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GEOMETRIC ASPECTS OF MANIN’S CONJECTURE

SHO TANIMOTO

Abstract. This is a report of the author’s talk at Kinosaki Algebraic Geometry Sympo-
sium 2018. We discuss some recent progress on the geometry of thin exceptional sets in
Manin’s Conjecture.

1. Introduction

Let X be a smooth projective Fano variety defined over a number field F and L = (L, ‖·‖)
be an adelically metrized divisor on X . Then one can associate a real valued function on
the set of rational points:

HL : X(F ) → R>0

to a triple (F,X,L). This is called the height function associated to (F,X,L). (See [CLT10]
for the definitions of adelic metrizations and height functions.) When L is ample, the height
function enjoys the Northcott property, i.e., for any real number T the set of rational points
of height ≤ T

{P ∈ X(F )|HL(P ) ≤ T}
is a finite set. Thus one may define, for any subset Q ⊂ X(F ), the counting function

N(Q,L, T ) = #{P ∈ Q|HL(P ) ≤ T}.
Manin’s Conjecture, originally formulated in [BM90], predicts the asymptotic formula of
N(Q,L, T ) for an appropriate choice of Q in terms of two birational invariants of (X,L),
denoted by a(X,L), b(F,X, L). (See Section 2.1 for the definitions of these invariants.)

To state Manin’s Conjecture, we need to introduce the notion of thin sets:

Definition 1.1 (Thin sets). Let X be a variety defined over F . A thin map is a generically
finite morphism to the image from a variety defined over F such that if it is dominant, then
it is not birational. A thin set is a finite union of subsets of X(F ), which are of the form of
f(Y (F )) where f is a thin map.

Here is a version of Manin’s Conjecture using the notion of thin sets:

Conjecture 1.2 (Manin’s Conjecture). Let F be a number field and X be a smooth pro-
jective geometrically irreducible and geometrically rationally connected variety defined over
F . Let L be an adelically metrized big and nef Q-divisor on X .

Suppose that X(F ) is not thin. Then there exists Z ⊂ X(F ), which is contained in some
thin subset of X(F ), such that we have

N(X(F ) \ Z,L, T ) ∼ c(F, Z,L)T a(X,L)(log T )b(F,X,L)−1

where c(F, Z,L) is Peyre’s constant, introduced in [Pey95] and [BT98b].
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Originally Manin’s Conjecture predicted that the set Z, which is called an exceptional
set, is contained in a proper closed subset. The closed set version of Manin’s Conjecture
is known for many examples such as generalized flag varieties, toric varieties, low degree
hypersurfaces, and so on. (See [FMT89], [BT98a], [BT96a], and [Bir62].) However, there are
also many counterexamples to this version of Manin’s Conjecture first found by Batyrev and
Tschinkel in [BT96b]. (See, e.g., [LR14], [BL17], and [BHB18] for other counterexamples
to the closed set version of Manin’s Conjecture.) In [Pey03], Peyre first predicted that an
exceptional set in Manin’s Conjecture should be contained in a thin subset and so far there
is no counterexample to this version of Manin’s Conjecture. Note that for a rational variety,
the set of rational points is not thin, and it is expected that for a smooth geometrically
rationally connected variety, the set of rational points is not thin after taking some finite
extension. So we believe that the assumption of Conjecture 1.2 is not strict.

In a series of papers [HTT15], [LTT18], [HJ17], [LT17b], [Sen17], [LST18], and [LT18],
Hassett, Tschinkel, Lehmann, Hacon, Jiang, Sengupta and the author study the geometry of
exceptional sets in Manin’s Conjecture. In [LST18], the author with Lehmann and Sengupta
proposes the geometric construction of exceptional sets and proves that it is indeed contained
in a thin set using the minimal model program [BCHM10] and the boundedness of singular
Fano varieties proved in [Bir16a] and [Bir16b] as well as the Hilbert Irreducibility Theorem
in [Ser92]. One of main theorems of [LST18] is the following theorem which shows the
geometric consistency of Manin’s Conjecture:

Theorem 1.3. [LST18, Theorem 1.2] Let X be a smooth geometrically uniruled projective
variety over a number field F and let L be a big and nef divisor on X. As we vary over all
F -thin maps f : Y → X with Y smooth, projective, and geometrically integral such that

(a(X,L), b(F,X, L)) < (a(Y, f ∗L), b(F, Y, f ∗L))

in the lexicographic order, the points
⋃

f

f(Y (F ))

are contained in a thin subset of X(F ).

