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HOMOMORPHISM COMPLEXES AND MAXIMAL CHAINS IN GRADED

POSETS

BENJAMIN BRAUN AND WESLEY K. HOUGH

Abstract. We apply the homomorphism complex construction to partially ordered sets, intro-

ducing a new topological construction based on the set of maximal chains in a graded poset. Our

primary objects of study are distributive lattices, with special emphasis on finite products of chains.

For the special case of a Boolean algebra, we observe that the corresponding homomorphism com-

plex is isomorphic to the subcomplex of cubical cells in a permutahedron. Thus, this work can be

interpreted as a generalization of the study of these complexes. We provide a detailed investigation

when our poset is a product of chains, in which case we find an optimal discrete Morse matching

and prove that the corresponding complex is torsion-free.

1. Introduction

Homomorphism complexes were introduced by Lovász as a generalization of the neighborhood

complex of a finite simple graph. Babson and Kozlov [1, 2] proved that graph homomorphism

complexes did indeed produce new and interesting topological spaces that led to topological lower

bounds for graph chromatic numbers. However, Schultz [15] proved that these lower bounds were

generally not better than the original topological lower bounds obtained by Lovász [13] using

the neighborhood complex. While graph homomorphism complexes have not yet provided the

powerful generalization that was originally hoped for, they have generated interesting mathematical

developments; further, the general homomorphism complex construction has found other interesting

mathematical applications, for example in PL-manifold theory [5, 14], topological properties of set

systems [10], and cellular resolutions of monomial ideals [4, 6].

In this work, we apply the homomorphism complex construction to partially ordered sets, intro-

ducing a new topological construction Hom(Cm, P ) based on the set of maximal chains in a graded

poset P . Our primary object of study is Hom(Cm, P ) when P is a distributive lattice, and we give a

detailed analysis of those lattices formed as a finite product of chains. When P is a Boolean algebra,

we observe that Hom(Cm, P ) is isomorphic to the subcomplex of cubical cells in a permutahedron;

thus, this work can be interpreted as a generalization of the study of these complexes. One such

generalization has already been undertaken by Severs and White [16], and in the case where P is

a Boolean algebra, our proof techniques align with theirs. Our main tool is discrete Morse theory,

which we use to produce optimal discrete Morse functions on Hom(Cm, P ) when P is a product of

chains; we find that these complexes are torsion-free in all homological dimensions.
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The remainder of our paper is structured as follows. Section 2 contains necessary background

regarding discrete Morse theory. Section 3 introduces the general homomorphism complex con-

struction, along with the specific construction for posets we will consider. Section 4 introduces the

complex Hom(Cm, P ) of maximal chains in a graded poset and establishes basic properties when

P is a distributive lattice. Section 5 contains our main result, an optimal discrete Morse function

on Hom(Cm, P ) when P is a product of chains, as well as a proof that the homology groups of

Hom(Cm, P ) are torsion-free. Finally, in Section 6 we provide examples and corollaries to our main

theorems regarding products of chains.

2. Discrete Morse Theory

Discrete Morse theory was first developed by R. Forman in [7] and has since become a powerful

tool for topological combinatorialists. The main idea of the theory is to systematically pair off faces

within a polyhedral cell complex in such a way that we obtain a collapsing order for the complex,

yielding a homotopy equivalent cell complex.

Definition 2.1. A partial matching in a poset P is a partial matching in the underlying graph of

the Hasse diagram of P , i.e., it is a subset M ⊆ P × P such that

• (a, b) ∈ M implies b ≻ a; i.e. a < b and no c satisifies a < c < b.

• each a ∈ P belongs to at most one element in M .

When (a, b) ∈ M , we write a = d(b) and b = u(a).

A partial matching on P is called acyclic if there does not exist a cycle

a1 ≺ u(a1) ≻ a2 ≺ u(a2) ≻ · · · ≺ u(am) ≻ a1

with m ≥ 2 and all ai ∈ P being distinct.

Given an acyclic partial matching M on a poset P , we call an element c critical if it is unmatched.

If every element is matched by M , we say M is perfect. We are now able to state the main theorem

of discrete Morse theory as given in [11, Theorem 11.13]

Theorem 2.2. Let ∆ be a polyhedral cell complex, and let M be an acyclic matching on the face

poset of ∆. Let ci denote the number of critical i-dimensional cells of ∆.

(a) The space ∆ is homotopy equivalent to a cell complex ∆c, called the Morse complex of ∆

with respect to M , with ci cells of dimension i for each i ≥ 0, plus a single 0-dimensional

cell in the case where the empty set is paired in the matching.

(b) There is an indexing of the cells of ∆c with the critical cells of ∆ such that for any two cells

σ and τ of ∆c satisfying dim(σ) = dim(τ) + 1, the incidence number [τ : σ] in the cellular

chain complex for ∆c is given by

[τ : σ] =
∑

c

w(c)

where the sum is taken over all alternating paths c connecting σ with τ , i.e. with all

sequences c = (σ, a1, u(a1), . . . , at, u(at), τ) such that a1 ≺ σ, τ ≺ u(at), and ai+1 ≺ u(ai)
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for i = 1, . . . , t− 1. For such an alternating path, the quantity w(c) is defined by

(1) w(c) := (−1)t[a1 : σ][τ : u(at)]
t∏

i=1

[ai : u(ai)]
t−1∏

i=1

[ai+1 : u(ai)] ,

where the incidence numbers on the right-hand side are taken in the complex ∆.

It is often useful to create acyclic partial matchings on several different sections of the face poset

of a polyhedral cell complex and then combine them to form a larger acyclic partial matching on

the entire poset. This process is detailed in the following theorem known as the Cluster Lemma in

[9] and the Patchwork Theorem in [11].

Theorem 2.3. Assume that ϕ : P → Q is an order-preserving map. For any collection of acyclic

matchings on the subposets ϕ−1(q) for q ∈ Q, the union of these matchings is itself an acyclic

matching on P .

3. Homomorphism Complexes

3.1. General Constructions. Suppose that one has two finite sets A and B and a collection M

of maps from A to B that we refer to as homomorphisms. We can endow M with a topological

structure as follows. This definition was originated by Kozlov [11, Definition 9.24], who suggested

applying it to a broad range of objects including the posets we consider in this work.

