SESHADRI CONSTANTS AND OKOUNKOV BODIES REVISITED

JINHYUNG PARK AND JAESUN SHIN

ABSTRACT. In recent years, the interaction between the local positivity of divisors and Okounkov bodies has attracted considerable attention, and there have been attempts to find a satisfactory theory of positivity of divisors in terms of convex geometry of Okounkov bodies. Many interesting results in this direction have been established by Choi–Hyun–Park–Won [CHPW] and Küronya–Lozovanu [KL1, KL2, KL3] separately. The first aim of this paper is to give uniform proofs of these results. Our approach provides not only a simple new outlook on the theory but also proofs for positive characteristic in the most important cases. Furthermore, we extend the theorems on Seshadri constants to graded linear series setting. Finally, we introduce the integrated volume function to investigate the relation between Seshadri constants and filtered Okounkov bodies introduced by Boucksom–Chen [BC].

1. INTRODUCTION

Throughout the paper, we work over an algebraically closed field k of arbitrary characteristic unless otherwise stated. Let $f: Y \to X$ be a birational morphism between smooth projective varieties of dimension n, and V_{\bullet} be a graded linear series associated to a divisor D on X. Fix an *admissible flag* on Y:

$$Y_{\bullet}: Y = Y_0 \supseteq Y_1 \supseteq \cdots \supseteq Y_{n-1} \supseteq Y_n = \{y\}$$

where each Y_i is an irreducible subvariety of codimension i in Y and is smooth at the point y. With this data, we can associate a convex set in Euclidean space

$$\Delta_{Y_{\bullet}}(f^*V_{\bullet}) \subseteq \mathbb{R}^n_{>0}.$$

When V_{\bullet} is the complete graded linear series of D, we put $\Delta_{Y_{\bullet}}(f^*D) = \Delta_{Y_{\bullet}}(f^*V_{\bullet})$. Based on ideas of Okounkov [O1, O2], this construction was introduced in all its generality by Kaveh-Khovanskii [KK] and Lazarsfeld-Mustață [LM]. We will focus mainly on two examples. The first one is when f is the identity. In this case, we call $\Delta_{Y_{\bullet}}(V_{\bullet})$ the *Okounkov body* of V_{\bullet} . The other one is when f is the blow-up $\pi: \widetilde{X} \to X$ of X at a point x and Y_{\bullet} is an infinitesimal admissible flag, in which the last n-1 elements are linear subspaces of the exceptional divisor $E \simeq \mathbb{P}^{n-1}$ of π . In this case, we call $\Delta_{Y_{\bullet}}(\pi^*V_{\bullet})$ the *infinitesimal Okounkov body* of V_{\bullet} over x.

Date: August 11, 2020.

²⁰¹⁰ Mathematics Subject Classification. 14C20.

Key words and phrases. Seshadri constant, Okounkov body, big divisor, filtered graded linear series.

JINHYUNG PARK AND JAESUN SHIN

In recent years, a considerable amount of research has been devoted to the study of the connection between local positivity of divisors and Okounkov bodies. This direction of research was first tackled in the surface case in [KL3]. For higher dimensions, [KL1] deals with the infinitesimal setting, and the local picture is completed in [CHPW] with partial results in [KL2]. We further refer to [CPW1, CPW2, CPW3], [DKMS], [I], [R] for related results.

It has been clear by the works [CHPW], [KL1, KL2, KL3] that standard simplices arise naturally in Okounkov bodies. Let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be the standard basis vectors for \mathbb{R}^n , and **0** be the origin of \mathbb{R}^n . For $\xi \geq 0$, set

$$\mathbf{\Delta}_{\boldsymbol{\xi}}^{n} := \text{closed convex hull } (\mathbf{0}, \boldsymbol{\xi}\mathbf{e}_{1}, \dots, \boldsymbol{\xi}\mathbf{e}_{n}) \\ \mathbf{\widetilde{\Delta}}_{\boldsymbol{\xi}}^{n} := \text{closed convex hull } (\mathbf{0}, \boldsymbol{\xi}\mathbf{e}_{1}, \boldsymbol{\xi}(\mathbf{e}_{1} + \mathbf{e}_{2}), \dots, \boldsymbol{\xi}(\mathbf{e}_{1} + \mathbf{e}_{n}))$$

We call \blacktriangle_{ξ}^{n} (resp. $\widetilde{\blacktriangle}_{\widetilde{\xi}}^{n}$) the standard simplex (resp. inverted standard simplex) of size ξ .

In this paper, we prove the following ampleness criterion in terms of Okounkov bodies, which may be regarded as an analogue result of Seshadri's ampleness criterion (cf. [La, Theorem 1.4.13]).

Theorem 1.1. Let X be a smooth projective variety of dimension n, and D be a big \mathbb{R} -divisor on X. Then the following are equivalent:

(1) D is ample.

(2) For every point $x \in X$, there is an admissible flag Y_{\bullet} centered at x such that $\Delta_{Y_{\bullet}}(D)$ contains a nontrivial standard simplex in $\mathbb{R}^{n}_{\geq 0}$.

(3) For every point $x \in X$, there is an infinitesimal admissible flag \widetilde{Y}_{\bullet} over x such that $\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D)$ contains a nontrivial inverted standard simplex in $\mathbb{R}^{n}_{\geq 0}$.

In characteristic zero, the equivalences $(1) \iff (2)$ and $(1) \iff (3)$ were proved in [CHPW, Corollary D] and [KL1, Theorem B], respectively. See Theorem 3.7 for the more precise version.

Theorem 1.1 follows from the description of Seshadri constants in terms of Okounkov bodies. The Seshadri constant $\varepsilon(V_{\bullet}; x)$ of a graded linear series V_{\bullet} at a point x is a measure of local positivity. It was first introduced by Demailly [D], and there has been a great deal of effort over the decades to study the Seshadri constants. See Section 2 for the precise definition. As was shown in [CHPW], [KL1, KL2, KL3], the Seshadri constant $\varepsilon(V_{\bullet}; x)$ is closely related to the following constants

$$\xi(V_{\bullet};x) := \sup_{Y_{\bullet}} \left\{ \xi \mid \blacktriangle_{\xi}^{n} \subseteq \Delta_{Y_{\bullet}}(V_{\bullet}) \right\} \text{ and } \widetilde{\xi}(V_{\bullet};x) := \sup_{\widetilde{Y}_{\bullet}} \left\{ \widetilde{\xi} \mid \widetilde{\blacktriangle}_{\widetilde{\xi}}^{n} \subseteq \Delta_{\widetilde{Y}_{\bullet}}(\pi^{*}V_{\bullet}) \right\},$$

where Y_{\bullet} runs over admissible flags centered at x on X and \widetilde{Y}_{\bullet} runs over infinitesimal admissible flag over x. If no (resp. inverted) standard simplex is contained in the (resp. infinitesimal) Okounkov body, then we put $\xi_{Y_{\bullet}}(V_{\bullet}; x) = 0$ (or $\tilde{\xi}_{\tilde{Y}_{\bullet}}(V_{\bullet}; x) = 0$).

The following is the main result of the paper, which gives the description of Seshadri constants in terms of Okounkov bodies.

 $\mathbf{2}$

Theorem 1.2. Let X be a smooth projective variety, $x \in X$ be a point, and V_{\bullet} be a graded linear series associated to a divisor D on X. Then we have

$$\varepsilon(V_{\bullet}; x) = \overline{\xi}(V_{\bullet}; x) \ge \xi(V_{\bullet}; x)$$

in the following cases:

- (1) $(\operatorname{char}(\mathbb{k}) \geq 0) V_{\bullet}$ is complete, and D is nef and big.
- (2) $(\operatorname{char}(\mathbb{k}) \ge 0)$ V_{\bullet} is complete, and $x \notin \mathbf{B}_{+}(D)$.
- (3) $(\operatorname{char}(\mathbb{k}) = 0) V_{\bullet}$ is complete.
- (4) $(\operatorname{char}(\mathbb{k}) = 0)$ V_{\bullet} is birational, and $x \in X$ is very general.

Theorem 1.2 (3) was shown in [CHPW, Theorem E] for the inequality $\varepsilon(V_{\bullet}; x) \geq \xi(V_{\bullet}; x)$ and [KL1, Theorem C] for the equality $\varepsilon(V_{\bullet}; x) = \tilde{\xi}(V_{\bullet}; x)$. These works can be regarded as attempts to find a satisfactory theory of positivity of divisors in terms of convex geometry of Okounkov bodies. Another important result in this direction is the description of the augmented base locus $\mathbf{B}_{+}(D)$ via Okounkov bodies proved in [CHPW, Theorem C] and [KL1, Theorem 4.1] (see also [KL2, KL3]).

Even though the main theorems in [CHPW] and [KL1] have the same nature and both depend on the deep results from [ELMNP1] about the continuity property for restricted volumes, the proofs look very different. The main technical ingredient of [KL1] is the interaction between infinitesimal Okounkov bodies of D and jet separation of the adjoint divisor $K_X + D$ (see [KL1, Proposition 4.10]), but the main technical ingredients of [CHPW] are the slice theorem of Okounkov bodies [CPW1, Theorem 1.1] and a version of Fujita approximation [Le, Proposition 3.7]. We point out that the techniques aforementioned are based on Nadel vanishing theorem for multiplier ideal sheaves, so the characteristic zero assumption is necessary.

In this paper, we give a new outlook on this theory by proving the main results of [CHPW] and [KL1] in a uniform way. Our proofs are shorter and simpler than those in [CHPW] and [KL1]. After proving some basic lemmas, we first give quick direct proofs of Theorem 1.1 and Theorem 1.2 (1), (2). Our approach is elementary, avoiding the use of vanishing theorems. Consequently, these theorems hold in arbitrary characteristic. For Theorem 1.2 (3), (4), we need to assume char(\Bbbk) = 0 because we apply the continuity result about moving Seshadri constants [ELMNP1, Theorem 6.2] and the differentiation result [EKL, Proposition 2.3], [N2, Lemma 1.3]. The augmented base locus results [KL1, Theorem 4.1] and [CHPW, Theorem C] then immediately follow (see Corollary 3.9).

