgs/Simpson-type vanishing condition ϕ∧ϕ = 0; in particular, the (E,ϕ)-
component of an Hitchin pair is not necessarily an Higgs sheaf. Since the aforementioned
vanishing condition is automatically satisfied when dimX = 1, in that case, the component
(E,ϕ) of an Hitchin pair yields an Higgs sheaf for the group GLn.

There are the notions of: equivalent Hitchin pairs; (semi)stable Hitchin pair; (equiva-

lence classes of) families of Hitchin pairs over a Noetherian scheme S; the functors M
(s)s
L,P

of equivalence classes of families of (semi)stable Hitchin pairs of type (L,P ).
[Sh-1998, Theorem 7.1] shows that there is a projective variety Mss

(L,P ), whose closed

points naturally correspond to certain equivalence classes (semistable Hitchin pairs with
graded objects that are equivalent Hitchin pairs) of semistable Hitchin pairs of type (L,P ).
The open subvariety Ms

(L,P ) ⊆ M
ss
(L,P ) of stable pairs coarsely represents the functor

M s
(L,P ).

There is the natural Gm-action on M :=Mss
(L,P ) given by scalar multiplication on ϕ.

The fixed-point set is the union of: the part that corresponds to semistable Hitchin pairs
with ϕ = 0 (in which case, we must have ǫ 6= 0, by the very definition of stability of
Hitchin pairs), i.e. the Gieseker moduli space; the partM∞ which corresponds to ǫ = 0.

If we denote by M6=0 the Gm-invariant open subvariety corresponding to ǫ 6= 0, then
M∞ =M6=0//Gm.

In the remainder of this section, we place ourselves in the situation of Remark 2.1.2:
GLn-Higgs bundles over a projective connected nonsingular curve X of genus g(X) ≥ 2,
of degree coprime to the rank, and the line bundle L is either the canonical bundle of X,
or any fixed line bundle of degree bigger that 2g(X) − 2.

Then the corresponding Dolbeault Simpson moduli space M coincides with Schmitt’s
moduli space of Hitchin pairsM6=0, and in either case semistability coincides with stability
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(due to the coprimality condition). There are a natural proper Hitchin morphism for both
moduli spaces and they coincide.

The compactification Theorem 3.1.1.(6) applies to M and we obtain the compactifica-
tion M ⊆M , with boundary Z = (M \Mo)/Gm = M//Gm (cf. §3.4).

A. Schmitt has informed us that, as one may expect, one should have a natural Gm-
equivariant identification of (M,Z) with (M,M∞). The resulting identification identifies
the corresponding Hitchin morphisms. See Proposition 3.7.1. This identification is not
used in this paper.

Schmitt’s construction of the compactification is modular (i.e. it provides a modular
interpretation of the boundary). The compactification provided by Theorem 3.1.1 has
the following extra features: it allows us to prove Theorem 3.1.1.(6) and the upcoming
Proposition 3.8.1, and is valid for all (families of) projective manifolds and all reductive
algebraic groups.

We thank A. Schmitt for the proof of the following

Proposition 3.7.1. The two compactifications M andM coincide. The identification is
Gm-equivariant and the Hitchin morphisms correspond.

Proof. The Simpson moduli space M is a GIT quotient of some parameter space R (see
[Si-1994-I, Si-1994-II]) which, due to the fact that stability coincides with semistability,
admits a universal family (E,ϕ) of stable Higgs bundles over it. This family gives rise to
a family (E, ǫ, ϕ,O) of Hitchin pairs over R × C in the sense of [Sh-1998]. The Hitchin
pairs in question are automatically stable over R×C∗, but, in order to have stability, one
needs to remove from R × {0} the closed subset where the twisted endomorphisms are
nilpotent.

Since stability and semistability coincide, M is a coarse moduli space for the functor
and, by what above, there is the classifying morphism U → M, where U is a suitable
open subset of R×C. By construction, the morphism factors through M , hence a natural
morphism M →M, which identifies the two open subsetsM6=0 and M .

Let (E, ǫ, ϕ,N) be a family of semistable Hitchin pairs over a Noetherian scheme S
(recall that N is a line bundle on S and ǫ ∈ Γ(S,N)).

Let {Ui}I be an open covering of S over which N can be trivialized. By restricting
(E,ϕ) over Ui × X, we obtain morphisms Ui → M . By restricting ǫ and using the
trivializations, we obtain morphisms Ui → C. We thus get morphisms Ui → M ×C. By
the definition of semistability of Hitchin pairs (no nilpotent fields are allowed), the image
of such morphisms must lie in the complement of Mo × {0}. We thus obtain morphisms
Ui → M = M ×C//Gm. These morphisms glue and yield a morphism S → M . By the
universal property ofM (cf. [Sh-1998, Theorem 7.1.i)], we obtain a morphism M →M.
This morphism also identifies the two open subsets M andM6=0.