Definition 3.1. Let A and B be finite sets. Let M be a collection of maps from A to B called

homomorphisms. Let P (A,B) be the polyhedral cell complex
∏

i∈A∆B, where ∆B is the simplex

with vertices labeled by elements of B. We record a face of P (A,B) by an |A|-tuple of the form

X = (Xi)i∈A, with each ∅ 6= Xi ⊆ B. The homomorphism complex HomM (A,B) is the subcomplex

of P (A,B) consisting of all cells labeled by (Wi)i∈A ∈ P (A,B) satisfying the following property: if

η : A → B is such that η(i) ∈ Wi for all i ∈ A, then η ∈ M . We call such a (Wi)i∈A ∈ P (A,B) a

multi-homomorphism, and we call A the test object and B the target object for the complex. The

faces of HomM (A,B) are partially ordered by X ≤ Y if and only if Xi ⊆ Yi for all i ∈ A.

Given a cell (Wi)i∈A ∈ HomM (A,B), we will usually write Wi = η(i), where η is understood to

be a set-valued function. The cells in HomM (A,B) are all products of simplices; such complexes

are called prodsimplicial and are special examples of polyhedral cell complexes. For two graphs H

and G, we define the graph homomorphism complex Hom(H,G) to be the homomorphism complex

resulting from defining M to be the set of edge-preserving maps from V (H) to V (G). This was

the original context in which homomorphism complexes were developed, though the construction

is much more general.

When A and B are finite posets, then there are many potentially-interesting choices of maps M

to use in constructing a homomorphism complex. In this paper, we will use the following definition.

Definition 3.2. Let P and Q be finite posets, and let M be the set of strictly-order-preserving

maps from P to Q. The poset homomorphism complex Hom(P,Q) is defined to be HomM (P,Q)

for this choice of M .
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Figure 1. A homomorphism from C3 into a Boolean algebra on 3 elements.

(∅,1,12,123)

(∅,1,13,123) (∅,3,13,123)

(∅,3,23,123)

(∅,2,23,123)(∅,2,12,123)

Figure 2. The homomorphism complex from C3 into a Boolean algebra on 3 ele-

ments, with the homomorphism from Figure 1 in bold.

Example 3.3. Figure 1 shows a homomorphism from C3 = {0 < 1 < 2 < 3} into a Boolean

algebra on 3 elements. Figure 2 shows the corresponding homomorphism complex, with the vertices

corresponding to homomorphisms labeled (η(0), η(1), η(2), η(3)). The edge connecting (∅, 1, 12, 123)

with (∅, 2, 12, 123) corresponds to the multihomomorphism (∅, {1, 2}, 12, 123).

3.2. Foldings. In the graph context, the homotopy type of Hom(H,G) is preserved by a “folding”

operation on either H or G, defined as follows.

Definition 3.4. Let N (v) denote the neighborhood of v in G. We say G− v is a fold of G if there

exists u ∈ V (G) with u 6= v such that N (u) ⊇ N (v).

For a polyhedral cell complex X, let Bd X denote the barycentric subdivision of X.

Theorem 3.5. (Kozlov [12]) Let G−v be a fold of G, and let H be some graph. Then, Bd Hom(G,H)

collapses onto Bd Hom(G− v,H), and Hom(H,G) collapses onto Hom(H,G− v).

Therefore, there exists a suitable neighborhood condition that allows us to effectively ignore

certain vertices in either the test or target graph. We next make an analogous definition of folding

for posets.

Definition 3.6. Let P be a finite poset with x ∈ P . Let U(x) denote the set of elements that

cover x, and let D(x) denote the set of elements covered by x. We say that P − x is a fold of P if

there exists y ∈ P with x 6= y such that U(y) ⊇ U(x) and D(y) ⊇ D(x).

Observe that U(x)∪D(x) is equal to the graph-theoretic neighborhood of x in the Hasse diagram

for P . This modified notion of folds and poset neighborhoods yields the following.

Theorem 3.7. Let P − x be a fold of P with some poset Q. Then, Bd Hom(P,Q) collapses onto

Bd Hom(P − x,Q), whereas Hom(Q,P ) collapses onto Hom(Q,P − x).
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To prove this, we need only slightly modify Kozlov’s original proof in [12] of Theorem 3.5. We

first review basic facts about closure operators.

Definition 3.8. An order-preserving map φ from a poset P to itself is a descending closure operator

if φ2 = φ and φ(x) ≤ x for every x ∈ P . Similarly, φ is an ascending closure operator if φ2 = φ and

φ(x) ≥ x for every x ∈ P .

It is well-known in topological combinatorics that ascending and descending closure operators

induce strong deformation retracts.

Definition 3.9. Given a poset P , ∆(P ) is the order complex of P , the simplicial complex whose

simplices are the chains of P . Moreover, if P is the face poset of a polyhedral cell complex X, then

F(∆(P )) = Bd X.

Theorem 3.10. (Kozlov [12]) Let P be a poset, and let φ be a descending closure operator. Then,

∆(P ) collapses onto ∆(φ(P )). By symmetry, the same is true for an ascending closure operator.

Proof of Theorem 3.7. First, we show that Bd Hom(P,Q) collapses onto Bd Hom(P − x,Q).

Identify F(Hom(P − x,Q)) with the subposet of F(Hom(P,Q)) consisting of all η such that

η(x) = η(y). Let X be the subposet consisting of all η ∈ F(Hom(P,Q)) satisfying η(x) ⊇ η(y).

Then, F(Hom(P − x,Q)) ⊆ X ⊆ F(Hom(P,Q)). Consider order-preserving maps

F(Hom(P,Q))
α
→ X

β
→ F(Hom(P − x,Q)),

defined by

αη(z) =

{
η(y) ∪ η(x), for z = x;

η(z), otherwise;
βη(z) =

{
η(y), for z = x;

η(z), otherwise;

for all z ∈ P . Maps α and β are well defined because P − x is a fold of P . It is straightforward

to verify that α is an ascending closure operator and β is a descending closure operator. Since the

image of β ◦ α is F(Hom(P − x,Q), the result follows from Theorem 3.10.

Next, we show that Hom(Q,P ) collapses onto Hom(Q,P − x) by presenting a sequence of el-

ementary collapses. Let Q = {q1, q2, . . . , qt}. For η ∈ F(Hom(Q,P )) \ F(Hom(Q,P − x)), let

1 ≤ i(η) ≤ t be the minimal index such that x ∈ η(qi(η)). Write F(Hom(Q,P )) as a disjoint

union A ⊎B ⊎ F(Hom(Q,P − x)), defined as follows: for η ∈ A ∪B, we have η ∈ A if y /∈ η(qi(η))

while η ∈ B otherwise.

There is a bijection φ : A → B which adds y to η(qi(η)) without changing the other values of η.