Note that the relation between Seshadri constants and Okounkov bodies for a birational graded linear series V_{\bullet} was first studied by Ito [I]. The inequality $\varepsilon(V_{\bullet}; x) \ge \xi(V_{\bullet}; x)$ in Theorem 1.2 (4) may follow from [I, Theorem 1.2], but our approach gives an alternative proof. The equality $\varepsilon(V_{\bullet}; x) = \tilde{\xi}(V_{\bullet}; x)$ is an original result. We remark that Theorem 1.2 (4) does not hold for a non-general point (see Remark 3.11).

As was observed in [CHPW, Example 7.4], [KL3, Remark 4.9], the inequality $\varepsilon(V_{\bullet}; x) \geq \xi(V_{\bullet}; x)$ in Theorem 1.2 can be strict in general. Moreover, one can conclude from [CPW3, Remark 3.12] that it is impossible to extract the exact value of $\varepsilon(V_{\bullet}; x)$ from the set of

non-infinitesimal Okounkov bodies. Thus it is necessary to consider finer structures on Okounkov bodies in order to read off the exact value of the Seshadri constant. For this purpose, we consider the multiplicative filtration \mathcal{F}_x determined by the geometric valuation ord_x for a point $x \in X$ as

$$\mathcal{F}_x^t V_m := \{ s \in V_m \mid \operatorname{ord}_x(s) \ge t \}.$$

This multiplicative filtration was treated in [DKMS], [KMS]. Now, fix an admissible flag Y_{\bullet} on Y centered at x. With this data, we can associate a convex subset in Euclidean space

$$\widehat{\Delta}_{Y_{\bullet}}(f^*V_{\bullet}, \mathcal{F}_x) \subseteq \mathbb{R}^{n+1}_{\geq 0},$$

called the *filtered Okounkov body*. This was introduced in [BC]. We then define the *integrated volume function* as

$$\widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, t) := \int_{u=0}^t \operatorname{vol}_{\mathbb{R}^n} (\widehat{\Delta}_{Y_{\bullet}}(f^*V_{\bullet}, \mathcal{F}_x)_{x_{n+1}=u}) du$$

We show that the derivative $\widehat{\varphi}'_x(V_{\bullet}, \mathcal{F}_x, t)$ always exists (see Proposition 4.4). Note that

$$\operatorname{vol}_{\mathbb{R}^{n+1}}(\widehat{\Delta}_{Y_{\bullet}}(f^*V_{\bullet},\mathcal{F}_x)) = \widehat{\varphi}_x(V_{\bullet},\mathcal{F}_x,\infty).$$

The value $\widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, \infty)$ has been used to study diophantine approximation on algebraic varieties in [MR] and the K-stability of Fano varieties (cf. [BJ], [F], [Li]).

The following theorem gives a new characterization of the Seshadri constant in terms of the integrated volume function.

Theorem 1.3. Let X be a smooth projective variety of dimension n. Let $x \in X$ be a point, and V_{\bullet} be a graded linear series associated to a divisor D on X. Then we have

$$\varepsilon(V_{\bullet}; x) = \inf \left\{ t \ge 0 \ \middle| \ \widehat{\varphi}'_x(V_{\bullet}, \mathcal{F}_x, 0) - \widehat{\varphi}'_x(V_{\bullet}, \mathcal{F}_x, t) < \frac{t^n}{n!} \right\}$$

in the four cases considered in Theorem 1.2.

In Section 4, we define the bounded mass function $\operatorname{mass}_+(V_m, \mathcal{F}_x, t)$ for $t \ge 0$ as an "appropriate" sum of jumping numbers of (V_m, \mathcal{F}_x) , and we show in Theorem 4.7 that

$$\widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, t) = \lim_{m \to \infty} \frac{\operatorname{mass}_+(V_m, \mathcal{F}_x, mt)}{m^{n+1}}$$

This means that the integrated volume function is independent of the choice of the admissible flags to define the filtered Okounkov body.

The rest of the paper is organized as follows. We begin in Section 2 with recalling basic definitions. In Section 3, we first show some basic lemmas, and then, give proofs of Theorems 1.1 and 1.2. Section 4 is devoted to the study of integrated volume functions; in particular, we prove Theorem 1.3.

Acknowledgement. The authors would like to thank the referee for careful reading of the paper and useful suggestions to help improve the exposition of the paper. J. Park was partially supported by the Sogang University Research Grant of 201910002.01.

2. Preliminaries

2.1. Notations. Throughout the paper, we fix the following notations. Let X be a smooth projective variety of dimension n defined over an algebraically closed field k of arbitrary characteristic, and D be an \mathbb{R} -divisor on X. Let $x \in X$ be a point, and $\pi: \widetilde{X} \to X$ be the blow-up of X at x with the exceptional divisor E. Let V_{\bullet} be a graded linear series associated to D so that V_m is a linear subspace of $H^0(X, \mathcal{O}_X(\lfloor mD \rfloor))$ for every integer $m \geq 0$. Recall the following definitions:

- (1) V_{\bullet} is called *complete* if $V_m = H^0(X, \mathcal{O}_X(|mD|))$ for all $m \ge 0$.
- (2) V_{\bullet} is called *birational* if the rational map given by $|V_m|$ is birational onto its image for any $m \gg 0$. It is exactly same to Condition (B) in [LM, Definition 2.5].

For each integer $m \geq 1$, let $f_m: X_m \to X$ be a birational morphism such that X_m is a normal projective variety and $f_m^{-1}\mathfrak{b}(V_m) \cdot \mathcal{O}_{X_m} = \mathcal{O}_{X_m}(-F_m)$ for an effective Cartier divisor F_m on X_m . In characteristic zero, we may assume that f_m is a log resolution of the base ideal $\mathfrak{b}(V_m)$. In positive characteristic, instead of using the resolution of singularities, we construct f_m by taking the normalization of the blow-up along $\mathfrak{b}(V_m)$. We have a decomposition

$$f_m^*|V_m| = |W_m| + F_m,$$

where $W_m \subseteq H^0(X_m, \mathcal{O}_{X_m}(f_m^*\lfloor mD \rfloor) - F_m)$ is a linear subspace defining a free linear series. We set

$$M_m := f_m^* \lfloor mD \rfloor - F_m$$
 and $M'_m := \frac{1}{m} M_m, F'_m := \frac{1}{m} F_m.$

Suppose now that f_m is isomorphic over a neighborhood of x and $f_m^{-1}(x) \not\subseteq \text{Supp}(F_m)$. Let $\pi_m \colon \widetilde{X}_m \to X_m$ be the blow-up at the smooth point $f_m^{-1}(x)$ with the exceptional divisor E_m . We have the following commutative diagram

$$\begin{array}{ccc} \widetilde{X}_m & \xrightarrow{\pi_m} & X_m \\ \widetilde{f}_m & & \downarrow f_m \\ \widetilde{X} & \xrightarrow{\pi} & X. \end{array}$$

2.2. Okounkov bodies. Let Y be a projective variety, and fix an admissible flag on Y:

$$Y_{\bullet}: Y = Y_0 \supseteq Y_1 \supseteq \cdots \supseteq Y_{n-1} \supseteq Y_n = \{y\}.$$

Here every Y_i is smooth at the point y for $0 \le i \le n$. We define a valuation-like function

$$\nu_{Y_{\bullet}}\colon V_{\bullet}\longrightarrow \mathbb{R}^n_{>0}$$

as follows: Given a nonzero section $s \in V_m$, let

$$\nu_1 = \nu_1(s) = \operatorname{ord}_{Y_1}(s).$$

After choosing a local equation for Y_1 in Y, we get $\tilde{s}_1 \in H^0(X, \mathcal{O}_X(\lfloor mD \rfloor - \nu_1 Y_1))$. Let

$$\nu_2 = \nu_2(s) = \operatorname{ord}_{Y_2}(\widetilde{s_1}|_{Y_1}).$$

Continuing the process, we obtain

$$\nu_{Y_{\bullet}}(s) := (\nu_1(s), \dots, \nu_n(s)) \in \mathbb{Z}_{>0}^n.$$

Let $\Gamma(V_{\bullet})_m \subseteq \mathbb{Z}_{\geq 0}^n$ be the image of $\nu_{Y_{\bullet}} \colon (V_m \setminus \{0\}) \to \mathbb{Z}_{\geq 0}^n$. The Okounkov body of V_{\bullet} with respect to Y_{\bullet} is defined as

$$\Delta_{Y_{\bullet}}(V_{\bullet}) := \text{closed convex hull } \left(\bigcup_{m \ge 1} \frac{1}{m} \Gamma(V_{\bullet})_m\right) \subseteq \mathbb{R}^n_{\ge 0}.$$

For more details and basic properties, we refer to [KK], [LM].

In this paper, we consider mainly two cases. The first one is when Y = X and Y_{\bullet} is centered at x. The other one is when $Y = \tilde{X}$ is the blow-up of X at a point x and $Y_{\bullet} = \tilde{Y}_{\bullet}$ is an infinitesimal admissible flag, in which the last n-1 elements are linear subspaces of $E \simeq \mathbb{P}^{n-1}$. In this case, we say that

$$\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}) := \Delta_{\widetilde{Y}_{\bullet}}(\pi^* V_{\bullet}) \subseteq \mathbb{R}^n_{\geq 0}.$$

is the *infinitesimal Okounkov body* of V_{\bullet} with respect to \widetilde{Y}_{\bullet} . When V_{\bullet} is complete, we put $\Delta_{Y_{\bullet}}(D) = \Delta_{Y_{\bullet}}(D)$ and $\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D) = \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})$. The infinitesimal Okounkov body was first introduced in [LM] when x is a very general point, and a similar construction is also considered in [WN]. It was generalized to arbitrary point in [KL1, KL2, KL3]. More general infinitesimal admissible flags for Okounkov bodies have been studied in [R], [CPW3].