In this note we recall the construction of exceptional sets in [LST18] and discuss some
aspects of a proof of a weaker version of the above theorem, which was originally proved in
[LT17b].
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for their kind invitation and the opportunity to speak at their conference. The author thanks
Brian Lehmann for comments on an earlier draft of this paper. Sho Tanimoto is partially
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2. Background

Let F be a field of characteristic 0. A variety defined over F is an integral separated
scheme of finite type over F .

Let X be a projective variety defined over F . Let N1(X) be the real Néron-Severi space of
X , i.e., the space of R-Cartier divisors modulo numerical equivalence. Let N1(X) be the dual
of N1(X) which can be considered as the space of 1-cycles modulo numerical equivalence.
We denote the pseudo effective cones by

Eff
1
(X) ⊂ N1(X), Eff1(X) ⊂ N1(X),

which are the closures of effective R-cycles in the real vector spaces. Dually we have the nef
cones

Nef1(X) ⊂ N1(X), Nef1(X) ⊂ N1(X).

The nef cone of divisors Nef1(X) is dual to the pseudo-effective cone of curves Eff1(X) and

the nef cone of curves Nef1(X) is dual to the pseudo-effective cone of divisors Eff
1
(X).

2.1. Geometric invariants. Here we recall the definitions of a(X,L), b(F,X, L) appearing
in Manin’s Conjecture.

Definition 2.1 (Fujita invariants). Let X be a smooth projective variety defined over F
and L be a big and nef Q-divisor on X . The Fujita invariant (or the a-invariant) of (X,L)
is defined by

a(X,L) = min{t ∈ R|tL+KX ∈ Eff
1
(X)}.

As the notation suggests a(X,L) is invariant under the base change of the ground field. By
[BDPP13], a(X,L) > 0 if and only if X is geometrically uniruled. When L is not big, we
formally set a(X,L) = +∞.

When X is singular we take a resolution β : X̃ → X and define the Fujita invariant by

a(X,L) := a(X̃, β∗L).

This is well-defined because a(X,L) is a birational invariant. See [HTT15, Proposition 2.7].

Regarding the a-invariants, we frequently use the following notion:

Definition 2.2. Let X be a projective variety defined over F and L be a big and nef Q-
Cartier divisor on X . We say that the pair (X,L) is adjoint rigid if there exists a smooth

resolution β : X̃ → X such that a(X,L)β∗L + KX̃ is rigid, i.e., it has Iitaka dimension 0.
Since a(X,L) is a birational invariant, this property does not depend on the choice of a

resolution β : X̃ → X .

We also use the following theorem implicitly through out the paper:

Theorem 2.3. [HMX13] Let X → Y be a smooth family of geometrically uniruled projective
varieties defined over F and L be f -big and f -nef Q-divisor on X . Then there exists a non-
empty Zariski open subset U ⊂ Y such that the function U → R mapping y ∈ U 7→ a(Xy, L)
is constant.

Proof. For a proof, see [LT17b, Theorem 4.3]. �
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Definition 2.4 (the b-invariants). Let X be a smooth geometrically uniruled projective
variety defined over F and L be a big and nef Q-divisor on X . The b-invariant of (X,L) is
defined by

b(F,X, L) = the codimension of the minimal supported face

of Eff
1
(X) containing KX + a(X,L)L.

This value b(F,X, L) is not invariant under the base change as the Picard rank of a projective
variety X depends on the ground field. Again we define the b-invariant even for singular
varieties via a passage to a smooth model as the case of Fujita invariants. This is well-defined
because the b-invariant is a birational invariant. See [HTT15, Proposition 2.10].

The most important case of the a, b-invariants is the case of Fano varieties and L being
the anticanonical divisor.