Adding y to η(qi(η)) yields an element in F(Hom(Q,P )) since P − x is a fold of P . Clearly, φ(α)

covers α for all α ∈ A. We take the set {(α, φ(α)) | α ∈ A} to be our collection of the elementary

collapses. These are ordered lexicographically after the pairs of integers (i(α),−dim α).

Let us see that these collapses can be performed in this lexicographic order. Take η > α,

η 6= φ(α). Assume i(η) = i(α). If η ∈ B, then η = φ(α̃), i(α̃) = i(α), and dim α̃ > dim α.

Otherwise η ∈ A and dim η > dim α. The third possibility is that i(η) < i(α). In either case, η

has been removed before α. �

Consequently, certain poset elements with an appropriate neighborhood property can be ignored

when examining Hom(P,Q).
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4. Complexes of maximal chains in a graded poset

We now turn our attention to Hom(Q,P ) where Q is a chain. There are two motivations for this.

First, from the perspective of folds discussed in the previous section, chains are primitive objects

since they admit no folds. Second, for a graded poset P , the set of maximal chains is known to

play multiple important roles. For example, the facets of the order complex of P are precisely the

maximal chains in P , and techniques such as EL-labelings frequently require a detailed study of

maximal chains in P . Thus, the rest of this paper will focus on this case, starting with the following

definition.

Definition 4.1. Let Cm denote the chain 0 < 1 < 2 < · · · < m of rank m. Let P be a graded

poset of rank m, and define

Hom(P ) := Hom(Cm, P ) .

Thus, a vertex of Hom(P ) corresponds to a maximal chain in P realized as a strict map from

Cm to P . Given a multihomomorphism η corresponding to a cell in Hom(P ), we will represent η

as the vector with set-valued entries (η(0), η(1), η(2), . . . , η(m)), as we did in Example 3.3. In the

case that P is a graded lattice, we must have that η(0) = {0̂P } and η(m) = {1̂P }.

Example 4.2. In Hom(B6), we can construct the multihomomorphism

η = (∅, {1, 2}, 12, {123, 124}, 1234, {12345, 12346}, 123456) ,

which corresponds to a three-dimensional cell that is the product of three edges, hence a cube.

4.1. Distributive lattices. For a finite poset P , let J(P ) denote the lattice of lower order ideals

in P . Recall Birkoff’s foundational result [3, Theorem 17.3] that every finite distributive lattice L

is isomorphic to J(P ) for some poset P . We will assume in this paper that every finite distributive

lattice L is presented as L = J(P ) for some P .

For such an L, a maximal chain c is of the form

c = {∅ = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ I|P | = P} ,

where for each j we have Ij ⊆ P , |Ij| = j, and there exists some aj ∈ P such that Ij \ Ij−1 = {aj}.

As a result, we can represent c as the permutation in SP given by

c = a1a2a3 · · · a|P |.

Theorem 4.3. Let L = J(P ) be a distributive lattice. If η ∈ Hom(L), then |η(j)| is equal to either

1 or 2 for all j. Furthermore, if |η(j)| = 2, then |η(j − 1)| = 1 when j ≥ 1 and |η(j +1)| = 1 when

j ≤ m− 1. Hence, Hom(L) is a cubical complex.

Proof. Suppose η ∈ Hom(L) with η(j) = {I1j , I
2
j , . . . , I

k
j }. Setting I1j ∩ I2j = I, we must have

|I| = j − 1, and thus η(j − 1) = {I} with I ⊂ Iij for all i in order for the vertices encoded by

η to be maximal chains in L. This implies that if |η(j)| = k > 2, any J ∈ η(j + 1) satisfies

j + 2 ≤ | ∪k
i=1 I

i
j | = |

∨k
i=1 I

i
j| ≤ |J | = j + 1, a contradiction. Next, assume that η(j) = {Ij , I

′
j}.

As before, if Ij ∩ I ′j = I then we have η(j − 1) = {I}. Thus, there exist aj, a
′
j ∈ P such that

Ij \ I = {aj} and I ′j \ I = {a′j}, and again by maximality of the chains encoded by η we must

have that η(j + 1) = {Ij ∪ I ′j} = {I ∪ {aj , a
′
j}}. Finally, since η(j) has size 1 or 2 for all j, the
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4321

Figure 3. Hom(B4)

cell in Hom(L) corresponding to η is a product of points and edges, and thus Hom(L) is a cubical

complex. �

The proof of Theorem 4.3 inspires the following useful notation to encode cells η ∈ Hom(L).

Let ε be a linear extension of P , i,e. a total order that is compatible with the partial order for P .

We encode η as a parenthesized permutation cη where the j-th element in cη is aj if η(j) = {Ij}

and η(j − 1) = {Ij−1} with Ij \ Ij−1 = {aj}, and the j-th and j + 1-st element of cη are aj and

a′j , enclosed in parentheses, if η(j) = {Ij , I
′
j} and η(j − 1) = {Ij−1} with Ij \ Ij−1 = {aj} and

I ′j \ Ij−1 = {a′j}. We adopt the convention that any pair of elements contained in parentheses

are listed in descending order with respect to ε. For example, given the cell from Example 4.2

with η = (∅, {1, 2}, 12, {123, 124}, 1234, {12345, 12346}, 123456), the corresponding parenthesized

permutation is

cη = (21)(43)(65) .

Definition 4.4. Elements of cη that are not enclosed in parentheses in the permutation represen-

tation of η are called free, while any parenthesized elements are joined.

Example 4.5. Let Bn denote the Boolean algebra on n elements, i.e the power set of [n] ordered

by set inclusion. Note that Bn is isomorphic to the product of n copies of C1, a chain with two

elements. Also note that Bn = J([n]) where [n] indicates an antichain with n elements. Thus, the

set of vertices of Hom(Bn) corresponds exactly to the elements of Sn. Two vertices in Hom(Bn) are

endpoints of a common edge in Hom(Bn) if they differ by a single transposition of adjacent entries,

that is {σ, τ} ⊆ Sn form a 1-cell in Hom(Bn) if σi = τi+1 and σi+1 = τi for some 1 ≤ i ≤ n − 1

while σj = τj for j /∈ {i, i + 1}. Observe that this implies that Hom(Bn) lies in the boundary

of the permutohedron of order n, see Figure 3. Without loss of generality, assume that σ is

lexicographically earlier than τ under the usual ordering of the positive integers. Then, we can

denote the above transposition by (σi+1σi), written in decreasing order following our conventions.
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We denote the corresponding 1-cell as

σ1 · · · σi−1(σi+1σi)σi+2 · · · σn .