Now, we define nonnegative numbers

$$\begin{aligned} \xi_{Y_{\bullet}}(V_{\bullet};x) &:= \max\{\xi \mid \mathbf{A}_{\xi}^{n} \subseteq \Delta_{Y_{\bullet}}(V_{\bullet})\} \quad \text{and} \quad \widetilde{\xi}_{\widetilde{Y}_{\bullet}}(V_{\bullet};x) &:= \max\{\widetilde{\xi} \mid \widetilde{\mathbf{A}}_{\widetilde{\xi}}^{n} \subseteq \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})\}, \\ \xi(V_{\bullet};x) &:= \sup_{Y_{\bullet}}\{\xi_{Y_{\bullet}}(V_{\bullet};x)\} \quad \text{and} \quad \widetilde{\xi}(V_{\bullet};x) &:= \sup_{\widetilde{Y}_{\bullet}}\{\widetilde{\xi}_{\widetilde{Y}_{\bullet}}(V_{\bullet};x)\}, \end{aligned}$$

where the supremums run over all admissible flags Y_{\bullet} centered at x and all infinitesimal admissible flags over x, respectively. If no (resp. inverted) standard simplex is contained in the (resp. infinitesimal) Okounkov body, then we let $\xi_{Y_{\bullet}}(V_{\bullet}; x) = 0$ (or $\tilde{\xi}_{\tilde{Y}_{\bullet}}(V_{\bullet}; x) = 0$). When V_{\bullet} is complete, we simply replace V_{\bullet} by D.

In this paper, \mathcal{F}_x is always the multiplicative filtration on V_{\bullet} given by

$$\mathcal{F}_x^t V_m := \{ s \in V_m \mid \operatorname{ord}_x(s) \ge t \}$$

Then \mathcal{F}_x is pointwise bounded below and linearly bounded above in the sense of [BC, Definition 1.3] (see [KMS, Proposition 3.5]). For any $t \in \mathbb{R}$, we have a new graded linear series $V_{\bullet}^{(t)}$, which is defined as $V_m^{(t)} := \mathcal{F}^{tm}V_m$ for all $m \in \mathbb{Z}_{\geq 0}$. Notice that the Okounkov bodies $\Delta_{Y_{\bullet}}(V_{\bullet}^{(t)})$ form a nonincreasing family of convex subsets of $\Delta_{Y_{\bullet}}(V_{\bullet})$. See [BC] for more details.

Lemma 2.1. If V_{\bullet} is birational, then so is $V_{\bullet}^{(t)}$ for any t > 0 such that $V_m^{(t+\epsilon)} \neq \emptyset$ for any integer $m \gg 0$ and a sufficiently small number $\epsilon > 0$.

Proof. Let $m' \gg 0$ be an integer such that $V_{m'}$ defines a birational map, and $\epsilon > 0$ be a sufficiently small number such that $V_m^{(t+\epsilon)} \neq \emptyset$ for $m \gg 0$. For any integer $m \gg 0$ with $m(t+\epsilon) > (m+m')t$, we have $s \cdot V_{m'} \subseteq V_{m+m'}^{(t)}$ for any zero section $s \in V_m^{(t+\epsilon)}$. Then $V_{m+m'}^{(t)}$ defines a birational map.

Example 2.2. For an admissible flag Y_{\bullet} on X centered at x, we have

(2.1)
$$\Delta_{Y_{\bullet}}(V_{\bullet}^{(t)}) \subseteq \Delta_{Y_{\bullet}}(V_{\bullet}) \setminus \blacktriangle_{t}^{n} \text{ for any } t \ge 0.$$

For an infinitesimal admissible flag \widetilde{Y}_{\bullet} on \widetilde{X} over x, we have

(2.2)
$$\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}^{(t)}) = \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})_{x_1 \ge t} \text{ for any } t \ge 0.$$

Now, assume that V_{\bullet} is the complete graded linear series of D. For any $t \ge 0$, let W_{\bullet}^t be the graded linear series on $\widetilde{Y}_1 = E$ such that W_m^t for any $m \ge 0$ is given by the image of the map

$$H^{0}(\widetilde{X}, \mathcal{O}_{\widetilde{X}}(\lfloor m(\pi^{*}D - tE) \rfloor)) \longrightarrow H^{0}(\widetilde{Y}_{1}, \mathcal{O}_{\widetilde{Y}_{1}}(\lfloor m(\pi^{*}D - tE) \rfloor)).$$

Then we will show in Lemma 3.1(2) that

$$\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})_{x_1=t} = \Delta_{\widetilde{Y}_{\bullet}|\widetilde{Y}_1}(W_{\bullet}^t).$$

Following [BC], we define the *concave transform* of a multiplicative filtration \mathcal{F} on V_{\bullet} to be a real-valued function on $\Delta_{Y_{\bullet}}(V_{\bullet})$ given by

$$\varphi_{\mathcal{F},Y_{\bullet}}(\mathbf{x}) := \sup\{t \in \mathbb{R} \mid \mathbf{x} \in \Delta_{Y_{\bullet}}(V_{\bullet}^{(t)})\},\$$

and the *filtered Okounkov body* associated to V_{\bullet}, \mathcal{F} with respect to Y_{\bullet} to be a compact convex subset of $\mathbb{R}^{n}_{\geq 0} \times \mathbb{R}_{\geq 0} = \mathbb{R}^{n+1}_{\geq 0}$ given by

$$\widehat{\Delta}_{Y_{\bullet}}(V_{\bullet},\mathcal{F}) := \{ (\mathbf{x},t) \in \Delta_{Y_{\bullet}}(V_{\bullet}) \times \mathbb{R} \mid t \in [0,\varphi_{\mathcal{F}_{\bullet},Y_{\bullet}}(\mathbf{x})] \} \subseteq \mathbb{R}^{n+1}_{\geq 0}.$$

Note that

$$\widehat{\Delta}_{Y_{\bullet}}(V_{\bullet}, \mathcal{F}_x)_{x_{n+1}=t} = \Delta_{Y_{\bullet}}(V_{\bullet}^{(t)}).$$

2.3. Seshadri constants. Let D be an arbitrary \mathbb{R} -divisor. The stable base locus of D is defined as

$$SB(D) := \bigcap_{D \sim_{\mathbb{R}} D' \ge 0} Supp(D').$$

Recall that $D \sim_{\mathbb{R}} D'$ if D - D' is an \mathbb{R} -linear sum of principal divisors. If there is no effective divisor D' with $D' \sim_{\mathbb{R}} D$, then SB(D) = X. The *restricted base locus* of D and the *augmented base locus* of D are defined as

$$\mathbf{B}_{-}(D) := \bigcup_{A:\text{ample}} \operatorname{SB}(D+A) \quad \text{and} \quad \mathbf{B}_{+}(D) := \bigcap_{A:\text{ample}} \operatorname{SB}(D-A).$$

Note that D is nef if and only if $\mathbf{B}_{-}(D) = \emptyset$, and D is ample if and only if $\mathbf{B}_{+}(D) = \emptyset$. Furthermore, D is not big if and only if $\mathbf{B}_{+}(D) = X$. See [ELMNP1], [Mus] for further properties. Now, for a given graded linear series V_{\bullet} and a point $x \in X$, let $s(V_m; x)$ be the supremum of integers $s \geq -1$ such that the natural map

$$V_m \longrightarrow H^0(\mathcal{O}_X(\lfloor mD \rfloor) \otimes \mathcal{O}_X/\mathfrak{m}_x^{s+1})$$

is surjective. The Seshadri constant of V_{\bullet} at x is defined to be

$$\varepsilon(V_{\bullet}; x) := \limsup_{m \to \infty} \frac{s(V_m; x)}{m}$$

If V_{\bullet} is a complete graded linear series of D and D is nef, then $\varepsilon(V_{\bullet}; x)$ coincides with the usual Seshadri constant

$$\varepsilon(D; x) := \sup\{k \mid \pi^*D - kE \text{ is nef}\} = \inf_{x \in C} \left\{ \frac{D.C}{\operatorname{mult}_x C} \right\},$$

where the infimum runs over all irreducible curves C on X passing through x. Next, we define the moving Seshadri constant $\varepsilon(||D||; x)$ of a divisor D at a point x as follows:

If
$$x \in \mathbf{B}_{+}(D)$$
, then $\varepsilon(||D||; x) := 0$.
If $x \notin \mathbf{B}_{+}(D)$, then $\varepsilon(||D||; x) := \limsup_{m \to \infty} \varepsilon(M'_{m}; f_{m}^{-1}(x))$.

By [ELMNP2, Theorem 6.2 and Propositions 6.4, 6.6] and [Mur, Propositions 7.1.2, 7.2.3, 7.2.10], we have

 $\varepsilon(||D||; x) = \varepsilon(V_{\bullet}; x)$ when V_{\bullet} is a complete graded linear series of D.

Note that $x \in \mathbf{B}_+(D)$ if and only if $\varepsilon(||D||; x) = 0$.

Lemma 2.3. Suppose that D is nef and big. Then D is ample if and only if $\varepsilon(D; x) > 0$ for all $x \in X$.

Proof. If D is ample, then clearly $\varepsilon(D; x) > 0$ for all $x \in X$. Assume that $\varepsilon(D; x) > 0$ for all $x \in X$. Then $x \notin \mathbf{B}_+(D)$ for all $x \in X$, so $\mathbf{B}_+(D) = \emptyset$. Thus D is ample. \Box

When $\operatorname{char}(\mathbb{k}) = 0$, the function

$$\varepsilon(||-||;x): N^1(X)_{\mathbb{R}} \longrightarrow \mathbb{R}_{\geq 0}$$

is continuous (see [ELMNP2, Proposition 6.3]). When $char(\Bbbk) > 0$, the function

$$\varepsilon(||-||;x) \colon \operatorname{Big}_{\mathbb{R}}^{\{x\}}(X) \to \mathbb{R}_{>0}$$

is continuous, where $\operatorname{Big}_{\mathbb{R}}^{\{x\}}(X)$ denotes the open convex subcone of the big cone consisting of big divisors classes D such that $x \notin \mathbf{B}_+(D)$ (see [Mur, Proposition 7.1.2]). For further details on Seshadri constants, we refer to [ELMNP2, Section 6], [I], [La, Chapter 5], and [Mur, Section 7].

The Nakayama constant of V_{\bullet} at x is defined by

$$\mu(V_{\bullet}; x) = \sup\left\{\frac{\operatorname{ord}_x(s)}{m} \mid s \in V_m\right\}.$$

When V_{\bullet} is complete, we put $\mu(D; x) = \mu(V_{\bullet}; x)$. If D is pseudoeffective, then

 $\mu(D; x) = \sup\{k \mid \pi^*D - kE \text{ is pseudoeffective}\}.$

3. Local positivity via Okounkov bodies

In this section, we prove Theorems 1.1 and 1.2.