Note that, in general, M is dense in M and that M6=0 is dense in M; in fact, in the

current situation, M and M are in fact irreducible. It follows that the two morphisms
M → M and M→ M obtained above, are inverse to each other. They clearly are Gm-
equivariant and also identify Z with M∞. The Hitchin morphism are already identified
on the open sets M andM6=0, hence they are identified after the compactifications. �

3.8. Additional properties of the compactification (13) when M/S is smooth.
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While it is rare for the Dolbeault moduli spaces to be nonsingular, they are so in in-
teresting cases; see Remark 2.1.2. The following proposition summarizes some topological
properties of the compactification given by Theorem 3.1.1.(6), when M is smooth over S.

Proposition 3.8.1. Assume that S is nonsingular and that M/S is smooth. Let things
be as in diagram (13). Then we have the following properties:

(1) The varieties M, A,Z and W are orbifolds and, for every s ∈ S, so are the varieties
M s, As, Zs and and Ws.

In particular, for all these varieties, up to the usual dimensional and Tate shifts,
the intersection complexes IC and the dualizing complex ω coincide with the con-
stant sheaf, for example: (we ignore the Tate shifts)

ICM = QM [dimM ], ωM = QM [2 dimM ]. (16)

(2) We have the following identities for extraordinary pull-backs:

a!QM = QZ [−2], i!QM = QMs
[−2], i!QZ = QZs

[−2], i!a!QM = a!i!QM = QZs
[−4].

(17)
so that, up to the appropriate cohomological shift, the complexes in (17) are per-
verse semisimple.

(3) Finally, if (S, s) is a nonsingular curve with a distinguished point on it, then we
have the following vanishing property for the resulting vanishing cycle complexes
on M s, Zs:

φM/S(QM ) = 0, φZ/S(a
!
QM ) = 0. (18)

(4) Conclusions (1,2,3) holds when M is the moduli of Higgs bundles over curves with
degree coprime to the rank and group G = GLn, SLn, PGLn.

Proof. We prove (1). The first assertion on orbifolds is Theorem 3.1.1 part (6a). The
identities (16) are standard for orbifolds.

We prove (2). The assertions (17) are standard as well. For example:

a!QM = a!ωM [−2 dimM ] = ωZ [−2 dimM ] = QZ [−2].

We prove (3). We prove the vanishing assertion (18) forM . The one for Z can be proved

in the same way. Since M̃/S is smooth, we have φ˜M
(Q˜M

) = 0. Since r is proper, we

have φM (r∗Q˜M
) = r∗φ˜M

(Q˜M
) = 0. It remains to show that QM is a direct summand of

r∗Q˜M
. This follows from the decomposition theorem [Be-Be-De-1982]. Given the special

orbifold situation, this can also be seen as follows. Consider the adjunction morphisms:

r!r
!
QM

x //
QM

y
// r∗r

∗
QM (19)

Since the dualizing sheaves are constant shifted, in view of the identity ωA = g! ωB (valid
for every morphism of varieties g : A → B), and in view of the properness of r (so that
r∗ = r!), we may re-write (19) as:

r∗Q˜M

x //
QM

y
// r∗Q˜M

(20)



PROJECTIVE COMPACTIFICATION OF DOLBEAULT MODULI SPACES 21

Since r is a resolution, the endomorphism x◦y : QM → QM can be viewed as the identity

on a dense open subset, hence it is the identity on the connected M . It follows that QM
is a direct summand of r∗Q˜M

, as predicated.

We prove (4). The case when G = GLn, SLn is covered by what above because then
M/S is smooth. The case when G = PGLn follows easily from the case when G = SLn

because the whole picture for PGLn is the quotient of the whole picture for SLn by the
finite group scheme over S of n-torsion points in the relative Jacobian of the family of
curves. �

Remark 3.8.2. Proposition 3.8.1.(3) can be used to study the long exact sequence of
cohomology of the triple (Z,M,M) and generalize, by means of (18), the main result in
[de-Ma-2018] in the context of Remark 2.1.2 as follows: the long exact sequence in relative
cohomology for the triple (Z,M,M) takes the form of a long exact sequence of filtered
vector spaces . . . → (H∗−2(Z), P ) → (H∗(M ), P ) → (H∗(M), P ) → . . ., where P stands
for the appropriately shifted perverse Leray filtrations This study is carried out in greater
generality in a forthcoming paper.

The example below points to the need of exercising caution in connection with the
vanishing assertion in Proposition 3.8.1.(18).

Example 3.8.3. Let vX̃ : X̃
r
→ X

vX→ S be such that: X̃/S is the family proper over
a disk S with general member a smooth quadric surface F0 and with special member the
Hirzebruch surface F2; r is the birational contraction of the (−2)-curve in the central fiber
to a point p. We have φX̃(Qℓ) = 0, which implies φX(r∗Qℓ) = 0; since r is small, we

have r∗Qℓ = ICX (the intersection complex of X placed in cohomological degrees [0, 2]),
so that φX(ICX) = 0. Note however that φQX = Qp[−2] 6= 0.
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