For example, the homomorphisms given by permutations 35142 and 31542 are adjacent in Hom(B5)

via the transposition (51), and so the corresponding 1-cell (where on the left we write a parenthe-

sized permutation, and on the right we denote a vector of subsets) is

3(51)42 = (∅, 3, {13, 35}, 135, 1345, 12345) .

The elements 2, 3, and 4 are free while and 1 and 5 are joined. As another example, the expression

(64)5(32)(71) denotes the 3-cell in Hom(B7) with vertex set the homomorphisms given by the

permutations

{4652317, 4652371, 4653217, 4653271, 6452317, 6452371, 6453217, 6453271}.

The only free element in this example is 5, while each pair of 6 and 4, 3 and 2, and 7 and 1 are

joined.

Remark 4.6. It follows from Example 4.5 that Hom(Bn) is isomorphic to the subcomplex of the

boundary of the permutahedron formed by all cubical faces. A generalization of this complex has

been previous studied by Severs and White [16], and their paper contains proofs of the optimal

discrete Morse matchings in this paper for the case of Hom(Bn), though in a very different language.

4.2. Incidence numbers in Hom(L). Recall that a general homomorphism complex arises as a

subcomplex of P (A,B) =
∏

i∈A∆B for some finite sets A and B, which we can (after linearly

ordering and renaming the elements in A) write as P (A,B) =
∏m

i=1 ∆B. If we assume that the

elements of B are endowed with a total order, then we have P (A,B) is a product of oriented

simplices. Thus, the cellular chain complex for P (A,B) is obtained as a tensor product of copies

of the chain complex for ∆B [8, Section 3B], which allows us to determine the incidence numbers

as follows. Let η ∈ P (A,B) and t ∈ {1, . . . ,m} with |η(t)| ≥ 2. For η(t) = {vt0, . . . , v
t
|η(t)|} and

0 ≤ ℓ ≤ |η(t)|, consider the face of η given by

τ = (η(1), . . . , η(t− 1), η(t) \ {vtℓ}, η(t+ 1), . . . , η(m)) ,

for which the incidence number is obtained via the expression

(2) [τ : η] = (−1)t−1+ℓ+
∑t−1

j=1
|η(j)| .

The cellular boundary map ∂ for P (A,B) is defined as

∂(η) =
∑

τ a facet of η

[τ : η]τ .

In the case of a distributive lattice L = J(P ), we want to be able to determine the incidence

numbers using our representation cη of a cell η ∈ Hom(L). The complex Hom(L) arises as a

subcomplex of
∏|P |

t=1 ∆2P , where 2P denotes the set of all subsets of P . For a linear extension ε of

P , we list the elements of 2P in graded lexicographic order. Let cη = w(βα)u where w and u are

parenthesized permutations such that w contains t− 1 joined pairs, and β and α are a joined pair

in cη. Defining cαη = wαβu and cβη = wβαu, it follows from (2) that

(3) [cαη : cη] = (−1)t−1 and [cβη : cη] = (−1)t .
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Example 4.7. In Hom(B7), the parenthesized permutation cη = (64)5(32)(71) corresponds to the

cell

η = (∅, {4, 6}, 46, 456, {2456, 3456}, 23456, {123456, 234567}, 1234567) .

If (βα) = (32), then cβη = (64)532(71) corresponds to the cell

τ = (∅, {4, 6}, 46, 456, 3456, 23456, {123456, 234567}, 1234567) .

Thus, [τ : η] = [cβη : cη] = −1. A similar analysis shows that [cαη : cη] = 1.

5. Products of Chains

For the remainder of this paper, we turn our attention to those distributive lattices L that arise

as products of chains. For 1 ≤ i1 ≤ i2 ≤ · · · ≤ in integers, we define i = (i1, . . . , in) and

Hom(i) := Hom




n∏

j=1

Cij


 .

Note that when ij = 1 for all j, we have that
∏n

j=1C1 is isomorphic to Bn. Our main result in this

section is the following.

Theorem 5.1. For i = (i1, . . . , in), there exists an optimal discrete Morse matching on the face

poset of Hom(i) where the incidence number in the resulting Morse complex for any pair of critical

cells is zero. Thus, the homology groups of Hom(i) are free and the rank of Hk(Hom(i);Z) is equal

to the number of critical cells of dimension k in the matching. Furthermore, the critical cells in the

matching are in bijection with permutations w of the multiset {1i1 , 2i2 , . . . , nin} whose descent set

Des(w) can be written as a disjoint union

(4) Des(w) =
⊎

t

{mt,mt + 1, . . . ,mt + qt}

where each qt is of the form 3j + 1 or 3j + 2 and Des(w) ∩
⋃

t{mt − 1,mt + qt + 1} = ∅. The

dimension of the critical cell corresponding to w is
∑

t

⌈qt
3

⌉
.

The remaining three subsections of this paper contain the proof of Theorem 5.1. We will prove

the theorem in three parts: first we will define a partial matching and prove it is acyclic, second

we will prove that the claimed critical cell bijection holds, and third we will prove that our acyclic

partial matching is optimal. Before proceeding to the proofs for each of these parts, we introduce

notation that we will require.

Note that
∏n

j=1Cij = J
(⊎n

j=1Cij−1

)
. If we were to use our earlier convention, we would

set P =
⊎n

j=1Cij−1 and consider a linear extension of the elements of P in order to write our

parenthesized words for cells. However, in the special case of
⊎n

j=1Cij−1, we can use a simplified

representation of our parenthesized words. Observe that every strict poset map η from C∑n
j=1

ij

into
∏n

j=1Cij corresponds to a word c̃η that is a permutation of the multiset {1i1 , 2i2 , . . . , nin}, as

follows. If η(j) = Ij, η(j − 1) = Ij−1, and Ij \ Ij−1 = {aj} ⊂ Cit−1, then we set the j-th element

of the permutation c̃η equal to t instead of aj . Because each Cij is a total order, we can recover cη
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from c̃η by counting the number of occurrences of t to the left of the occurrence in the j-th position

of c̃η, from which we can recover the element aj .

Example 5.2. The permutation c̃η = 123213 corresponds to some vertex η in Hom(2, 2, 2). If

C2 × C2 × C2 is represented as J ({r < s} ⊎ {a < b} ⊎ {x < y}), then the corresponding maximal

chain in C2 ×C2 × C2 is

η = (∅, r, ra, rax, raxb, raxbs, raxbsy) .