3.1. Basic Lemmas. First, we show some useful lemmas.

Lemma 3.1. Suppose that D is big and $x \notin \mathbf{B}_{-}(D)$. For $0 < k < \mu(D; x)$, we have the following:

(1)
$$E \nsubseteq \mathbf{B}_+(\pi^*D - kE)$$

(2) $\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D)_{x_1=k} = \Delta_{\widetilde{Y}_{\bullet}|\widetilde{Y}_1}(W^k_{\bullet})$, where W^k_{\bullet} is defined in Example 2.2.

Proof. Note that $E \not\subseteq \mathbf{B}_{-}(\pi^*D)$. By [FKL, Theorem A], we have

$$\operatorname{vol}_{\widetilde{X}}(\pi^*D - kE) \neq \operatorname{vol}_{\widetilde{X}}(\pi^*D).$$

Then (1) follows from [FKL, Theorem B], and (2) follows from [LM, Theorem 4.26]. \Box

Lemma 3.2. Suppose that V_{\bullet} is birational. Then we have the following: (1) $\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}) \subseteq \widetilde{\blacktriangle}_{\mu(V_{\bullet};x)}^{n}$ for any infinitesimal admissible flag \widetilde{Y}_{\bullet} over x. (2) If $\widetilde{\blacktriangle}_{\widetilde{\xi}}^{n} \subseteq \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})$ for some infinitesimal admissible flag \widetilde{Y}_{\bullet} over x, then the same is true for every infinitesimal admissible flag over x. In particular,

$$\widetilde{\xi}(V_{\bullet};x) = \widetilde{\xi}_{Y'_{\bullet}}(V_{\bullet};x)$$

for every infinitesimal admissible flag Y'_{\bullet} over x.

Proof. This was proved in [KL1, Propositions 2.5 and 4.7] (their proof work for any graded linear series), but we give a proof for reader's convenience. Note that

$$\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}) \subseteq \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D)_{x_1 \leq \mu(V_{\bullet};x)}.$$

Consider a graded linear series W^k_{\bullet} on \widetilde{Y}_1 in Lemma 3.1 (2), which is the restriction of a complete graded linear series of D. We have

$$\Delta_{\widetilde{Y}_{\bullet}|\widetilde{Y}_{1}}(W_{\bullet}^{k}) \subseteq \Delta_{\widetilde{Y}_{\bullet}|\widetilde{Y}_{1}}(kH) = \blacktriangle_{k}^{n-1},$$

where H is a hyperplane section of $\widetilde{Y}_1 \simeq \mathbb{P}^{n-1}$. This implies (1).

For (2), assume that $\widetilde{\mathbf{A}}_{\widetilde{\xi}}^n \subseteq \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})$ for some infinitesimal admissible flag \widetilde{Y}_{\bullet} over x. By (1) and (2.2) in Example 2.2, we have

$$\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}) = \widetilde{\blacktriangle}_{k}^{n} \cup \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}^{(k)}).$$

By [LM, Theorem 2.13], we get

$$\frac{1}{n!} \left(\operatorname{vol}_X(V_{\bullet}) - \operatorname{vol}_X(V_{\bullet}^{(k)}) \right) = \operatorname{vol}_{\mathbb{R}^n} \left(\widetilde{\blacktriangle}_k^n \right).$$

Then $\operatorname{vol}_{\mathbb{R}^n}\left(\widetilde{\Delta}_{\widetilde{Y}'_{\bullet}}(V_{\bullet})_{x_1 \leq k}\right) = \operatorname{vol}_{\mathbb{R}^n}\left(\widetilde{\blacktriangle}_k^n\right)$ for any infinitesimal admissible flag \widetilde{Y}'_{\bullet} over x. By (1), we obtain $\widetilde{\Delta}_{\widetilde{Y}'_{\bullet}}(V_{\bullet})_{x_1 \leq k} = \widetilde{\blacktriangle}_k^n$, which proves (2).

Lemma 3.3. Suppose that D is big. If $\mathbf{0} \in \Delta_{Y_{\bullet}}(D)$ for some admissible flag Y_{\bullet} on X centered at x, then $x \notin \mathbf{B}_{-}(D)$.

Proof. This was shown in [CHPW, Theorem A] or [KL2, Theorem A] (their proofs work for positive characteristic), but we include the proof for reader's convenience. Suppose that $x \in \mathbf{B}_{-}(D)$. By [ELMNP1, Proposition 2.8] and [Mus, Theorem C], $\operatorname{ord}_{x}(||D||) > 0$. Let Y_{\bullet} be an admissible flag on X centered at x. For any $(\nu_{1}, \ldots, \nu_{n}) \in \Delta_{Y_{\bullet}}(D)$, we have

(3.1)
$$\nu_1 + \dots + \nu_n \ge \operatorname{ord}_x(||D||).$$

Then $\nu_1 + \cdots + \nu_n > 0$, so $\mathbf{0} \notin \Delta_{Y_{\bullet}}(D)$.

Lemma 3.4. Suppose that D is nef and big. For any k with $\epsilon(D; x) < k < \mu(D; x)$, there is an irreducible curve C on X passing through x such that $\overline{C} \subseteq \mathbf{B}_{-}(\pi^*D - kE)$, where \overline{C} is the strict transform of C by π . In particular, $\mathbf{0} \notin \Delta_{\widetilde{Y}_{\bullet}}(\pi^*D - kE)$ for any infinitesimal admissible flag \widetilde{Y}_{\bullet} over x centered at $x' \in \overline{C} \cap E$.

Proof. Note that $\pi^*D - kE$ is not nef. Thus there is an irreducible curve \overline{C} on \widetilde{X} such that $(\pi^*D - kE).\overline{C} < 0$, and consequently, $\overline{C} \subseteq \mathbf{B}_-(\pi^*D - kE)$. We know that $E.\overline{C} > 0$. Then $\overline{C} \cap E \neq \emptyset$ and $\overline{C} \not\subseteq \operatorname{Supp}(E)$. By letting $C := \pi(\overline{C})$, we are done. Now, the 'in particular' part follows from Lemma 3.3 because $x' \in \mathbf{B}_-(\pi^*D - kE)$.

The following two lemmas are the main observations of this paper.

Lemma 3.5. Suppose that V_{\bullet} is birational. Then we have

$$\widetilde{\xi}(V_{\bullet}; x) \ge \xi(V_{\bullet}; x).$$

Proof. It is sufficient to show that

$$\widetilde{\xi} := \widetilde{\xi}_{\widetilde{Y}_{\bullet}}(V_{\bullet}; x) \ge \xi_{Y_{\bullet}}(V_{\bullet}; x) =: \xi$$

for an infinitesimal admissible flag \widetilde{Y}_{\bullet} over x and an admissible flag Y_{\bullet} on X centered at x. Fix a sufficiently small number $\epsilon > 0$. Then $\blacktriangle_{\xi-\epsilon}^n \subseteq \Delta_{Y_{\bullet}}(V_{\bullet})$. By (2.1) in Example 2.2 and [LM, Theorem 2.13], we have

(3.2)
$$\operatorname{vol}_X(V_{\bullet}^{(\xi-\epsilon)}) \leq \operatorname{vol}_X(V_{\bullet}) - (\xi-\epsilon)^n.$$

On the other hand, by (2.2) in Example 2.2 and Lemma 3.2 (1),

$$\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}) \subseteq \widetilde{\blacktriangle}_{\xi-\epsilon}^n \cup \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}^{(\xi-\epsilon)}),$$

so [LM, Theorem 2.13] implies that

(3.3)
$$\operatorname{vol}_X(V_{\bullet}) \le (\xi - \epsilon)^n + \operatorname{vol}_X(V_{\bullet}^{(\xi - \epsilon)}).$$

By comparing (3.2) and (3.3), we see that the equality holds, and hence, we obtain

$$\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}) = \widetilde{\blacktriangle}_{\xi-\epsilon}^n \cup \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}^{(\xi-\epsilon)}).$$

Since $\epsilon > 0$ can be arbitrarily small, we get $\widetilde{\mathbf{A}}_{\xi}^{n} \subseteq \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})$. This implies that $\widetilde{\xi} \geq \xi$. \Box Lemma 3.6. Suppose that V_{\bullet} is birational. Then we have

$$\widetilde{\xi}(V_{\bullet}; x) \ge \varepsilon(V_{\bullet}; x).$$

Proof. It is enough to prove that

$$\widetilde{\xi} := \widetilde{\xi}_{\widetilde{Y}_{\bullet}}(V_{\bullet}; x) \geq \varepsilon(V_{\bullet}; x) =: \varepsilon$$

for an infinitesimal admissible flag \widetilde{Y}_{\bullet} over x. For any integer $m \geq 1$, let $s_m := s(V_m; x)$ so that the map

$$V_m \longrightarrow H^0(\mathcal{O}_X(\lfloor mD \rfloor) \otimes \mathcal{O}_X/\mathfrak{m}_x^{s_m+1})$$

is surjective. Recall that $\Gamma(V_{\bullet})_m$ is the image of $\nu_{Y_{\bullet}} : (V_m \setminus \{0\}) \to \mathbb{Z}^n_{\geq 0}$. By [LM, Lemma 1.4] and Lemma 3.2 (1), we have

$$h^{0}(\mathcal{O}_{X}(\lfloor mD \rfloor) \otimes \mathcal{O}_{X}/\mathfrak{m}_{x}^{s_{m}+1}) = \# \big(\Gamma(V_{\bullet})_{m} \cap \big(m\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}) \big)_{x_{1} < s_{m}+1} \big) \leq \# \big(\mathbb{Z}_{\geq 0}^{n} \cap \widetilde{\blacktriangle}_{s_{m}}^{n} \big).$$

However, the both end sides are the same. Thus $\widetilde{\blacktriangle}_{s_m}^n \subseteq m\Delta_{\widetilde{Y}_{\bullet}}(V_{\bullet})$, so

$$\widetilde{\blacktriangle}^n_{\frac{s_m}{m}} \subseteq \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})$$

Since $\varepsilon = \limsup_{m \to \infty} \frac{s_m}{m}$, it follows that $\widetilde{\mathbf{A}}_{\varepsilon}^n \subseteq \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})$. This implies that $\widetilde{\xi} \ge \varepsilon$. \Box