Example 2.5. Let X be a smooth projective Fano variety defined over F and L = −KX .
Then we have

a(X,L) = 1, b(F,X, L) = dimN1(X).

Here is the first counterexample to the closed set version of Manin’s Conjecture:

Example 2.6. [BT96b] Let F be an arbitrary number field. Let X ⊂ P3
x × P3

y be the
hypersurface defined by

3∑

i=0

xiy
3
i = 0.

Then X is a smooth projective Fano fivefold with the Picard rank 2. Let L = −KX with an
adelic metrization. Then we have

a(X,L) = 1, b(F,X, L) = 2.

Thus if the closed set version of Manin’s Conjecture is true, then there exists a Zariski open
subset X◦ ⊂ X such that

N(X◦(F ),L, T ) ∼ cT (log T )

for some c > 0. On the other hand consider the cubic surface fibration π1 : X → P3
x. For

any P = (x0 : x1 : x2 : x3) ∈ P3(F ) such that xi ∈ (F×)3 for any i, the fiber XP satisfies that
a(Xp, L) = 1, and b(F,Xp, L) = 7 if

√
−3 ∈ F and b(F,Xp, L) = 4 if

√
−3 6∈ F . Batyrev

and Tschinkel showed that, under the assumption
√
−3 ∈ F , for any open subset U ⊂ XP ,

we have

N(U(F ),L, T ) ≫ T (log T )3.

([FLS18] removes the condition of
√
−3 ∈ F .) Thus this is a contradiction and (X,L)

cannot satisfy the closed set version of Manin’s Conjecture. The closed set version of Manin’s
Conjecture is expected to be true for smooth cubic surfaces after removing the contribution
from lines. (See [LT18, Theorem 9.1].) At the moment of writing this report, Manin’s
Conjecture is not known even for a single smooth cubic surface defined over a number field.
Proving Conjecture 1.2 for (X,L) is out of reach at this moement. (Though the Fano fivefold
defined by

∑
i xiy

2
i = 0 has been handled in [BHB18].)
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2.2. Face contracting. In this section we recall the notion of face contracting which is a
key notion for the geometric construction of exceptional sets in [LST18]. First we note the
following lemma:

Lemma 2.7. Let X be a smooth geometrically unirulded projective variety defined over a
field F of characteristic 0 and L be a big and nef Q-divisor on X. Let f : Y → X be a
generically finite dominant morphism from a projective variety. Then we have

a(Y, f ∗L) ≤ a(X,L).

Proof. After applying a resolution we may assume that Y is smooth. Then by the ramifica-
tion formula there exists an effective divisor R ≥ 0 on Y such that

KY = f ∗KX +R.

Now we have

a(X,L)f ∗L+KY = f ∗(a(X,L)L+KX) +R

which is pseudo-effective. Thus our assertion follows. �

Definition 2.8. Let X be a smooth geometrically uniruled projective variety defined over
a field F and L be a big and nef Q-divisor on X . We define the supported face associated
to (X,L) by

F (X,L) = Nef1(X) ∩ {(a(X,L)L+KX) = 0}.
Note that we have dimF (X,L) = b(F,X, L).

Let f : Y → X be a generically finite dominant morphism from a smooth projective
variety. A cover f is called an a-cover if a(Y, f ∗L) = a(X,L).

An a-cover f : Y → X is called face contracting if the induced map

f∗ : F (Y, L) → F (X,L)

is not injective. If b(F,X, L) < b(F, Y, f ∗L) is true, then f is automatically face contracting.
However the converse is not true as [LT17a, Example 3.7] shows.

3. The construction of exceptional sets and the main theorem

In this section, we introduce the construction of a conjectural exceptional set from [LST18]
and discuss main theorems in this paper. We work over a number field F in this section.

Let X be a geometrically uniruled and geometrically integral smooth projective variety
defined over F and L be a big and nef Q-divisor on X . For simplicity we assume that (X,L)
is adjoint rigid, i.e., a(X,L)L +KX has Iitaka dimension 0. This condition ensures that X
is geometrically rationally connected by [HM07]. We denote the augmented base locus of L
by B+(L): this is necessary a proper closed subset. (See [Nak04] for its definition and basic
properties.) We set Z0 to be the set of rational points on B+(L).