Two vertices σ and τ are adjacent in Hom(i) if we can swap two adjacent distinct entries in

the the word corresponding to σ to get the word corresponding to τ and vice versa. Note that

the word does not change if the adjacent entries are identical. As we did previously, we denote

the 1-dimensional cell connecting σ and τ by putting the transpositional pair of entries in a set of

parentheses, with the two entries written in decreasing order. We extend this convention to denote a

k-dimensional cell in Hom(i) by a word from the multiset {1i1 , 2i2 , . . . , nin} with k non-overlapping

parenthesized pairs where the entries in each pair are distinct and written in decreasing order.

Definition 5.3. Given a k-dimensional cell σ ∈ Hom(i), the word obtained by removing the

parentheses from σ but keeping all of the entries in the same order will be called the underlying

word of σ. For a fixed vector i and corresponding multiset {1i1 , 2i2 , . . . , nin}, consider an arbitrary

cell σ and its underlying word. Let rs denote the s-th r when reading the underlying word from

left to right, and let jr,s denote the position of rs.

Example 5.4. The cell 123(21)3 is contained in Hom(2, 2, 2), has underlying word 123213, and

has the following j-values:

j1,1 = 1, the location of the first 1 j1,2 = 5, the location of the second 1

j2,1 = 2, the location of the first 2 j2,2 = 4, the location of the second 2

j3,1 = 3, the location of the first 3 j3,2 = 6, the location of the second 3

5.1. The discrete Morse matching. Let ℓ :=
∑n

k=1 ik. Let Cop
ℓ denote the chain poset on

[ℓ] := {1, 2, . . . , ℓ} with the order ℓ < ℓ − 1 < · · · < 2 < 1, and let M denote the poset of two

elements a and b with a < b. Let F(Hom(i)) denote the face poset of the complex Hom(i). We

define an acyclic partial matching on F(Hom(i)) according to the following algorithm.

Algorithm 5.5. INITIALIZE the following: r := n s := in.

Define Ωr,s := F(Hom(i)) and Ur,s := ∅.

STEP 1: Define a poset map φr,s from Ωr,s to Cop
ℓ where σ is sent to the position of rs, that is

φr,s(σ) = jr,s. This map is order-preserving by Claim 5.7.

STEP 2: Define a poset map ρr,s from φ−1
r,s (jr,s) ⊆ Ωr,s to M as follows:

• ρr,s(σ) = a if the following conditions hold:

(1) If σjr,s−1 is free, then rs ≥ σjr,s−1.

(2) rs > σjr,s+1.

(3) Either rs and σjr,s+1 are both free or joined together.

• ρr,s(σ) = b otherwise.
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This map is order-preserving by Claim 5.8.

STEP 3: Perfectly match the elements of ρ−1
r,s (a) ⊆ φ−1

r,s (jr,s) ⊆ Ωr,s by pairing the cells where rs

and σjr,s+1 are both free with the corresponding cell where rs and σjr,s+1 are joined together. This

matching is acyclic since rs can be in at most one transposition for any given cell.

STEP 4: If s > 1, redefine s := s − 1. Now, define Ωr,s := ρ−1
r,s+1(b) ⊆ φ−1

r,s+1(jr,s+1) ⊆ Ωr,s+1

and Ur,s := {rs+1} ∪ Ur,s+1, then return to Step 1.

If s = 1 and r > 1, redefine r := r − 1 and s := ir. Now, define Ωr,s := ρ−1
r+1,1(b) ⊆

φ−1
r+1,1(jr+1,1) ⊆ Ωr+1,1 and Ur,s := {(r + 1)1} ∪ Ur+1,1, then return to Step 1.

If s = 1 and r = 1, STOP.

Before proving Claims 5.7 and 5.8 and Theorem 5.9, we will go through an example illustrating

the action of our algorithm on a specific cell σ.

Example 5.6. Let σ = (21)1(32)344 ∈ Hom(2, 2, 2, 2). We begin by setting r = 4 and s = 2,

with Ω4,2 = F(Hom(2, 2, 2, 2)) and U4,2 = ∅. We have that φ4,2(σ) = 8, thus σ ∈ φ−1
4,2(8). Since

σ8+1 = σ9 is not defined, we have ρ4,2(σ) = b.

Next we set r = 4 and s = 1, with Ω4,1 = ρ−1
4,1(b), hence σ ∈ Ω4,1 and U4,1 = {42}. We have that

φ4,1(σ) = 7. Since 41 = 4 is not strictly greater than σ8 = 4, we have that ρ4,1(σ) = b.

Next, we set r = 3 and s = 2, with Ω3,2 = ρ−1
4,1(b) and U3,2 = {41, 42}. Then φ3,2(σ) = 6 and

since 3 is not greater than 4, we have ρ3,2(σ) = b.

Again, we set r = 3 and s = 1, with Ω3,1 = ρ−1
3,2(b) and U3,1 = {32, 41, 42}. We have that

φ3,1(σ) = 4, and also we have ρ3,1(σ) = a since σ3 = 1 ≤ 3, 3 > σ5 = 2, and (σ4σ5) = (32) are

joined. In ρ−1
3,1(a), we match (21)1(32)344 with (21)132344.

Claim 5.7. The poset maps φr,s defined in Step 1 of Algorithm 5.5 are order-preserving within

their corresponding Ωr,s domains.

Proof. Suppose σ < τ in Ωr,s with φr,s(τ) = j ∈ [ℓ]. If we release a transposition that does not

include rs, the position of rs will be preserved. If rs is in a transposition of the form (rsτj+1), then

releasing that transposition in either order will preserve the position of rs or increase its position

by one. Suppose that rs is in a transposition of the form (τj−1rs). By convention, τj−1 > rs, which

implies τj−1 ∈ Ur,s, a consequence of Step 4 in Algorithm 5.5. By the iterative revision of Ωr,s in

Step 4 of Algorithm 5.5, the elements of Ur,s have prescribed positions in the underlying words of

the cells in Ωr,s. Hence, the position of τj−1 must be fixed in all elements of Ωr,s, which implies

that the transposition (τj−1rs) can only be released in the order τj−1rs to stay within Ωr,s. So, the

position of rs is preserved in this third case. In all three cases, φr,s(σ) ≥ j. Since cells with larger

position values for rs map lower on Cop
ℓ , we see that φr,s is weakly order preserving. �

Claim 5.8. The poset maps ρr,s defined in Step 2 of Algorithm 5.5 are order-preserving within

their corresponding φ−1
r,s (jr,s) ⊆ Ωr,s domains.