3.2. The case when V_{\bullet} is complete. In this subsection, we prove Theorem 1.1 and Theorem 1.2 (1), (2), (3). Throughout the subsection, we assume that V_{\bullet} is a complete graded linear series of D. By Lemma 3.2 (2),

$$\widetilde{\xi} := \widetilde{\xi}(V_{\bullet}; x) = \widetilde{\xi}_{\widetilde{Y}_{\bullet}}(V_{\bullet}; x)$$

for any infinitesimal admissible flag \widetilde{Y}_{\bullet} over x. To prove Theorem 1.2, by Lemmas 3.5 and 3.6, we only need to show that

$$\varepsilon := \varepsilon(V_{\bullet}; x) \ge \xi.$$

Proof of Theorem 1.2 (1). We assume that D is nef and big. To derive a contradiction, suppose that $\varepsilon < \tilde{\xi}$. Take any number k with $\varepsilon < k < \tilde{\xi}$. By Lemma 3.4,

$$\mathbf{0} \not\in \Delta_{\widetilde{Y}_{\bullet}}(\pi^*D - kE)$$

for some infinitesimal admissible flag \widetilde{Y}_{\bullet} over x. However, $\widetilde{\Delta}_{\widetilde{\mathcal{F}}}^n \subseteq \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D)$. Thus

$$\mathbf{0} \in \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D)_{x_1 \ge k} + (-k, \underbrace{0, \dots, 0}_{n-1 \text{ times}}) = \Delta_{\widetilde{Y}_{\bullet}}(\pi^*D - kE),$$

which is a contradiction. Hence $\varepsilon \geq \tilde{\xi}$, so we finish the proof.

The following is a more comprehensive version of Theorem 1.1.

Theorem 3.7. Let X be a smooth projective variety of dimension n, and D be a big \mathbb{R} -divisor on X. Then the following are equivalent:

(1) D is ample.

(2) For every admissible flag Y_{\bullet} on X, the Okounkov body $\Delta_{Y_{\bullet}}(D)$ contains a nontrivial standard simplex in $\mathbb{R}^{n}_{\geq 0}$.

(3) For every point $x \in X$, there is an admissible flag Y_{\bullet} centered at x such that $\Delta_{Y_{\bullet}}(D)$ contains a nontrivial standard simplex in $\mathbb{R}^{n}_{\geq 0}$.

(4) For every infinitesimal admissible flag \widetilde{Y}_{\bullet} over X, the infinitesimal Okounkov body $\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D)$ contains a nontrivial inverted standard simplex in $\mathbb{R}^{n}_{\geq 0}$.

(5) For every point $x \in X$, there is an infinitesimal admissible flag \widetilde{Y}_{\bullet} over x such that $\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D)$ contains a nontrivial inverted standard simplex in $\mathbb{R}^{n}_{\geq 0}$.

Proof. (1) \Rightarrow (2): It can be shown by a standard argument (see e.g., [CHPW, Lemma 6.1]), so we skip the proof.

 $(2) \Rightarrow (3)$: It is trivial.

(3) \Rightarrow (4): If (3) holds, then Lemma 3.5 implies that $0 < \xi(D; x) \le \tilde{\xi}$. Thus (4) follows. (4) \Rightarrow (5): It is trivial.

(5) \Rightarrow (1): Assume that (5) holds. For any point $x \in X$, there is an infinitesimal admissible flag \widetilde{Y}_{\bullet} over x centered at $x' \in \widetilde{X}$ such that $\mathbf{0} \in \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D)$. Lemma 3.3 says that $x' \notin \mathbf{B}_{-}(\pi^*D)$, and hence, $E \not\subseteq \mathbf{B}_{-}(\pi^*D)$. Thus $x \notin \mathbf{B}_{-}(D)$. Since x is an arbitrary point, it follows that $\mathbf{B}_{-}(D) = \emptyset$. Thus D is nef and big. Now, by Theorem 1.2 (1), $\varepsilon(D; x) > 0$ for all $x \in X$. By Lemma 2.3, D is ample, so (1) holds.

Lemma 3.8. Let $\{A_i\}$ be a sequence of ample divisors on X such that $\lim_{i\to\infty} A_i = 0$. If $\widetilde{\xi}(D+A_i;x) = \varepsilon(||D+A_i||;x)$ for all i, then $\widetilde{\xi}(D;x) = \varepsilon(||D||;x)$ in the following cases: (1) (char(\mathbb{k}) = 0) D is big.

(2) $(\operatorname{char}(\mathbb{k}) > 0)$ D is big and $x \notin \mathbf{B}_{+}(D)$.

Proof. For an infinitesimal admissible flag \widetilde{Y}_{\bullet} , we have

$$\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D) \subseteq \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D+A_i) \text{ and } \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D) = \bigcap_{i \ge 1} \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D+A_i).$$

This type of statement first appeared in [AKL, Lemma 8]. We refer to the proof of [AKL, Lemma 8]. Consequently, we obtain

$$\widetilde{\xi}(D;x) = \lim_{i \to \infty} \widetilde{\xi}(D+A_i;x).$$

On the other hand, notice that $x \notin \mathbf{B}_+(D+A_i)$ for all *i*. By the continuity of $\varepsilon(||-||; x)$ at D ([ELMNP2, Proposition 6.3]) and [Mur, Proposition 7.1.2]), we get

$$\varepsilon(||D||;x) = \lim_{i \to \infty} \varepsilon(||D + A_i||;x).$$

Thus the lemma follows.

Proof of Theorem 1.2 (2). We assume that D is big and $x \notin \mathbf{B}_+(D)$. We can take a sequence $\{A_i\}$ of ample divisors on X such that $D + A_i$ is a \mathbb{Q} -divisor and $\lim_{i \to \infty} A_i = 0$. By Lemma 3.8, it is sufficient to show that $\widetilde{\xi}(D + A_i; x) = \varepsilon(||D + A_i||; x)$. Hence we may assume that D is a \mathbb{Q} -divisor. For a sufficiently large and divisible integer $m \geq 1$, let $f_m: X_m \to X$ be a birational morphism with the decomposition $f_m^*|mD| = M_m + F_m$ and $M'_m = \frac{1}{m}M_m, F'_m = \frac{1}{m}F_m$ as in Subsection 2.1. We may assume that f_m is isomorphic over a neighborhood of x and $f_m^{-1}(x) \not\subseteq \operatorname{Supp}(F_m)$.

Suppose that $\varepsilon < \tilde{\xi}$. Take a rational number k with $\varepsilon < k < \tilde{\xi}$. By Lemma 3.4, there is a point $x' \in E$ such that

(3.4)
$$x' \in \mathbf{B}_{-}(\pi_m^* M_m' - kE) \subseteq \mathrm{SB}(\pi_m^* M_m' - kE).$$

We claim that

$$(\star) \qquad \qquad x' \notin \mathrm{SB}(\pi^*D - kE).$$

Granting the claim for now, we derive a contradiction to conclude that $\varepsilon = \tilde{\xi}$. By the claim,

 $x' \notin Bs(m(\pi^*D - kE))$ for a sufficiently large and divisible integer m > 0.

We have

$$m(\tilde{f}_m^*\pi^*D - kE) = \pi_m^*(M_m + F_m) - mkE = (\pi_m^*M_m - mkE) + \pi_m^*F_m.$$

Since \widetilde{X}_m is normal and F_m is the fixed part of $f_m^*|mD|$ with $f_m^{-1}(x) \notin \operatorname{Supp}(F_m)$, we may identify

$$|m(\pi^*D - kE)| = |\pi_m^*M_m - mkE| + \pi_m^*F_m.$$

Thus $x' \notin Bs(\pi_m^* M_m - mkE)$, which is a contradiction to (3.4).

It only remains to show the claim (\star) . There is an ample divisor A on X such that F = D - A is an effective divisor and $x \notin \text{Supp}(F)$. Take a sufficiently small number $\delta > 0$ such that $A' := \pi^* A - \delta E$ is ample and a sufficiently small number $\epsilon > 0$ such that

$$\frac{k-\epsilon\delta}{1-\epsilon} < \widetilde{\xi} \quad \text{and} \quad \mathbf{B}_+(\pi^*D-kE) = \mathbf{B}_-(\pi^*D-kE-\epsilon A').$$

We only have to show $x' \notin \mathbf{B}_{-}(\pi^*D - kE - \epsilon A')$. Now, notice that

$$\mathbf{0} \in (1-\epsilon)\Delta_{\widetilde{Y}_{\bullet}}\left(\pi^*D - \frac{k-\epsilon\delta}{1-\epsilon}E\right) = \Delta_{\widetilde{Y}_{\bullet}}((1-\epsilon)\pi^*D - (k-\epsilon\delta)E)$$

for an infinitesimal admissible flag \widetilde{Y}_{\bullet} over x centered at x'. By Lemma 3.3,

$$x' \notin \mathbf{B}_{-}((1-\epsilon)\pi^*D - (k-\epsilon\delta)E),$$

and hence,

$$x' \notin \mathbf{B}_{-}((1-\epsilon)\pi^*D - (k-\epsilon\delta)E + \epsilon\pi^*F).$$

But we have

$$(1-\epsilon)\pi^*D - (k-\epsilon\delta)E + \epsilon\pi^*F = (1-\epsilon)\pi^*D - (k-\epsilon\delta)E + \epsilon(\pi^*D - A' - \delta E) = \pi^*D - kE - \epsilon A'.$$

This finishes the proof.

This finishes the proof.

Proof of Theorem 1.2 (3). We assume that $char(\mathbb{k}) = 0$ and D is big. By Theorem 1.2 (2), we only have to consider the case that $x \in \mathbf{B}_+(D)$. In this case, we know that

$$\varepsilon = \varepsilon(||D||; x) = 0.$$

Thus it suffices to show that $\tilde{\xi} = 0$. If $x \in \mathbf{B}_{-}(D)$, then $E \subseteq \mathbf{B}_{-}(\pi^*D)$ so that $\tilde{\xi} = 0$ by Lemma 3.3. Next, assume that $x \in \mathbf{B}_{+}(D) \setminus \mathbf{B}_{-}(D)$. Take an ample divisor A on X. For any number $\epsilon > 0$, we have $x \notin \mathbf{B}_{+}(D + \epsilon A)$, so Theorem 1.2 (2) implies that

$$\xi(D + \epsilon A; x) = \varepsilon(||D + \epsilon A||; x)$$

By Lemma 3.8, $\tilde{\xi} = \varepsilon = 0$. We finish the proof.