Next as f : Y → X varies all F -thin maps such that

• Y is geometrically integral, smooth and projective;
• dimY < dimX or a(Y, f ∗L)f ∗L+KY has positive Iitaka dimension;
• and we have the inequality

(a(X,L), b(F,X, L)) ≤ (a(Y, f ∗L), b(F, Y, f ∗L))

in the lexicographic order,
5



we define the set Z1 ⊂ X(F ) by

Z1 =
⋃

f

f(Y (F )).

Finally as f : Y → X varies all F -thin maps such that

• Y is geometrically integral, smooth and projective and f is dominant;
• a(Y, f ∗L)f ∗L+KY has Iitaka dimension 0;
• we have the inequality

(a(X,L), b(F,X, L)) ≤ (a(Y, f ∗L), b(F, Y, f ∗L))

in the lexicographic order;
• and f is face contracting,

we define the set Z2 ⊂ X(F ) by

Z2 =
⋃

f

f(Y (F )).

In [LST18], we prove the following theorem using BAB conjecture:

Theorem 3.1. [LST18, Theorem 3.5] The set Z0 ∪ Z1 ∪ Z2 is contained in a thin subset of
X(F ).

Remark 3.2. In the construction of the set Z2, it is important to insist that f is face
contracting. Otherwise, the the above theorem is no longer true. See [LT17b, Example 8.7].

Thus it is natural to propose the following refinement of Manin’s Conjecture:

Conjecture 3.3. In Conjecture 1.2, assuming a(X,L)L+KX is rigid, we can take Z to be
Z0 ∪ Z1 ∪ Z2.

4. A proof

In this section, we explain a proof of the following weaker theorem which was originally
proved in [LT17b]:

Theorem 4.1. [LT17b, Theorem 1.5] Let X be a geometrically uniruled and geometrically
integral smooth projective variety defined over a number field F and let L be a big and nef
Q-divisor on X. Suppose that the geometric Picard rank and the arithmetic Picard rank of
X coincide, i.e., dimN1(X) = dimN1(X) and a(X,L)L + KX is rigid. As Y varies all
geometrically integral subvarieties Y ⊂ X defined over F such that

(a(X,L), b(X,L)) ≤ (a(Y, L), b(F, Y, L))

in the lexicographic order, the points

Z =
⋃

Y

Y (F ) ⊂ X(F )

are contained in a thin subset of X(F ).

First we recall the following Lemma:
6



Lemma 4.2. [LTT18, Theorem 4.5] and [LST18, Lemma 2.6] Let Y be a geometrically
uniruled and geometrically integral smooth projective variety defined over a number field F
and let L be a big and nef Q-divisor on Y . Let π : Y 99K Z be the canonical fibration
associated to a(Y, L)L+KY where its existence is justified by [BCHM10]. Then there exists
a Zariski open subset Z◦ ⊂ Z such that for any z ∈ Z◦(F ), we have

a(Y, L) = a(Yz, L), b(F, Y, L) ≤ b(F, Yz, L),

where Yz is a fiber of π at z.

Proof. Over an algebraically closed field, this is proved in [LTT18, Theorem 4.5]. Over a
number field, this is explained in [LST18, Lemma 2.6]. �

According to this lemma, it is natural to look at the following set: as Y varies all ge-
ometrically integral subvarieties Y ⊂ X defined over F such that (Y, L) is adjoint rigid
and

(a(X,L), b(X,L)) ≤ (a(Y, L), b(F, Y, L))

in the lexicographic order, we define the set

Z ′ =
⋃

Y

Y (F ) ⊂ X(F ).

It turns out that the set Z is contained in Z ′ up to a proper closed subset, so we will explain
why Z ′ is contained in a thin subset of X(F ). To this end, we need a special case of BAB
conjecture where the full conjecture is settled by Birkar in [Bir16a] and [Bir16b]:

Theorem 4.3. [Bir16a] and [Bir16b] Let (X,∆) be a terminal pair defined over an alge-
braically closed field of characteristic 0 such that −(KX +∆) is ample. Then there exists a
constant C = C(dimX) which only depends on the dimension of X such that

Vol(−KX) ≤ C.