Proof. Suppose σ is covered by τ in φ−1
r,s (jr,s) ∈ Ωr,s with ρr,s(τ) = a. If both τjr,s and τjr,s+1 are

free in τ , then they are both free in σ since transpositions are inherited upward and free entries

are inherited downward. So, ρr,s(σ) = a here. Suppose instead that τjr,s and τjr,s+1 are joined. If
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they are still joined in σ, then ρr,s(σ) = a. If they are not joined in σ, then they are both free in

σ. However, there are two children of τ where the entries at positions jr,s and jr,s + 1 are free.

We know that σ must be the child where the entries are in decreasing order because the child of

τ where the entries are in increasing order is in the fiber φ−1
r,s (jr,s + 1), not φ−1

r,s (jr,s). This means

that ρr,s(σ) = a here as well. Hence, we must have ρr,s(σ) = a, which implies that ρr,s is weakly

order preserving. �

Theorem 5.9. The matching defined by Algorithm 5.5 is an acyclic partial matching.

Proof. The claim follows from the Patchwork Theorem since the sub-matchings defined in Step 3

are each acyclic. �

5.2. The critical cell bijection. Let σ denote an arbitrary critical k-cell in the reduced complex

of Hom(i), let w denote its underlying word which is a permutation of the multiset {1i1 , 2i2 , . . . , nin}.

Define

M := {j ∈ Des(w) : j − 1 /∈ Des(w)}

and let m1,m2, . . . ,ms denote the elements of M in increasing order where s = |M |. We first prove

the following three claims to be used in the main bijection proof.

Claim 5.10. If j ∈ M , then σj is free.

Proof. Since j − 1 /∈ Des(w) and joined pairs correspond to a descent, we conclude that σj−1 and

σj are not joined. We will show that σj is not joined with σj+1. For the sake of contradiction,

assume that σj and σj+1 are joined. Since σj = rs for some r ∈ [n] and 1 ≤ s ≤ ir, we must have

j = jr,s and σ ∈ φ−1
r,s (jr,s) ∈ Ωr,s. Since j − 1 /∈ Des(w), the conclusion of Condition (1) in Step 2

of Algorithm 5.5 holds. Since j − 1 /∈ Des(w) and joined pairs correspond to a descent, Conditions

(2) and (3) in Step 2 of Algorithm 5.5 hold as well. Hence, ρr,s(σ) = a, and σ is matched by Step

3 of Algorithm 5.5 on the r, s loop. This contradicts that σ is a critical cell. �

Claim 5.11. If σj is free and j ∈ Des(w), then σj+1 is joined with σj+2, and hence j+1 ∈ Des(w).

Proof. Suppose that σj is free and j ∈ Des(w). We will argue that σj+1 cannot be free and, hence,

must be joined with σj+2. Since σj = rs for some r ∈ [n] and 1 ≤ s ≤ ir, we must have j = jr,s

and σ ∈ φ−1
r,s (jr,s) ∈ Ωr,s. Since σj is free and j ∈ Des(w), we must have that either j − 1 /∈ Des(w)

or σj−1 is not free. Either way, Condition (1) in Step 2 of Algorithm 5.5 holds. Since j ∈ Des(w),

Condition (2) holds as well. However, since σ is critical, we cannot have ρr,s(σ) = a. This means

that Condition (3) cannot be satisfied, which means that σj+1 cannot be free. Hence, σj+1 must

be joined with something, i.e. σj+2. It follows that j + 1 ∈ Des(w) since we write joined pairs in

descending order. �

Claim 5.12. Suppose σj is free and j ∈ Des(w). If j + 3 ∈ Des(w), then σj+3 is free.

Proof. Suppose that σj is free and j ∈ Des(w). Claim 5.11 asserts that σj+1 is joined with σj+2

and that j + 1 ∈ Des(w). Suppose that j + 3 ∈ Des(w). We argue that σj+3 cannot be joined with

σj+4. For the sake of contradiction, suppose that σj+3 and σj+4 are joined. Since σj+3 = rs for

some r ∈ [n] and 1 ≤ s ≤ ir, we must have j + 3 = jr,s and σ ∈ φ−1
r,s (jr,s) ∈ Ωr,s. Since σj+3 is not
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free, Condition (1) in Step 2 of Algorithm 5.5 vacuously holds. Conditions (2) and (3) hold as a

result of our hypothesis and the fact that joined elements are a descending pair. Hence, ρr,s(σ) = a

and σ is matched by Step 3 of Algorithm 5.5 on the r, s loop. This contradicts that σ is a critical

cell, hence σj+3 must be free. �

We will now use the previous three claims to prove the bijection between the critical cells and

the words with prescribed descent sets.

Proof of Critical Cell Bijection. Observe first that for every permutation w of {1i1 , 2i2 , . . . , nin},

the descent set Des(w) can be written as a disjoint union of intervals, each beginning with an

element mt ∈ M , i.e. there exist non-negative integers qt such that

(5) Des(w) =
⊎

t

{mt,mt + 1, . . . ,mt + qt}

where
⋃

t{mt − 1,mt +mt +1} ∩Des(w) = ∅. Thus, what we need to establish is that each qt is of

the form 3k + 1 or 3k + 2, and we will be done.

The result is proved via the following algorithm. We assume each mt is an element of M , i.e.

mt ∈ Des(w) but mt − 1 /∈ Des(w).

Algorithm 5.13. INITIALIZE: t := 1 and k := 0.

Step 1: WHILE t ≤ |M |, observe that mt ∈ M ⊆ Des(w) and σmt is free by Claim 5.10.

Step 2: Observe that Claim 5.11 asserts that that mt + 3k + 1 ∈ Des(w).

Step 3: If mt + 3k + 2 /∈ Des(w), then qt = 3k + 1, which agrees with our description of the

descent set of a critical cell. So, if mt + 3k + 2 /∈ Des(w), then increment t by one and return to

Step 1. Otherwise, continue to Step 4.

Step 4: Since mt + 3k + 2 ∈ Des(w), we consider mt + 3k + 3. If mt + 3k + 3 /∈ Des(w),

then qt = 3k + 2, which agrees with our description of the descent set of a critical cell. So, if

mt + 3k + 3 /∈ Des(w), then increment t by one and return to Step 1. Otherwise, continue to Step

5.

Step 5: Since mt + 3k + 3 ∈ Des(w), σmt+3k+3 is free by Claim 5.12. Increment k by one and

return to Step 2.

This algorithm shows that, for each 1 ≤ t ≤ |M | and mt ∈ M , there exists some qt of the form

3k+1 or 3k+2 such that the set {mt,mt +1, . . . ,mt + qt} ⊆ Des(w) while {mt − 1,mt + qt +1} ∩

Des(w) = ∅.