As a consequence of Theorem 1.2 (3) and [ELMNP2, Proposition 6.8], we can obtain [KL1, Proposition 4.10], which describes the jet separation of $K_X + D$. For another application, we recover [CHPW, Theorem C] and [KL1, Theorem 4.1] as follows.

Corollary 3.9 (char(\Bbbk) = 0). The following are equivalent:

(1) $x \notin \mathbf{B}_+(D)$.

(2) The Okounkov body $\Delta_{Y_{\bullet}}(D)$ contains a nontrivial standard simplex in $\mathbb{R}^{n}_{\geq 0}$ for every admissible flag Y_{\bullet} on X centered at x.

(3) The Okounkov body $\Delta_{Y_{\bullet}}(D)$ contains a nontrivial standard simplex in $\mathbb{R}^{n}_{\geq 0}$ for some admissible flag Y_{\bullet} on X centered at x.

(4) The infinitesimal Okounkov body $\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D)$ contains a nontrivial inverted standard simplex in $\mathbb{R}^{n}_{\geq 0}$ for every infinitesimal admissible flag \widetilde{Y}_{\bullet} over x.

(5) The infinitesimal Okounkov body $\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(D)$ contains a nontrivial inverted standard simplex in $\mathbb{R}^{n}_{\geq 0}$ for some infinitesimal admissible flag \widetilde{Y}_{\bullet} over x.

Proof. (1) \Rightarrow (2): It can be shown by a standard argument (see e.g., [CHPW, Theorem C]), so we skip the proof.

 $(2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$: The proofs are identical to those of Theorem 1.1.

 $(5) \Rightarrow (1)$: Assume that (5) holds. By Theorem 1.2 (3), we have $\varepsilon(||D||; x) > 0$. Thus $x \notin \mathbf{B}_+(D)$, i.e., (1) holds.

Remark 3.10. The characteristic zero assumption in Theorem 1.2 (3) and Corollary 3.9 is used only when [ELMNP2, Theorem 6.2] is applied. When $x \in \mathbf{B}_+(D) \setminus \mathbf{B}_-(D)$, Theorem 1.2 (3) is equivalent to that $\lim_{\epsilon \to 0} \varepsilon(||D + \epsilon A||; x) = 0$. To remove the characteristic zero assumption, by [Mur, Proposition 7.1.2 (1)], it is enough to extend the following deep result in [ELMNP2] to positive characteristics:

if V is an irreducible component of $\mathbf{B}_+(D)$, then $\lim_{\epsilon \to 0} \operatorname{vol}_{X|V}(D + \epsilon A) = 0$.

3.3. The case when V_{\bullet} is birational. In this subsection, we prove Theorem 1.2 (4).

Proof of Theorem 1.2 (4). We assume that V_{\bullet} is birational, $x \in X$ is very general, and char(\Bbbk) = 0. By Lemmas 3.2 (2), 3.5, and 3.6, we only need to show that

$$\varepsilon = \varepsilon(V_{\bullet}; x) \geq \widehat{\xi}_{\widetilde{Y}_{\bullet}}(V_{\bullet}; x) = \widehat{\xi}$$

for an infinitesimal admissible flag \widetilde{Y}_{\bullet} over x. We use the notations in Subsection 2.1. Since x is a very general point, we may assume that a birational morphism $f_m \colon X_m \to X$ is isomorphic over a neighborhood of x and $f_m^{-1}(x) \not\subseteq \text{Supp}(F_m)$. We may identify $f_m^{-1}(x)$

with x and E_m with E. We can regard \widetilde{Y}_{\bullet} as an infinitesimal admissible flag over x on \widetilde{X}_m . Let V_{\bullet}^m be the graded linear series such that V_i^m is the image of the map $S^iV_m \to V_{im}$. Then we have

(3.5)
$$\frac{1}{m}\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}^{m}) \subseteq \frac{1}{m}\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(M_{m}) = \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(M_{m}')$$

To derive a contradiction, suppose that $\varepsilon < \tilde{\xi}$. Recall from [I, Lemma 3.10] that

$$\varepsilon = \varepsilon(V_{\bullet}; x) = \sup_{m>0} \varepsilon(M'_m; x).$$

For any k with $\varepsilon(M'_m; x) < k < \tilde{\xi}$, by Lemma 3.4, there is an irreducible curve C_k on X passing through x such that

$$\overline{C}_k \subseteq \mathbf{B}_{-}(\pi_m^* M_m' - kE) \subseteq \mathrm{SB}(\pi_m^* M_m' - kE),$$

where \overline{C}_k is the strict transform of C_k by $f_m \circ \pi_m = \pi \circ \widetilde{f}_m$. Let

$$\alpha(C_k) := \inf \{ \beta \in \mathbb{Q} \mid \overline{C}_k \subseteq \operatorname{SB}(\pi_m^* M_m' - \beta E) \}.$$

Let \widetilde{Y}_{\bullet} be an infinitesimal admissible flag over x centered at a point $x' \in \overline{C}_k \cap E$. By [EKL, Proposition 2.3], [N2, Lemma 1.3], for any β with $\alpha(C_k) < \beta < \mu(M'_m; x)$, we have

$$\operatorname{ord}_{x'}(||\pi_m^*M_m' - \beta E||) \ge \operatorname{ord}_{\overline{C}_k}(||\pi_m^*M_m' - \beta E||) \ge \beta - \alpha(C_k).$$

For any point

$$(\nu_1,\ldots,\nu_{n-1})\in\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(M'_m)_{x_1=\beta}=\Delta_{\widetilde{Y}_{\bullet}}(\pi_m^*M'_m-\beta E)_{x_1=0},$$

by considering Lemma 3.1(2) and (3.1) in Lemma 3.3, we have

$$\nu_1 + \dots + \nu_{n-1} \ge \beta - \alpha(C_k)$$

This implies that

interior
$$\left(\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(M'_m)_{x_1=\beta}\right) \cap \text{interior} \left(\blacktriangle_{\beta-\alpha(C_k)}^{n-1}\right) = \emptyset$$
 in $\mathbb{R}^{n-1}_{\geq 0}$.

Note that $\alpha(C_k) \leq k$ so that

$$\lim_{k \to \varepsilon(M'_m;x)} \alpha(C_k) \le \varepsilon(M'_m;x).$$

By considering (3.5), we see that

interior
$$\left(\frac{1}{m}\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}^{m})\right) \cap$$
 interior $\left(\left(\varepsilon(M'_{m};x),\underbrace{0,\ldots,0}_{n-1 \text{ times}}\right) + \widetilde{\blacktriangle}_{\widetilde{\xi}-\varepsilon(M'_{m};x)}^{n}\right) = \emptyset$ in $\mathbb{R}^{n}_{\geq 0}$.

Since we have

$$\frac{1}{m}\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}^{m}), \quad (\varepsilon(M'_{m};x), \underbrace{0, \dots, 0}_{n-1 \text{ times}}) + \widetilde{\blacktriangle}_{\widetilde{\xi}-\varepsilon(M'_{m};x)}^{n} \subseteq \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}),$$

it follows from [LM, Theorem 2.13] that

$$\operatorname{vol}_X(V_{\bullet}) - \frac{1}{m^n} \operatorname{vol}_X(V_{\bullet}^m) \ge (\widetilde{\xi} - \varepsilon(M'_m; x)))^n \ge (\widetilde{\xi} - \varepsilon)^n.$$

However, [LM, Theorem D and Theorem 2.13] says that $\operatorname{vol}_X(V_{\bullet}) - \frac{1}{m^n} \operatorname{vol}_X(V_{\bullet}^m)$ is arbitrarily small for a sufficiently large integer $m \gg 0$, so we get a contradiction. Therefore, $\varepsilon = \widetilde{\xi}$, and we complete the proof.

Remark 3.11. We assume char(\mathbb{k}) = 0. One can easily check that if V_{\bullet} is finitely generated, then Theorem 1.2 (4) holds for every point $x \in X$. However, in general, Theorem 1.2 (4) may not hold when the point x is not general. For example, we fix a point $x \in \mathbb{P}^2$, and consider a graded linear series V_{\bullet} associated to $\mathcal{O}_{\mathbb{P}^2}(1)$ given by

$$V_m := \{ s \in H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(m)) \mid \operatorname{ord}_x(s) \ge 1 \}$$

for any $m \ge 1$. Evidently, V_{\bullet} is birational. For any infinitesimal admissible flag \widetilde{Y}_{\bullet} over x or any admissible flag Y_{\bullet} centered at x, we have

$$\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet}) = \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(\mathcal{O}_{\mathbb{P}^2}(1)) \quad \text{and} \quad \Delta_{Y_{\bullet}}(V_{\bullet}) = \Delta_{Y_{\bullet}}(\mathcal{O}_{\mathbb{P}^2}(1)),$$

so we obtain $\widetilde{\xi}(V_{\bullet}; x) = \xi(V_{\bullet}; x) = 1$. However, we have $\varepsilon(V_{\bullet}; x) = 0$.

4. INTEGRATED VOLUME FUNCTIONS

This section is devoted to the study of integrated volume functions; in particular, we prove Theorem 1.3. For a given admissible flag Y_{\bullet} on X centered at x and a graded linear series V_{\bullet} , we define the filtered Okounkov body $\widehat{\Delta}_{Y_{\bullet}}(V_{\bullet}, \mathcal{F}_x) \subseteq \mathbb{R}^{n+1}_{\geq 0}$ in Section 2.

Definition 4.1. The *integrated volume function* of $(V_{\bullet}, \mathcal{F}_x)$ at x is defined by

$$\widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, t) := \int_{u=0}^t \operatorname{vol}_{\mathbb{R}^n} (\widehat{\Delta}_{Y_{\bullet}}(V_{\bullet}, \mathcal{F}_x)_{x_{n+1}=u}) du.$$

Remark 4.2. We can easily check that the function

$$\widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, -) \colon \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, \quad t \mapsto \widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, t)$$

is nondecreasing and continuous. When V_{\bullet} is a complete graded linear series of D, we put $\widehat{\varphi}_x(D,t) := \widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, t)$. Clearly, if $D \equiv D'$, then $\widehat{\varphi}_x(D,t) = \widehat{\varphi}_x(D',t)$. Then the function

 $\widehat{\varphi}_x : \operatorname{Big}(X) \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}, \ (D,t) \mapsto \widehat{\varphi}_x(D,t)$

is continuous on the whole domain.