Using this theorem, one can prove the boundedness of adjoint rigid subvarieties Y with
a(Y, L) ≥ a(X,L):

Theorem 4.4. Let X be a uniruled smooth projective variety defined over an algebraically
closed field of characteristic 0 and let L be a big and nef Q-divisor on X. Then there exists a
constant C > 0 such that for any adjoint rigid subvariety (Y, L) such that a(Y, L) ≥ a(X,L)
and Y 6⊂ B+(L), we have

LdimY .Y ≤ C.

Thus such Y ’s form a bounded set in Chow(X).

Proof. Pick a smooth resolution β : Ỹ → Y . Our assumption implies that a(Y, L)β∗L+K
Ỹ

is rigid. After replacing β∗L by an effective divisor L̃ Q-linearly equivalent to β∗L, we

may assume that (Ỹ , a(Y, L)L̃) is a terminal pair. Since L̃ is big, one can run the MMP

with respect to a(Y, L)L̃+K
Ỹ
by [BCHM10] and one obtains a birational contraction map

φ : Ỹ 99K Y ′. After applying a resolution to Ỹ , one may assume that φ is a morphism. Since
a(Y, L)β∗L+K

Ỹ
is rigid, we have

a(Y, L)φ∗L̃+KY ′ ≡ 0.
7



For an appropriate choice of L̃, one can show that (Y ′, a(Y, L)φ∗L̃) is a terminal pair. Since

a(Y, L)φ∗L̃ is big, we can write

a(Y, L)φ∗L̃ = A+ E,

where A is an ample Q-divisor and E is an effective Q-divisor. The above equality shows
that

ǫA ≡ −(KY ′ + E + (1− ǫ)A)

is ample and (Y ′, E + (1− ǫ)A) is a terminal pair for sufficiently small ǫ > 0. Thus by BAB
conjecture we have

Vol(φ∗L̃) ≤
Vol(−KY ′)

a(Y, L)dimY
≤ C

a(X,L)dimY
.

By the negativity lemma one can show that LdimY = Vol(β∗L) ≤ Vol(φ∗L̃). Thus our
assertion follows. The last statement follows from [LTT18, Lemma 4.7]. �

This enable us to prove closedness of the exceptional set for the a-invariant. First we
record the following lemma:

Lemma 4.5. [LTT18, Proposition 4.1] Let X be a uniruled smooth projective variety and L
a big and nef Q-divisor on X. Let π : U → W be a family of subvarieties on X such that
the evaluation map s : U → X is dominant. Then for a general member Y of π, we have
a(Y, L) ≤ a(X,L).

Combining Theorem 4.4 and Lemma 4.5, one can achieve the following theorem:

Theorem 4.6. [HJ17] and [LT17a, Theorem 3.3] Let X be a uniruled smooth projective
variety and L a big and nef Q-divisor on X. Then the union of subvarieties Y such that
a(Y, L) > a(X,L) is a proper closed subset.

To prove Theorem 4.1, we need the following structural results on families of adjoint rigid
subvarieties:

Proposition 4.7. [LT17b, Proposition 4.14] Let X be a uniruled smooth projective variety
and L a big and nef Q-divisor on X. Suppose that we have a family of subvarieties π :
U → W such that (1) the evaluation map s : U → X is dominant; (2) a general member
Y of π satisfies a(X,L) = a(Y, L) and (Y, L) is adjoint rigid; (3) the induced rational map
W 99K Chow(X) is generically finite. Then s : U → X is generically finite.