�

Example 5.14. Consider the critical cell 237(64)9(85)1 with underlying word w = 237649851.

Then M = {3, 6} and Des(w) = {3, 4} ⊎ {6, 7, 8}.

Example 5.15. Consider the critical cell 2223(21)16(54)3(21)334(32)35 which has underlying word

w = 22232116543213343235 Then M = {4, 8, 16} and

Des(w) = {4, 5, 6} ⊎ {8, 9, 10, 11, 12} ⊎ {16, 17} .
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5.3. Optimality of the matching. To prove that our matching is optimal, we will show that all

the incidence numbers between critical cells in the resulting Morse complex are equal to zero. Our

method of proof is to produce a sign-reversing involution on the set of all alternating paths between

any pair of critical cells in adjacent dimensions, where the sign that is reversed is the weight of

that alternating path as defined by (1) in Theorem 2.2. The following useful characterization of

the critical cells is a direct consequence of Claim 5.11.

Claim 5.16. Consecutive free entries in a critical cell are weakly increasing; hence, any critical

k-cell σ must be of the form

σ = w1(β1α1)w2(β2α2)w3 · · · (βkαk)wk+1

where each wi is a weakly increasing multiset permutation of length ℓi where wi,ℓi > βi > αi.

Proof of Optimality. Let σ be a critical k-cell and τ be a critical (k − 1)-cell such that there exists

an alternating path from σ to τ given as follows:

(6) c = (σ, a1, u(a1), a2, u(a2), a3, . . . , at, u(at), τ) .

We will say that the length of c is t. By Claim 5.16, we know that τ is of the form

τ = w1(β1α1)w2(β2α2)w3 · · · (βk−1αk−1)wk

where each wi is a weakly increasing multiset permutation of length ℓi where wi,ℓi > βi > αi.

In order for τ ⊂ u(at), we have that u(at) contains all the joined pairs in τ plus one additional

joined pair. Call this additional joined pair (β, α), where β > α. Because τ is critical and at

is paired with u(at) by joining α and β, it must be that at is obtained from τ by swapping the

positions of α and β since these are the only elements in the parenthesized permutation that are

not in the configuration of a critical cell. Extending this idea, we call a sequence (ai, u(ai), ai+1) a

swap if ai is obtained from ai+1 by exchanging two adjacent free entries in ai+1.

Now, for our alternating path c defined in (6), let j be the maximum index in c such that

(aj , u(aj), aj+1) is not a swap. We first argue that t ≥ 2, then that j ≤ t − 1. First, for any

alternating path c, we have t ≥ 2, since a1 is obtained from σ by releasing a joined pair, which

introduces a pair of adjacent descents in a run of free entries of a1 that must be reversed to return

to critical position, i.e. satisfying Claim 5.16. Second, we must have that u(at) is obtained from τ

by joining two free elements of τ which are in increasing order, elements which are then reversed

in order when placed in parentheses. All of the other joined pairs in u(at) are in the configuration

given in 5.16, and thus at must arise from a swap of the two newly joined elements in τ . Hence,

our choice of j is well-defined.

Since each (ai, u(ai), ai+1) for i ≥ j +1 is a swap, it follows that there exist permutations πi(wi)

of the weakly ascending multiset permutations in τ such that aj is of the form

aj = π1(w1)(β1α1)π2(w2)(β2α2)π3(w3) · · · (βk−1αk−1)πk(wk) .

Furthermore, u(aj) is obtained by joining two of the free entries in aj+1, call them γ < δ, and aj

is obtained by releasing a different joined pair.

We are now able to construct our involution. To our alternating path c as defined above, we

assign the alternating path c′ that agrees with c on (σ, . . . , u(aj)) but redefines a
′
j+1 to be the cell
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obtained from u(aj) by releasing γ and δ in the opposite order from aj+1. We then inductively

define a′i, u(a
′
i), a

′
i+1 by using swaps starting with aj+1. The requirement that a′i is matched to

u(a′i) determines the swap that will take place, and ensures that all of the joined elements in our

original cell τ remain joined throughout this process. Further, because we only use swaps, and

each swap decreases the number of inversions in the underlying word for τ by one, it follows that

c′ has length either t− 1 or t+ 1 and is also an alternating path from σ to τ . Because both c and

c′ terminate in a sequence of swaps following u(aj), it follows that c and c′ are bijectively mapped

to each other, and we have established an involution.

We next need to show that [τ : σ] = 0 for all such critical cells. From (1), we have that

[τ : σ] =
∑

c

w(c)

with c ranging over all alternating paths from σ to τ and

w(c) := (−1)t[a1 : σ][τ : u(at)]

t∏

i=1

[ai : u(ai)]

t−1∏

i=1

[ai+1 : u(ai)] .

From (3) it follows that for any swap (ai, u(ai), ai+1) we have that [ai : u(ai)] · [ai+1 : u(ai)] = −1.

Thus, if we define A := [a1 : σ]
∏j

i=1[ai : u(ai)] ·
∏j−1

i=1 [ai+1 : u(ai)], we have

w(c) · w(c′) = (−1)t(−1)t±1 ·A ·A · (−1)# swaps in c · (−1)# swaps in c′ · [aj+1 : u(aj)] · [a
′
j+1 : u(aj)]

= −1

where the product of the final two terms is −1 due to (3). Hence, our involution is sign-reversing,

and our matching is optimal.

�

Example 5.17. The alternating path given by

c = [(7(63)9(81)5(42), 7(63)9(81)542, 7(63)9(81)(54)2,

7(63)918(54)2, 7(63)(91)8(54)2, 7(63)198(54)2,

7(63)1(98)(54)2, 7(63)189(54)2]

ends with the final five cells involved in swaps. Thus, in the third cell of c, we release (81) in the

opposite order to obtain c′ below, as described in the proof of optimality. Note that we complete

the fourth and later cells listed in c′ by requiring that all subsequent cells be obtained as swaps.

c′ = [(7(63)9(81)5(42), 7(63)9(81)542, 7(63)9(81)(54)2,

7(63)981(54)2, 7(63)(98)1(54)2, 7(63)891(54)2,

7(63)8(91)(54)2, 7(63)819(54)2, 7(63)(81)9(54)2,

7(63)189(54)2]

6. Examples and Special Cases

6.1. i = (r) or (r, s). When i = (r), the poset is a single chain, in which case our complex Hom(r)

is a single point. When i = (r, s), it is a straightforward exercise to show that the corresponding
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product of chains is a rectangular grid that collapses via folds to a single chain. Thus, Hom(r, s) is

contractible by Theorem 3.7.