Example 4.3. Let $X = \mathbb{P}^1 \times \mathbb{P}^1$, and V_{\bullet} be the complete graded linear series associated to $D = \mathcal{O}_{\mathbb{P}^1}(1) \boxtimes \mathcal{O}_{\mathbb{P}^1}(1)$. Note that $\mu(V_{\bullet}; x) = 2$. For any admissible flag Y_{\bullet} on X centered at x, we have

$$\operatorname{vol}_{\mathbb{R}^{2}}\left(\widehat{\Delta}_{Y_{\bullet}}(V_{\bullet},\mathcal{F}_{x})_{x_{n+1}=t}\right) = \operatorname{vol}_{\mathbb{R}^{2}}\left(\Delta_{Y_{\bullet}}(V_{\bullet}^{(t)})\right) = \begin{cases} -\frac{1}{2}t^{2} + 1 & \text{if } 0 \le t \le 1, \\ \frac{1}{2}t^{2} - 2t + 2 & \text{if } 1 \le t \le 2. \end{cases}$$

It then follows that

$$\widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, t) = \begin{cases} -\frac{1}{6}t^3 + t & \text{if } 0 \le t \le 1, \\ \frac{1}{6}t^3 - t^2 + 2t - \frac{1}{3} & \text{if } 1 \le t \le 2. \end{cases}$$

See [MR, Example in Section 4] for the case that $D = \mathcal{O}_{\mathbb{P}^1}(d_1) \boxtimes \mathcal{O}_{\mathbb{P}^1}(d_2)$ with $d_1, d_2 \ge 1$.

We are now in a position to extract several important invariants of graded linear series from the integrated volume function. In particular, Proposition 4.4 (6) together with Theorem 1.2 immediately implies Theorem 1.3.

Proposition 4.4. We have the following:

 $\begin{array}{l} (1) \ \widehat{\varphi}_{x}(V_{\bullet},\mathcal{F}_{x},t) = \widehat{\varphi}_{x}(V_{\bullet},\mathcal{F}_{x},\mu(V_{\bullet};x)) = \operatorname{vol}_{\mathbb{R}^{n+1}}\left(\widehat{\Delta}_{Y_{\bullet}}(V_{\bullet},\mathcal{F}_{x})\right) \ for \ any \ t \geq \mu(V_{\bullet};x). \\ (2) \ \widehat{\varphi}'_{x}(V_{\bullet},\mathcal{F}_{x},t) = \frac{d\widehat{\varphi}_{x}(V_{\bullet},\mathcal{F}_{x},t)}{dt} = \operatorname{vol}_{\mathbb{R}^{n}}(\Delta_{Y_{\bullet}}(V_{\bullet}^{(t)})) \ for \ all \ t \geq 0. \\ (3) \ \operatorname{vol}_{X}(V_{\bullet}^{(t)}) = n! \cdot \widehat{\varphi}'_{x}(V_{\bullet},\mathcal{F}_{x},t) \ for \ all \ t \geq 0. \\ (4) \ \widehat{\varphi}'_{x}(V_{\bullet},\mathcal{F}_{x},0) - \widehat{\varphi}'_{x}(V_{\bullet},\mathcal{F}_{x},t) \leq \frac{t^{n}}{n!} \ for \ all \ t \geq 0. \\ (5) \ \mu(V_{\bullet};x) = \inf\{t \geq 0 \mid \widehat{\varphi}'_{x}(V_{\bullet},\mathcal{F}_{x},t) = 0\}. \\ (6) \ \widetilde{\xi}(V_{\bullet};x) = \inf\{t \geq 0 \mid \widehat{\varphi}'_{x}(V_{\bullet},\mathcal{F}_{x},0) - \widehat{\varphi}'_{x}(V_{\bullet},\mathcal{F}_{x},t) < \frac{t^{n}}{n!}\}. \end{array}$

Proof. (1) and (2) are clear by the definition. Then (3) follows from (2) and [LM, Theorem 2.13]. Now, fix an infinitesimal admissible flag \tilde{Y}_{\bullet} over x. Then we have

$$\widehat{\varphi}'_x(V_{\bullet}, \mathcal{F}_x, t) = \operatorname{vol}_{\mathbb{R}^n}(\Delta_{Y_{\bullet}}(V_{\bullet}^{(t)})) = \operatorname{vol}_{\mathbb{R}^n}(\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})_{x_1 \ge t}).$$

By Lemma 3.2 (1) and [LM, Theorem 2.13], we obtain (4) (see [MR, Lemma 4.1] for an alternative proof of (4) when V_{\bullet} is a complete graded linear series). Observe that

$$\mu(V_{\bullet}; x) = \sup\{\nu_1 \mid \mathbf{x} = (\nu_1, \dots, \nu_n) \in \widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})\}.$$

This implies (5). Note that

$$\widehat{\varphi}'_x(V_{\bullet}, \mathcal{F}_x, 0) - \widehat{\varphi}'_x(V_{\bullet}, \mathcal{F}_x, t) = \operatorname{vol}_{\mathbb{R}^n}(\widetilde{\Delta}_{\widetilde{Y}_{\bullet}}(V_{\bullet})_{0 \le x_1 \le t}).$$

Then (6) follows from Lemma 3.2 (1) and (2).

Recall from [BC, Definition 1.2] that the jumping numbers of (V_m, \mathcal{F}_x) are defined as

$$e_{\ell}(V_m) = e_{\ell}(V_m, \mathcal{F}_x) := \sup\{t \in \mathbb{R} \mid \dim \mathcal{F}_x^t V_m \ge \ell\} \text{ for } \ell = 1, \dots, \dim V_m = v_m.$$

We have

$$0 \le e_{v_m}(V_m) \le \dots \le e_1(V_m).$$

The positive mass of (V_m, \mathcal{F}_x) is defined as

$$mass_{+}(V_{m}) = mass_{+}(V_{m}, \mathcal{F}_{x}) := \sum_{e_{j}(V_{m})>0} e_{j}(V_{m}) = \sum_{1 \le j \le v_{m}} e_{j}(V_{m}).$$

Definition 4.5. (1) Let

 $S(V_m) = S(V_m, \mathcal{F}_x) := \{e_{v_m}(V_m), \dots, e_1(V_m)\} \text{ and } N(V_m) = N(V_m, \mathcal{F}_x) := |S(V_m)|.$ (2) We define the *effective jumping numbers* of (V_m, \mathcal{F}_x) as

 $\alpha_j(V_m) = \alpha_j(V_m, \mathcal{F}_x) :=$ the *j*-th largest element in $S(V_m)$ for $j = 1, \ldots, N(V_m)$. For convention, we put $\alpha_{N(V_m)+1} := 0$. We have

$$0 = \alpha_{N(V_m)+1}(V_m) \le \alpha_{N(V_m)}(V_m) < \alpha_{N(V_m)-1}(V_m) < \dots < \alpha_1(V_m)$$

(3) Let

$$\beta_j(V_m) = \beta_j(V_m, \mathcal{F}_x) := \max\{\ell \in [1, v_m] \mid e_\ell(V_m) = \alpha_j(V_m)\} \text{ for } j = 1, \dots, N(V_m), \\ j_t(V_m) = j_t(V_m, \mathcal{F}_x) := \inf\{j \in [1, N(V_m) + 1] \mid \alpha_j(V_m) \le t\} \text{ for } t \ge 0.$$

(4) For $t \ge 0$, the bounded mass function of (V_m, \mathcal{F}_x) is defined as

$$mass_{+}(V_{m}, t) = mass_{+}(V_{m}, \mathcal{F}_{x}, t) := \beta_{j_{t}-1}(t - \alpha_{j_{t}}) + \sum_{j=j_{t}}^{N(V_{m})} \beta_{j}(\alpha_{j} - \alpha_{j+1}),$$

where $\alpha_j = \alpha_j(V_m)$, $\beta_j = \beta_j(V_m)$, and $j_t = j_t(V_m)$. When $j_t(V_m) = N(V_m) + 1$, we put $\sum_{j=j_t(V_m)}^{N(V_m)} \beta_j(V_m)(\alpha_j(V_m) - \alpha_{j+1}(V_m)) := 0.$

Remark 4.6. One can check that

$$\operatorname{mass}_{+}(V_m) = \sum_{e_j(V_m)>0} e_j(V_m) = \sum_{j=1}^{N(V_m)} \beta_j(V_m)(\alpha_j(V_m) - \alpha_{j+1}(V_m)) = \operatorname{mass}_{+}(V_m, \infty).$$

However, $\operatorname{mass}_+(V_m, t) \neq \sum_{0 < e_j(V_m) < t} e_j(V_m)$ in general.

We now show that the integrated volume function can be expressed in terms of the bounded mass functions. In particular, we see that the integrated volume function $\widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, t)$ only depends on the multiplicative filtration \mathcal{F}_x on V_{\bullet} .