Proof of Theorem 4.1: As we mentioned before, we need to show that Z ′ is contained in
a thin set. By Theorem 4.6, we only need to consider adjoint rigid subvarieties Y with
a(Y, L) = a(X,L). By Theorem 4.4, there are only finitely many families to consider.
Obviously it suffices to consider dominant families. For such a family πi : Ui → W it follows
from Proposition 4.7 that the evaluation map si : Ui → X is generically finite. If the degree
of this evaluation map is greater than 1, then thinness of the contribution of subvarieties
in Ui is clear. Thus we may assume that si : Ui → X is birational. Then one can appeal
to the folowing proposition which follows from Hilbert Irreducibility Theorem as [Ser92,
Proposition 3.3.5]:

8



Proposition 4.8. [LT17b, Proposition 5.1] Let X be a geometrically uniruled and geomet-
rically integral smooth projective variety defined over a number field F and let L be a big
and nef Q-divisor on X such that dimN1(X) = dimN1(X) and a(X,L)L + KX is rigid.
Furthermore we assume that we have an algebraic fiber space f : X → Y . Let

Y ◦ = {y ∈ Y | Xy is geometrically integral and smooth }.
Then the following set

{y ∈ Y ◦(F )|a(X,L) = a(Xy, L), b(X,L) ≤ b(F,Xy, L)}
is contained in a thin subset of Y ◦(F ).

5. Le Rudulier’s example

In this section we discuss the example from [LR14]. Let S = P1×P1 defined over the field
of rational numbers Q. We define

X := Hilb[2](S), L = −KX

which is the Hilbert scheme of zero-dimensional length two schemes on S. Then X is a
smooth projective weak Fano variety and in particular −KX is big and nef. Since L is the
anticanonical class, we have

a(X,L) = 1, b(Q, X, L) = dimN1(X) = 3.

On the other hand consider S × S and its quotient g : S × S → Sym(2)(S) by the
symmetric involution. We have the Hilbert-Chow morphism φ : X → Sym(2)(S) which is a

crepant resolution of Sym(2)(S). Let ψ : W → S × S be the blow-up of S × S along the
diagonal. Then W admits a degree 2 finite morphism f : W → X and we have

a(W, f ∗L) = a(W,−ψ∗g∗KSym(2)(S)) = 1, b(Q,W, f ∗L) = b(Q,W,−ψ∗g∗KSym(2)(S)) = 4.

Thus we have
(a(X,L), b(Q, X, L)) < (a(W, f ∗L), b(Q,W, f ∗L))

in the lexicographic order and thus the closed set version of Manin’s Conjecture cannot be
true for (X,L).

In [LR14], Le Rudulier showed Conjecture 1.2 after removing a thin exceptional set. Here
is the description of her exceptional set: let E be the exceptional divisor of the Hilbert-Chow
morphism φ. Let D1 be the divisor parameterizing all subschemes supported on some (not
fixed) fiber of the first projection P1 × P1 → P1. Let D2 be the analogous divisor for the
second projection. Then her exceptional set is

Z = f(W (Q)) ∪D1(Q) ∪D2(Q) ∪ E(Q).

On the other hand, the geometry of a, b-invariants for X has been worked out in [LT17b,
Section 9.3]. First of all we have Z0 ⊂ B+(L) = E, so we have Z0 ⊂ Z. In [LT17b], Lehmann
and the author showed that (1) all subvarieties with higher a-invariants are contained in
E ∪ D1 ∪ D2; (2) the only thin maps h : Y → X such that the image is not contained
in E ∪ D1 ∪ D2, (Y, h∗L) is adjoint rigid, dimY < dimX , and (a(X,L), b(Q, X, L)) ≤
(a(Y, h∗L), b(Q, Y, h∗L)) are the images of the fibers of one of the projections W → S×S →
P1. These imply that Z1 ⊂ Z. Next we know that the geometric fundamental group of
π1(X \ E ∪ D1 ∪ D2) is Z/2. Thus it follows from [Sen17] that (W, f ∗L) is the only cover
with a(W, f ∗L) = a(X,L) = 1 and (W, f ∗L) is adjoint rigid. Finally by arguing as [LT17b,
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Example 8.6], one can show that all non-trivial twists of f : W → X have a, b-invariants less
than a(X,L), b(Q, X, L). All together these imply that Z2 = f(W (Q)). Thus we conclude

Z = Z0 ∪ Z1 ∪ Z2.
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