6.2. i = (r, s, t). When our poset is a product of three chains, the structure of Hom(i) becomes

more interesting.

Theorem 6.1. The number of critical k-cells in Hom(r, s, t) is
(
r
k

)
·
(
s
k

)
·
(
t
k

)
where k ≤ r ≤ s ≤ t.

Proof. The complex Hom(r, s, t) corresponds to words from the multiset {1r, 2s, 3t}. The only

possible critical configuration for such a word has a transposition of the form 3(21) with its preceding

ascending free sequence listing its free 1’s, followed by its free 2’s, and ending with its free 3’s.

Consider the list 11, 12, . . . , 1r. Select k of these 1’s, say 1j1 , 1j2 , . . . , 1jk . Recall that there are(r
k

)
such ways to make these selections. We will distribute the entries 11, 12, . . . , 1r into a critical

cell σ of dimension k. We put the entry 1j1 into the first transposition of σ while the entries

11, 12, . . . , 1j1−1 go into the free sequence preceding this first transposition. For 1 < n < k, we put

1jn into the n-th transposition while 1jn+1, . . . , 1jn+1−1 all go into the free sequence between the

n-th and (n+1)-th transpositions. Finally, we put 1jk into the final transposition, and 1jk+1, . . . , 1r

all go into the terminal free sequence.

We then select k of the s 2’s in one of
(s
k

)
ways, select k of the t 3’s in one of

(t
k

)
ways, and

perform a similar distribution process. The selected 2’s should be placed in the transpositions with

the selected 1’s, and the selected 3’s become the free entries just before their corresponding trans-

positions. It is straightforward to reverse this procedure and convert a critical cell in Hom(r, s, t)

back into a selection of 1’s, 2’s, and 3’s.

Since the selections for each letter are independent of the selections of the other letters, we have(r
k

)
·
(s
k

)
·
(t
k

)
total ways to make selections and create a critical cell. �

Example 6.2. In Hom(4, 4, 4), the critical cell 233(21)123(21)13 corresponds to the following

selections

11 , 12, 13 , 14 21, 22 , 23, 24 31, 32 , 33 , 34

6.3. i = (1, 1, . . . , 1). We first recall that Cn
1
∼= Bn where Bn is the Boolean algebra on n symbols.

Thus, Hom(1, 1, . . . , 1) = Hom(Bn). As mentioned earlier, this complex has been studied using

discrete Morse theory by Severs and White [16] in a different context; our results mirror theirs.

Theorem 6.3. The unreduced Euler characteristic of Hom(Bn) is

(7) χn =

⌊n/2⌋∑

k=0

(−1)k
n!

2k

(
n− k

k

)
.

Proof. Fix n ≥ 1. We now count the number of k-cells in Hom(Bn) for 0 ≤ k ≤ ⌊n/2⌋. Since the

dimension of a cell in Hom(Bn) equals the number of transpositions in its parenthesized notation,

a k-cell will have transpositions in k different locations. If we consider a free element as a block of

size 1 and a transposition as a block of size 2, then we see that the relative order of free elements

and transpositions for a given k-cell corresponds to a composition of n using parts of size 1 and 2.

We know there are
(n−k

k

)
such compositions. (There will be n− k blocks, and we choose k of them

to be of size 2.) Now, for each such block arrangement, there are n!
2k

ways to order the elements
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into the blocks where the order in a block of size 2 is irrelevant. In total, there are n!
2k

(n−k
k

)
cells of

size k in Hom(Bn). �

Theorem 6.4. Equation (7) satisfies the recursion χn = n ·χn−1−
(n
2

)
·χn−2 with initial conditions

χ1 = χ2 = 1.

Proof. It is straightforward to verify the initial conditions. Let Xn =
χn

n!
for arbitrary n ≥ 1, and

we prove instead that Xn = Xn−1 −
1
2Xn−2. Multiplying by n! gives the result.

First, suppose that n = 2j for some integer j. From formula 7, we know that

Xn−1 =

j−1∑

k=0

(
−1

2

)k (n− 1− k

k

)

=

(
−1

2

)0 (n− 1− 0

0

)
+

j−1∑

k=1

(
−1

2

)k (n− 1− k

k

)
.

We also have, via reindexing,

−
1

2
Xn−2 =

j−1∑

k=0

(
−1

2

)k+1(n− 2− k

k

)

=

j∑

k=1

(
−1

2

)k (n− 1− k

k − 1

)

=

j−1∑

k=1

(
−1

2

)k (n− 1− k

k − 1

)
+

(
−1

2

)j (n− 1− j

j − 1

)
.

Using the fact that
(
n−1−k
k−1

)
+

(
n−1−k

k

)
=

(
n−k
k

)
, we compute

Xn−1 −
1

2
Xn−2 =

(
−1

2

)0 (n− 1− 0

0

)
+

j−1∑

k=1

(
−1

2

)k (n− k

k

)
+

(
−1

2

)j (n− 1− j

j − 1

)
.

Recognizing that
(n−1−0

0

)
=

(n−0
0

)
and that j = n/2 implies

(n−1−j
j−1

)
=

(n−j
j

)
, we obtain

Xn−1 −
1

2
Xn−2 =

j∑

k=0

(
−1

2

)k (n− k

k

)
= Xn.

A similar argument holds for the case when n = 2j + 1.

�

Corollary 6.5. If we write n = 4q + r where 0 ≤ r ≤ 3 and q is a non-negative integer, then

χn =





(−1/4)q · n! r ∈ {0, 1}

(1/2)(−1/4)q · n! r = 2

0 r = 3
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Proof. It is straightforward to verify that χ1 = χ2 = 1, χ3 = 0, and χ4 = −6. Let Xn = χn/n! as

before, and recall that Xn = Xn−1 −
1
2Xn−2 for n ≥ 3. Then, we have X1 = 1, X2 = 1/2, X3 = 0,

and X4 = −1/4. Now, for n ≥ 5, we see that

Xn = Xn−1 −
1
2Xn−2

= (Xn−2 −
1
2Xn−3)−

1
2(Xn−3 −

1
2Xn−4)

= Xn−2 −Xn−3 +
1
4Xn−4

= (Xn−3 −
1
2Xn−4)−Xn−3 +

1
4Xn−4

= −1
4Xn−4.

Hence, Xn = (−1/4)qXr for n = 4q + r as in the statement. Technically, X0 is undefined, but

we set it equal to 1 to ensure that X4 = (−1/4)1X0 = −1/4 compatibly. Multiplying by n! proves

the claim. �
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