Theorem 4.7. For all $t \ge 0$, we have

$$\widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, t) = \lim_{m \to \infty} \frac{\operatorname{mass}_+(V_m, \mathcal{F}_x, mt)}{m^{n+1}}$$

Proof. For any $t \ge 0$, we have

$$\widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, t) = \int_0^t \operatorname{vol}_{\mathbb{R}^n}(\Delta_{Y_{\bullet}}(V_{\bullet}^{(u)})) du = \int_0^t \lim_{m \to \infty} \frac{\dim \mathcal{F}_x^{mu} V_m}{m^n} du$$

By [LM, Theorem 2.13], the sequence of functions $\left\{f_m(u) := \frac{\dim \mathcal{F}_x^{mu} V_m}{m^n}\right\}$ converges pointwise to the function $f(u) := \operatorname{vol}_{\mathbb{R}^n}(\Delta_{Y_{\bullet}}(V_{\bullet}^{(u)}))$ as $m \to \infty$. We have $|f_m(u)| \leq \frac{\dim V_m}{m^n}$. By [LM, Theorem 2.13 and Remark 2.14],

$$\limsup_{m \to \infty} \frac{\dim V_m}{m^n} = \lim_{m \to \infty} \frac{\dim V_m}{m^n} = \frac{\operatorname{vol}_X(V_{\bullet})}{n!},$$

so there exists a constant C > 0 such that $\left| \frac{\dim V_m}{m^n} \right| \leq C$ for all $m \gg 0$. It is enough to consider only a sufficiently large $m \gg 0$ for the claim, so we may assume that $|f_m(u)| \leq C$ for all m. The integration is taken over an area (0, t) with a finite measure, and hence, we see that $|f_m(u)|$ is bounded by an integrable function. Now, by applying Lebesgue dominated convergence theorem and change of variable v = mu, we obtain

$$\int_0^t \lim_{m \to \infty} \frac{\dim \mathcal{F}_x^{mu} V_m}{m^n} du = \lim_{m \to \infty} \int_0^t \frac{\dim \mathcal{F}_x^{mu} V_m}{m^n} du = \lim_{m \to \infty} \frac{1}{m^{n+1}} \int_0^{mt} \dim \mathcal{F}_x^v V_m dv.$$

18

By regarding $\dim \mathcal{F}_x^v V_m$ as a function of v, we can write

$$\dim \mathcal{F}_x^v V_m = \begin{cases} \beta_{N(V_m)}(V_m) & \text{if } v = 0, \\ \beta_j(V_m) & \text{if } v \in (\alpha_{j+1}(V_m), \alpha_j(V_m)] \text{ for } j = N(V_m), \dots, 1, \\ 0 & \text{if } v \in (\alpha_1(V_m), \infty). \end{cases}$$

Now, it is immediate to see that

$$\int_0^{mt} \dim \mathcal{F}_x^v V_m dv = \beta_{j_{mt}-1}(mt - \alpha_{j_{mt}}) + \sum_{j=j_{mt}}^{N(V_m)} \beta_j(\alpha_j - \alpha_{j+1}) = \max_+(V_m, \mathcal{F}_x, mt),$$

where $\alpha_j = \alpha_j(V_m)$, $\beta_j = \beta_j(V_m)$, and $j_{mt} = j_{mt}(V_m)$, which gives the desired result. \Box

As a consequence of Theorem 4.7, we recover [BC, Corollary 1.13] in our situation.

Corollary 4.8. We have

$$\operatorname{vol}_{\mathbb{R}^{n+1}}\left(\widehat{\Delta}_{Y_{\bullet}}(V_{\bullet},\mathcal{F}_x)\right) = \widehat{\varphi}_x(V_{\bullet},\mathcal{F}_x,\infty) = \lim_{m \to \infty} \frac{\operatorname{mass}_+(V_m,\mathcal{F}_x)}{m^{n+1}}$$

Example 4.9. Let $X = \mathbb{P}^2$ be any point, and V_{\bullet} be the complete graded linear series associated to $\mathcal{O}_{\mathbb{P}^2}(1)$. Note that $\mu(V_{\bullet}; x) = 1$. For integers m, s > 0, we have

$$\dim \mathcal{F}_x^s V_m = \frac{(m+2)(m+1)}{2} - \frac{s(s+1)}{2}$$

The jumping numbers $e_j = e_j(V_m, \mathcal{F}_x)$ are given by

$$e_{\frac{(m+2)(m+1)}{2}-\frac{k(k+1)}{2}} = \dots = e_{\frac{(m+2)(m+1)}{2}-\frac{k(k+3)}{2}} = k$$

for all $k \ge 0$ with $\frac{(m+2)(m+1)}{2} - \frac{k(k+3)}{2} \ge 1$, so the effective jumping numbers are given by

$$\alpha_j(V_m, \mathcal{F}_x) = m + 1 - j \quad \text{for } j = 1, \dots, m + 1 = N(V_m, \mathcal{F}_x).$$

We then obtain

$$\beta_j(V_m, \mathcal{F}_x) = \frac{(m+2)(m+1)}{2} - \frac{(m+1-j)(m+2-j)}{2} \text{ and } j_t(V_m, \mathcal{F}_x) = m+1 - \lfloor t \rfloor.$$

For $0 \le t \le 1$, the bounded mass function is given by

$$\operatorname{mass}_{+}(V_{m}, \mathcal{F}_{x}, mt) = \left(\frac{(m+1)(m+2)}{2} - \frac{(\lfloor mt \rfloor + 1)(\lfloor mt \rfloor + 2)}{2}\right)(mt - \lfloor mt \rfloor) + \sum_{k=1}^{\lfloor mt \rfloor} \left(\frac{(m+1)(m+2)}{2} - \frac{k(k+1)}{2}\right).$$

By Theorem 4.7, we obtain

$$\widehat{\varphi}_x(V_{\bullet}, \mathcal{F}_x, t) = \lim_{m \to \infty} \frac{\operatorname{mass}_+(V_m, \mathcal{F}_x, mt)}{m^3} = -\frac{1}{6}t^3 + \frac{1}{2}t \quad \text{for } 0 \le t \le 1.$$

JINHYUNG PARK AND JAESUN SHIN

References

- [AKL] D. Anderson, A. Küronya, and V. Lozovanu, Okounkov bodies of finitely generated divisors, Int. Math. Res. Not. IMRN 9 (2014), 2343–2355.
- [BJ] H. Blum and M. Jonsson, *Thresholds, valuations, and K-stability*, to appear in Adv. Math.
- [BC] S. Boucksom and H. Chen, Okounkov bodies of filtered linear series, Compositio Math. 147 (2011), 1205–1229.
- [CHPW] S. Choi, Y. Hyun, J. Park, and J. Won, Asymptotic base loci via Okounkov bodies, Adv. Math. 323 (2018), 784–810.
- [CPW1] S. Choi, J. Park, and J. Won, Okounkov bodies associated to pseudoeffective divisors II, Taiwanese J. Math. 21 (2017), 601–620.
- [CPW2] S. Choi, J. Park, and J. Won, Okounkov bodies associated to abundant divisors and Iitaka fibrations, preprint, arXiv:1711.07352v1.
- [CPW3] S. Choi, J. Park, and J. Won, Local numerical equivalences and Okounkov bodies in higher dimensions, preprint, arXiv:1808.02226v1.
- [D] J.-P. Demailly, Singular Hermitian metrics on positive line bundles in Complex Algebraic Varieties (Bayreuth, 1990), Lect. Notes Math. 1507 (1992), Springer-Verlag, 87–104.
- [DKMS] M. Dumnicki, A. Küronya, C. Maclean, and T. Szemberg, Seshadri constants via functions on Newton-Okounkov bodies, Math. Nachr. 289 (2016), 2173–2177.
- [EKL] L. Ein, O. Küchle, and R. Lazarsfeld, Local positivity of ample line bundles, J. Differential Geom. 42 (1995), 193–219.
- [ELMNP1] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, and M. Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), 1701–1734.
- [ELMNP2] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, and M. Popa, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), 607–651.
- [F] K. Fujita, A valuative criterion for uniform K-stability of Q-Fano varieties, to appear in J. Reine Angew. Math.
- [FKL] M. Fulger, J. Kollár, and B. Lehmann, Volume and Hilbert function of ℝ-divisors, Michigan Math. J. 65 (2016), 371–387.
- [I] A. Ito, Okounkov bodies and Seshadri constants, Adv. Math. 241 (2013), 246–262.
- [KK] K. Kaveh and A. G. Khovanskii, Newton convex bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. (2) 176 (2012), 925–978.
- [KL1] A. Küronya and V. Lozovanu, Infinitesimal Newton-Okounkov bodies and jet separation, Duke Math. J. 166 (2017), 1349–1376.
- [KL2] A. Küronya and V. Lozovanu, Positivity of line bundles and Newton-Okounkov bodies, Doc. Math. 22 (2017), 1285–1302.
- [KL3] A. Küronya and V. Lozovanu, Local positivity of linear series on surfaces, Algebra Number Theory 12 (2018), 1–34.
- [KMS] A. Küronya, C. Maclean, and T. Szemberg, *Functions on Okounkov bodies coming from geometric valuations*, preprint, arXiv:1210.3523v2.
- [La] R. Lazarsfeld, *Positivity in Algebraic Geometry I and II*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, A Series of Modern Surveys in Mathematics 48 and 49 (2004), Springer-Verlag, Berlin.
- [LM] R. Lazarsfeld and M. Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 783–835.
- [Le] B. Lehmann, *Comparing numerical dimensions*, Algebra Number Theory 7 (2013), 1065–1100.

- [Li] C. Li, *K*-semistability is equivariant volume minimization, Duke Math. J. **166**, (2017), 3147–3218.
- [MR] D. McKinnon and M. Roth, Seshadri constants, diophantine approximation, and Roths theorem for arbitrary varieties, Invent. Math. **200** (2015), 513–583.
- [Mur] T. Murayama, Seshadri Constants and Fujita's Conjecture via Positive Characteristic Methods, PhD Thesis, University of Michigan (2019), arXiv:1905.03839.
- [Mus] M. Mustață, *The non-nef locus in positive characteristic*, A celebration of algebraic geometry, 535–551, Clay Math. Proc. **18** (2013), Amer. Math. Soc., Providence, RI.
- [N1] M. Nakamaye, Base loci of linear series are numerically determined, Trans. Amer. Math. Soc. 355 (2002), 551-566.
- [N2] M. Nakamaye, Seshadri constants at very general points, Trans. Amer. Math. Soc. 357 (2004), 3285–3297.
- [O1] A. Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math. **125** (1996) 405–411.
- [O2] A. Okounkov, Why would multiplicities be log-concave? in The Orbit Method in Geometry and Physics, Progr. Math. 213 (2003), Birkhuser Boston, Boston, MA, 329–347.
- [R] J. Roé, Local positivity in terms of Newton-Okounkov bodies. Adv. Math. 301 (2016), 486–498.
- [WN] D. Witt Nyström, Transforming metrics on a line bundle to the Okounkov body. Ann. Sci.
 Éc. Norm. Supér. (4) 47 (2014), 1111–1161.

DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL, KOREA *E-mail address*: parkjh13@sogang.ac.kr

DEPARTMENT OF MATHEMATICAL SCIENCES, KAIST, DAEJEON, KOREA *E-mail address*: jsshin1991@kaist.ac.kr